
Ns3Sionna: Realistic Wireless Network Simulation
with Ray Tracing in ns-3

Anatolij Zubow, Sascha Rösler, Falko Dressler
School of Electrical Engineering and Computer Science, TU Berlin, Germany

{zubow,roesler,dressler}@tkn.tu-berlin.de

Abstract—Network simulators are essential tools for advancing
wireless communication technologies, providing cost-effective,
reproducible, and scalable environments for system evaluation.
However, conventional simulators such as ns-3 rely on simplified
statistical or stochastic channel models that inadequately represent
physical propagation phenomena such as multipath fading,
diffraction, and shadowing. We present Ns3Sionna, a framework
that integrates a ray-tracing-based channel model implemented
using the Sionna RT engine into the ns-3 network simulator.
This integration enables environment-specific, physically accurate
channel realizations for arbitrary 3D scenes and device configu-
rations. Ns3Sionna also introduces a ray-tracing-based mobility
model that ensures realistic node movement within complex
indoor and outdoor environments. Compared with existing
ns-3 models, Ns3Sionna produces more realistic path loss,
fading and delay characteristics, exhibiting spatial and temporal
correlations consistent with measured wireless channels. Fine-
grained channel state information generated by the framework
can further support sensing and localization research. To address
the high computational complexity of ray tracing, Ns3Sionna
leverages GPU and multi-core CPU parallelization together with
intelligent pre-caching mechanisms based on channel reciprocity
and coherence time. This approach enables practical, high-fidelity
simulations for small- to medium-scale mobile wireless networks.

Index Terms—Ns-3, simulation, channel modeling, ray tracing

I. INTRODUCTION

Wireless communication has become a cornerstone of
modern society, underpinning countless applications from home
connectivity to industrial automation. Technologies such as
Wi-Fi or LTE/5G are pervasive, forming the backbone of our
modern digital infrastructure. The continuous evolution of
wireless systems depends on rigorous testing and validation
of new communication protocols and architectures. However,
real-world experimentation is often costly, time-consuming,
and constrained by hardware availability and environmental
control. As a result, network simulators play a crucial role by
providing a scalable, repeatable, and cost-effective environment
for evaluating wireless technologies.

Among the available network simulators, ns-3 [1] has
emerged as a leading open-source platform due to its modular
design, performance [2], and extensive support for communica-
tion protocols such as Wi-Fi and 4G/5G. It is widely adopted
in both academia and industry for system-level studies of
wireless networks. Despite these advantages, ns-3 and similar
simulators are inherently limited by their simplified statistical
and stochastic channel models, which only approximate signal
propagation phenomena such as multipath propagation and

shadowing. While sufficient for coarse-grained evaluations,
these models fail to capture spatial and temporal channel corre-
lations observed in realistic indoor and outdoor environments.
Consequently, simulation results often diverge from real-world
performance, reducing their value for high-fidelity research in
next-generation networks.

A promising alternative is ray tracing, which deterministi-
cally models electromagnetic (EM) wave propagation through
complex 3D environments [3]. By accounting for reflections,
diffractions, and scattering from physical objects, ray tracing
enables the computation of spatially consistent Channel Impulse
Responses (CIRs) which are a critical feature for studying
advanced wireless techniques such as beamforming and sensing.
Sionna is a framework that implements differentiable ray tracing
for radio propagation within user-defined 3D scenes [4]. It
supports detailed material modeling and GPU acceleration,
providing accurate channel realizations for both indoor and
outdoor. However, Sionna operates primarily at the link level,
lacking integration with higher-layer network functionality
which are needed for system-level analysis.

In this work, we introduce Ns3Sionna, a framework
that bridges this gap by integrating Sionna’s ray tracing-
based channel modeling into the ns-3 network simulator.1 Our
framework enables physically accurate, environment-specific
wireless channel simulation within ns-3, including realistic
mobility in 3D spaces. It leverages intelligent pre-caching
mechanisms that exploit channel reciprocity and coherence time
as well as parallel computation across GPUs and multi-core
CPUs. Our evaluation demonstrates that Ns3Sionna provides
substantially more realistic propagation characteristics, both
spatially and temporally, than existing ns-3 models, enabling the
exploration of advanced wireless technologies and applications
under physically accurate conditions.

II. BACKGROUND

We begin by reviewing key concepts of wireless channels
and ray tracing, then briefly describe the Sionna RT framework
and the ns-3 simulator.

