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Abstract—The byzantine model is widely used to depict a variety of node faults in networks. Previous studies on byzantine-resilient
protocols in wireless networks assume reliable communications and do not consider the jamming behavior of byzantine nodes. Such
jamming, however, is a very critical and realistic behavior to be considered in modern wireless networks. In this paper, for the first time,
we integrate the jamming behavior of byzantine nodes into the network setting. We show that, in this much more comprehensive and
harsh model, efficient distributed communication protocols can be still devised with elaborate protocol design. In particular, we
developed an algorithm that can accomplish the basic multiple-message dissemination task close to the optimal solution in terms of
running time. Empirical results validate the byzantine-resilience and efficiency of our algorithm.
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1 INTRODUCTION

W ITH the rapidly increasing deployment of sensor net-
works and the Internet-of-Things, many distributed

protocols are being designed to implement core wireless
networking functionalities. At the same time, various kinds
of faults have to be dealt with in wireless networks, such as
transmission failures, tampering on transmitted messages,
and malicious attacks from an adversary. Hence, the design
of fault-tolerant, resilient protocols has been attracting more
attention due to very high demands on reliable communica-
tion.

Since the quality of a fault model directly determines the
performance of the designed protocols in reality, an accurate
and comprehensive model to depict as many types of faults
as possible is required. A common approach is assuming
Byzantine models. Specifically, it is assumed that there are a
group of byzantine nodes in the network, which can deviate
arbitrarily from the protocol they are specified to execute to
cause a wide variety of faults in the network, e.g., [5], [13],
[15], [16].
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There have been many previous works (e.g., [1], [2], [5])
focusing on byzantine behavior tolerance in wireless net-
works. However, to the best of our knowledge, the previous
wireless byzantine models assume reliable communications,
and deal with faults above the MAC layer. However, due
to the feature of wireless network that communications are
commonly using a shared wireless channel, the byzantine
nodes not only can generate faults on upper layers, but
also can disrupt the transmissions between normal nodes
by jamming the channel, e.g., through injecting noise on
the channel [12], [18], [19], [24]. Obviously, ignoring the
jamming behavior of byzantine nodes makes the byzantine
models designed before fail to depict the faults in real
wireless networks comprehensively, and consequently the
protocols devised under those models may perform poorly
in reality.

In this work, we, for the first time, integrate the jamming
behavior into the wireless byzantine model. In particular,
we assume that the nodes not only can deviate arbitrarily
from the protocol, e.g., generate fake messages or stop help
disseminate messages as a intermediate node, but also can
jam the channel unpredictably. Note that most of previous
jamming models have the strong assumption that the jam-
mer has a very limited energy budget, so that it can only
jam the channel in a small fraction of slots during a fixed
interval [18]. However, this assumption may not be realistic
since the jammer may have a very strong, reliable and sus-
tained power supply. Thus, it can jam the channel arbitrarily
and only leave some unpredictable slots unjammed. Fur-
thermore, we adopt the hardest reactive setting, where the
byzantine nodes know the protocol, all history information,
and current states of nodes in the network. They can use
these information to perform the so called “global jamming”
attack [19], i.e., jamming the network at any round at will,
by injecting strong enough noise on the channel to disrupt
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all transmissions in the network. We believe that protocols
devised under such a strong byzantine model can work well
in reality.

We study a basic communication problem, multiple-
message dissemination, which is to deliver the messages
stored at k source nodes to all nodes in the network, in
spite of the existence of byzantine nodes. The hard non-
spontaneous setting is considered, where the nodes will
not participate the dissemination process until receiving
a message. In this setting, the nodes cannot construct a
structure or implement a coordination scheme in prior, such
as a backbone network, to facilitate the message dissem-
ination, and hence it is harder to handle comparing the
spontaneous case where nodes start the algorithm execution
simultaneously.

We present a first distributed multiple-message dissem-
ination algorithm, which is resilient to the strong byzantine
setting as defined in this work. The algorithm is efficient,
i.e., it can disseminate all messages within T (O((D +
F )(log n+ F ) + kF )) rounds with high probability,1 where
T (A) denotes the number of rounds in the interval from
the beginning of the algorithm execution that contains A
clean rounds,2 D, F , n, k are the diameter of the network,
the upper bound on the number of byzantine nodes, the
number of nodes, and the number of messages in network,
respectively. In our definition, each round contains constant
slots, each of which is the minimum time unit needed for
one message transmission. The algorithm is close to the
optimal solution, considering the lower bound for dissemi-
nation time of T (Ω(D + log n+ k)).

Roadmap. The remainder of the paper is organized
as follows. Sec. 2 presents the related work. Sec. 3 intro-
duces our byzantine model and the problem definition.
The multiple-message dissemination algorithm is given in
Sec. 4, followed by the analysis in Sec. 5. Sec. 6 shows the
simulation results, and the paper is concluded in Sec 7.

2 RELATED WORK

Byzantine-resilient communications have been extensively
studied in wireless networks, e.g, the cryptography (e.g.,
digital signatures) based protocols, which ensure authen-
tication and integrity of transmitted messages, and the
cryptography-free protocols [1], [3], [5], [10], [13], [15], [16],
[17]. As for message dissemination, byzantine-resilient pro-
tocols for disseminating a single message have been studied
in [5], [13], [15], [16]. However, all these results relied on
reliable transmissions on wireless channels and did not
consider the byzantine behavior in terms of transmission
disruption via jamming. Some state of the art jamming
works can be found in [6], [7], [12], [18], [19], [24]. How-
ever, none of them is considered under a byzantine-resilient
framework. Hence, the performances of the above protocols
in reality were not guaranteed.

As a fundamental building block for communications in
upper layers, the multiple-message dissemination problem
has already been extensively studied by the distributed

1. A high probability means with a probability 1 − n−c for some
constant c > 0.

2. A round is clean when no byzantine behavior occurs in the
network during the round.

computing community since the 1990s. Most works con-
sidered the radio network model which simplifies the in-
terference into a binary and local phenomenon. Under
this setting, the best known randomized distributed algo-
rithms were presented in [4], [11], which can accomplish
multiple-message dissemination in min{O(k log n log ∆ +
(D+n/ log n) log n log ∆), O((k∆ log n+D) log ∆)} rounds
with high probability, where D and k are the diameter of the
network and the number of messages, respectively. Recently,
more attentions were turned to the realistic SINR model. In
particular, randomized algorithms for the spontaneous case
with running time of O(D + k + log2 n) were presented in
[21], [22], while for the non-spontaneous case, an algorithm
with time complexity ofO((D+k) log n+logN2) was given
in [23]. All these results were derived without considering
byzantine faults.

3 MODELS AND PROBLEM DEFINITIONS

A multi-hop wireless network with n agents arbitrarily
placed possibly in a worst-case fashion is considered in
our work. In our model, the network is regarded as a two
dimensional Euclidean space, and agents are regarded as the
nodes in the space. Specifically, we normalize the minimum
distance between any pair of nodes to 1, and let d(u, v) be
the Euclidean distance between the pair of nodes u and
v. All nodes can get access to the channel in network in
each time slot, sending a message or receiving the signal in
channel.

