Literature Database Entry
altintas2017ivc-tutorial
Onur Altintas and Falko Dressler, "Towards the Tactile Internet: Low Latency Communications in Connected Cars," Tutorial, IEEE Consumer Communications and Networking Conference (CCNC 2017), Las Vegas, NV, January 08, 2017.
Abstract
In this tutorial lecture, we discuss the challenges and opportunities of the Tactile Internet and its fundamental concepts. Early 5G research was mainly about big data pipes and further increasing possible data rates in cellular as well as access networks. This situation changes. Current research towards 5G networks and the Tactile Internet focuses primarily on two core aspects: providing ultra-low latency as well as ultra-high reliability. Among many others, distributed control is considered a target application for such networking technologies. In the scope of this tutorial, we concentrate on connected cars as a prominent example - other include industry automation and smart city operations. In this scenario, short range radio broadcast as well as direct machine to machine communication will play a major role. The Tactile Internet activities are now coordinated by the IEEE Communications Society Tactile Internet Sub-Committee. Looking back at the last decade, one can observe enormous progress in the domain of vehicular networking. In this growing community, many ongoing activities focus on the design of communication protocols to support safety applications, intelligent navigation, multi-player gaming and others. Very large projects have been initiated to validate the theoretic work in field tests and protocols are being standardized. With the increasing interest from industry, security and privacy have also become crucial aspects in the stage of protocol design in order to support a smooth and carefully planned roll-out. Researchers from academia and industry recently met at an international Dagstuhl seminar to discuss open research challenges as well as open issues related to market-oriented design. We are now entering an era that might change the game in road traffic management. This is supported by the U.S. federal government announcement in February 2014 that National Highway Traffic Safety Administration (NHTSA) plans to begin working on a regulatory proposal that would require V2V devices in new vehicles in a future year. This NHTSA announcement coincides with the final standardization of higher layer networking protocols in Europe by the ETSI. We will primarily discuss the challenges and opportunities of the connected cars vision in relation to some of the most needed components in modern smart cities: improved road traffic safety combined with reduced travel times and emissions. Using selected application examples including the use of virtual traffic lights, intelligent intersection management, and platooning, we assess the needs on the underlying system components with a particular focus on inter-vehicle communication. We also shed light on the potentials of a vehicular cloud based on parked vehicles as a spatio-temporal network and storage infrastructure. Vehicular networking solutions have been investigated for more than a decade but recent standardization efforts just enable a broad use of this technology to build large scale Intelligent Transportation Systems (ITS). One of the key questions is whether some pre-deployed infrastructure is needed to enable and to boost vehicular networks. We see many benefits in such infrastructure to store information and to provide connectivity among the vehicles. Yet, instead of using Roadside Units (RSUs), we envision to rely on parked vehicles to provide such vehicular cloud services. The tutorial is supported by a textbook on "Vehicular Networking" authored by Falko Dressler that will be published just ahead of the tutorial lecture by Cambridge Press.
Quick access
Contact
Onur Altintas
Falko Dressler
BibTeX reference
@misc{altintas2017ivc-tutorial,
author = {Altintas, Onur and Dressler, Falko},
title = {{Towards the Tactile Internet: Low Latency Communications in Connected Cars}},
howpublished = {Tutorial},
publisher = {IEEE Consumer Communications and Networking Conference (CCNC 2017)},
location = {Las Vegas, NV},
day = {08},
month = {01},
year = {2017},
}
Copyright notice
Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.
The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.
The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.
This page was automatically generated using BibDB and bib2web.