A. Wireless Channel

Wireless technologies such as Wi-Fi and 5G are built
upon the orthogonal frequency division multiplexing (OFDM)
waveform where the transmitted signal comprises of multiple

1An early version of Ns3Sionna was presented in [5].



subcarriers, each experiencing a flat-fading channel. This struc-
ture mitigates the issue of frequency selectivity in wideband
transmissions [6]. The received signal on the k-th subcarrier
in the frequency domain can be modeled as:

y[k] = H[k] · s[k] + z[k] (1)

where y[k] is the received symbol, s[k] is the transmitted
symbol, z[k] represents the additive noise, and H[k] denotes the
Channel Frequency Response (CFR) at subcarrier k. The CFR
characterizes the radio channel in the frequency domain and is
a complex value capturing both amplitude and phase variations
introduced by the channel. The CFR is obtained through
estimation techniques, and are crucial for: (i) equalization,
which aims to compensate the effects of the propagation
channel, and (ii) channel knowledge extraction, which is widely
used in sensing applications. The CIR is obtained via inverse
fast Fourier transformation (IFFT) of the CFR:

h[n] = IFFT{H[k]} (2)

where, h[n] is the CIR at delay index n. The CIR represents the
signal power received over a multipath channel as a function of
propagation delay, revealing the arrival times of the individual
multipath components [7].

Another important parameter is the coherence time which
defines the duration over which the channel can be assumed
to remain constant [8]. Channel variations arise from either
the relative movement between the transmitter and receiver, or
from motion of surrounding objects within the environment.
The channel coherence time (TC) is directly impacted by the
Doppler shift (fD) and is defined as [8]:

Tc =
0.423

fD
=

0.423 · c
v · fc

(3)

where c is the speed of light, v is the relative speed, and
fc is the center frequency. As the equation indicates, for
a fixed relative velocity, systems operating at higher carrier
frequencies experience shorter coherence times, making them
more susceptible to time-varying channel effects.

Finally, there is the effect called shadowing or large-scale
fading. It represents the random attenuation of signal power
due to obstructions between the transmitter and receiver like
buildings, vegetation, or terrain, causing received signal strength
to fluctuate log-normally over distances of tens to hundreds of
meters, far exceeding the wavelength. This slow-fading effect
is typically modeled as a zero-mean Gaussian random variable
in decibels, added to the deterministic path loss to simulate
environmental variability and spatial correlation between links.

B. Ray Tracing

Ray tracing is a method that simulates signal propagation in
a specific environment by taking into account effects such as
reflection, diffraction and scattering. It has become increasingly
important in the planning and prediction of radio networks,
as it offers deterministic modeling of propagation channels
and can realistically reproduce the time and space dispersion
characteristics of the channel that are important for modern

OFDM subcarrier [idx]

0 500 1000 1500 2000 2500 3000

CSI s
am

ple
[id
× 50

m
s]

0
2

4
6

8

P
L
×
|h
|2

[d
B

m
]

−80

−70

−60

−50

−65

−60

−55

−50

Figure 1. CFR computed with Sionna RT (f0 = 5GHz, B = 80MHz)

wireless systems [9]. The basic idea of EM ray tracing is
that electromagnetic waves are treated like rays and that their
propagation can be calculated accurately [10]. In a ray tracing
simulation, the CIR between a transmitter and a receiver is
calculated taking into account the geometric properties of the
environment. The simulation is carried out by tracing the rays
that are emitted by the transmitter and that are either reflected,
diffracted or scattered by the surrounding objects. To do this,
ray tracing requires a detailed description of the simulated 3D
environment, in particular the geometric and EM properties,
i.e. relative permittivity and conductivity, of the objects inside
the environment [9]. The ray tracing approach thus enables
accurate calculation of path losses and propagation delays and
provides a precise prediction of the transmission channel [3].

A significant advantage of EM ray tracing over the statistical
and stochastic models from network simulators is its ability
to generate spatially consistent CIRs [11]. This ability is
particularly needed for research topics in the field of wireless
communication and sensing like 6G/Wi-Fi [12]. Although
EM ray tracing provides precise results, the calculation of
signal propagation requires a lot of computing power. However,
advancements in the computing power of modern computers,
e.g., graphics processing unit (GPU), allow ray tracing to be
carried out more efficiently today [9].

