Literature Database Entry

heinovski2021scalable


Julian Heinovski, Dominik S. Buse and Falko Dressler, "Scalable Simulation of Platoon Formation Maneuvers with PlaFoSim," Proceedings of 13th IEEE Vehicular Networking Conference (VNC 2021), Poster Session, Virtual Conference, November 2021, pp. 137–138.


Abstract

Platooning is one of the most challenging applications of Intelligent Transportation Systems (ITS). While the microscopic control of vehicles in a platoon can already be simulated quite accurately, the scalable simulation of maneuvers and platoon formation is still challenging. To bridge this gap, we propose PlaFoSim, a tool for simulation of platoon formation in large-scale freeway scenarios. PlaFoSim aims to facilitate and accelerate the research of platoon maneuvers and formation - new algorithms can easily be integrated using Python modules. We illustrate the capabilities of PlaFoSim and also showcase its scalability in a large-scale simulation setup.

Quick access

Original Version DOI (at publishers web site)
Authors' Version PDF (PDF on this web site)
BibTeX BibTeX

Contact

Julian Heinovski
Dominik S. Buse
Falko Dressler

BibTeX reference

@inproceedings{heinovski2021scalable,
    author = {Heinovski, Julian and Buse, Dominik S. and Dressler, Falko},
    doi = {10.1109/VNC52810.2021.9644678},
    title = {{Scalable Simulation of Platoon Formation Maneuvers with PlaFoSim}},
    pages = {137--138},
    publisher = {IEEE},
    issn = {2157-9865},
    isbn = {978-1-66544-450-7},
    address = {Virtual Conference},
    booktitle = {13th IEEE Vehicular Networking Conference (VNC 2021), Poster Session},
    month = {11},
    year = {2021},
   }
   
   

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.

This page was automatically generated using BibDB and bib2web.

Last modified: 2024-03-28