Literature Database Entry

torres-gomez2024low-complex


Jorge Torres Gómez, Jennifer Simonjan and Falko Dressler, "Low-Complex Synchronization Method for Intra-Body Links in the Terahertz Band," IEEE Journal on Selected Areas in Communications, 2024. (to appear)


Abstract

Precision medicine applications supported by nanotechnologies enforce designing a communication interface between in-body nanosensors and external gateways. Such a communication interface will enable both a data and a control channel between nanodevices operating within the human body and external control units. In this direction, recent literature focuses on deriving analytic channel models for intra-body links through the human tissues, including the analysis of achievable communication capacities in the terahertz band. A yet missing component, however, is a synchronization module to implement communication schemes in the intra-body link. Such synchronization module will ultimately bound the communication performance regarding the perceived signal to noise ratio ( SNR) and bit error rate (BER ), for instance. This paper contributes to the state of the art in two directions: (a) evaluating the bounds on the communication performance with the Cramer-Rao lower bound (CRLB ) for the synchronization symbol timing offset (STO) and (b) designing a low-complex mechanism to synchronize communication. This analysis considers a communication link between external gateways located on the skin and nanosensor devices flowing in the human vessels. Using envelope and slope detectors, we devise a low-complex solution that relies on the received signal strength ( RSS) metric to trigger data emissions. The method estimates the peak of the received RSS metric to ignite communication in the most favorable location, i.e., when the nanosensor is located at the shortest distance in the communication range with external gateways. Our findings illustrate the feasibility of such a low-complex synchronization method. Performance illustrates a BER less than 1×10−5 for those nanosensors traveling close to the upper vessel wall.

Quick access

Authors' Version PDF (PDF on this web site)
BibTeX BibTeX

Contact

Jorge Torres Gómez
Jennifer Simonjan
Falko Dressler

BibTeX reference

@article{torres-gomez2024low-complex,
    author = {Torres G{\'{o}}mez, Jorge and Simonjan, Jennifer and Dressler, Falko},
    note = {to appear},
    title = {{Low-Complex Synchronization Method for Intra-Body Links in the Terahertz Band}},
    journal = {IEEE Journal on Selected Areas in Communications},
    issn = {0733-8716},
    publisher = {IEEE},
    year = {2024},
   }
   
   

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.

This page was automatically generated using BibDB and bib2web.

Last modified: 2024-04-27