C. Sionna RT Simulator

Sionna is an open-source Python library based on tensorflow
for link-level simulations [4]. It has a ray-tracing extension
called Sionna RT, which builds on a differentiable ray tracing
model for accurate radio wave propagation. Sionna RT enables
the simulation of specific radio environments which are
described by a 3D model in which objects can be assigned
with different materials having specific EM properties. These
materials are characterized by parameters such as relative
permittivity and conductivity, which allows the simulation
of realistic interactions of radio waves with the surfaces [12].
Sionna RT calculates the paths of radio waves through the en-
vironment and tracks effects such as reflection, diffraction and
scattering, enabling realistic modeling of the signal paths from
which the CIR can be computed. It is suitable for both indoor
and outdoor radio wave simulation and provides a realistic
and accurate modeling thanks to the detailed consideration of
material properties and environmental structures - see example
CFR in Fig. 1. In it latest version Sionna RT integrates the



additional phenomena of refraction for channel computation. It
is currently limited to the transmission through a single-layer
slab. In summary, Sionna RT provides a tool for the simulation
of radio wave propagation that enables the precise calculation
of spatially consistent CIRs. Moreover, the computation is
GPU-accelerated enabling orders-of-magnitude faster wireless
propagation simulations compared to CPU-based methods.

D. Ns-3 Network Simulator

The network simulator ns-3 is an event-driven, packet-based
simulator developed primarily for research and academia in the
field of wired and wireless communication networks. It is an
open-source software developed in C++ using object-oriented
programming model [13]. The broad research community
continuously contributes to the expansion of the network
simulator’s functionality, which has led to a wide range of
technologies (e.g., Ethernet, WiFi, LTE) and statistical and
stochastic models for the simulation of channel propagation,
mobility and traffic generation [14]. ns-3 tries to reflect the
reality as close as possible, therefore it uses several core con-
cepts and abstractions that map well to how computer networks
are built, i.e., a Node is a fundamental entity connected to the
network. It is a container for Applications, Protocols
and Network Devices. An application is a user program
that generates packet flows. A protocol represents a logic of
network and transport level protocols. A Network Device
is an entity connected to a Channel which represent the
transmission medium between the devices.

The simulation of channel propagation is as follows. For
LTE ns-3 employs the MultiModelSpectrumChannel,
implementing the SpectrumChannel interface, to model
wideband propagation across multiple frequencies and band-
widths, supporting pathloss, small-scale fading, and dynamic
spectrum access for cellular scenarios with overlapping car-
riers. Conversely, WiFi utilizes the YansWifiChannel,
subclassing the generic Channel class, for narrowband
signal propagation incorporating interference, delay, and loss
models such as Friis or LogDistance. However, for
advanced simulation of interference the optional Spectrum
module integration is possible via WifiSpectrumPhy. It
also enables studies to be conducted on hybrid network,
e.g. LTE and Wi-Fi operating in shared spectrum. Note,
that SpectrumChannel and YansWifiChannel differ
in propagation modeling paradigms: frequency-selective versus
aggregate signal processing. SpectrumChannel employs
SpectrumPropagationLossModel to impose subband-
specific attenuations on transmitted power spectral densities
(PSDs), thereby accounting for wideband phenomena such
as frequency-selective fading, carrier-specific pathloss, and
beamforming. It integrates PropagationDelayModel for
distance-based temporal delays and operates on PSDs, fa-
cilitating accurate inter-technology interference. Conversely,
YansWifiChannel utilizes PropagationLossModel,
consisting of chainable scalar variants like Friis or
LogDistance, to apply uniform attenuation across entire
packets while foregoing frequency selectivity for computational

efficiency. This is a useful simplification as long as the channel
is narrowband, which is the case at least for the original versions
of WiFi. For modern Wi-Fi standards such as 802.11be with
bandwidths up to 320 MHz, integration with the Spectrum
models through WifiSpectrumPhy is advised to achieve
more realistic, subband-resolved multi-frequency simulations.

In ns-3, shadowing is modeled as zero-mean Gaussian
log-normal fading with scenario-specific standard deviations.
In case of LTE it follows the modeling in [15] and is
integrated into the ThreeGppPropagationLossModel
base class and derivatives. It includes spatial corre-
lation across BS-UE links, computed alongside path
loss using a ChannelConditionModel for LOS/N-
LOS determination. In contrast, WiFi simulations via
YansWifiChannel lack native shadowing in default models,
requiring custom implementation (e.g., via model chaining
or RandomPropagationLossModel) to approximate it,
prioritizing simplicity (i.e., no spatial correlation) and efficient
computation over realistic modeling.

Finally, in ns-3, mobility is modeled through the Mobility
module which dynamically tracks node positions and
velocities. It incorporates diverse models ranging from
ConstantPositionMobilityModel for static configu-
rations to RandomWalk2dMobilityModel for diffusive
motion and HierarchicalMobilityModel for simula-
tion of collective dynamics.

