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Abstract—In this paper, we study a stable Age-of-Information (AoI)
scheduling problem to handle the massive packet aggregation from
arbitrary total of n end devices to an edge device via a single hop
wireless channel when information constantly arrives at the end side.
Specifically, we consider the arrivals of the information with an online in-
jection mode, i.e., information is injected to end devices with an unknown
injection rate in each time slot. After the information is injected, the AoI
with respect to those end devices constantly increases until their fresh
messages are received by the edge device, which characterizes the
freshness of the information at destination. Based on the online injection
mode, we propose the first distributed stable AoI scheduling algorithm
combining NOMA (Non-Orthogonal Multiple-Access) technique in this
paper, to minimize the expected average peak AoI (EAP-AoI) of our
end-to-edge information system. Adopting NOMA technique enables
k messages decoded from a mixed signal by the edge device in our
algorithm, with parameter k > 1. We prove that our algorithm is stable
even under the asymptotically maximum injection rate of O(k/n) that
any stable AoI scheduling algorithm may handle, and the EAP-AoI of our
information system is bounded by O(

3
√
nk) time slots under the injection

rate of O(k/n). Comparing with two existing results, the EAP-AoI in our
algorithm is O(n

2/3

k4/3 ) and O(n
2/3

k1/3 ) times smaller. Numerical results also
verify the stability and efficiency of our algorithm.

Index Terms—Distributed Algorithm, Stable Age-of-Information
Scheduling, NOMA Technology, SINR Model.

1 INTRODUCTION

In recent years, the wide deployment of mobile devices
and rapid development of wireless techniques have
strongly supported a great amount of applications in
edge networks, which heavily rely on time-sensitive
information collected by sensors from the environment.
To depict and quantify the freshness of the collected
information in those applications, the concept of Age-of-
Information (AoI) was introduced in [1], [2], [3]. Specifi-
cally, the AoI accounts for the elapsing time of received
packets at destination since its generation at the source.
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• J. T. Gómez and F. Dressler are with the School of Electrical Engineering
and Computer Science, TU Berlin, Berlin, 10587, Germany. E-mail:
{torres-gomez, dressler}@ccs-labs.org .

Manuscript received MM DD, YYYY; revised MM DD, YYYY.

Since AoI gives priority to the updates that can greatly
reduce the information time lag at the destination, the
scheduling on the basis of AoI can significantly improve
the freshness of information in many applications and
information systems [4], [5], [6].

A common approach to minimize the AoI in edge
networks operates under a generate at will mode [7] and a
centralized manner [8]. In this setup, end devices—also
referred to as sensor nodes or nodes throughout this
paper—periodically gather information from their envi-
ronment using their sensors and report the freshest data
to the designated edge device via centralized scheduling
algorithms, such as the widely adopted Time-Division
Multiple Access (TDMA) scheme. Then, the edge device
estimates the content of the aggregated information by a
filter and picks out the useful information for high-level
applications. In this scheduling mode, its advantage is
that the total packets to be scheduled in each period is
predictable and even fixed, since all sensors will report
their collected information regularly. Thus, it is feasible
to design elegant and efficient AoI scheduling algorithms
based on the multi-access channel [9], [10], [11]. Mean-
while, since all collected information are aggregated to
the edge device regardless of their importance, a fraction
of network resources, such as the bandwidth and the
energy resource, will be misused to transmit useless
information. Besides, a centralized filter results in a high
requirement on the energy and computing resource.

To overcome these disadvantages, this paper considers
an alternative framework in which the filters are de-
ployed on each of the sensor nodes. Once some infor-
mation is collected by a node, it will firstly be estimated
by the distributed filter. Only the important information
will be scheduled to the edge device. Considering the
reported performance on the use of distributed filter [12],
in our work we focus on how the filtered information
arrives at the edge side as fresh as possible. Figure 1 is an
illustration for our alternative framework, in which only
the important/useful information will be transmitted
through the wireless channel. Compared with the previ-
ous framework, a wider bandwidth can be provided to
schedule the useful information, which makes it possible
to design more efficient scheduling algorithms.
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Fig. 1: Illustration of our alternative framework on information aggregation

Even though the new framework reduces the work-
load on message aggregation by only scheduling the
useful information, a new challenge arises for designing
stable and efficient scheduling algorithm: when will the
useful information arrive at the end side becomes unknown for
both the edge and the end devices, and is totally determined by
the environment. Even though some methods can predict
the arrival of useful information, it often requires addi-
tionally knowledge and is not comprehensive enough for
general scenarios [13]. To depict the uncertain arrivals
of the useful information in an information schedul-
ing process, we formulate the AoI scheduling problem
in an online mode and study a distributed stable AoI
scheduling algorithm in this paper. Specifically, when
the information collected by a sensor in a time slot
t is useful, we say a packet with useful information
is injected to the sensor node in t.1 Then, we define
the injection rate of a node in time slot t as the total
of packets with useful information only in expectation
in t, thus indicating how likely the useful information
arrives at the node in a time slot. Also, in an interval of
multiple time slots, each node may have multiple pieces
of information injected while the distribution of injection
is unknown. We consider a harsh assumption that all
the injection of information, injection rate of nodes in
each time slot, and the distribution of injections in any
interval are unknown, unpredictable, independent and
may vary for different nodes. The only knowledge can
be used by nodes for the information scheduling is an
upper bound of the injection rates among all nodes.

For our newly proposed AoI scheduling problem un-
der the online injection mode, the previous scheduling
algorithms no longer guarantee efficient performances,
since most of them require packets to be scheduled peri-

1. Since only useful information will be reported by sensors, in the
following, when the word information is mentioned in our work, it
indicates the useful information.

odically should be predictable and even fixed. To solve
the AoI scheduling problem with the online information
injections, a stable AoI scheduling algorithm should be
designed with the following property: for each sensor
node, its Age-of-Information at the edge device and the piece
of useful information not received by the edge device should
always be kept at some low-level values, when information is
constantly injected.

The unpredictable injections and unknown injection
rate prevent keeping the designed scheduling algorithm
stable. For example, too much information injected in a
short period may temporarily overwhelm a scheduling
algorithm. Thus, the piece of information not received
by the edge device and the AoI w.r.t (with respect
to) the end nodes increases if no targeted operation
is given. Also, the OMA (Orthogonal Multiple-Access)
technique adopted in previous works has become a
bottleneck on improving the efficiency and stabilization
of AoI scheduling since in OMA, a device can at most
receive one message in each time slot. To overcome
those challenges, a two-stage scheduling combining with
NOMA (Non-Orthogonal Multiple-Access) technique is
proposed in this paper, the first stage of which is to
schedule the recently injected information, while the
second stage of which is targeted for the information
with a relative large age but still not received by the
edge device. Both of the two stages are facilitated by
NOMA technique that actualizes multiple messages de-
coded from a mixed signal, which dramatically make
the AoI scheduling process fast and stable even under
a high injection rate. By doing this, it ensures that our
scheduling algorithm is stable and efficient when facing
the unpredictable injections of the useful information.

Contributions. Our paper considers a realistic and
harsh information aggregation scenario in an end-to-
edge information system, in which the useful informa-
tion is constantly injected at the end side with an un-
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known and unpredictable pattern. We firstly formulate
such scenario by proposing a stable property for on-
line AoI scheduling problem. Then, a NOMA-facilitated
stable AoI scheduling algorithm is presented with a
competitive performance in terms of the freshness of
information and the stability of scheduling process. Our
main contributions are summarized as follows:

• We present a stable AoI scheduling pattern, in which
packets with useful information only are constantly
injected to the end nodes with unpredictable injec-
tions and unknown injection rates. Compared with
previous works that regularly aggregate all informa-
tion from end nodes regardless of the content, our
stable AoI scheduling prevents network resource
from transmitting useless information.

• A distributed stable AoI scheduling algorithm with
NOMA is proposed, to schedule the constantly in-
jected information from n end nodes to an edge
device via a single hop wireless channel. Even when
the injection rate gets close to the maximum injec-
tion rate of O(k/n) that any stable AoI scheduling
algorithm may handle with a constant factor, our
algorithm can still keep stable and ensure that the
edge nodes have their expected average peak AoI
bounded within O( 3

√
nk) time slots. The parameter

k in NOMA technique means the edge device can
at most decode k messages from a mixed signal.
When comparing with two existing results: O(n/k)
time slots for a centralized greedy scheme with-
out considering the information injection and O(n)
time slots for the scheduling works without NOMA
in [14], [15], our algorithm is O(n

2/3

k4/3 ) and O(n
2/3

k1/3 )
times faster. Extensive simulation results confirm
the stability and efficiency of our algorithm.

