Literature Database Entry

tao2024private


Youming Tao, Shuzhen Chen, Congwei Zhang, Di Wang, Dongxiao Yu, Xiuzhen Cheng and Falko Dressler, "Private Over-the-Air Federated Learning at Band-Limited Edge," IEEE Transactions on Mobile Computing, vol. 23 (12), pp. 12444–12460, December 2024.


Abstract

We investigate over-the-air federated learning (OTA-FL) that exploits over-the-air computing (AirComp) to integrate communication and computation seamlessly for FL. Privacy presents a serious obstacle for OTA-FL, as it can be compromised by maliciously manipulating channel state information (CSI). Moreover, the limited band at edge hinders OTA-FL from training large-scale models. It remains open how to enable a multitude of devices with constrained resources and sensitive data to collaboratively train a global model at band-limited edge. To tackle this, we design a novel algorithm PROBE building upon a lightweight over-the-air gradients aggregation rule PB-O-GAR. Specifically, PB-O-GAR combines a random sparsification-like dimension reduction with Gaussian perturbation to provide rigorous privacy and band-adapted communication. It elaborately calibrates the transmission signal according to devices’ perceived CSI for heterogeneous power constraints accommodation and CSI attack resilience. We show that by utilizing the common randomness, which deviates from the conventional FL, random sparsification-like dimension reduction can augment privacy in addition to the intrinsic privacy amplification effect of AirComp. We establish near-optimal convergence rates and explicit trade-offs among privacy, communication and utility for PROBE. Finally, extensive experiments on benchmark datasets are conducted to validate our theoretical findings and showcase the superiority of PROBE in realistic settings.

Quick access

Original Version DOI (at publishers web site)
Authors' Version PDF (PDF on this web site)
BibTeX BibTeX

Contact

Youming Tao
Shuzhen Chen
Congwei Zhang
Di Wang
Dongxiao Yu
Xiuzhen Cheng
Falko Dressler

BibTeX reference

@article{tao2024private,
    author = {Tao, Youming and Chen, Shuzhen and Zhang, Congwei and Wang, Di and Yu, Dongxiao and Cheng, Xiuzhen and Dressler, Falko},
    doi = {10.1109/TMC.2024.3411295},
    title = {{Private Over-the-Air Federated Learning at Band-Limited Edge}},
    pages = {12444--12460},
    journal = {IEEE Transactions on Mobile Computing},
    issn = {1536-1233},
    publisher = {IEEE},
    month = {12},
    number = {12},
    volume = {23},
    year = {2024},
   }
   
   

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.

This page was automatically generated using BibDB and bib2web.

Last modified: 2024-12-13