III. MOTIVATION

The ns-3 network simulator provides a comprehensive suite
of statistical and stochastic models for simulating wireless
propagation and mobility. While these models are computa-
tionally efficient and suitable for large-scale evaluations, they
are fundamentally limited in realism. Existing propagation loss
models such as LogDistance or Nakagami approximate path
loss and fading using distance-based attenuation or random
variables, often considering only single reflections or proba-
bilistic line-of-sight assumptions. Such simplifications ignore
complex multipath effects, material-dependent attenuation, and
spatial correlation, all of which significantly affect link quality
and delay in real-world deployments. These limitations become
critical in indoor and dense urban scenarios, where wireless
signals interact with walls, furniture, and other obstacles. In
such environments, path loss, fading and delay cannot be
accurately represented by purely statistical distributions. For
example, obstruction and reflection can lead to power variations
of tens of decibels even at equal distances. Likewise, the default
mobility and building models in ns-3 restrict movement to
simple geometric spaces (e.g., boxes), preventing the realistic
modeling of device trajectories in complex 3D environments.

To overcome these shortcomings, deterministic ray-tracing
techniques have emerged as a powerful method for accurate
modeling of radio propagation. By tracing EM rays and
accounting for reflection, diffraction, and scattering, ray tracing
reproduces spatially consistent CIRs required for wireless
research [3]. However, integrating ray tracing into packet-level



Table I
COMPUTATION TIME FOR A SINGLE CFR ON DIFFERENT PLATFORMS:
RYZEN9: AMD RYZEN 9 7950X, RYZEN7: AMD RYZEN 7 5800 AND
RYZEN7+RTX: AMD RYZEN 7 5800 WITH NVIDIA RTX 3060 GPU

Average computation time [s]
Environment Ryzen9 Ryzen7 Ryzen7+GPU

Free-space 0.03 0.06 0.09
Indoor (simple room) 0.9 1.2 7.7
Outdoor (Munich) 4.54 5.32 18.46

simulators such as ns-3 has long been regarded as impractical
due to its extreme computational cost.

Recent advances in GPU-accelerated computing and differen-
tiable ray-tracing frameworks such as Sionna RT have changed
this situation. These tools enable efficient, environment-specific
propagation modeling in indoor and outdoor while maintaining
high physical accuracy. Such developments open the possibility
of combining deterministic, physically grounded channel
models with system-level simulations.

Building on these insights, we developed Ns3Sionna, a
framework that integrates Sionna’s ray-tracing-based propaga-
tion modeling with ns-3. It provides detailed, deterministic
radio wave propagation in arbitrary 3D environments and
introduces a mobility model based on ray tracing for realistic
device motion. By exploiting channel reciprocity, coherence-
time-based caching, and GPU parallelization, Ns3Sionna
makes high-fidelity, physically consistent wireless simulation
practical. This integration enables new types of studies such as
indoor localization, wireless sensing, and advanced Wi-Fi/6G
protocol evaluation which was previously infeasible.

IV. THE NS3SIONNA FRAMEWORK

The Ns3Sionna framework was designed to combine the
strengths of the ns-3 network simulator and the Sionna RT ray-
tracing engine, enabling physically accurate wireless channel
simulation within a packet-level network environment. This
section presents the underlying design principles, software
architecture, and implementation details of the framework.

A. Design Principles

Integrating a computationally intensive, deterministic ray-
tracing model into an event-driven packet simulator presents
several challenges. A naive approach, in which every point-to-
point (P2P) channel is computed individually for every packet
transmission, would lead to prohibitive execution times. As
an example Table I shows the average computation time on
different platforms for a single P2P channel computation in
three different scenarios. The computation time is highest for
a complex outdoor scenario resulting in a CFR computation
of multiple seconds. Therefore, even a small outdoor scenario
with only a few dozen nodes and a simulation duration of just
a few minutes can require years of calculations. To overcome
this, Ns3Sionna adopts the following design principles:

1 10 100 1000
No. receivers

0

10

20

30

E
xe

cu
tio

n 
tim

e 
[s

] GPU - RTX 3060
CPU - Ryzen 7
GPU - Tesla V100

Figure 2. Computation time of a point-to-multipoint channel in Sionna

1) Channel Reciprocity: The wireless channel between two
nodes is reciprocal; the same CSI/CFR can be reused for
both transmission directions.

2) Coherence-Time Caching: Channels are recomputed only
after the coherence time TC elapses, exploiting temporal
stability of the channel [8].

3) Range Filtering: Channels toward receivers with negli-
gible signal power are omitted using simple analytical
pathloss estimates (e.g., Friis model).

4) Broadcast Parallelization: Instead of computing each
P2P link independently, Ns3Sionna computes a point-
to-multipoint (P2MP) channel, offloading all propagation
paths from one transmitter to multiple receivers in parallel
to the Sionna engine.

