Literature Database Entry
li2022data-driven
Kai Li, Wei Ni, Harrison Kurunathan and Falko Dressler, "Data-driven Deep Reinforcement Learning for Online Flight Resource Allocation in UAV-aided Wireless Powered Sensor Networks," Proceedings of IEEE International Conference on Communications (ICC 2022), Seoul, South Korea, May 2022, pp. 1–6.
Abstract
In wireless powered sensor networks (WPSN), data of ground sensors can be collected or relayed by an unmanned aerial vehicle (UAV) while the battery of the ground sensor can be charged via wireless power transfer. A key challenge of resource allocation in UAV-aided WPSN is to prevent battery drainage and buffer overflow of the ground sensors in the presence of highly dynamic lossy airborne channels which can result in packet reception errors. Moreover, state and action spaces of the resource allocation problem are large, which is hardly explored online. To address the challenges, a new data-driven deep reinforcement learning framework, DDRL-RA, is proposed to train flight resource allocation online so that the data packet loss is minimized. Due to time-varying airborne channels, DDRL-RA firstly leverages long short-term memory (LSTM) with pre-collected offline datasets for channel randomness predictions. Then, Deep Deterministic Policy Gradient (DDPG) is studied to control the flight trajectory of the UAV, and schedule the ground sensor to transmit data and harvest energy. To evaluate the performance of DDRL-RA, a UAV-ground sensor testbed is built, where real-world datasets of channel gains are collected. DDRL-RA is implemented on Tensorflow, and numerical results show that DDRL-RA achieves 19% lower packet loss than other learning-based frameworks.
Quick access
Original Version (at publishers web site)
Authors' Version (PDF on this web site)
BibTeX
Contact
Kai Li
Wei Ni
Harrison Kurunathan
Falko Dressler
BibTeX reference
@inproceedings{li2022data-driven,
author = {Li, Kai and Ni, Wei and Kurunathan, Harrison and Dressler, Falko},
doi = {10.1109/ICC45855.2022.9838967},
title = {{Data-driven Deep Reinforcement Learning for Online Flight Resource Allocation in UAV-aided Wireless Powered Sensor Networks}},
pages = {1--6},
publisher = {IEEE},
address = {Seoul, South Korea},
booktitle = {IEEE International Conference on Communications (ICC 2022)},
month = {5},
year = {2022},
}
Copyright notice
Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.
The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.
The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.
This page was automatically generated using BibDB and bib2web.