Roadmap. The remaining parts of this paper are
organized as follows. Section 2 introduces the related
work. Section 3 formulates our network model and the
relative definitions in our online information scheduling
problem. The stable algorithm and theoretical analysis
are presented in Section 4 and Section 5, respectively.
Section 6 shows the simulation results, and Section 7
concludes our paper.

2 RELATED WORK

To optimize the AoI minimization problem, a series of
scheduling schemes have been proposed in the past
decades, including [16], [17], [18] in single hop wireless
networks, [19], [20], [21] in multi-hop wireless networks,
and [6], [8], [22] directly in edge networks to schedule
the information between the sensors on the end side,
the edge servers and the cloud servers. However, a large
fraction of the previous works on the AoI optimization
problem, as far as we know, are designed in a central-
ized framework and rely on the reliable communication
assumption. Some known results for distributed AoI
scheduling are [7], [23] on graph interference model, [11]
on physical interference model, and [24] on a channel

TABLE 1: Related works on AoI scheduling

Reference Environment Dis. NOMA Online
[16], [17], [18] single hop X X X
[19], [20], [21] multi-hop X X X
[7], [11], [23], [24] edge network

√
X X

[10], [27], [28], [29] single hop X
√

X
[6], [8], [22], [25], [26] edge network X X

√

this work edge network
√ √ √

failure model caused by the dynamic channel access
attack. The most relevant works considering the similar
online AoI optimization problem include [6], [8], [22],
[25], [26]. In [6], [8], [22], [25], the packets are constantly
generated by a single sensor/user and delivered to an
edge server. The work in [26] extends the online AoI
optimization problem to a broad scenario in which the
data packets are scheduled from multiple sensors to an
edge server. Based on the Lyapunov optimization theory,
a centralized max-weight policy is proposed to mini-
mize the expected weighted sum AoI of the information
system. Compared with the existing works, especially
with the newest [25], [26], our work outperforms in
the distributed framework, the combination of NOMA
technique, and the realistic NOMA-SINR communica-
tion model, respectively.

As a significant tool to improve communication per-
formance, the NOMA technique is not typically reported
to minimize the AoI of downlinks [10], [27], [28] and
uplinks [29] in edge networks and relative scenarios.
Specifically, to minimize the average AoI of multiple
users, an adaptive buffer-aided scheme and a heuris-
tic adaptation of the driftplus-penalty approach from
the Lyapunov framework are used in [10] and [27],
respectively. Besides, to minimize the expected weighted
sum AoI, a low-complexity power allocation policy with
NOMA is presented in [28]. Finally, in [29], the NOMA
technique is used to minimize the uplinks from users
to the base station and the result is compared with
the AoI scheduling with OMA. However, all of the
works mentioned above are the centralized ones with
a two-layer NOMA technique, in which a receiver can
at most decode 2 messages from a mixed signal. Thus,
the efficiency on AoI scheduling by adopting NOMA in
the above works at most has a 2-times improvement,
compared with that without NOMA.

Table 1 is a summary for the above related works
about AoI scheduling without/with NOMA technique.
Compared with the existing works on AoI scheduling in
edge networks, our work is the first one investigating
the online AoI scheduling problem under distributed
framework with NOMA technique.

3 MODEL AND PROBLEM DEFINITIONS

We consider our stable AoI scheduling problem with on-
line information injection in a 2-dimensional Euclidean
space, in which an edge device and n sensor nodes are
arbitrarily deployed. By normalizing the minimum and
maximum distance from sensor nodes to edge device as
1 and d separately, we assume that the edge device and
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sensor nodes have their transmission range R > d, i.e.,
all the edge device and sensor nodes are in a single hop
wireless network. To evaluate time stamps, we assume
nodes are synchronized, and define a time duration as a
round, in which the nodes can collect information from
the environment once through their sensors. Meanwhile,
the duration in a round is enough for the edge device
and sensor nodes to transmit or receive a message.
Note that in our scheduling framework, the filter is
distributed on each node. When a node v collects an
information from the environment in a round t, the filter
estimates the importance of the information according to
its content. If the information is important or useful, a
message Mv containing the useful information will be
generated by v, and the scheduling on Mv starts from
round t+ 1 until the edge device receives it. If the filter
believes that the collected information does not contain
any useful information, no message will be generated for
it. By doing this, our model makes sure that the wireless
channel only serves for the useful information.

When a message is generated by a node because
of an important information collected, we also say the
corresponding message is injected to the node. Note
that for each node, the importance of the information
to be collected in the next round is unknown and un-
predictable. Thus, whether a message will be generated
by a node in the coming round is also unknown and
unpredictable. To capture the uncertainty in informa-
tion/message injections, one intuitive way is to assume
an injection rate λ on each node. Specifically, the injection
rate of a node in round t is defined as the expected
number of messages injected in the node in round t. The
distribution of injection rate is unknown, unpredictable
and independent among different nodes and rounds.

3.1 Stable Age-of-Information Scheduling Problem
To formulate the freshness of an important information
when it arrives at the edge device, the concept Age-of-
Information (AoI) has been defined in the following.

Definition 1 [30]: Let Av(t) be the AoI with respect
to the end device v at round t, which is the time that
elapsed since the generation of the freshest message
transmitted from v to the edge device, i.e.

Av(t) = t− τv(t), (1)

where τv(t) is the generation time of the freshest message
received by the edge device from the node v at round t.

According to the above definition, Av(t) drops if a
fresher message from v successfully arrives at the edge
side at round (t − 1), and increases linearly otherwise.
The fresher message from v means that the message has
a fresher generation time than all the messages that was
generated and delivered to the edge device by v in the
previous rounds. Such a definition works well in the
previous works in which the fresher messages are always
prepared by the end devices in each round. However,
if such a definition is directly adopted in our online

injection mode, the AoI also increases when the most
fresh message generated by v has been received by the
edge device, but v no longer has any new important
information injected and fresher message to deliver in
the following rounds. Such an increasing of AoI is in-
significant and will mislead the AoI scheduling strategy.
A more detailed explanation is given in the Appendix. To
avoid this case, we additionally assume that for each end
device, it is in active state for AoI update if it has some
fresher messages to deliver in current round. Otherwise,
it is in inactive state. Boolean variable sv(t) = 0 or 1
is used to indicate that an end device v is in inactive
or active state in round t. Initially, all end devices are
in inactive state because the important message has not
been injected. We assume that Av(t) = 0 when v is in
inactive state. Let mv(t) = 1 denote the event that a
fresher message from v is received by the edge device in
round t, and mv(t) = 0 otherwise. Then, Av(t) evolves
as follow:

Av(t) =


0, if sv(t) = 0,
t− τv(t), if sv(t) = 1 and mv(t− 1) = 1,
Av(t− 1) + 1, if sv(t) = 1 but mv(t− 1) = 0.

(2)
Figure 2 illustrates an example to show the difference
between the conventional AoI and our new defined
AoI by Equation 2 when the important messages arrive
in an online mode. Specifically, in the given example,
the important information arrives at the node v at the
beginning of rounds 3, 7, 9, and the corresponding
messages are generated by v immediately. At the end of
rounds 4, 8, 10, those messages are successfully received
by the edge device. According to our definition for the
active and inactive states w.r.t. AoI update, the node v
is in active state within rounds [3−4] and [7−10]. Then,
we have the curves in Figure 2 (a) and (b) to illustrate
the conventional AoI and our new defined AoI w.r.t.
node v, respectively. In Figure 2 (a), the AoI of node
v keeps increasing even though v is in inactive state and
Av(8) = 8−3 = 5. Meanwhile, in Figure 2 (b), by setting
Av(t) = 0 when node v is in inactive state, we make sure
that our new defined AoI accurately depicts the elapsed
time since the generation of the freshest message when
v is in active state.