5) Predictive Pre-Caching: Future channel states are pre-
computed based on predicted node mobility, further
amortizing ray-tracing overhead.

These principles leverage the inherent parallelism of modern
multi-core CPUs and GPUs to achieve feasible execution
times while preserving the physical fidelity of ray tracing.
Fig. 2 depicts the computation time using Sionna RT of a
P2MP channel, i.e. single transmitter and a variable number
of receivers R, for the Munich outdoor scenario. The results
show that even for large R, the execution time remains nearly
constant - up to ≈ R < 100 on a CPU and ≈ R < 500 on a
Tesla V100 GPU. On GPUs, the available video memory limits
the maximum feasible R. Consequently, it is advantageous to
avoid computing each P2P channel individually and instead
offload the entire P2MP channel from a single transmitter to
all potential receivers to Sionna. This strategy yields significant
performance gains, particularly in dense network scenarios.

Even sparse networks with only a few P2P links can benefit
from the same parallelization mechanisms. The key idea is to
compute, in one step, not only the current channel but also
the channels likely to be required in the near future. Since the
employed mobility models (e.g., random walk) are independent
of the simulated network traffic, the future positions of mobile
nodes together with their prospective channels can be predicted
in advance. Fig. 3 illustrates this concept for scenario where
both the transmitter and the receiver are mobile: the predicted
future receiver positions are represented as virtual nodes with
their own positions, allowing the channel computation toward
all four nodes to be executed in parallel. Although this approach
introduces a minor overhead - because mobility updates are
currently processed sequentially per node - it enables efficient
large-scale parallelization of ray-tracing computations.



A
T=T0

A'
T=T0 +Tc

A's
trajectoryB

T=T0

B'
T=T0 +Tc

B's
trajectory

3D Tensor: (K, K, NSC), K - size of look-ahead
transmitters receivers

Figure 3. Ns3Sionna accelerates execution by treating predicted future
node positions as virtual nodes for parallel computation

In summary, by adhering to these design principles,
Ns3Sionna achieves scalable, high-fidelity wireless simu-
lation suitable for small to medium-sized mobile networks.

B. Architecture

Fig. 4 illustrates the overall architecture of Ns3Sionna.
The framework consists of two main components: the ns-3
simulation core and the Sionna RT engine. Within ns-3, four
new models were implemented:

• SionnaPropagationLossModel: wraps the Sionna
RT propagation computation and provides the average path
loss to the ns-3 PHY layer;

• SionnaSpectrumPropagationLossModel:
wraps the Sionna RT propagation computation and
provides the frequency-selective fading and CFR to the
ns-3 PHY layer;

• SionnaPropagationDelayModel: computes real-
istic propagation delays based on the shortest propagation
paths derived from Sionna RT;

• SionnaMobilityModel: simulates node movement
inside the 3D environment using ray tracing to prevent
motion through obstacles.

All received packets are augmented with CFR tags (see
CFRTag) to make this information available for sensing
applications. A SionnaHelper class manages the life-
cycle, configuration and synchronization of these components,
including scene initialization, parameters like frequency and
bandwidth, and node position. During runtime, ns-3 issues
propagation requests to Sionna RT for each transmission
event. Instead of computing a single P2P link, Ns3Sionna
extends the request to a full P2MP calculation, taking into
account the broadcast nature of a wireless transmission and
enabling massive parallelization on the GPU. The computed
results which include the updated node positions, path loss,
delay, and CFR, are returned to ns-3 and stored in the
SionnaPropagationCache. The cache handles channel
reciprocity and coherence-time validity, ensuring that redundant
computations are avoided. In this way, Ns3Sionna achieves
realistic spatial and temporal correlation characteristics while
maintaining tractable runtime.

C. Implementation

To integrate two heterogeneous software stacks - ns-3 in
C++ and Sionna RT in Python - we employ a client–server

ns-3 Node

SpectrumChannel/
YansWifiChannel

Node...

SionnaPropagationCacheSionnaHelper

SionnaPropagation-
LossModel

SionnaPropagation-
DelayModel

3D Scene

Node
Information

Mobility Simulation
(random walk, ...)

