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Abstract—The provision of a wide range of services each with
different requirements makes next generation wireless networks
become more complex and heterogeneous which is aimed to
be tackled through network softwarization and the application
of Artificial Intelligence (AI)-based methods. Specifically, AI
methods based on Deep Reinforcement Learning (RL) became
very popular as they enable closed-loop end-to-end network
optimization even of complex and heterogeneous wireless net-
works. However, for early deployments there is a pressing need
for well-defined environments so that deep RL-based solutions
can be studied. We present GrGym, a software framework for
the development of deep RL enhanced wireless networks, with
a specific focus on its usage in experimental 5G/6G research.
It is based on the OpenAI Gym toolkit and the flexible GNU
Radio platform. With GrGym, deep RL-based solutions for 5G/6G
networks can be trained in simulated environments as well as
real-world testbeds using software-defined radios.

Index Terms—5G/6G Communication Networks, Machine
Learning, (Deep) Reinforcement Learning, Software-defined Ra-
dio, GNU Radio, OpenAI Gym

I. INTRODUCTION

The wireless communications industry continues its rapid
growth for decades [1], [2]. Especially the success of the
mobile broadband Internet has been seen as a major driving
force behind the evolution of wireless technologies. Upcoming
5G networks will go beyond that by providing additional new
services like enhanced mobile broadband, ultra-reliable low-
latency communications, and massive machine-type commu-
nications. However, the provision of such a wide range of
services makes the networks more complex and also more het-
erogeneous. Network softwarization and the application of Ar-
tificial Intelligence (AI)-based methods enabling closed-loop
end-to-end network optimization are considered to overcome
these issues. At the same time, researchers from academia and
industry are already working on the successor termed as 6G
and Next G, respectively, which will add new use cases like
tactile and haptic Internet, holographic communications, and
computation oriented communications which is required for
the vision of “connected intelligence” [3], [4].

Inspired by these trends, we developed GrGym [5], a soft-
ware framework for the development of AI enhanced wireless
networks. In this paper, we discuss GrGym, with a main focus
on its usage in experimental 6G research. Specifically, we
focus on AI methods based on Deep Reinforcement Learning
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(RL) as it become very popular recently [6], [7]. GrGym is
based on two frameworks, namely the OpenAI Gym toolkit
and the GNU Radio SDR platform. With GrGym deep RL-
based solutions for 5G/6G networks can be trained in simu-
lated environments as well as real-world testbeds. As a proof-
of-concept, we developed an RL-based adaptive rate control
for the IEEE 802.11 technology. Our toolkit is provided to the
community as Open Source.1

II. THE ROLE OF (DEEP) REINFORCEMENT LEARNING IN
5G/6G NETWORKS

Reinforcement learning [8] is one of the most important
research directions in Machine Learning (ML), which has
significantly influenced the development of AI over the last
decades. In RL, an agent interacts with the environment in
order to make decisions, observe the results, and then auto-
matically adjust its strategy based on the received reward (or
penalty) to achieve the optimal policy. Although the learning
process eventually converges, it can take a lot of time to
reach the best policy, as the agent has to explore and gain
knowledge of an entire, possibly large, system, making it
unsuitable for many real-world applications. Recently, a new
technique termed as Deep Learning (DL) [9] was introduced
which helps to overcome the limitations of classical RL
approaches. Deep RL combines reinforcement learning and
deep learning and utilizes Deep Neural Networks (DNNs) to
train the learning process resulting in an improved learning
speed and hence performance of deep RL based algorithms. As
a result, deep RL has been successfully applied in numerous
practical applications ranging from robotics, computer vision,
computer games, speech recognition, and natural language
processing.

The usage of (deep) RL for the optimization of 5G commu-
nication networks became very popular recently as a number
of surveys confirms [6], [7], [10]. Applications are ranging
from network access and rate control, caching and offloading,
security and connectivity preservation to traffic routing and
resource scheduling.

OpenAI Gym Toolkit

OpenAI Gym [11] is a framework for benchmarking (deep)
RL-based solutions. RL agents are implemented using the
high-level programming language Python, which allows to

1https://github.com/tkn-tub/gr-gym



use powerful ML libraries like Keras and Tensorflow, sim-
plifying the development of deep RL solutions based on
neural networks. Gym provides a unified API that structures
the interactions between the RL agent and the environment.
Specifically, to integrate an environment to the Gym, its obser-
vations, actions, and rewards have to be represented as struc-
tured numerical data. This way, the framework was already
interfaced with a large set of diverse environments in areas
ranging from video games to robotics [11] and simulation of
intelligent transportation systems [12]. Recently, we presented
two frameworks ns3-gym [13], an interface to ns-3, which is
a discrete-event network simulator for Internet systems. This
made it possible to use any simulated communication network
(e.g., 3GPP LTE or IEEE 802.11) as an environment within
OpenAI Gym and to optimize it using (deep) RL.