Minimize the Expected Average Peak AoI. From
Figure 2 (b), we can see that the peak age w.r.t. to an
end node v is achieved just before a fresher message
from v successfully arriving at the edge side. Besides, in
the last round of an interval I , the last peak age w.r.t. the
end node v in I is achieved if v is active at that moment.
Thus, the average peak age w.r.t the end node v in an
interval I that consists of |I| rounds is defined as

Âv(I) =

∑|I|−1
t=1 Av(t)mv(t) +Av(|I|)sv(|I|)∑|I|−1

t=1 mv(t) + sv(|I|)
. (3)

In the above equation, mv(t) = 1 indicates the event
that a fresher message from v is received by the edge
device in round t and the age of v reaches to a peak
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(a) The conventional AoI with respect to an end node v

(b) Our new defined AoI with respect to an end node v

Fig. 2: The conventional AoI and our new defined AoI in
an online injection mode when the important packets are
generated by v at the beginning of rounds {3, 7, 9}, and
received by the edge node at the end rounds {4, 8, 10}.

meanwhile. sv(|I|) = 1 means the end node v is active at
the last round of the interval I , in which the peak age of
v is also reached. Thus,

∑|I|−1
t=1 Av(t)mv(t)+Av(|I|)sv(|I|)

is the sum of the peak ages w.r.t. the end node v in the
interval I and

∑|I|−1
t=1 mv(t) + sv(|I|) is the number of

times that v reaches to its peak age in the interval I .
Therefore, the average peak age of the whole end-to-

edge information system in an interval I is defined as

Â(I) =

∑
v∈V

(∑|I|−1
t=1 Av(t)mv(t) +Av(|I|)sv(|I|)

)
∑

v∈V

(∑|I|−1
t=1 mv(t) + sv(|I|)

) ,

(4)
in which V is the set of n end devices. Let E[Â(I)] be the
expected value of Â(I), i.e. the expected average peak
AoI (EAP-AoI) of the whole information system in I .

The objective of our AoI scheduling problem is a
distributed scheduling policy to Minimize the Expected
Average Peak Age-of-Information (MEAPA) of our stable
information system in an interval I when the important
information constantly arrives. In each round of the al-
gorithm, each of the node can transmit its message with
a specific transmission power or switch to listen for the
messages in the wireless channel. We use the SINR rate
SINR(M, t) ≥ β to formulate the fact that a messageM
can be decoded by its receiver in a round t, the detail
of which is given in the following NOMA-SINR model.
The final outcome of our policy is that the fresh messages
from the end nodes can be timely received by the edge
node, so that the EAP-AoI of the whole end-to-edge
information system can be minimized. Besides, since all
the messages generated by the end nodes are important,

an additional constraint is that all the messages from the
end nodes should be finally received by the edge node
if the interval I contains sufficient rounds.

Aiming at the MEAPA makes sense in our AoI
scheduling problem, since the age of end devices highly
reflects the freshness of information. Minimizing EAP-AoI
provides a worst case guarantee on the AoI scheduling
from a statistical view. When the EAP-AoI gets min-
imized, we can strongly believe that the information
aggregated to the edge device is fresh. Note that the
study in [31] has shown that optimizing the scheduling
strategy on minimizing AoI in wireless systems is NP-
hard, without considering NOMA and online arrivals
of important information. Compared with the problem
in [31], the NOMA technique and online arrivals of
important information result in additional challenges for
the scheduling. Thus, our problem in this paper is at least
as hard as the problem in [31], which is also NP-hard.

3.2 NOMA-SINR Model
The NOMA technique is adopted in our scheduling
algorithm to facilitate the transmissions in wireless chan-
nel. Specifically, it allows multiple messages decoded in
one round from a mixed signal, as long as a specific
interference cancellation sequence of the messages can be
satisfied. A detailed description is given in the following.

For convenience, the edge and end devices who trans-
mit or listen are denoted as transmitters and receivers,
respectively. S(u, v) is defined as the signal from the
transmitter u to the receiver v. In traditional SINR model
without NOMA, the receiver can at most decode one
signal in a round with a requirement that the strength
of the decoded signal must be larger than the sum of the
strengths of other signals (i.e., interference) and the am-
bient noise. However, the NOMA technology open a new
door for the receiver to recover multiple signals from the
mixed signal in one round, as long as an interference
cancellation sequence of the signals can be satisfied.
Specifically, for a receiver v, if there is a signal S(u, v)
whose strength is larger than the sum of the interference
and the ambient noise, v can decode the signal S(u, v)
from the the mixed signal. Then, the interference from
S(u, v) can be cancelled when v tries to decode other
signals. The following NOMA-SINR equation

SINR(u, v) =
Pu/d(u, v)

α∑
w∈W\(W ′∪{u}) Pw/d(w, v)α +N

(5)

shows how the interference is accumulated and can-
celled in transmissions, and in which situation will
the transmissions succeed. In the above NOMA-SINR
equation, W is the set of transmitters in current round,
and W ′ is the set of transmitters whose signals have
already been decoded by v. For each transmitter w, Pw

is the transmission power, and d(w, v) is the Euclidean
distance between w and v. α is the path-loss exponent,
and N is the ambient noise, both of which are constants
determined by the environment. When SINR(u, v) ≥ β,
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v can decode the signal from u, where β is a thresh-
old determined by the hardware of receivers. In usual,
α ∈ (2, 6] and β > 1. In our work, we assume that all
communications in the single hop wireless network have
the same SINR parameters α and β. For convenience,
the SINR rate of the message M from transmitter u to
receiver v in round t is also written as SINR(M, t).

The communication parameters such as distance,
transmit power, and fading characteristics in the above
NOMA-SINR model determines the performance of
NOMA on the following two aspects. The first one is
whether a signal can be decoded by the receiver. The
second one is the amount of data delivered by the signal
if it can be decoded. In our paper, since the sensor nodes
behave individually, their communications may collide
and interfere with each other, i.e., the communication
is no longer reliable. Thus, our paper focus on the first
aspect: whether the signal can be decoded under the
communication parameters. As for the bandwidth of
communication, we assume that it is enough for sensor
nodes to deliver its packet within a time slot.

Additional Assumptions. We assume that all the
end devices have the uniform maximum and minimum
transmission power: Pmax and Pmin. The edge device
has the stronger hardware and energy supply, so that its
maximum transmission power can be larger than Pmax.
In each transmission, the edge device and nodes can
choose a transmission power within the scope of their
maximum and minimum transmission power to transmit
a message. Defining R as the transmission range of the
edge device and nodes, and since all devices are in a sin-
gle hop wireless network, we have R ≤ (Pmin/βN)1/α.
Otherwise, the transmissions with power Pmin may fail
and makes no sense. Also, in NOMA technique, the
ratio of maximum/minimum transmission power and
the hardware are two of the bottlenecks for multiple-
message decoding from a mixed signal. In this paper,
we assume that the ratio of maximum/minimum trans-
mission power is sufficient large to support k message-
decoding, together with the hardware on edge device. A
detailed introduction for the k-layer NOMA technique
can be found in [32]. Three queues are used by each
node to store its messages. We assume that all messages
generated by n sensor nodes have the same size, and
the length of queues on each node is sufficient enough
in our algorithm. Also, each sensor node v has its unique
ID. The NOMA-SINR parameters α, β, k, the number of
sensor nodes n, and the upper bound on the injection
rate λ is assumed to be known by all nodes. A table
of notations presented in model, algorithm design and
analysis is given in Table 2.

4 STABLE AOI SCHEDULING ALGORITHM

4.1 Challenges and Solutions in Algorithm Design
In previous works about AoI scheduling in edge net-
works and relative wireless areas, n nodes always try to
deliver their freshest messages to the edge device in a

TABLE 2: Notations in model, algorithm and analysis

Notations Definitions
V , n Set/number of nodes in network, n is sufficient large
Av(t) AoI w.r.t. the end node v at round t

Âv(I) average peak AoI w.r.t. the end node v in interval I
Â(I) average peak AoI w.r.t the information system in interval I
E(X) the expected value of a variable X
Pmax, Pmin Maximum/Minimum transmission power of end devices
IDw Unique ID of the node w
Pw Transmission power of the node w, Pw ∈ [Pmin, Pmax]
k Maximum number of decoded signals in NOMA
α, β SINR parameters, α ∈ (2, 6] and β > 1
N Ambient noise, determined by the environment
R Transmission range, R ≤ (Pmin/βN)1/α

S(u, v) Signal form the transmitter u to the receiver v
SINR(u, v) SINR rate of the signal S(u, v) at receiver v
Mv Message M generated by node v
SINR(M, t) SINR rate of the message M at round t
signal(v) Strength of the signal sensed by the node v
λ Injection rate of the important information on a node
Sv , Qv , Fv Three queues in the node v

ϵ, µ, c, γ Constants in algorithm and analysis; ϵ ∈ (0, 1),
µ = 6, c > log R

log n , and γ ≥ max{1, cα+1+log β
µ }

T , H , J Parameters in algorithm and analysis; T = ⌊ 3√
nk⌋,

H = ⌊(1 − ϵ2)T⌋, and J = T − H

centralized pattern without considering the importance
of their collected information in each round. While in
our stable AoI scheduling problem, each node firstly
estimates the importance of its collected information
and will only generate a message to schedule when the
collected information is important. Thus, here comes a
question about the significance of our algorithm design:
Is it necessary to design a new algorithm for the stable AoI
scheduling problem with information online injection, rather
than choosing an alternative one from the previous works?
Our answer is Yes, because the stable AoI scheduling is
harder than the previous ones without considering the
information injection. Besides, the solutions in previous
works no longer suit because of the following challenges.

