Literature Database Entry

segata2016platooning


Michele Segata, Renato Lo Cigno, Hsin-Mu Tsai and Falko Dressler, "On Platooning Control using IEEE 802.11p in Conjunction with Visible Light Communications," Proceedings of 12th IEEE/IFIP Conference on Wireless On demand Network Systems and Services (WONS 2016), Cortina d'Ampezzo, Italy, January 2016, pp. 124–127.


Abstract

The control of a platoon using IEEE 802.11p is an active research challenge in the field of vehicular networking and cooperative automated vehicles. IEEE 802.11p is a promising technology for direct vehicle to vehicle communication, but there are concerns about its usage for the control of platoons as it suffers packet losses due to congestion in highly dense scenarios. On the other hand, Visible Light Communication (VLC) recently gained attention as a short range technology for vehicular applications. VLC could be used to support or backup IEEE 802.11p, increasing reliability and scalability, and hence the safety of platooning systems. In this paper, we perform a large-scale simulation campaign using VLC integrated with IEEE 802.11p for platooning. We particularly demonstrate the benefits, but also the limitations, of such heterogeneous networking.

Quick access

Authors' Version PDF (PDF on this web site)
BibTeX BibTeX

Contact

Michele Segata
Renato Lo Cigno
Hsin-Mu Tsai
Falko Dressler

BibTeX reference

@inproceedings{segata2016platooning,
    author = {Segata, Michele and Lo Cigno, Renato and Tsai, Hsin-Mu and Dressler, Falko},
    title = {{On Platooning Control using IEEE 802.11p in Conjunction with Visible Light Communications}},
    pages = {124--127},
    publisher = {IEEE},
    address = {Cortina d'Ampezzo, Italy},
    booktitle = {12th IEEE/IFIP Conference on Wireless On demand Network Systems and Services (WONS 2016)},
    month = {1},
    year = {2016},
   }
   
   

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.

This page was automatically generated using BibDB and bib2web.

Last modified: 2024-12-03