Communication Model. Initially, there is no prior or
apparent structure in the network, which means that nodes
know nothing about other nodes and can only try to com-
municate with neighbors by transmitting messages and
listening. In our work, we divide the time in network
into synchronized rounds, each of which contains constant
synchronized slots. A slot is the minimum time unit needed
for one message transmission depending on the message
size, e.g., 50µs in IEEE 802.11.

A realistic and widely-adopted SINR (Signal-to-
Interference-plus-Noise Ratio) model is used to depict the
message reception between nodes in each slot. In the SINR
model, it is assumed that the strength of a signal gets weaker
with the distance between the transmitter and the receiver
with a environment-determined path-loss exponent, and the
strength of signals from different transmitting nodes are cu-
mulative at each listening node. Specifically, a message sent
by a node u can be correctly received by a node v if and only
if the following defined SINR equation SINR(u, v) ≥ β
holds.

SINR(u, v) =
Pu ∗ d(u, v)−α

N +
∑
w∈W Pw ∗ d(w, v)−α

(1)

where Pu is the transmission power of node u, α ∈ (2, 6]
is the path-loss exponent; N is the ambient noise in envi-
ronment, W is the set of nodes simultaneously transmitting
with u,

∑
w∈W Pw ∗ d(w, v)−α denotes the interference ex-

perienced by v when u transmits, and β is the hardware-
defined threshold, and is larger than 1 in usual.

An uniform power setting assumes that nodes transmit
with a same power, which is ‘friendly’ for algorithm de-
sign and analysis. However, it is hard for non-spontaneous



ZOU ET AL.: DISTRIBUTED BYZANTINE-RESILIENT MULTIPLE-MESSAGE DISSEMINATION IN WIRELESS NETWORKS 3

wake-up nodes to get an agreement on the transmission
power in network without any prior structure. Thus, we
assume that the transmission power between nodes can be
various, to get close to the reality. Let [Pmin, Pmax] be the
interval where the transmission power of all nodes mathe-
matically locates in. The only assumption is that Pmax/Pmin
should be a constant. We say nodes u, v are neighbors if they
can receive messages from each other according to the SINR
equation.

By normalizing the minimum distance between two
nodes to 1, we assume that the nodes in network are con-
nected with respect to distance R.3 Then, the SINR model
gives an inherently upper bound RB = (PminNβ )1/α for R.
Obviously, if R > RB , it is impossible for the transmission
between nodes u, v that can succeed, with d(u, v) = R
and Pu = Pv = Pmin. However, the upper bound RB is
also very ’strict’. By setting R = RB , for nodes u, v with
previous assumption, it can be seen that the transmission
between u, v only succeed when there are no other nodes
simultaneously transmitting, which is nearly impossible in
reality. Here we take a standard assumption which sets
distance R to be slightly smaller than the upper bound
RB . Specifically, let R = RB/(1 + ε), where ε is a positive
constant.

Problem definition. Here we consider a multiple-
message dissemination problem under the byzantine model.
Given a network containing n nodes, which includes k
source nodes, f byzantine nodes, and (n − k − f) normal
nodes. Initially, each source node s holds a source message
M(s). The normal nodes wake up in a non-spontaneous
mode, and know nothing about the source nodes and source
messages after waking up. In each time slot, all source
nodes and normal nodes can only exchange messages with
neighbours by transmitting and listening. However, byzan-
tine nodes can deviate arbitrarily from the protocol they
are specified to execute and work in collusion, to cause
any faults in message transmissions. In our problem, it is
required to give a distributed protocol for source nodes and
normal nodes, by executing which all source messages can
be disseminated to each node (not including the byzantine
nodes) in the network.

Byzantine Nodes. In our model, the byzantine nodes
are considered with an adversarial and reactive assumption,
i.e., each byzantine node knows the protocol, all history
information and current states of nodes in network, and
can deviate arbitrarily from the protocol to disrupt the
transmissions.

From the view of MAC layer, byzantine nodes can not
only arbitrarily transmit, but also jam the network. For any
node v, if the interference experienced by v is too large to
receive a transmission, node v is regarded as jammed. It is
not assumed any constraint on the energy budget for the
byzantine nodes. Thus, byzantine nodes can jam all nodes
in network at any round at will, by adopting a sufficient
large transmission power to make all nodes be under large
enough interference, such that the transmissions fails, as
shown in the SINR formula. This jamming mode is known
as a “roundly-based global jamming” [18], [19]. In this

3. In usual, the ratio of the transmission range and the minimum dis-
tance between two nodes cannot be exponentially large, which means
that R can be set to be bounded by poly(n), and logR ∈ O(logn).

global jamming setting, some clean rounds are necessary
for message transmissions.

Denote a path from node s to w as P(s → w) = {v0 →
v1 · · · → vm−1 → vm}, in which v0 = s, vm = w, and
d(vi, vi+1) ≤ R, i ∈ {0, 1, ..., k − 1}. P(s→ w) is a safe path
if none of the nodes on the path is a byzantine node.

Necessary assumptions in our work are listed here.

• For any pair of source node s and normal node w,
there is at least a safe path between them;

• Each node has a unique ID, and byzantine nodes
cannot forge the IDs of other nodes;

• The source nodes are not too close with each other;

Obviously, the first assumption is inherently indispens-
able. The second assumption is also necessary as proved
in [8]. As for the third assumption, if all source nodes are
very close with each other, the message exchange between
them will be easy. Then, the multiple messages in k different
nodes can be regarded as k messages in one node, and
the multiple-message dissemination problem degenerates as
finding a single-message dissemination protocol and apply
it for k times. To avoid this trivial case, we assume that for
any pair of source nodes u and v, d(u, v) ≥ R.

Knowledge and Capability of Nodes. Here, non-
spontaneous wakeup mode is adopted for nodes, which
is realistic and energy saving. Specifically, only the source
nodes and byzantine nodes are active initially. The normal
nodes wake up when receiving any message from neigh-
bours. Each node has a unique identifier and is equipped
with a full-duplex transceiver, i.e, in each time slot, a node
can transmit, listen, or do both. The knowledge for each
node is the same, including a logarithmic estimate on n, the
SINR parameters α, β, Pmax/Pmin, and an upper bound F
on the number of byzantine nodes. The nodes also know
its location information when waking up, which is easy to
access by the widely used GPS service. The physical carrier
sensing is not required. Also, the nodes know nothing about
their neighbours, the number of source nodes, and the
accurate number of byzantine nodes.