III. TREND TOWARDS SOFTWARIZATION

Next generation 5G/6G wireless networks will be highly
flexible, thanks to the fact that an increasing number of
functionalities are realized in software rather than dedicated
hardware. The enabling technologies for network reconfigura-
tion are Network Function Virtualization (NFV) [14], Software
Defined Networking (SDN) [15], and Software Defined Radio
(SDR) [16]. In this work, we focus on SDR as it represents the
enabling technology for our envisioned software framework
for experimental wireless 5G/6G research. There are a variety
of radio platforms available that support full programmability
up to the physical layer of the radio functionality, which
are often referred to as SDR. Their capabilities have been
dramatically improving over the years, i.e. supporting wide RF
bandwidth and high processing power sufficient to implement
most modern wireless technologies like LTE or 802.11. With
SDR the softwarization of wireless networks can also happen
at the lower layers (PHY and MAC), rather than being
restricted to upper network layers which is typically the case
with wired networks. However, the flexibility of SDRs requires
extensive support from software side with frameworks tailored
to the needs of upcoming 5/6G wireless networks.

GNU Radio Framework

GNU Radio [17] is an open source software toolkit, which
provides a comprehensive library of optimized, state-of-the-
art signal processing that can be glued together for building
complex real-time SDR solutions. With GNU Radio, a radio
system can be built by designing a Radio Companion (GRC)
flow graph where the vertices are signal processing blocks
(implemented in C++) and the edges represent the data flow
between them. Each signal processing block processes in
real-time an infinite stream of data flowing from its input
ports to its output ports. Each block is described by the
number of input and output ports as well as the type of data
that flows. Streams of data are a model that work well for
samples or bits, which are typically processed at the PHY
layer. However, such a model is not a proper mechanism
for transport of control data, metadata, or packet structures
needed at the MAC or higher layers. Therefore, GNU Radio

provides an additional message passing interface that handles
the delivery of information in an asynchronous basis. In GNU
Radio it is easy to replace existing signal processing blocks
with more efficient implementations or blocks relying on ML
approaches. It is possible to run GNU Radio programs on
either real hardware (e.g., USRP SDR) or loopback in a fully
simulated environment allowing application of channel propa-
gation models to synthetically generated signals [18]. Finally,
there are partial/full implementations of radio technologies
like IEEE 802.11 [19], [20], IEEE 802.15.4 [21], narrow-band
LoRa [22], and 3GPP LTE [23].

IV. THE GRGYM FRAMEWORK IN A NUTSHELL

A. Objectives & Design Principles

The main goal of our work is to facilitate and shorten
the time required for developing novel deep RL-enhanced
wireless network solutions. We believe that developing RL-
driven control algorithms and training them in a simulated
environment is very often more practical (i.e., easier, faster,
less expensive, and safer) in comparison to directly running
experiments in the testbed or even real world. However, it
should be easy to switch from an environment with simulated
wireless channel and interference to testbeds with real radio
hardware deployments without requiring many changes to the
radio programs. This is of paramount importance in order
to finally test the performance under real conditions and all
impairments (e.g., hardware, channel propagation). Moreover,
it is a requirement for the implementation of the concept of
transfer learning, i.e., the ability to reuse previously acquired
learned knowledge in a new (more complex) system or a real
environment. This allows an RL-agent trained in a simulated
environment (e.g., a wireless channel) to directly interact or
be retrained in the real world much faster than when starting
from the scratch [24]. How well the agent copes with the real-
world environment depends on the accuracy of the simulation
channel models that were used during training. In GNU Radio,
there are lots of simulated channel models available ranging
from very simple ones (e.g., AWGN) to more realistic ones
which take multi-path, mobility, and fast fading into account.
Moreover, the impact of interference can be easily simulated
in GNU Radio as well. Finally, note that we do not constrained
ourselves to RL as the framework could be used to generate
data sets and use them for offline learning.

We aim to achieve the above by exploiting the flexibility
of SDR platforms and softwarization using the GNU Radio
framework. However, there are challenges. First, the GNU
Radio programs need to run in real-time and cannot be
paused, as it is possible with pure simulations running in
simulation time [13]. So, no computational expensive tasks can
be executed within the RL agent’s main control loop. However,
offloading CPU intensive AI tasks is still feasible by running
the RL agent and the radio program(s) on different machines
by having a loose coupling between them.
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Fig. 1: Architecture of the GrGym framework.

B. Architecture

The architecture of the GrGym framework is shown in
Fig. 1. It consists of the following major components: GNU
Radio framework, OpenAI Gym toolkit, and the GrGym
framework itself. In the following, we give a brief overview
– a detailed description can be found in [5].

1) GNU Radio Side: Any wireless communication protocol
implemented using the GNU Radio framework can be inte-
grated into GrGym. The simplest integration is possible if the
radio program is provided in the form of a GRC flow graph.
Here, only some minor modifications need to be made to
expose the data needed to capture the desired RL observation
space and information needed to compute the reward value.
Moreover, the possibility to change values of variables is
needed as a mean to execute RL actions.