The biggest challenge is taken by the unknown injec-
tion rate and the unpredictable message injection when
the important information arrives at the end side in
an online pattern. In previous works, the number of
messages to be scheduled in each round is predictable,
known or even fixed. However, in our stable AoI
scheduling problem, since the injection rate is unknown,
the message injection and number of messages to be
disseminated in each round is unpredictable. This results
in difficulties from reported solutions to handle the con-
tention and interference in wireless channel, and directly
results in inefficient transmissions in a wireless channel
between the edge device and sensor nodes. In general,
the previous works are more likely to consider the AoI
scheduling in an offline mode. While our problem is how
to keep a stable scheduling in an online mode.

The second challenge is balancing the newly injected
messages with the accumulated ones not received by
the edge device. Unlike existing works that focus solely
on scheduling the freshest messages and dropping stale
ones to minimize AoI, our work aims to optimize the
expected average peak AoI while ensuring that all im-
portant information selected by the local filter is deliv-
ered to the edge server, even if it is accumulated on the
end side and outdated. Too many messages injected in a
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short period can temporarily overwhelm a scheduling
algorithm. As a result, messages not received by the
edge device accumulate at the end nodes, losing their
freshness. Balancing the trade-off between the immediate
transmission of newly injected messages and the efficient
scheduling of accumulated messages is crucial, which
ensures that no message is delayed excessively before
being received by the edge device.

The third problem is how to tune the transmission
power of each node in a distributed framework, to
adapt the specific interference cancellation sequence in
NOMA technique when signals arrive at the edge device.
In a distributed framework, the lacking of a global
cooperation makes it hard for each node to know the
transmission powers chosen by other nodes in the com-
ing round, and the distances from the other nodes to
the edge device. So, it is nearly impossible for nodes
to directly cooperate with each other to make sure the
signals reach a geometric cancellation sequence with a
tight ratio when they arrive at the edge device.

Solutions to Challenges. The Challenges one and
two have arisen the additional requirements on our
algorithm design. In our algorithm, we use three first-
in-first-out queues in each node as the buffers for the
messages injected in successive stages that consist of
multiple rounds and start from stage 1. The queue S
is used to store the messages injected in current stage
i; the queue Q is used to schedule the messages in-
jected in the last stage i− 1; the queue F is used to
schedule the messages accumulated in the stages 1, 2,
· · · i− 1. By doing this, the message scheduling in our
algorithm becomes independent with the injection rate
and message injections in each round, but relates to the
expectation of the injected messages in each stage, which
may follow some distributions when the stage contains
sufficient rounds. In a busy edge networks scenario with
a high injection rate, the queues Q and F always contain
enough messages injected in stages 1, 2, · · · i− 1. Thus,
our scheduling algorithm on queues Q and F will obtain
the high efficiency since they do not need to wait for the
new injected messages. However, there are two trade-
offs on each stage i that should be balanced.

• Trade-off I: if the stage i is too long, messages need
to wait for a long time in S before it is scheduled
by nodes in queues Q and F , which consequently
increases the age of messages when they arrives at
the destination. If the stage i is too short, when
nodes start to schedule the messages in queues
Q and F , it is likely that there are not enough
messages in queues Q and F to be scheduled, which
reduces the efficiency of our scheduling algorithm.
The Equation 6 in Section 5 directly shows how we
reach a balance in this trade-off.

• Trade-off II: in each stage, both of the fresh messages
in the queue Q and the accumulated messages in the
queue F should be scheduled. On one hand, if too
many rounds are used to deliver fresh messages,
the AoI is minimized but more outdated messages

accumulate. On the other hand, if too many rounds
are allocated to outdated messages, the AoI cannot
be effectively optimized. In our algorithm, constant
fraction of rounds in each stage are assigned to
schedule the fresh messages in queue F and the
remaining rounds are used to deliver the accumu-
lated messages in queue S, which is proved to be
an efficient approach.

As for implementing the NOMA technique to facilitate
the transmissions in scheduling, nodes first simulate
a coin tossing game to reduce the contention in the
incoming transmissions. Then, a sparse mapping scheme
between the nodes and their transmission powers are
given. Thus, when the signals arrive at the edge device,
an interference cancellation sequence is satisfied for the
first k messages with the largest transmission power,
which will be decoded from the mixed signal.

4.2 Algorithm Description

Our Stable Age-of-Information Scheduling Algorithm,
termed as SAISA for short, consists of successive stages,
each of which contains T rounds. In each stage, the first
H rounds belongs to the phase 1, and the remaining J
rounds belongs to the phase 2. Specifically, T = ⌊ 3

√
nk⌋,

H = ⌊(1− ϵ2)T ⌋, J = T −H , with constant ϵ ∈ (0, 1). In
phase 1, the fresh data packets are delivered to minimize
the AoI, and the phase 2 is left to deliver those outdated
data packets. Thus, all the uesful information can be
collected by the edge-based server. Different from the
traditional AoI optimization works that drop the staled
packets [33], we schedule the freshest packets to mini-
mize the AoI, but also transmit those staled packets, be-
cause the staled packet also contains useful information
and should not be discarded in many practical scenarios.

In each phase, three queues Sv , Qv , and Fv are used by
each node v to store injected messages. Specifically, Sv is
used by v to store the messages injected in current stage.
The messages in Sv do not participate in the scheduling
in current stage and will be transferred to queue Qv at
the beginning of the next stage; the queue Qv stores
the messages injected in last stage. In phase 1 of each
stage, v will select some messages from Qv , and try
to deliver them to the edge device. A message will be
removed from Qv when it has been successfully received
by the edge device. When phase 1 ends, the remaining
messages in Qv will be transferred into the queue Fv .
In phase 2 of each stage, v will try to disseminate the
messages in Fv to the edge device. Note that the queues
used in our algorithm follow the first-in-first-out rule,
which means that each time when v decides to select a
message from a queue to transmit, the message earliest
arriving at the queue will be selected. When a message
from v was successfully received by the edge device, the
edge device will return an acknowledgement message.
Then, v will remove the message from its queues.

The pseudocode of the sensor nodes and edge device
in each stage is given in Algorithm 1 and 2, respectively.
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Algorithm 1: SAISA for sensor nodes
In each stage, a sensor node v does:

1 Qv ← Sv ; Sv ← ∅; // Phase 1 starts
2 for H rounds do
3 if in odd round then
4 if Queue Qv is not empty then
5 Pv ←Trans-Power-Selection ( );
6 Select the first message Mv from Qv ;
7 Transmit {IDv,Mv} with power Pv ;

8 if in even round then
9 listen;

10 if Received an acknowledgement message from
the edge device to v then

11 Qv ← Qv \ {Mv};

12 Fv ← Qv ∪ Fv ; Qv ← ∅; // Phase 2 starts
13 for J rounds do
14 if in odd round then
15 if Queue Fv is not empty then
16 Pv ←Trans-Power-Selection ( );
17 Select the first message Mv from Fv ;
18 Transmit {IDv,Mv} with power Pv ;

19 if in even round then
20 listen;
21 if Received an acknowledgement message from

the edge device to v then
22 Fv ← Fv \ {Mv};

Trans-Power-Selection ( ):
23 z = 0; p = 1/2;
24 do
25 a← 0 or 1 with probabilities p and 1− p;
26 z ← z + 1;

while a = 0;
27 Randomly and uniformly select an integer x from

the interval [2µzz4, 2µz+1z4];
28 Output Pv ← Pminx

γx;

Algorithm 2: SAISA for the edge device
In each stage, the edge device u does:

1 for T rounds do
2 if in odd round then
3 Listen, and try to decode the messages

{IDv,Mv}s one by one from the received
signal via NOMA technique;

4 if in even round then
5 Broadcast all the IDvs decoded from the

signal in last rounds as the
acknowledgement message with
transmission power Pmax;

A detailed description for phases 1 and 2 in our algo-
rithm execution on node v and edge device u in stage i
is given in the following.