Sionna

Channel Simulation

SionnaSpectrum-
PropagationLossModel

CFRTag

INIT: scene, freq_0, bw, fft,
mode/submode, vector <node

pos/mobility_model>

REQ: sim time,
TX/RX nodeId

RESP: sim time, TTL, TX_pos, vector
<RX_pos, delay, loss, CFR>

SionnaMobility-
Model

Figure 4. Architecture of the Ns3Sionna framework

architecture. The ns-3 process acts as a client, and Sionna RT
runs as a server, typically on a GPU-equipped host. Inter-
process communication is realized via ZeroMQ using a
request–response pattern, ensuring synchronous interaction with
ns-3’s discrete-event scheduler. Message serialization is imple-
mented with Protocol Buffers for low-latency data exchange.
The mobility model uses the Python ray-tracing library Mitsuba
to simulate node trajectories that respect object boundaries
within the 3D scene. Future positions can be predicted
deterministically, enabling speculative pre-computation of corre-
sponding channels. All computed CSI and delay data are stored
within the SionnaPropagationCache for reuse during
the channel’s coherence interval. The implementation supports
multi-threading on CPUs as well as GPU acceleration in Sionna,
where multiple transmitter–receiver paths are processed concur-
rently. The entire framework together with an extensive collec-
tion of examples is released as open-source and is available on-
line at: https://github.com/tkn-tub/ns3sionna.
This enables the research community to reproduce our results
and extend the implementation.

V. DEMONSTRATION EXAMPLE

As a demonstration example, we selected an outdoor
environment representing the area surrounding the Frauenkirche
in Munich (Fig. 5). The simulated wireless system is based on
802.11ac operating in the 5 GHz band with a 20 MHz channel.
We consider the downlink scenario, where the access point
(AP) is positioned on the rooftop of a building (indicated by
the blue dot), and the station (STA) follows a random-walk
mobility model with a velocity of v = 7m/s. The resulting STA
trajectory is shown in Fig. 6 (a). From the magnitude of the
CFR in Fig. 6 (b), we observe a highly frequency-selective
channel. As illustrated in Fig. 6 (d), the average received
power (Prx) remains relatively constant up to a distance of



Figure 5. Outdoor example scenario (Frauenkirche in Munich)

-50 0 50 100
Xdim [m]

0

50

100

150

200

Y
di

m
 [m

]

(a) Trajectory of STA (b) CFR

0 20 40 60 80
Time [s]

-110

-100

-90

-80

-70

-60

M
ea

n 
R

x 
po

w
er

 [d
B

m
]

(c) Prx time series

0 50 100 150
Distance [m]

-110

-100

-90

-80

-70

-60

M
ea

n 
R

x 
po

w
er

 [d
B

m
]

(d) Impact of distance on Prx

Figure 6. Results for selected outdoor scenario

approximately 125 m, dominated by the line-of-sight (LoS)
component. Beyond this range, Prx decreases sharply as the
channel transitions to a non-line-of-sight (NLoS) condition.

VI. BENCHMARKING

In this section, we evaluate the runtime performance of
Ns3Sionna and compare it with pure ns-3, highlighting
the factors that most significantly affect execution time.
Experiments were conducted on a host equipped with an
AMD Ryzen 9 7950X CPU (16 cores) and, where indicated,
with GPU acceleration.

A. Simulation Setup

We consider a simple indoor scenario (single room) using
IEEE 802.11ac with a 20 MHz channel, a single AP, and a
variable number of STAs. Three representative configurations
were evaluated, differing in node mobility and traffic load:

• hT/hM: high traffic, high mobility (U = 50 pkt/s per
STA, v = 7 m/s, TC = 1.6–3.2 ms);

• lT/lM: low traffic, low mobility (U = 1 pkt/s per STA,
v = 1 m/s, TC = 11.1–22.3 ms);

• hT/zM: high traffic, no mobility (U = 50 pkt/s per STA).
Each simulation lasted 10 s of simulated time.

1 2 4 8 16 32 64
No. STAs

100

105

E
xe

cu
tio

n 
tim

e 
[s

]

Ns3Sionna (hT/hM)
Ns3Sionna (lT/lM)
Ns3Sionna (hT/zM)
Ns3 (hT/hM)
Ns3 (hT/zM)
Ns3 (lT/lM)

Figure 7. Framework execution time on CPU: ns-3 vs. Ns3Sionna

0 5 10 15 20 25 30
0

5000

10000
TESLA (#STA=2)
RTX (#STA=2)
TESLA (#STA=1)
RTX (#STA=1)

Figure 8. Speedup through predictive calculations on GPU

B. CPU Performance

Fig. 7 shows the execution time of Ns3Sionna compared
with pure ns-3. As expected, the introduction of ray tracing
increases computation time, but the magnitude of this overhead
depends strongly on network dynamics and traffic intensity.
The smallest overhead occurs in the stationary (hT/zM)
configuration, where each channel must be computed only once.
Here, the execution time of Ns3Sionna is approximately 3.6–
73× that of pure ns-3, with the relative overhead decreasing
as the network size grows. This reduction is due to efficient
P2MP computation and an increasing cache hit rate, both of
which amortize ray-tracing cost across multiple links. In mobile
configurations, channel recomputation occurs frequently - up to
625 Hz in the hT/hM scenario—resulting in significantly longer
execution times. Even in these cases, the relative slowdown
decreases for larger networks due to parallel computation and
caching. For instance, in the lT/lM scenario with 64 STAs,
execution time is about 1.4× 103 greater than pure ns-3; for
hT/hM with 16 STAs, the factor increases to roughly 6.2×103.

