Literature Database Entry


Andras Varga and Rudolf Hornig, "An Overview of the OMNeT++ Simulation Environment," Proceedings of 1st ACM/ICST International Conference on Simulation Tools and Techniques for Communications, Networks and Systems (SIMUTools 2008), Marseille, France, March 2008.


The OMNeT++ discrete event simulation environment has been publicly available since 1997. It has been created with the simulation of communication networks, multiprocessors and other distributed systems in mind as application area, but instead of building a specialized simulator, OMNeT++ was designed to be as general as possible. Since then, the idea has proven to work, and OMNeT++ has been used in numerous domains from queuing network simulations to wireless and ad-hoc network simulations, from business process simulation to peer-to-peer network, optical switch and storage area network simulations. This paper presents an overview of the OMNeT++ framework, recent challenges brought about by the growing amount and complexity of third party simulation models, and the solutions we introduce in the next major revision of the simulation framework.

Quick access

BibTeX BibTeX


Andras Varga
Rudolf Hornig

BibTeX reference

    author = {Varga, Andras and Hornig, Rudolf},
    title = {{An Overview of the OMNeT++ Simulation Environment}},
    publisher = {ACM},
    isbn = {978-963-9799-20-2},
    address = {Marseille, France},
    booktitle = {1st ACM/ICST International Conference on Simulation Tools and Techniques for Communications, Networks and Systems (SIMUTools 2008)},
    month = {3},
    year = {2008},

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at

This page was automatically generated using BibDB and bib2web.

Last modified: 2024-04-13