In stage 1, as the beginning stage, the queue Sv is
empty when stage 1 starts, and Qv , Fv are always empty
in stage 1. Thus, v only stores the injected messages in
Sv when they arrive in stage 1. No operation is given
for queue Qv and Fv .

In other stages i with i > 1. Note that in stage i − 1,
there have been some messages injected and stored in
Sv . At the beginning of stage i, all messages in Sv are
transferred to Qv , i.e., Qv ← Sv and Sv ← ∅. Then,
in each odd round of phase 1, v will select a message
Mv from the queue Qv according to the first-in-first-
out rule, and transmit Mv with transmission power Pv .
Pv is determined by the function Trans-Power-Selection,
which will be described later in this Section. Meanwhile,
in each odd round of phase 1, the edge device keeps
listening to receive the messages from the nodes. After
receiving some messages, the edge device will broadcast
an acknowledgement message in the following even
round. If a messageM is received by the edge device in
round t, and the edge device broadcasts a corresponding
acknowledgement message in round t+ 1, we say M is
acknowledged. For any node v having its message Mv

acknowledged by the edge device in phase 1, v removes
the message Mv from its queue Qv .

When the first phase in stage i ends, the messages
remaining in Qv is transferred to Fv , i.e., Fv ← Qv ∪ Fv

and Qv ← ∅. Then, in each odd round of phase 2, v will
select a message Mv from the queue Fv , and broadcast
Mv with transmission power Pv . Similarly, if v receives
the acknowledgement message from the edge device,
which confirms the receiving of messageMv , it removes
the messageMv from queue Fv . All of the new messages
injected in node v during the stage i will be stored in the
queue Sv .

Considering that stage 1 is simple, in the following, we
mainly introduce the algorithm execution in the stage i
with i > 1, termed as the stage i > 1 for short. The main
difference between the phases 1 and 2 in stage i > 1
relies on two points: one is that the nodes select messages
from Qv in the phase 1 and from Fv in the phase 2. The
messages in Qv are all injected in stage i − 1, and will
be transferred to Fv at the end of the stage i if they are
not received by the edge device in the phase 1 of current
stage. While the messages in Fv not received by the edge
device in the phase 2 of stage i will be scheduled by
node v again in phase 2 of the next stage, until it is
acknowledged by the edge device. Another one is that
phase 1 and 2 have the different running time. Phase
1 contains ⌊(1 − ϵ2) 3

√
nk⌋ rounds, and phase 2 contains

⌊ 3
√
nk⌋ − ⌊(1− ϵ2) 3

√
nk⌋ rounds, with constant ϵ ∈ (0, 1).

In phase 1 or 2, each time when a node v selects
a message from the queues Qv or Fv , v chooses a
transmission power Pv by executing the function Trans-
Power-Selection, which is detailed in our Algorithm 1. In
this function, each node v firstly simulates the following



ZOU ET AL.: STABLE AGE OF INFORMATION SCHEDULING WITH NOMA IN EDGE NETWORKS 9

coin tossing game to get a parameter z. Then, an integer
x is randomly and uniformly selected from the interval
[2µzz4, 2µz+1z4]. Finally, node v chooses Pminx

γx as the
value of its transmission power Pv .2 Constant µ is set
to be 6 in our analysis for the final high probability
guarantee even in the worst case, and may be smaller
in reality. Constant γ is no less than max{1, cα+1+log β

µ }
with c as a constant larger than logn

logR in analysis. Such a
power selection scheme was firstly proposed in [35] for
a single transmission without NOMA. Here, we extend
this scheme with NOMA for multiple transmissions,
which is more complex.

Coin Tossing Game: node v repeatedly flips a fair coin until
the head of the coin is flipped. z is the number of times that
the tail of the coin was flipped during this game. Line 24-26
of algorithm 1 is the corresponding pseudocode.

A Theorem is given here to conclude the performance
of our algorithm about the stability on message schedul-
ing, and the efficiency on EAP-AoI minimization. The
corresponding proofs will be given in the next section.

Theorem 1: Our Age-of-Information scheduling algo-
rithm is stable w.r.t. any message injection rate smaller
than k

2n . The expected average peak AoI of the whole
end-to-edge information system is O( 3

√
nk) rounds.

Discussion for the FIFO Approach. Without the FIFO
rule, it is hard to guarantee that an accumulated message
will be eventually received by the server. The Last-In-
First-Out (LIFO) rule can serve as a counterexample.
When Phase 1 ends, the remaining messages in Qv are
transferred to Fv . In the following Phase 2, the messages
in Fv are scheduled using the LIFO rule. If the number of
messages transferred from Qv to Fv in each stage exceeds
or equal to the number of messages that can be delivered
from queue Fv in Phase 2 (which is very likely in an
interval with a high injection rate), the messages that
are recently transferred into Qv will be delivered, and
the message with the oldest age will never be received
by the server in the interval.

Additionally, even though the FIFO principle is de-
ployed in each queue, the trace of messages from the
sensors to the edge server is not FIFO, as some messages
are transferred from one queue to another. For example,
suppose node v generates its first messageM0

v at stage i
and its second message M1

v at stage i+1. In stage i+1,
message M0

v is in queue Qv and has some probability
to be scheduled. Message M1

v is in queue Sv . If the
scheduling ofM0

v in Phase 1 of stage i+1 fails, message
M0

v is transferred to queue Fv , and message M1
v is

transferred to queue Qv . Then, in stage i + 2, M1
v is

scheduled in Phase 1 as a fresh message, and M0
v is

scheduled in Phase 2 as an accumulated message. If both
messages are successfully delivered in stage i + 2, the
server first receivesM1

v in Phase 1 and thenM0
v in Phase

2. We assume that the gap between maximum transmission power
and minimum transmission power is sufficient large for this setting,
i.e. Pminx

γx ≤ Pmax. Otherwise, a trade-off scheme from [35] can be
used to reduce the energy requirement but with some communication
efficiency sacrificed.

2. With this example, we can see that even with FIFO
rules, the order of messages cannot be guaranteed.

5 ALGORITHM ANALYSIS

Our analysis section consists of three parts. In part
one, we show the efficiency of our algorithm on the
MEAPA problem, by proving that the EAP-AoI of the
information system is O( 3

√
nk) rounds. In the second

part, we show that our scheduling algorithm is stable
when the information online arrives at the end side.
For each important message, the time gap between its
generation by the end node and its reception by the edge
node is O( 3

√
nk) rounds in expectation. In the last part,

some basic and technical proofs are given, to supports
our claims in the first and second parts. Due to page
limitation and also for a better organization, we put the
last part into the Appendix.

The additional assumptions in our analysis are given
in the following. Since it takes 2 rounds for the edge
device to receive and acknowledge k messages, the
injection rate λ > k/2n for each node in each round is
an inherently impossible case for our stable scheduling
algorithm, in which the number of messages not received
by the edge device and the AoI always increase. In
[14], a similar upper bound has been proved in the case
without NOMA. In the following, we will show that our
algorithm works well on minimizing the EAP-AoI in all
the cases of λ ∈ (0, (1−ϵ)k

2n ], in which ϵ is an arbitrarily
constant in the interval (0, 1). Also, this paper considers
the edge scenarios with massive end devices, and has the
R ≤ nc assumption for the following analysis, in which
c is a positive constant.

5.1 Efficiency of Our Algorithm on MEAPA

The peak AoI w.r.t. a node v in the whole interval I
is rather complex to analyze, because v may become
inactive after all its freshest messages have been received
by the edge node. To make the analysis brief, we can
divide the whole interval I into multiple sub-intervals I ′,
in each of which the node v always keeps active.3 Each of
the sub-interval is also termed as the active interval for
node v. Without loss of generality, we consider the AoI
w.r.t. node v in an active interval I ′ starting from round
t0 and ending at round t′. During the sub-interval I ′, the
AoI of node v reaches to its peak for h times at rounds
t1, t2, ..., th, respectively, with t0 ≤ t1 < t2 < ... < th ≤ t′.
For j = 1, 2, ..., h, let Mj be the fresh message received
by the edge node at the round tj . In other words, the AoI
of v reaches to a peak at the round tj , and drops because
the fresh message Mj is received by the edge node at
the end of round tj . Let aj and bj be the generation time
of messageMj by node v and the reception time by the
edge node, respectively. Obviously, bj = tj and aj is the

3. In other words, v always has some fresh messages not received
by the edge node during those sub-intervals.
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moment when an important information is injected on
the node v.