C. GPU Acceleration

Fig. 8 shows the impact of GPU acceleration using
NVIDIA Tesla V100 (16 GB) and RTX 3060 (8 GB) GPUs.
Predictive channel calculation provides substantial speedups -
up to 14.3× for the Tesla V100 and 7.6× for the RTX 3060 in
single-STA configurations. As the number of STAs increases,
speedup decreases due to GPU memory constraints limiting the
number of parallel computations. For example, with two STAs,
speedup reduces to approximately 7.9× and 4.6×, respectively.
The results clearly indicate that runtime performance scales
with the available GPU memory.

VII. RELATED WORK

Related work spans two major areas: (i) the use of ray-tracing
methods for wireless channel modeling, and (ii) the integration



of realistic propagation models into network simulators.
Ray-Tracing-Based Channel Modeling: Yun and Iskander
[3] provide a comprehensive review of its principles and
applications for radio propagation modeling. Degli-Esposti
et al. [9] demonstrated that ray-tracing-based modeling can
be effectively used to evaluate beamforming strategies at
millimeter-wave frequencies. Hoydis et al. [4] introduced
Sionna RT, a differentiable ray-tracing framework for high-
fidelity radio environment simulation, enabling GPU acceler-
ation and material-aware propagation modeling for arbitrary
3D scenes.
Extensions of Network Simulators: Efforts to enhance
network simulators with realistic channel modeling date back
to Dricot and De Doncker [16], who developed a hybrid ray-
tracing model for ns-2. Their approach increased physical
realism but suffered from computational overheads more than
two orders of magnitude greater than conventional models.
Wilhelmi et al. [17] emphasized the importance of integrating
advanced channel models into simulators to enable machine
learning (ML) assisted 5G/6G research. Ns3Sionna builds on
these ideas by introducing a deterministic, physically grounded
propagation model directly into ns-3, while employing caching
and parallelization to make ray tracing computationally feasible.
Hybrid and Learning-Based Approaches: Complementary
research has explored combining ray tracing with data-driven
or machine-learning methods to improve modeling accuracy.
Seretis and Sarris [18] proposed a hybrid ML-based model that
enhances received signal strength prediction by training on both
measured and ray-tracing-generated synthetic data, achieving
higher accuracy than models based solely on measurements.
Such hybrid approaches underscore the value of physically
consistent channel data, which frameworks like Ns3Sionna
can generate efficiently for large-scale training and evaluation.
Ns3Sionna uniquely integrates a GPU-accelerated, dif-

ferentiable ray-tracing engine into a packet-level network
simulator. This combination enables system-level studies that
jointly capture realistic propagation effects and higher-layer
protocol behavior - bridging the gap between deterministic
physical modeling and scalable network simulation.

VIII. CONCLUSION

We have presented Ns3Sionna, a software framework
that integrates GPU-accelerated ray-tracing-based channel
simulation into the widely used ns-3 network simulator. By
coupling physically accurate, environment-specific propagation
modeling with system-level simulation, Ns3Sionna enables
realistic evaluation of wireless networks in both indoor and
outdoor 3D scenarios. The framework provides fine-grained
channel state information, supports mobility within complex
environments, and leverages caching and parallelization to
achieve practical execution times.

Future work will focus on further performance optimization
through distributed multi-GPU and multi-CPU execution, as
well as extending the framework to support multi-antenna
systems and reconfigurable intelligent surfaces.

ACKNOWLEDGEMENTS

We thank Yannik Pilz for implementing the initial version
of ns3sionna as presented in [5]. This work was supported
by the Federal Ministry of Education and Research (BMBF,
Germany) within the 6G Research and Innovation Cluster
6G-RIC under Grant 16KISK020K as well as by the German
Research Foundation (DFG) within the project ML4WiFi under
grant DR 639/28-1.

REFERENCES

[1] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena,
“Network simulations with the ns-3 simulator,” in ACM SIGCOMM 2008,
Demo Session, Seattle, WA: ACM, Aug. 2008, p. 527.