4 ALGORITHM DESIGN AND DESCRIPTION

A distributed and randomized byzantine-resilient multiple-
message dissemination algorithm in wireless network is
given in this section. In general, our algorithm finishes the
multiple-message dissemination task by two steps. The first
step is to elect leaders for each local area in network. The
elected leaders must be connected with each other and
the transmission ranges of all leaders should cover all the
nodes in network, which are called as the connectivity and
coverage properties of leaders; The second step is message
dissemination by the elected leaders, which guarantees that
each source message is disseminated to all source nodes and
normal nodes in network after a sufficient long time under
the negative impact of byzantine nodes. The first and second
steps are also called as leader election period and message
dissemination period in sequel.

4.1 The challenges in algorithm design
Even through our algorithm only contains two steps and the
high-level idea sounds brief, the algorithm design process



4 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, MONTH YEAR

for leader election step and message dissemination step is
not easy, let along the challenges taken by arbitrary be-
haviors from byzantine nodes and wireless network, which
makes our work non-trivial.

A kind of the challenges deserving to note are caused
by the behaviors from byzantine nodes, including: jam-
ming the network, malicious competition, and adversarial
transmission. Since byzantine nodes can easily jam the net-
work, our protocol should be inherently jamming-resilient
when it is designed. Besides, the arbitrary jamming in
non-spontaneous wake up mode makes the global clock
in network no longer help to coordinate the operations of
nodes. In particular, since byzantine nodes can arbitrary jam
the network, nodes can’t acquire information by itself on
how many rounds were jammed in the past and how many
steps the algorithm has been executed. Thus, a coordinate
scheme is needed to replace the global clock. Second, since
there are multiple-times leader election processes in each
local network in our algorithm, the byzantine nodes can
repeat to compete to the leaders by malicious competition,
which will break the leader election processes. A scheme
should be added in algorithm to detect and prevent the
malicious competition from byzantine nodes. Third, byzan-
tine nodes can mislead other nodes in network by adver-
sarial transmissions, i.e. in any round, a byzantine node
can drop the received source message and release a fake
source transmission. Since it is also impossible to detect and
prevent the adversarial transmission from byzantine nodes,
the designed message dissemination step should also be
fault-tolerant w.r.t. this point.

Another kind of challenges are the inherently problems
in leader election and message dissemination step. First,
the leaders should be carefully elected. Too many leaders
elected will cause a flooding of transmission in the messages
dissemination period, i.e., too many leaders transmitting
the source messages causes too much interference, thus
no transmission successes. Also, if the elected leaders are
not enough to guarantee the connectivity and coverage
properties of leaders, the message dissemination to all nodes
will fail; Second, for each leader in message dissemination
period, it has several messages to transmit. Thus the leaders
should carefully select a transmission scheme to make sure
the correctness and efficiency of message dissemination.

The final kind of challenges are the global and accumula-
tive interference in MAC layer, which is seldom considered
by the previous byzantine-resilient works.

The challenges mentioned above are the technical gaps
we need to handle in this work. To be honest, the solu-
tions to single challenge may can be found in previous
works. For example, some previous works [9], [24] provide
a leader election scheme with an asymptotically optimal
performance without/with the jamming fault considered.
However, our work is the first one considering the byzantine
model in MAC layer, and integrating all the challenges
together in one work. Considering multiple challenges in
one solution sharply increases the level of difficulties in
our algorithm design. let alone some traditional solutions
for single challenge conflict with each other. The detail
examples are not listed here because of page limitation. So it
may not be surprising of designing solutions for each single
challenge, but designing a protocol solving all the challenges

Fig. 1: The process of our algorithm. Listen and Update,
Leader Election, and Message Dissemination are written as
LU, LE and MD for short.
together makes our work non-trival.

Solutions for challenges. Here, we briefly introduce
how the challenges mentioned above are solved. The chal-
lenges taken by byzantine nodes include jamming, un-
coordinate of algorithm, the malicious competition, and
adversarial transmission. By each node accumulating the
message received from neighbours, nodes can coordinate lo-
cally with its neighbours. By adopting the leader election for
F times in each local area , our protocol survives from the
malicious competition and adversarial transmission from
byzantine nodes. Besides, the F times leader election in
each local area guarantees the connectivity and coverage
properties of leaders for messages dissemination, and also
avoids the flooding of transmission. Thus, the inherently
problems in leader election are also solved. Also the cor-
rectness and efficiency of the message dissemination are
achieved by letting each leader select the fewest transmitted
source message to transmit in each round. For the global
accumulative interference in wireless network, a traditional
griding and coloring scheme similar with [24] is adopted.
Besides, the randomized transmission is helpful to avoid
fraction of interference in transmission.

4.2 Detail description for algorithm

During the process of our algorithm, all nodes keep listen-
ing to collect the source messages. Meanwhile, all source
nodes and part of the normal nodes are elected as the
leaders in election period, to transmit the source messages
in message dissemination period, as illustrated in Figure 1.
Algorithm 1, 2, and 3 give the pseudo-code for source
nodes and normal nodes respectively. Obviously, the source
nodes are always the leader to disseminate source messages.
For normal nodes, we use three states to schedule their
executions.

• State I. All normal nodes are initially inactive in
state I. A node in state I only do the listening in
each round. When receiving a source message from
neighbours, it becomes active and changes to state A;

• State A. A node in state A means that it has already
waken up and been active. In the first round when
a node is in state A, it immediately executes the F
times leader election. If elected as a leader, it changes
to state B. Otherwise, the node stays in state A, and
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Algorithm 1: Functions called by a node v in color j :
Function: Listen and update ()

1 Listen in current round;
2 if receive anyMu = {In(s), In(u)} from node u and
d(u, gv) ≤ (1 + 2

3ε)R then
3 tv + +;
4 if In(s) in messageMu is new then
5 Add element {In(s), 0} in set Sv ;

if statev = B and v is in same cell with u then
6 Replace the element {In(s),m} in Sv with

{In(s),m+ 1};
7 if statev = I then
8 statev = A;
9 if v is in same cell with source node s then

10 tv = F ∗ k1 ∗ log n+ 1;

Function: Message dissemination ()

11 Select element {In(s),m} with the smallest m from
Sv ;

12 TransmitMv = {In(s), In(v)} in slot j;
13 if tv increased in current round then
14 replace the selected element in set Sv with

{In(s),m+ 1};

Algorithm 2: MD for source nodes
Initially for Source node s:

ID: ns; Location: (xs, ys); Source message:M(s);
states = B; In(s) = (ns, xs, ys, tu,M(s)); tv = 0;
Source message set: Ss = {In(s), 0};
In each round, for each source node s in color j:

1 Execute Message dissemination ();
2 Execute Listen and update ();

keeps listening to collect the source messages in the
following rounds;

• State B. A node in state B means that it has been
elected as a leader during the F times leader election.
In the first round when a node is in state B, it imme-
diately starts to disseminate the source messages in
the following rounds.

As is mentioned above, the global coordination is ruined
by the jamming behaviors from the byzantine nodes, we try
to design a local coordinated protocol. Specifically, we grid
and coloring the network by many cells, and make sure that
nodes in each cell have a coordinated execution.