In the following, we consider the peak AoI achieved at
rounds tj with cases: j = 1, j = 2, 3, ..., h−1, and j = h. In
the first case with j = 1, the analysis on peak AoI Av(t1)
branches on whether M1 is the first message generated
by the node v in the active interval I ′. In the second case
with j = 2, 3, ..., h− 1, the generation time and reception
time of message Mj−1 can help to bound the peak age
Av(tj). In the final case with j = h, the analyses slightly
differ on whether sub-interval I ′ is the last active interval
in the whole interval I . In general, we use Lemmas 1, 2,
and 3 to show that E(Av(tj)) = O( 3

√
nk) on all of the

cases mentioned above. In other words, all the peak
AoI w.r.t node v in a sub-interval I ′ have their expected
values bounded by O( 3

√
nk). Extending this result to all

the active sub-intervals in the whole interval I and all
the end nodes, the EAP-AoI of our stable information
system will also be O( 3

√
nk) rounds, which proves the

EAP-AoI part in Theorem 1.
The Lemmas 1, 2, and 3 are presented in the following.
Lemma 1: For any given sub-interval I ′ in which v is

active, E(Av(t1)) = O( 3
√
nk).

Proof: As is assumed above, the AoI w.r.t. node v
reaches to the first peak at the round t1, and drops when
the message M1 from v is received by the edge node.
a1 and b1 are the generation time of M1 by node v and
the reception time by the edge node, respectively. Then,
the analysis of E(Av(t1)) branches in the following two
cases. In case 1, whenM1 is the first message generated
by the node v in the interval I ′, we have a1 = t0,
b1 = t1, and Av(t1) = t1 − t0 = b1 − a1. In case 2, when
M1 is not the first message generated by the node v in
I ′, let’s assume that M′ is the first generated message
with a′ and b′ be its generation time by v and reception
time by the edge node. The message M′ was generated
earlier than M1, but received by the edge node later,
due to some communication failures. Then, we have
a′ = t0, b1 = t1, and a′ < a1 < b1 < b′, the last of
which holds because M′ is generated earlier by node
v but received later by the edge node compared than
M1. Thus, Av(t1) = t1 − t0 = b1 − t0 ≤ b′ − a′. In
Lemma 4, we give an expected bound for the time gap
of a message between its generation time to its reception
time. According to the time bound in Lemma 4, we have
E(Av(t1)) = O( 3

√
nk).

Lemma 2: For any given sub-interval I ′ in which v is
active, E(Av(tj)) = O( 3

√
nk) with j = 2, 3, ..., h− 1.

Proof: For two messages Mj−1 and Mj with j =
2, 3, ..., h−1, we have aj−1 < bj−1, aj < bj , aj ≤ bj−1+1.
Otherwise, the node v will be inactive from round bj−1+
1 to round aj , which contradicts the definition of active
sub-interval I ′. Then, we have Av(tj) = tj − aj−1 = tj −
bj−1+bj−1−aj−1 ≤ bj−(aj−1)+bj−1−aj−1. According to
the time bound E(b−a) = O( 3

√
nk) for arbitrary message

M from lemma 4, we can get E (Av(tj)) = O( 3
√
nk).

Lemma 3: For any given sub-interval I ′ in which v is
active, E(Av(th)) = O( 3

√
nk).

Proof: As is mentioned above,Mv(th) is the last peak
AoI obtained in the sub-interval I ′. Its analyses differs
in the following two cases. Case 1: the last peak AoI
is obtained at round th when Mh is received by the
edge node at the end of round th and I ′ ends because v
becomes inactive from the round th +1. In this case, we
can conduct an analysis on the messagesMh−1 andMh

to obtain the result that E(Av(th)) = O( 3
√
nk), which is

similar with that in Lemma 2. Case 2 is a very special
case, in which the peak age is obtained at round th not
due to a fresh message received by the edge node but
because th is the last round of interval I . In this case,
E(Av(th)) = E(th − ah−1) ≤ E(bh − ah−1) = O( 3

√
nk).

5.2 Stability of Our Algorithm on MEAPA

In this part, we show the stability of our algorithm when
important information online arrives at the end side.
From the last section, our algorithm execution in stage 1
is simple. In the following, we choose an arbitrary stage
i > 1 to start our analysis, and consider a busy scenario
in which λ = (1−ϵ)k

2n , and the queues Qv , Fv on nodes v
always contain enough messages to schedule. Once we
proved the Theorem 1 in this harsh case, the performance
of our algorithm can also be guaranteed in some other
weaker cases with a similar proof.

Let mi be the number of messages injected in the
end nodes at stage i − 1. Then, at the beginning of
phase 1 in stage i, mi messages will be transferred
to queues Qvs and scheduled by the nodes. Once a
message was received and acknowledged by the edge
device, it is removed from the queues Qvs. When phase
1 ends, the messages that still remain in queue Qv will
be transferred to queue Fv by the node v. In each round
of phase 2, each node v selects a message from its queue
Fv to broadcast with the transmission power Pv .

From the view of a message Mv that is injected in
node v in stage i−1, it firstly stays in queue Sv until the
stage i starts. Then, it is transferred to queue Qv by node
v. In phase 1 of stage i, Mv has some probability to be
transmitted by v, and removed from the Qv if the edge
device receives Mv . If Mv still remains in the queue
Qv when phase 1 ends, it is transferred to the queue Fv

and scheduled in phase 2 of the following stages until
it is acknowledged by the edge device. The following
Properties for the phase 1 and the phase 2 are given first
as a sufficient condition for proving the stability of our
algorithm in Theorem 1, the technical proof of which are
put into the Appendix for better organization.

Property 1: In phase 1 of an arbitrary stage i > 1:

• there are totally kH
2 messages in Qvs acknowledged

by the edge device at least with the probability of
1− 1

n5 ;
• Pr[E[

∑
v∈V |Qv|] ≥ rkH/2 + 1] ≤ H−4−r for r ∈

{0, 1, · · · }, when the phase 1 of stage i ends. In other
words, the probability that the expected number of
messages remaining in queue Qvs is at least rkH

2 +
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1 is at most H−4−r for any non-negative integer r
when the phase 1 of stage i ends;

Property 2: In phase 2 of an arbitrary stage i > 1:
• in each pair of odd and even rounds, each node v

has its messages in Fv acknowledged at least with
probability k

n (1−
1
n5 );

• ∀v ∈ V , E[|Fv|] ≤ k2H2/4. In other words, when the
phase 2 of stage i ends, for each node v, the number
of messages in queue Fv is no larger than k2H2/4
in expectation.

Lemma 4: For any messageM generated by node v at
round a, and received by the edge node at round b, we
have E(b− a) = O( 3

√
nk).

Proof: Without loss of generality, we assume that the
messageM is injected to node v in stage i−1. In general,
there are two cases for M acknowledged by the edge
device. Case 1:M is acknowledged in phase 1 of stage i.
Case 2: M is acknowledged in phase 2 of stage j, j ≥ i.
Let Z be 1 if case 1 occurs, and be 2 if case 2 occurs.
Obviously, E[b − a|Z = 1] ≤ 2T and Pr[Z = 1] ≤ 1.
By setting r = 0 in result 2 of Property 1, Pr[Z = 2] ≤
H−4. Combining the first-in-first-out rule and Property 2,
E[b− a|Z = 2] ≤ k2H2/4

k
n (1− 1

n5 )
· 2TJ . Thus, we get

E[b− a] = Pr[Z = 1]E[b− a|Z = 1]+

Pr[Z = 2]E[b− a|Z = 2]

≤ 2T +H−4 · k2H2/4
k
n (1−

1
n5 )
· 2T
J

≤ 2T +
nkT

2JH2
= O(

3
√
nk).