This is achieved by modifying the GRC file of the radio
program to be integrated into GrGym by adding additional
GNU Radio blocks and wiring them accordingly as illustrated
in Fig. 2. The additional * Sink nodes (upper left) are
needed to capture both observations and reward. GrGym
is able to use different inter-process communication (IPC)
mechanisms like named pipes (files), ZeroMQ, UDP/TCP. The
usage depends on whether GrGym and GNU Radio are co-
located or not, i.e., ZeroMQ can be used if both processes are
located on different machines. The XMLRPC Server node
(upper middle) is needed for life-cycle management of the
GNU Radio program by GrGym, i.e., start/stop, and (remote)
execution of RL actions. Finally, the Variable nodes (upper
right) are global shared variables used by GrGym to execute
RL actions, i.e. changing the configuration state of blocks
using those variables.

2) RL Agent Side: A (deep) RL agent is using the OpenAI
Gym interface for accessing the state and executing actions
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Fig. 2: Interfacing GrGym inside GNU Radio flowgraph.

on an environment implemented using the GNU Radio and
wrapped by our GrGym framework. This makes the RL-
agent’s code (Python) environment-independent, which allows
for exchanging the agent’s implementation while keeping the
reproducibility of the environment’s conditions. Moreover,
different RL approaches can be tried out very quickly.

3) GrGym Middleware: The GrGym middleware takes care
of transferring state (i.e., observations, reward) and control
(i.e., actions) between the RL agent and the node or even
network of nodes running GNU Radio programs. The mid-
dleware consists of two parts: a generic part and a user-
defined scenario-specific implementation. The generic part
interconnects the two frameworks, OpenAI Gym and GNU
Radio, with each other. The scenario-specific part needs to
be provided by the user when exploring a new scenario
(e.g., RL-based rate control for 802.11) or configuration (e.g.,
number of wireless nodes). This is achieved by providing a
custom Python class, which derives from GrScenario and
implements the required interface functions. Here, the user
can access all observation and reward data exposed by the
GNU Radio program via the sink nodes. Note, that the GrGym
middleware transfers the state and actions as numerical values
and it is up to the user to define their semantics.

V. EXAMPLE: RL-BASED RATE CONTROL IN 802.11P

As a proof-of-concept, we implemented a deep RL-based
rate control for IEEE 802.11p radio based on the GNU Radio
implementation provided by [19], [20]. The goal of the RL-
agent is to decide on the Modulation and Coding Scheme
(MCS) to be selected for the next packet transmissions based
on the observation of the current channel condition, which is
the absolute signal strength (RSSI) per OFDM subcarrier. This
is a challenging task as the RSSI is uncalibrated, i.e., level of
the noise floor is unknown and time varying. Therefore, the
RL agent needs to learn which MCS to use given the absolute
RSSI values reported. The following RL mapping was used:

• Action: The MCS to be used for the next packet transmis-
sions (here: 10ms). Note: 802.11p supports 8 different
MCS values, which corresponds to the action space.



• Reward: The reward is the effective data rate during the
last step. It is computed from the packet success rate
during multiplied by the data rate of the selected MCS.

• Observation: The observation is a vector of RSSI per
OFDM subcarrier of the last received packet. As the
observation is measured during the synchronization phase
of packet reception, it is independent of the selected
MCS, i.e., action.

Moreover, our deep RL agent used the Actor-Critic (AC)
method [25]. GrGym was run in standalone mode and the
802.11p stack was operated in loopback mode, i.e., the chan-
nel was simulated in GNU Radio with AWGN channel. As
shown in [5], RL was very efficient in this example, which
motivates further experimentation also with other protocols in
the telecommunication networks domain.

VI. DISCUSSION AND CONCLUSIONS

We presented GrGym, a toolkit that simplifies the devel-
opment of AI enhanced wireless networks, with a specific
focus on deep RL and its usage in experimental 5G and 6G
research. This is achieved by interconnecting the OpenAI Gym
toolkit with the GNU Radio framework. Our Open Source
framework is generic as it can be easily extended by the
research community to optimize different functionalities in
5/6G communication networks using deep RL.

Next to IEEE 802.11p, GrGym can be used with any existing
protocol implementation for GNU Radio. At the moment, this
includes radio technologies like IEEE 802.11 [19], [20], IEEE
802.15.4 [21], narrow-band LoRa [22], and 3GPP LTE [23],
however, this list is constantly growing and also quite a
number of implementations exist that have not (yet) been made
available as Open Source to the research community.

With the ongoing research towards 6G and Next G, with a
tremendous growth on the AI side in our protocols, approaches
such as our GrGym will become even more important. Among
others, applications include tactile and haptic Internet, holo-
graphic communications, and computation oriented commu-
nications. Here, we envision to set up a global leaderboard
allowing researchers to share and compare their RL-based
solutions for selected communication problems like param-
eterization of random channel access. Moreover, we plan to
evolve our framework beyond just parameter learning of pre-
selected radio programs. Instead, an RL-agent might learn to
build the best flowgraph from a repository of available radio
components.
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