Preliminary on cells and nodes. Initially, we grid the
network by square cells with size of εR

3
√

2
× εR

3
√

2
. Point (0, 0)

is assumed to be the grid origin. Each cell includes its left
side without the top endpoint, and its bottom side without
the right endpoint, and does not include its right and top
sides. For a cell with its bottom left corner locates at ( εR

3
√

2
∗

i, εR
3
√

2
∗ j), it has the coordinate of (i, j), and is denoted as

g(i, j), for (i, j) ∈ Z2. For a node v with coordinate (x, y) on
the plane, it is in cell g(i, j) when i∗ εR

3
√

2
≤ x < (i+1)∗ εR

3
√

2

and j ∗ εR
3
√

2
≤ y < (j + 1) ∗ εR

3
√

2
. After the griding process,

Algorithm 3: MD for normal nodes
Initially for normal node v:

Node ID: nv ; Location: (xv, yv); Set: Sv = Lv = null;
statev = I; In(v) = (nv, xv, yv, tv, null);
tv = kv = 0;

For normal nodes v in state I:
1 Execute Listen and update () in each round;

For normal nodes v in color j, and state A:
2 flagv = 1;

for i from 1 to F do
3 while tv ≤ i ∗ k1 ∗ log n do
4 Execute Listen and update ();

if flagv = 1 then
5 if tv = i ∗ k1 ∗ log n then
6 statev = B; kv = i; Lv = Lv ∪ {v};
7 TransmitM′′v = In(v) in slot c ∗ c+ j;

else
8 Transmit messageM′v = In(v) with

constant probability p in slot c ∗ c+ j;
9 if only listen, receive messageM′u in slot

c ∗ c+ j and u is not in set Lv then
10 flagv = 0;

11 else if receiveM′′u in slot c ∗ c+ j then
flagv = 1; tv = tu; Lv = Lv ∪ {u};

12 while tv > F ∗ k1 ∗ log n do
Execute Listen and update () in each round;

For normal nodes v in color j, and state B:
13 while tv ≥ 0 do

Execute Listen and update () in each round;
14 if tv mod |Lv| = kv then
15 Execute Message dissemination () in current

round;

the cells and nodes are colored as follows: the cell g(i, j) and
nodes in cell g(i, j) get the color c∗ (i mod c)+(j mod c),
c is a constant determined by constants α, ε and Pmax/Pmin.

Algorithm execution in each cell. Let’s take the nodes
in a non-empty cell g as an example to further describe our
algorithm. Generally, each node in cell g executes function
listen and update in each round to collect the source messages.
If cell g contains any source node s in cell g, s becomes the
only leader in g. Otherwise, normal nodes in g execute leader
election for F times to try to elect F leaders. When a node
becomes the leader, it will do the message dissemination in
the following rounds, either it is a source node, or a normal
node. The detail descriptions for listen and update, leader
election, and message dissemination are given in the following.

Listen and update. All nodes in network keep listening
in each round. For a node u and a cell gv , d(u, gv) denotes
the distance from node u to cell gv . d(u, gv) = 0 if u is in
cell gv . Otherwise, d(u, gv) is the maximum distance from
u to any point in cell gv . The node v in cell gv only accepts
the source message from u when d(u, gv) ≤ (1 + 2

3ε) to
keep the coordination in cell gv . When receiving a source
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message, nodes in state I wake up; the nodes in state A
and B add the source message into their source message
set if firstly receiving such a source message. It deserves to
note that each node v counts the number of rounds when it
successfully receives any source message from neighbours
by parameter tv , to estimate the clean rounds it experienced
to coordinate with its neighbours, i.e. tv can be regarded as a
lower bound on the number of clean rounds v experienced.

leader election (LE). The normal nodes in state A take
the leader election for F times, each of which consists of
T (k1 ∗ log n) rounds. During a leader election process, each
node v in A transmits messageM′v = {In(v)}with constant
probability p in slot c ∗ c + j, j is the color of the node v.
If v receives message M′u = {In(v)} from node u in slot
c∗c+ j, and u has never been a leader, v gives up the leader
competition in current leader election. Each node v has a set
Lv to record the elected leaders in its own cell. The message
M′ from an leader can not let v give up the current leader
election to prevent the malicious competition from byzan-
tine nodes. As we will proved later, within T (k1 ∗ log n)
rounds, there is only one normal node v still compete for
leader in cell g w.h.p, and it becomes the leader. It deserves
to note that nodes can’t directly detect how many clean
rounds it experienced. Fortunately, a node v can estimate
the number of clean rounds it experienced by parameter tv ,
as is mentioned above. Thus, when tv = i ∗ k1 ∗ log n, the
node v who still competes for leader becomes the i-th leader
in the cell, and give an announcementM′′v . When receiving
M′′v , the other nodes u in state A and from a same cell get
a new coordination by setting tu = tv , and start to compete
for the next leader until the end of F -th leader election. The
F times leader election requires T (F ∗ k1 ∗ log n) rounds
in total. When F times leader election completes in cell g,
min{F, |g|} leaders are elected as leaders w.h.p., |g| is the
number of nodes in cell g.

Message dissemination (MD). When a node is elected as
a leader, it starts to disseminate the messages in its source
message set. The elected leaders in a cell transmit in each
clean round in turn. Specifically, let’s take a leader v in
cell gv as an example. v has the leader set Lv recording all
the elected leaders in cell gv . The leader v has a parameter
kv , which means that v is the kv-th elected leader in gv .
Thus, v transmits a source message in each (i ∗ |Lv|+ kv)-th
clean round, i = 0, 1, 2, ... Each time when v is to transmit
a source message, it selects the source message, which is
fewest transmitted by leaders in gv , from its source message
set Sv to transmit. In set Sv , each element has the format
of {In(s),m}. Parameter m is used to record the number
of times a source message M(s) transmitted by leaders in
cell gv in clean rounds. Each time, v selects the element
{In(s),m} with the smallest m to disseminate. With the
help of message disseminations by leaders, all nodes in
network can receive all the source messages finally even
through under the negative inpacts of byzantine nodes.

By the above description, we can give a conclusion to
our algorithm, which will be proved later in analysis.

Theorem 1. Within T (O((D+F )(log n+F )+kF )) rounds,
each node receives all the k source messages in network w.h.p.

5 ALGORITHM ANALYSIS

We design and describe our algorithm by leader election
period and message dissemination period. The analysis also
corresponds to the two periods in the following:

Theorem 2. Within T (D∗k1 ∗ log n+2F ∗k1 ∗ log n) rounds,
each non-empty cell g finishes the F times leader election w.h.p.
If g contains a source node, the source node will become the only
leader in g; Otherwise, min{F, |g|} leaders will be elected in cell
g.

Assume that at round T1, all nodes in network finishes
the leader election period.

Theorem 3. Within T ((D + 2k + 2F − 4) ∗ F ) rounds after
round T1, each non-byzantine node receives all the k source
messages w.h.p.

When combining the theorems for LE period and MD
period, Theorem 1 can be directly proved. In the next, we
prove the theorems for two periods one by one.