(6)

Our Algorithm is Stable. Note that for each node
v in an arbitrary stage i > 1, the injected messages at
most stay in the queue Sv for one stage before they
are transferred into the queue Qv . Messages in Qv are
either acknowledged by the edge device, or transferred
to queues Fv at the end of phase 1. So, the stability of
Fv directly reflects that whether our algorithm is stable
under the injection rate λ. From the Properties 1 and
2, we can see that there are kT/2 messages scheduled in
each T rounds with high probability,4 if there are enough
messages injected in the information system. Also, at the
end of each stage, the expectation number of messages in
queue Fv of each node v is bounded as k2H2/4. Besides,
as proved in the last subsection, the EAP-AoI of our
stable information system is O( 3

√
nk); Thus, the stability

and efficiency of our algorithm are strongly supported.

6 SIMULATION RESULTS

We illustrate the empirical performances of our SAISA
with NOMA in this Section. Specifically, the efficiency
and stabilization of SAISA are investigated by observing
the average peak age, number of messages on the end
side, and comparing with the previous algorithms, when

4. With a probability 1− n−c0 for some positive constant c0 > 1.

NOMA parameter k, number of end devices n, and
injection rate λ vary. The average peak age observed in
simulations directly shows the efficiency of SAISA and
reflects the stabilization. Also, when a message is in-
jected but not arrived at the edge side, we say it is still on
the end side. Thus, the number of messages on the end
devices also verifies the stabilization of our algorithm.
Finally, a comparison between our algorithm and the
existing works are given to show the advantage of our
work on online scheduling and the NOAM technology.

6.1 Settings in Simulation

Initially, there are n end devices randomly and uniformly
deployed in a circle area with radius of 300 m. The edge
device is in the centre of the circle area. The transmission
range of the edge/end devices are also 300 m.5 By setting
Pmax sufficient large and k ∈ {5, 10}, the edge device
in our simulation can at most decode k messages from
a mixed signal in each round by applying the NOMA
technique. We use a random injection mode to depict the
arrivals of the useful information on the end side, in
which λ1 is defined as the sum of the injection rate of
all the end devices, also termed as total injection rate for
short. Note that with any given k in NOMA, the edge
device can at most decode k messages in each round. An
inherent bound for λ1 is k, the details of which will be
discussed later. In simulation, we test the performance of
our algorithm by choosing n ∈ {2.5, 5.0, 7.5, 10.0} × 103,
k ∈ {5, 10}, and λ1 = {0.1, 0.2, 0.3, 0.4, 0.5} × k. A
detailed parameter setting is given in Table 3. Note that
the random and uniform deployment of nodes in our
simulation is a common setting that can be found in
the works [4], [11], [27], [34], and our random injection
mode is inspired by the statistical injection mode in [14],
in which the variety of nodes on message injection is
ignored. For each reported result, our algorithm has
been executed by at least 1.0 × 104 rounds to show the
stability of our algorithm, and are verified by over 20
runs. All experiments are conducted on a Linux machine
with Intel Xeon CPU E5-2670@2.60GHz and 128 GB main
memory, implemented in C++ programming language.

Random Injection Mode. In our information system
with an edge device and n end devices, λ1 has been
defined as the sum of the injection rate of all the end
devices in one round, i.e., larger the value of λ1, more
useful information will arrive at the end side in each
round in expectation, and harder will it be for our
algorithm to keep efficient and stable in terms of AoI
and number of messages on the end side, respectively.
An inherent bound for λ1 is k for any algorithm with
NOMA because the edge side can at most receive k
messages in each round. And for our algorithm, the
upper bound is 0.5k since the edge device requests an
extra round to give an acknowledgement after receiving

5. In reality, a large fraction of end/edge devices in 5G have their
transmission ranges in this magnitude.
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TABLE 3: Parameter settings in simulation

Parameter settings Definitions Parameter settings Definitions
n ∈ {2.5, 5.0, 7.5, 10.0} × 103 Number of the end devices R = 300m Transmission range
k ∈ {5, 10} Parameter in NOMA technology ϵ = 0.2 Parameters in SAISA
λ1 ∈ {0.2, 0.4, 0.6, 0.8, 1.0} × λmax The sum of the injection rates T = ⌊ 3

√
nk⌋ Parameters in SAISA

λmax = k/2 An upper bound of λ1 H = ⌊(1− ϵ2)× T ⌋ Parameters in SAISA
α = 3.0, β = 1.5, N = 1.0 SINR parameters J = T −H Parameters in SAISA

TABLE 4: Stable Value of the Average Peak AoI.

Stable Values n = 2500 n = 5000 n = 7500 n = 10000

k = 5

λ1 = 0.5 122.87 172.74 210.65 243.47
λ1 = 1.0 157.75 222.33 272.36 311.25
λ1 = 1.5 192.11 270.69 332.26 381.20
λ1 = 2.0 227.40 321.51 392.65 452.19
λ1 = 2.5 No longer stable

k = 10

λ1 = 1.0 143.24 201.15 245.49 283.11
λ1 = 2.0 202.54 285.56 349.65 399.84
λ1 = 3.0 247.84 348.26 427.59 493.89
λ1 = 4.0 291.78 413.45 503.33 577.16
λ1 = 5.0 No longer stable

the messages from the end devices. Thus, in simula-
tion, we test the performance of our algorithm with
λ1 ∈ {0.1, 0.2, 0.3, 0.4, 0.5} × k. After the total injection
rate λ1 defined and fixed, an intuitive way to simulate
the arrival of the useful information on each node is
to uniformly assume that each end device has one in-
formation arrived with the probability of λ1/n in each
round. However, this uniform assumption neglects the
fact that the injection rates of the end devices may differ
because of their varieties in reality. To make our injection
mode more realistic, we assume that in each round, each
end device has its injection rate randomly chosen from
the interval [λ1

2n ,
3λ1

2n ]. With such an uniform and random
assumption in our injection mode, we make sure that
the total injection rate λ1 can reflect the total arrivals of
the useful information on end side and the varieties of
the end devices in reality.

Concrete Example in Practice. Our distributed infor-
mation system is applicable to various edge-based and
Internet-of-Things (IoT) scenarios. For instance, consider
an edge-based smart agriculture system. Multiple sensor
nodes, each equipped with cameras and basic computing
and communication units, are deployed in farmlands.
When the pictures of pests are caught by the camera
and detected as significant by the local filter, the pest
information is sent to the edge server, and an unmanned
aerial vehicle is dispatched to address the issue. The local
filter in this context can be a pre-trained, lightweight
AI model capable of running on resource-constrained
sensor nodes. In each farmland, the appearance of pests
may follow a certain distribution. In our simulations,
we assume a uniform distribution for simplicity, where
important information is injected into an end device with
the Random Injection Mode. The uniform distribution
adopted in our simulation is one of the most common
distributions in the field of statistic.

6.2 Evaluation of Simulation

Average Peak Age-of-Information. Firstly, we investi-
gate the average peak AoI of the whole information

system in Figure 3 when our algorithm is executed,
in which the x-axes and y-axes represent the number
of rounds and the average peak AoI observed in our
simulation, respectively. Specifically, in Figure 3, we
show the average peak AoI of all the end devices by
setting k ∈ {5, 10}, n ∈ {2.5, 5.0, 7.5, 10.0} × 103, and
λ1 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}×k. For a clear observation, the
stable values of their average peak AoI are also liseted
in the Table 4. From the curves in Figure 3 and the data
in Table 4, we can get the results that our algorithm
keeps stable and is efficient when λ1 ≤ 0.4k, and the
maximum total injection rate which can be handled by
our algorithm is within [0.4k, 0.5k]. The detailed analyses
for the curves in Figure 3 are given in the following:

• for each of the curves in Figure 3 with λ1 ≤ 0.4k, the
average peak AoI firstly increases and then keeps
stable at no more than 700 rounds. This is because
our SAISA in the simulation has a short initial-
ization period in which the message injection just
starts. Later, when messages are gradually injected,
the average peak AoI keeps stable at a relatively low
level, with respect to the massive end devices;

• by comparing all the curves with the same k, n
and various λ1 ≤ 0.4k in the Figure 3, we can see
that the average peak AoI slightly increases when
λ1 gets larger. In other words, when there are more
messages injected in each round, it takes longer time
for SAISA to schedule those messages;

• by comparing all the curves with the same k, λ1 ≤
0.4 and various n in the Figure 3, we can see that
the average peak AoI keeps stable at a larger value
when n gets larger. This result verifies our theoreti-
cal time complexity O( 3

√
nk) in Lemma 4. Note that

even in the worst case with n = 10000, λ1 = 4.0
and k = 10, the average peak AoI keeps stable at no
more than 700 rounds, which is a competitive result
in terms of the total number of nodes;

• from the curves in Figure 3 with λ1 = 0.5k, we
observe that the number of messages injected in
each round in expectation is larger than the number
of messages that can be scheduled by our algorithm.
Thus, more and more messaged are injected but
stay on the end side, wait for scheduling. And, the
average peak AoI keeps increasing when λ1 = 0.5k.
From the observations that our algorithm is stable
and efficient when λ1 ≤ 0.4k, but the average AoI
keeps increasing when λ1 = 0.5k, we get a result
that the maximum total injection rate that can be
handled by our algorithm is within [0.4k, 0.5k].

