Literature Database Entry


Juergen Eckert, Felix Villanueva, Reinhard German and Falko Dressler, "A Self-Organizing Localization Reference Grid," Proceedings of 16th ACM International Conference on Mobile Computing and Networking (MobiCom 2010), Poster Session, Chicago, IL, September 2010.


We propose a non-persistent indoor localization system using a self-organizing reference grid of autonomous robot systems. The key idea is to continuously maintain accurate relative positions between the robots using an enhanced mass spring relaxation model. The robots estimate distances between neighboring systems using an ultrasonic system, measuring both the time of flight based distance and the angle between the systems. The algorithm then adapts the local position of the robot in the grid according to its neighbors. We developed a mass spring relaxation model allowing to maintain a completely self-organizing reference grid. In mass spring, newly arriving nodes can introduce oscillations and self-localization might fail or take a long time to converge. Therefore, we first use the available grid to localize the arriving system with reference to the grid before including the robot as a new reference point – this initial self-localization is also used if a node cannot maintain a certain accuracy of its position. Misplaced nodes are detected and corrected by our enhancements. In turn, the grid is able to provide accurate localization services, e.g. for flying robots.

Quick access

Authors' Version PDF (PDF on this web site)
BibTeX BibTeX


Juergen Eckert
Felix Villanueva
Reinhard German
Falko Dressler

BibTeX reference

    author = {Eckert, Juergen and Villanueva, Felix and German, Reinhard and Dressler, Falko},
    title = {{A Self-Organizing Localization Reference Grid}},
    publisher = {ACM},
    isbn = {978-1-4503-0181-7},
    address = {Chicago, IL},
    booktitle = {16th ACM International Conference on Mobile Computing and Networking (MobiCom 2010), Poster Session},
    month = {9},
    year = {2010},

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at

This page was automatically generated using BibDB and bib2web.

Last modified: 2024-07-21