Proof for leader election period. Obviously, Theorem 2
holds when cell g contains a source node. So, we next
consider the case that g only contains normal and byzantine
nodes. Two basic lemmas are presented first to make the
proof brief for reading. The proofs of which are given in the
next subsection.

Lemma 1. For a cell g with nodes in state A, when all nodes in
state A execute the leader election for T (k1 ∗ log n) rounds, a
node in state A is elected as the leader w.h.p.

Lemma 2. When a leader v transmits a source message in a clean
round, all nodes within distance (1+ 2

3ε)R from v can receive the
source message.

We say a cell is active if it contains any nodes in state A
or B. Let tg be the first round when cell g becomes active.

Lemma 3. T (F ∗ k1 ∗ log n) rounds after tg , cell g has
min{F, |g|} leaders elected w.h.p.

Proof. Obviously, all nodes in cell g become active at round
tg . Because in our algorithm, each node w only receives the
message from node uwhen d(u, gw) ≤ (1+ 2

3ε)R. So when a
node w in cell g receives message from u, all the other nodes
in g also receive the message from u according to Lemma 2.
After tg , all nodes in g start to do the F times leader election,
each of which requires for T (k1 ∗ log n) rounds according
to Lemma 1. Hence, Lemma 3 is proved.

With the lemmas above, we know that nodes in cell g
finish the leader election period within tg+T (F ∗k1∗ log n)
rounds w.h.p. However, tg may differ for different cell g. In
the next lemma, an upper bound on |tg| is given.

Lemma 4. For any cell g, it becomes active within T (D ∗ k1 ∗
log n+ F ∗ k1 ∗ log n) rounds w.h.p.

Proof. Here, we analysis how the inactive nodes in cell g
receive a source message. Let node w be a normal node in
cell g, P(v0 → vm) = {v0 → v1 · · · → vm−1 → vm} is
a safe path from any source node s to normal node w, in
which v0 = s, vm = w, and ∀i ∈ [0,m− 1], d(vi, vi+1) ≤ R.
W.l.o.g, we assume that each node vi is in cell gi, fi is the
number of byzantine nodes in gi, for i ∈ [0,m]. Since v0 is
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initially active and always transmits the source message, at
the end of T (1), v1 become active according to Lemma 2,
i.e., tg1 = T (1). By executing leader election for fi+1 times,
at least a normal node is elected as the leader to disseminate
the source message, i.e. at round tg1 +T ((fi+1)∗k1∗log n),
a non-byzantine leader v′1 in g1 is elected out to transmit the
source message according to Lemma 1. Also d(v′1, g2) ≤ (1+
2
3ε)R because d(v1, v2) ≤ R. Thus, all nodes in g2 receives
the source message from v′1 and become active according
to Lemma 2, and tg2 ≤ tg1 + T ((fi + 1) ∗ k1 ∗ log n). By
continuing this analysis, we get

∀i ∈ [0,m] : tgi ≤
{

T (1) i = 1

tgi−1 + T ((fi + 1) ∗ k1 ∗ log n) i > 1

Thus, tgw ≤ T (1) +
∑m
i=2 T ((fi + 1) ∗ k1 ∗ log n). For any

safe path P(v0 → vm) from a source node s to the node w,
we have m ≤ D, and

∑m
i=2 fi < F . Thus, tgw ≤ T (D ∗ k1 ∗

log n+ F ∗ k1 ∗ log n), and the lemma is proved.

Directly combining Lemma 3 and 4, we prove Theo-
rem 2.

Proof for message dissemination period. During MD
period, leaders start to disseminate the source messages in
their source message set, and the other nodes keep listening
to collect the source messages from leaders. If a source
message is from a source node, we say it is a true message.
Otherwise, it is a fake message from byzantine nodes. It is
very likely for a byzantine node to declare itself as a source
node to release a fake message. Also, a byzantine leader can
replace the true messages in its source message set by a fake
message, and transmit the fake message. In our work, we
assume that it is impossible for normal nodes to prevent
and detect the fake messages. When receiving a message,
the leaders only disseminate it no matter it is true or fake.

We first prove the connectivity between any node w and
source node s through the elected non-byzantine leaders.

Lemma 5. For any nodesw and source node s, they are connected
by the elected non-byzantine leaders.

Proof. According to the previous assumption in model, there
is a safe path P(v0 → vm) = {v0 → v1 · · · → vm−1 → vm}
between source node s and node w, in which v0 = s, vm =
w, and d(vi, vi + 1) ≤ R for i ∈ [0,m − 1]. Assume that
each node vi is in cell gi. Since F is an upper bound on the
number of byzantine nodes, there must be at least one non-
byzantine node v′i elected as the leader in each cell gi. Thus,
for each safe path P(v0 → vm) = {v0 → v1 · · · → vm−1 →
vm}, there is a corresponding safe path P ′(v0 → vm) =
{v′0 → v′1 · · · → v′m−1 → v′m}, in which v′0 = s, v′m = w, v′i is
the non-byzantine leader in cell gi for i ∈ [0,m−1]. We also
get d(v′i, v

′
i+1) ≤ d(v′i, gi+1) ≤ (1 + 2

3R) for i ∈ [0,m − 1].
Since leaders in cell gi disseminate the source messages in
turn, at most within T (F ) rounds, a non-byzantine leader
v′i transmits a source message. And the source message is
received by all nodes in cell gi+1 according to Lemma 2. So,
the safe path P ′ guarantees the connectivity for any pair of
nodes s and w.

The following Lemma 6 is given in [14], which presents
the pipelining effect of the multiple-message broadcast pro-
cess. Let Fprog denote the maximum number of rounds

needed for a successful transmission. For a graph G, define
dG(u, v) as the number of edges in the shortest path from u
to v in G.

Lemma 6. Assume that at round t0, a node u receives a new
messageM. Let v be a node at distance d = dG(u, v) from v. For
integers l ≥ 1, we define td,l = t0 + (d+ 2l − 2) ∗ Fprog . Then
for all integers l ≥ 1, at least one of the following two statements
is true:

(i) v received the messageM by the time td,l;
(ii) there exists a set M , |M | = min{l, k}, such that every

message in M has been received by v by the timeslot td,l;

Lemma 7. For any node w, it receives all the k source messages
within T1 + T ((D + 2k + 2F − 4) ∗ F ) rounds.

Proof. For the fake messages released by the byzantine
nodes, they are also disseminated as the source messages
by the leaders. Thus, there are at most (k + F − 1) source
messages disseminated in network. To simplify the analysis,
we assume that all leaders synchronously start the broadcast
process from the timeslot T1. Clearly, this assumption does
not make the analysis of the completion time of the multiple-
message dissemination worse, since some leaders have
started the message dissemination period before T1. In the
analysis of Lemma 5, we get Fprog = F . Thus, combining
with Lemma 6, within T1 + T ((D + 2k + 2F − 4) ∗ F )
rounds, each node w receives all the (k + F − 1) messages
disseminated in network, including the k true messages
from source nodes.