• by comparing the curves with the same n, λ1 ≤ 0.4
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and various k in the Figure 3 and the data in Table 4,
we can see that when k doubles from 5 to 10, the
maximum total injection rate that can be handled by
our algorithm increases approximately by 2 times.
With the same n and λ1, the average peak AoI with
k = 10 is smaller than that with k = 5. In other
words, more simultaneous transmissions is helpful
for our algorithm to tolerate a higher injection rate
and reduce the average peak AoI.

Average and Maximum Number of Messages on the
End Side. Figure 4 depicts the average and maximum
number of messages on each of the end devices, which
have been injected but still not arrived at the edge side.
With a detailed analysis and comparison on the curves
in Figures 4, we can get the following results.

• when λ1 ≤ 0.4k, the number of messages on the
end devices keeps stable at a small value. Specif-
ically, when n ∈ {2.5, 5.0, 7.5, 10.0} × 103, λ1 ∈
{0.1, 0.2, 0.3, 0.4}×k and k = 5 in Figures 4, the aver-
age/maximum number of messages on the end side
keeps stable at a larger value when 1/n and λ1 gets
larger. In the worst case when n = 2500, λ1 = 2.0,
k = 5, we have the average and maximum number
of messages no larger than 0.1 and 6, respectively.

• when λ1 = 0.5k, the average and maximum number
of messages on the end side always increase, and
our algorithm no longer keeps stable.

Comparison with the Previous Works. As is mentioned
in the motivation of our research, scheduling the useful
information in an online mode is more efficient than pe-
riodically scheduling all of the information in an offline
mode, regardless of the importance of the information.
And combining with NOMA technology dramatically
improves the performance of the scheduling algorithm
on efficiency and stabilization. To verify these stand-
points, in this part, we compare our algorithm with the
following ones in terms of efficiency and stabilization on
information scheduling:

• OPTTDMA: an optimal and centralized TDMA
scheme with NOMA in an offline mode, in which
the messages from n end devices are periodically
scheduled to the edge device. Specifically, in each
round, the messages from the k end nodes with the
largest ages are scheduled to the edge side, which
is a centralized greedy scheme. Thus, in each of the
first i round, there are always k nodes having their
peak AoI obtained at the value of i when i ≤ ⌊n/k⌋.
In the remaining rounds of the interval I , there are
always k nodes having their peak AoI obtained at
the value of ⌊n/k⌋ + 1. Thus, we get the average
peak AoI of this TDMA scheme∑⌊n/k⌋

i=1 ki+
∑|I|

i=⌊n/k⌋+1 k(⌊n/k⌋+ 1)

k|I|
, (7)

which gets close to n/k when I is sufficient large.
• SLB: a stable local broadcast algorithm without

NOMA in [14], in which the messages are randomly

injected on each of the end node, but at most one
message can be decoded by the edge node from a
mixed signal in each round. When an end node has
its fresh message received by the edge node, its AoI
reaches to a peak in current round and drops in the
next round.

• DAoI : a distributed AoI minimization algorithm
without NOMA in [15], in which the sensor nodes
with data packets join in or leave the networks.
Without NOMA technique, the edge node can at
most receive one message in each round.

In Figure 5 (a)-(d), we compare the performance of our
algorithm with OPTTDMA, with n ∈ {2.5, 5.0, 7.5, 10.0}×
103, λ1 ∈ {0.5, 1.0, 1.5, 2.0} and k = 5. Note that all of the
end devices participate in the information scheduling in
OPTTDMA. Thus, its average peak AoI has no relation-
ship with the online injection of the useful information,
but directly determined by n and k, as is formulated
in Equation 7. As for our SAISA in Figure 5 (a)-(d), we
can see that its average AoI always keeps stable when
algorithm is executed and slightly gets larger when λ1

or n increases. By comparing the performance of our
algorithm with that of the OPTTDMA in Figure 5 (a)-
(d), we can get the results that the average peak AoI
of our algorithm is at least 2 times smaller than that of
the OPTTDMA and the gap in the comparison becomes
larger when the number of nodes increases. In other
words, our algorithm is more efficient, especially in a
large scale network with massive end devices.

In Figure 5 (e)-(h), we simulate the stable local broad-
cast (SLB) algorithm without NOMA in [14], the dis-
tributed AoI (DAoI) optimization algorithm without
NOMA in [15] by setting n ∈ {2.5, 5.0, 7.5, 10.0} × 103,
λ1 ∈ {0.1, 0.2}, and our SAISA with k = 5. Specifically, in
Figure 5 (e)-(h), the average peak AoI of our SAISA with
λ1 = 0.1 and 0.2 keeps stable at the low levels. Whereas,
the average peak AoI of SLB algorithm is about 4 times
larger than of our SAISA when λ1 = 0.1. Additionally,
its average AoI no longer keeps stable when λ1 = 0.2. As
for the DAoI , its average peak AoI is about 2 ∼ 3 times
larger than that of our SAISA when n increases from
2500 to 10000. From the above comparison, we get the
result that combining with NOMA in our SAISA does
help on reducing the average peak AoI.

Conclusion on Simulated Results. In simulation sec-
tion, we test the efficiency and stabilization of our SAISA
by investigating the average peak Age-of-Information,
the number of messages on the end side, and the com-
parisons with previous works under various settings of
parameters. From the above investigations, we know
that 1) our SAISA is stable when the total injection
rate is no larger than 0.4k. Noting that k is an inherent
upper bound for the total injection rate, the maximum
injection rate which can be handled by our algorithm is
asymptotically optimal; 2) when our algorithm is stable,
the average peak AoI and the number of messages on
the end side keeps stable at the low levels, which shows
the efficiency of our algorithm; 3) compared with an
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(a) n = 2500, k = 5
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(b) n = 5000, k = 5
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(c) n = 7500, k = 5
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(d) n = 10000, k = 5
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(e) n = 2500, k = 10
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(f) n = 5000, k = 10
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(g) n = 7500, k = 10
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(h) n = 10000, k = 10

Fig. 3: Average Peak Age-of-Information when k, n and λ1 vary.
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(a) Ave. number, n = 2500
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(b) Ave. number, n = 5000
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(c) Ave. number, n = 7500
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(d) Ave. number, n = 10000
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(e) Max. number, n = 2500
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(f) Max. number, n = 5000
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(g) Max. number, n = 7500
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Fig. 4: Average and maximum number of messages on the end side when k = 5, n and λ1 vary.
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(a) Comparison I, n = 2500
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(b) Comparison I, n = 5000
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(c) Comparison I, n = 7500
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(d) Comparison I, n = 10000
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(e) Comparison II, n = 2500
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(f) Comparison II, n = 5000
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(g) Comparison II, n = 7500
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Fig. 5: Comparisons I and II on Average Peak Age-of-Information when k = 5, n and λ1 vary.
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optimal TDMA scheme in offline mode and a stable
local broadcast algorithm in [14] without NOMA, we
verify our standpoint that the online scheduling mode
with NOMA does help on improving the efficiency and
strengthening the stabilization on AoI scheduling in an
end-to-edge information system.

7 CONCLUSION

We initiated the study on stable AoI scheduling problem
with online message injections under the NOMA-SINR
model. To handle the unknown injection rate and the
unpredictable injections when messages are constantly
injected at each end node, a distributed stable algorithm
with NOMA is presented. Even under the asymptoti-
cally maximum injection rate of O(k/n) that any stable
AoI scheduling algorithm may handle, our proposed
algorithm keeps stable with the expected average peak
Age-of-Information bounded by O( 3

√
nk) rounds. Com-

paring with two existing schemes, the expected average
peak Age-of-Information in our algorithm is O(n

2/3

k4/3 ) and
O(n

2/3

k1/3 ) times smaller. Our results shed a light on stable
protocol studies for realistic AoI scheduling problems
in edge networks. Extending our research to the mobile
edge networks will be our work in the future.
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