Literature Database Entry


Christoph Sommer and Falko Dressler, "The DYMO Routing Protocol in VANET Scenarios," Proceedings of 66th IEEE Vehicular Technology Conference (VTC 2007-Fall), Baltimore, MD, September 2007, pp. 16–20.


Coupling Vehicular Ad Hoc Networks (VANETs) with wired networks such as the Internet via access points creates a difficult mix of highly mobile nodes and a static infrastructure. In order to evaluate the performance of typical ad hoc routing protocols - in particular, we used Dynamic MANET On Demand (DYMO) - in such VANET scenarios, we combined microsimulation of road traffic and event-driven network simulation. Thus, we were able to analyze protocols of the Internet protocol suite in VANET scenarios with highly accurate mobility models. Varying parameters of DYMO for a multitude of traffic and communication scenarios helped point out approaches for improving the overall performance and revealed problems with the deployment. It could be shown that in realistic scenarios, even for medium densities of active nodes and low network load, overload behavior leads to a drastic decrease of the perceived network quality. Cross-layer optimization of transport and routing protocols therefore seems highly advisable.

Quick access

Original Version DOI (at publishers web site)
Authors' Version PDF (PDF on this web site)
BibTeX BibTeX


Christoph Sommer
Falko Dressler

BibTeX reference

    author = {Sommer, Christoph and Dressler, Falko},
    doi = {10.1109/VETECF.2007.20},
    title = {{The DYMO Routing Protocol in VANET Scenarios}},
    pages = {16--20},
    publisher = {IEEE},
    address = {Baltimore, MD},
    booktitle = {66th IEEE Vehicular Technology Conference (VTC 2007-Fall)},
    month = {9},
    year = {2007},

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at

This page was automatically generated using BibDB and bib2web.

Last modified: 2024-07-21