Thus, we finish the proof for Theorem 3.

5.1 Technical proofs

Proof for Lemma 1. Here, we consider a leader election
process in cell g, which is in color j, and does not contain
any source node. The analysis starts from the moment t
when all nodes in state A start the leader election. Let set
Â be the nodes in cell g and in leader competition. |Â| > 1,
otherwise, the proof for Lemma 1 already finishes. Then,
we divide the nodes v in set Â into classes {Vi : i =
0, 1, . . . , log ε

3R} according to the distance between v and
its nearest neighbour u in set Â. Specifically, v is in the set
Vi for 0 ≤ i ≤ log ε

3R − 1 if d(u, v) ∈ [2i, 2i+1), and is in
the set Vlog ε

3R
otherwise. The above division is only used

for analysis purpose and the nodes know nothing about it.
The number of nodes in Vi reduces in each clean round
when some nodes give up the current leader competition
because of receiving competition messages from other nodes
in Â. When nodes in all Vi for i ∈ {0, 1, . . . , log ε

3R − 1}
are reduced to empty, only one node is left in set Vlog ε

3R
,

and becomes the leader. The following analysis contains two
steps: firstly it is proved that each set Vi reduces at least
with a constant ratio with a constant probability in each
clean round; Second we prove that with a sufficient large
parameter k1, at the end of T (k1 log n), each set vi reduces
to empty for i = {0, 1, . . . , log ε

3R− 1}.
For i ∈ {0, 1, . . . , log ε

3R}, we use V<i(t) to denote the
sets of nodes in classes Vjs for j < i at the beginning of
a round t. Let ni(t) = |Vi(t)| and n<i(t) = |V<i(t)|. We
observe that when transmission probability p is a sufficient
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small constant, constant fraction of nodes in set Vi experi-
ence with a limited interference from nodes in V≥i(t); Also,
the interference from nodes in V<i(t) is bounded with the
assumption that n<i(r) ≤ 1−(21−α/2)

2 ni(r). Thus, in each
clean round, with constant probability such nodes in Vi
receive messages from other nodes in Â and give up the
current leader election. In this way, we prove the following
Lemma 8.

Lemma 8. At each clean round t1, Vi reduces with a con-
stant fraction γ with probability 1 − eΩ(ni(r)) for i ∈
{0, 1, . . . , log ε

3R− 1}, when n<i(t1) ≤ 1−(21−α/2)
2 ∗ ni(t1).

Proof. Let A(u, d) be the set of active nodes within dis-
tance d from u. The exponential annulus Eit(u) =
A(u, 2t+12i)\A(u, 2t2i). An active node u in cell g is defined
to be a Sparse Node if for every t ∈ {0, 1, ..., log ε

3R − 1},
Eit(u) ∩ V ≤ 48 ∗ 2t(α/2+1). Si ⊆ Vi is the largest subset of
Sparse Nodes in Vi and for any pair of nodes u, v in Si, the
distance d(u, v) ≥ (s+2)2i, where s = (PmaxPmin

· 3·22α+7β
2α−εα/(1+ε)α ·

1
1−21−α/2 )

1
α/2−1 .

Claim 1. At any round r, for i ∈ {0, 1, ..., log ε
3R − 1}, if

n<i(r) ≤ 1−(21−α/2)
2 ∗ ni(r), then a constant fraction of the

nodes in Vi are sparse.

Proof. For a node u ∈ Vi, if for every t ∈ {0, 1, ..., log ε
3R −

1}, it holds that |Eit(u)∩ V≥i| ≤ 24 ∗ 2t(α/2+1) and |Eit(u)∩
V<i| ≤ 24∗2t(α/2+1), we say u is an excellent node. Clearly,
an excellent node must be a sparse node. We next show that
a fraction of the nodes in Vi are excellent nodes, by which
a lower bound on the fraction of the sparse nodes can be
obtained.

We first show the condition of |Eit(u) ∩ V≥i| in an excel-
lent node. Because the nodes in V≥i have distance at least 2i

with each other, the disks centered at nodes in V≥i with ra-
dius 2i−1 are disjoint. Considering any given annulusEit(u),
using an area argument shown in the following (2), it can be
shown that for each node u ∈ Vi, |Eit(u) ∩ V≥i| ≤ 24 ∗ 22t,
which is smaller than 24 ∗ 2t(α/2+1).

π(2t+12i + 2i−1)2 − π(2t2i − 2i−1)2

π22(i−1)

= 3 ∗ 2t+2 ∗ (2t + 1) ≤ 3 ∗ 22t+3 < 24 ∗ 2t(α/2+1)

(2)

Then, we consider |Eit(u) ∩ V<i| for node u ∈ Vi. Fix i
and t. Let Γit be the sum of the nodes in Eit(u) ∩ V<i for all
the nodes in Vi. Then, we have

Γit =
∑
u∈Vi

|Eit(u) ∩ V<i| =
∑
u∈V<i

|Eit(u) ∩ Vi|

≤ n<i(r) ∗ 24 ∗ 22t ≤ 1− (21−α/2)

2
∗ ni(r) ∗ 24 ∗ 22t

(3)
From (3) and the definition of excellent nodes, it is easy

to see that there are at most 1−(21−α/2)
2 2t(1−α/2) fraction of

the nodes in Vi that are not excellent ones in annulus Eit(u)
for each node u ∈ Vi, as otherwise the above inequality
would be violated. Then, we sum up the number of non-
excellent nodes at each annulus as follows, which is an
upper bound on the number of non-excellent nodes in Vi.

log ε
3R−1∑
t=0

ni(r) ∗
1− (21−α/2)

2
∗ 2t(1−α/2)

=ni(r) ∗
1− (21−α/2)

2
∗

log ε
3R−1∑
t=0

(21−α/2)t

≤ni(r) ∗
1− (21−α/2)

2
∗ 1

1− (21−α/2)
=

1

2
ni(r).

Thus, with the assumptions in Claim 1, at least half of the
nodes in Vi are sparse nodes.

Claim 2. For any Vi, i ∈ {0, 1, ..., log ε
3R−1}, at least 1

(2s+5)2

fraction of the sparse nodes are in the set Si.

Proof. Because Si is the largest subset of the sparse nodes
that have distance (s + 2)2i pairwise, the disks with radii
(s + 2)2i centered at nodes in Si can cover all the sparse
nodes in Vi. To get |Si|/|Vi|, it suffices to upper-bound the
number of sparse nodes covered by a node in Si. This can
be done using an area argument.

Now consider a node v ∈ Si and the sparse nodes in Vi
within distance 2i. Let Dv and D′v be the disks centered at v
that have radius (s+2)2i and (s+ 5

2 )2i, respectively. Notice
that each pair of the sparse nodes in Dv have distance at
least 2i. This means that the disks centered at these nodes
with radii 2i−1 are disjoint, and all these disks are covered
by D′v . Then one can see that the number of sparse nodes in
Dv is at most

π ∗ ((s+ 2)2i + 2i−1)2

π ∗ (2i−1)2
= (2s+ 5)2

The Claim then follows.