[2] E. Weingartner, H. Vom Lehn, and K. Wehrle, “A performance compar-
ison of recent network simulators,” in IEEE International Conference
on Communications (ICC 2009), Dresden, Germany: IEEE, Jun. 2009.

[3] Z. Yun and M. F. Iskander, “Ray Tracing for Radio Propagation Modeling:
Principles and Applications,” IEEE Access, vol. 3, pp. 1089–1100, Jul.
2015.

[4] J. Hoydis, S. Cammerer, F. A. Aoudia, A. Vem, N. Binder, G. Marcus,
and A. Keller, “Sionna: An Open-Source Library for Next-Generation
Physical Layer Research,” arXiv, Information Theory (Cs.IT); Artificial
Intelligence (Cs.AI); Machine Learning (Cs.LG) 10.48550/2203.11854,
Mar. 2023.

[5] A. Zubow, Y. Pilz, S. Rösler, and F. Dressler, “Ns3 meets Sionna: Using
Realistic Channels in Network Simulation,” arXiv, cs.NI 2412.20524,
Dec. 2024.

[6] J. Heiskala and J. Terry, OFDM Wireless LANs: A Theoretical and
Practical Guide. Indianapolis, IN: SAMS, 2001.

[7] Y. Xie, Z. Li, and M. Li, “Precise Power Delay Profiling with Commodity
Wi-Fi,” IEEE Transactions on Mobile Computing, vol. 18, no. 6,
pp. 1342–1355, Jun. 2019.

[8] T. S. Rappaport, Wireless Communications: Principles and Practice,
2nd ed. Upper Saddle River, NJ: Prentice Hall, 2001.

[9] V. Degli-Esposti, F. Fuschini, E. M. Vitucci, M. Barbiroli, M. Zoli, L.
Tian, X. Yin, D. A. Dupleich, R. Muller, C. Schneider, and R. S. Thoma,
“Ray-Tracing-Based mm-Wave Beamforming Assessment,” IEEE Access,
vol. 2, pp. 1314–1325, Oct. 2014.

[10] P.-H. Tseng, Y.-C. Chan, Y.-J. Lin, D.-B. Lin, N. Wu, and T.-M.
Wang, “Ray-Tracing-Assisted Fingerprinting Based on Channel Impulse
Response Measurement for Indoor Positioning,” IEEE Transactions on
Instrumentation and Measurement, vol. 66, no. 5, pp. 1032–1045, May
2017.

[11] J. Hoydis, F. A. Aoudia, S. Cammerer, F. Euchner, M. Nimier-David, S.
ten Brink, and A. Keller, “Learning Radio Environments by Differentiable
Ray Tracing,” arXiv, cs.IT 2311.18558, Nov. 2023.

[12] J. Hoydis, F. A. Aoudia, S. Cammerer, M. Nimier-David, N. Binder,
G. Marcus, and A. Keller, “Sionna RT: Differentiable Ray Tracing for
Radio Propagation Modeling,” arXiv, Cs.IT 2303.11103, Mar. 2023.

[13] ns-3 Consortium, ns-3 Network Simulator, https://www.nsnam.org/,
Version 3.41 or later, 2025.

[14] S. Baidya, Z. Shaikh, and M. Levorato, “FlyNetSim: An Open Source
Synchronized UAV Network Simulator based on ns-3 and Ardupilot,”
in 21st ACM International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM 2018), Montréal,
Canada: ACM, Oct. 2018, pp. 37–45.

[15] 3rd Generation Partnership Project (3GPP), TSG RAN WG1, “Study on
Channel Model for Frequencies from 0.5 to 100 GHz (Release 16) —
3GPP TR 38.901 version 16.1.0,” 3GPP, Tech. Rep. TR 38.901 v16.1.0,
Release 16, Nov. 2020. [Online]. Available: https:/ /www.3gpp.org/
dynareport/38901.htm.

[16] J.-M. Dricot and P. De Doncker, “High-Accuracy Physical Layer Model
for Wireless Network Simulations in NS-2,” in International Workshop
on Wireless Ad-Hoc Networks, Oulu, Finland, Jun. 2004, pp. 249–253.

[17] F. Wilhelmi, M. Carrascosa, C. Cano, A. Jonsson, V. Ram, and B. Bellalta,
“Usage of Network Simulators in Machine-Learning-Assisted 5G/6G
Networks,” IEEE Wireless Communications, vol. 28, no. 1, pp. 160–166,
Feb. 2021.

[18] A. Seretis and C. D. Sarris, “A Hybrid Machine Learning-Based Model
for Indoor Propagation,” in 16th European Conference on Antennas and
Propagation (EuCAP 2022), Madrid, Spain: IEEE, Apr. 2022, pp. 1–5.