Claim 3. At each un-jammed round r of P1, for i ∈
{0, 1, ..., log ε

3R − 1}, a constant fraction of the nodes in Si
become inactive with probability of 1− e−Ω(|Si|).

Proof. We firstly bound the probability under which u ∈ Si
receives a message from its nearest neighbor in the same
cell. Let E be the event that u listens and its nearest neighbor
(in the same cell) transmits. Obviously, Pr(E) = p(1 − p).
Then, under the assumption that E occurs, we calculate
the number of nodes receiving messages from their nearest
neighbors.

According to the SINR model, the interference at each
node u ∈ Si matters in message reception ended at the node
u. Let Ti be the set of nearest neighbors of all nodes Si. The
interference can be divided into two components, namely
the interference from the nodes in Si ∪ Ti and that from the
other nodes.

We first bound the interference from the nodes in Si∪Ti.
Consider a node u ∈ Si. Notice that each node in Si has
distance at least (s + 2)2i from u and has distance with its
nearest neighbor in the range [2i, 2i+1). Thus the nodes in
(Si ∪ Ti) \ {u, v} have distance at least s ∗ 2i from u. Then
the interference I1 at u from the nodes in (Si ∪ Ti) \ {u, v}
can be bounded as follows:

I1 =
∞∑

t=log s

|Eit(u)| Pmax
(2i2t)α

≤ 48Pmax
2iα

· 1

sα/2−1
· 1

1− 21−α/2 .

(4)
In the next, we bound the interference from the nodes

not in Si ∪ Ti. Generally speaking, we show that with a
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moderate probability, a constant fraction of the nodes in Si
experience the interference that is caused by the nodes not
in Si ∪ Ti and is not large. Combining the previous results,
we can finally prove the claim.

Let Î(v) be the interference at the nodes in Si that is
caused by a node v /∈ Si ∪ Ti. For a node v /∈ Si ∪ Ti, Î(v)
can also be recorded as the sum of the interference on the
nodes inEit(v)∩Si over all annulus. Using an area argument
as before, it can be obtained that |Eit(v)∩Si| ≤ 24∗22t. Then

Î(v) ≤
∞∑
t=0

|Eit(v) ∩ Si|
Pmax

(2i2t)α
=
Pmax
2iα

∞∑
t=0

|Eit(v) ∩ Si|
2tα

≤ Pmax
2iα

∞∑
t=0

24 ∗ 22t

2tα
=

24Pmax
2iα

∞∑
t=0

1

2t(α−2)

<
24 ∗ Pmax

2iα
(

1

1− 22−α )

(5)
Let Cmax = 48

1−21−α/2 and we have Î(v) <

cmaxPmax/2
iα. We next prove the conclusion that for any

constant c1, by setting p = c1/(4cmax), with probability

1 − e−
c21

24c2max
|Si|, at least half of the nodes in Si experience

the interference that is caused by the nodes not in Si ∪ Ti
and is not larger than c1Pmax/2iα.

We prove the conclusion in two cases.
Case I. c1 ≥ cmax.
Consider a node u ∈ Si. Let I2 denote the interference

experienced by u that are caused by the nodes not in Si∪Ti.
Then

I2 ≤
∞∑
t=0

|Eit(u)| Pmax
(2t2i)α

=
Pmax
2iα

∞∑
t=0

|Eit(u)|
2tα

≤ Pmax
2iα

∞∑
t=0

48 ∗ 2t(α/2+1)

2tα
=

48Pmax
2iα

∞∑
t=0

1

2t(α/2−1)

<
48Pmax

2iα
(

1

1− 21−α/2 ) ≤ cmaxPmax/2iα

Case II. c1 < cmax.
We define a random variable xv

xv =

{
Î(v)2iα/(cmaxPv) when node v transmits
0 when node v listens

Then we have

E

[ ∑
v/∈Si∪Ti

xv

]
=

∑
v/∈Si∪Ti

p ∗ Î(v)2iα/(cmaxPv)

= p
∑

v/∈Si∪Ti

Î(v)2iα/(cmaxPv)

For the case when |Si|c1Pmax/2iα+1 >
∑
v/∈Si∪Ti Î(v),

this claim can be directly proved. For the other case when
|Si|c1Pmax/2iα+1 ≤

∑
v/∈Si∪Ti Î(v) ≤ |Si|cmaxPmax/2iα,

we can get (c21/8c
2
max)|Si| ≤ E

[∑
v/∈Si∪Ti xv

]
≤

c1Pmax|Si|/(4Pmincmax). Let µ = E[
∑
v/∈Si∪Tixv]. Notice

that xv ∈ [0, 1). Then using the standard Chernoff bound for

the set of independent random variables {xv : v /∈ Si ∪ Ti},
it follows that

Pr
( ∑
v/∈Si∪Ti

xv ≥ 2 ∗ (c1Pmax|Si|/(4Pmincmax))
)

≤Pr
( ∑
v/∈Si∪Ti

xv ≥ 2µ
)
≤ e−µ/3 ≤ e−

c21
24c2max

|Si|

Thus, we prove with probability at least 1− e−
c21

24c2max
|Si|,∑

v/∈Si∪Ti

Î(v) =
∑

v/∈Si∪Ti

xv ∗ cmaxPv/2iα

≤ (2c1Pmax|Si|/(4Pmincmax)) ∗ cmaxPv/2iα

= c1|Si|
P 2
max

Pmin
/2iα+1

Therefore it is impossible for more than half of the nodes in
Si to experience interference from the nodes not in Si ∪ Ti
larger than c1

P 2
max

Pmin
/2iα.

Combining all the above results together and setting
c1 =

P 2
min

P 2
max
∗ 2α−εα/(1+ε)α

22α+1β , we can prove that with probabil-

ity at least 1− e−
c21

24c2max
|Si|, at least half of the nodes u ∈ Si

have the interference not larger than 2c1
P 2
max

Pmin
/2iα. Then,

according to the SINR condition, u can receive a message
from its nearest neighbor v as follows:

SINR(v, u) >
Pmin/2

α(i+1)

2c1
P 2
max

Pmin
/2iα +N

≥ β.

Note that the above analysis is based on the assumption
that u listens and its nearest neighbor v transmits, which
occurs with probability p(1−p). Hence, under the condition
that at least half of the nodes in |Si| can receive messages
from their nearest neighbors, p(1 − p) ∗ |Si|/2 nodes be-
come inactive in expectation. Using the Chernoff bound, the
Claim is then proved.

With the above claims, one can see that for i ∈
{0, 1, 2, ... log ε

3R−1}, (1) when n<i(r) ≤ 1−(21−α/2)
2 ∗ni(r),

|Si|
|Vi| ≥

1
2(2s+5)2 ; (2) at each un-jammed round of P1, with

probability at least 1 − eΩ(|Vi|), more than p(1−p)
4 |Si| nodes

become inactive. Thus Lemma 8 is proved.

Even with Lemma 8 illustrating the reduction tendency
of set Vi in each clean round, the tendency between different
rounds is still uncertain, not only because of the jamming,
but also because nodes in V<i may join into the set Vi when
their nearest neighbours give up the leader competition.

A series of vectors {mi(t) : t ≥ 0 and 0 ≤ i ≤ log ε
3R −

1} is define as an upper bound on the reduction process
between rounds for each set Vi.

∀t ≥ 0 : mi(t) =

{
n/γ1 t ≤ Ti
bmi(t− 1) ∗ γ2c t > Ti

Here, γ1 = 1 − γ and γ2 = γ1 + ρ/(1 − ρ), where ρ is a
sufficiently small constant; and Ti = i∗h and h = dlogγ2 ρe.

Considering that we have the assumption logR ∈
O(log n) from reality, by setting T̂ = O(log n), we have
mi(T̂ ) = 0, ∀0 ≤ i ≤ log ε

3R − 1. Define random events
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E(j)s for j ≥ 0: E(j) occurs when ni(t) ≤ mi(j) for
all i ∈ {0, 1, . . . , log ε

3R − 1} at some round t. Then,
E(0) always occurs and when E(T̂ ) occurs, ni = 0 for
i ∈ {0, 1, . . . , log ε

3R − 1}. We next analyse when E(T̂ )
occurs.

Lemma 9. When E(j) occurs, and ni(t) ≤ γ1
γ2
mi(j+1) at some

round t, then ni(t+ 1) ≤ mi(j + 1).

Proof. If the network is jammed at round t, no transmission
succeed and ni(t+1) = ni(t) ≤ γ1

γ2
mi(j+1) ≤ mi(j+1). If t

is not a jamming round, the lemma is prove by considering
two cases. Case 1: when mi(j) = n/γ1, ni(t + 1) ≤ n <
mi(j + 1); case 2: when mi(j) < n/γ1, we get

ni(t+ 1) ≤ ni(t) +
i−1∑
s=0

ns(t) ≤
γ1

γ2
mi(j + 1) +

i−1∑
s=0

ms(j)

≤ mi(j)γ2 −mi(j)
ρ

1− ρ
+mi(j)

ρ

1− ρ
= mi(j + 1)

So the lemma gets proved by considering all the cases.

Lemma 10. When E(j) occurs at a clean round t, ni(t + 1) <
mi(j + 1) occurs with probability at least 1− e−Ω(ni(t)), where
i ∈ {0, 1, . . . , log ε

3R− 1}.

Proof. Obviously, mi(j) = n/γ1, or ni(t) <
γ1
γ2
mi(j + 1) are

the sufficient conditions to prove the lemma. In the next, we
consider the remaining case that mi(j) < n/γ1 and ni(t) ≥
γ1
γ2
mi(j + 1).
Because E(j) occurs and mi(j) < n/γ1, mathematically

we get n<i(t) ≤ ρni(t)
γ1(1−ρ) ≤

1−(21−α/2)
2 ∗ ni(t), where the last

inequality holds by setting the constant ρ to be small enough
to make sure ρ

γ1(1−ρ) ≤
1−(21−α/2)

2 . Then, in the un-jammed
round t, by Lemma 8, with probability 1 − e−Ω(ni(t)), we
have

ni(t+ 1) ≤ γ1ni(t) +
i−1∑
s=0

ns(t) ≤ γ1mi(j) +
i−1∑
s=0

ms(j)

=
γ1

γ2
mi(j + 1) +

i−1∑
s=0

ms(j) ≤ mi(j + 1)

Since we already get the reduction speed for Vi when
E(j) occurs, the next step is to see when E(j+ 1) occurs. Let
a1 be the constant behind the Ω notation in the probability
guarantee in Lemma 10, and ĉ = max{ 2γ1/γ2

a1(1−γ2) , 2γ1/γ2}.

Lemma 11. T (ĉ) rounds after E(j) occurs, E(j + 1) occurs
with probability at least 1/2.

Proof. For i ∈ {0, 1, . . . , log ε
3R − 1}, when mi(j) = 0 or

ni = 0, it is easy to get that ni ≤ mi(j) ≤ mi(j+ 1). For the
case mi(j) ≥ ni > 0, the probability that at least one ni is
larger than mi(j + 1) after T (ĉ) rounds is bounded by

log ε
3R−1∑
i=0

e−2γ1ni/(γ2(1−γ2)) ≤
log ε

3R−1∑
i=0

γ2(1− γ2)/(2γ1ni)

≤
log ε

3R−1∑
i=0

(1− γ2)/(2mi(j + 1)) ≤ 1− γ2

2

+∞∑
i=0

γi2 ≤
1

2

Hence, with probability at least 1/2, E(j + 1) occurs T (c1)
rounds after E(j) occurs, and the lemma is proved.

By taking a Chernoff bound, E(T̂ ) occurs within T (ĉ ∗
log n) rounds with high probability. By setting the constant
k1 to be sufficiently larger than ĉ, we prove that finally a
node v will be left in leader competition. If v is a normal
node, it will become the leader according to the executed
algorithm. If v is a byzantine node, it could choose to
keep silent and not become the leader. However, as is
presented in the following proof for Lemma 2, the latest
leader-competition message from v will be recorded by all
its neighbors. So, if v choose not to become the leader, all
its neighbors can find that v is a byzantine node. To avoid
being “caught” by all its neighbors, v can only choose to
become the leader. Thus, the Lemma 1 gets proved.

Proof for Lemma 2. We focus on the transmission from
any leader v to u with d(v, u) ≤ (1 + 2

3ε)R in a clean round.
Assume that nodes u, v are in color j1 and j2 respectively.
Since the current round is clean, the interference at node u
from other simultaneously transmitting leaders determines
whether u can receive the message from the leader v.

Centered at node u, we firstly set a series of circles {Cb :

b ≥ 2}, each of which has the radius of (b−1)(c−1)∗(
√

2ε
6 R).

For any of b ≥ 2, let annulus Ab be the space between circles
Cb and Cb+1, and Lb be the set of leaders in color j2 and
located in Ab. Considering that in our MD period each cell
at most has one leader transmitting the source message in
each round, any two transmitting leaders in slot c∗c+j2 are
separated by a distance at least (c− 1) ∗ (

√
2ε
6 R) because of

the c ∗ c coloring scheme. Hence, the circles centered at the
transmitting leaders in Ab with radius of (c − 1) ∗ (

√
2ε

12 R)
are disjoint. Also extending the two sides of annulus Ab by
(c− 1) ∗ (

√
2ε

12 R), we can get these circles are in the annulus
with distance from u between (b − 3

2 )(c − 1) ∗ (
√

2ε
6 R) and

(b+ 1
2 ) ∗ (c− 1) ∗ (

√
2ε
6 R). Then the number of transmitting

leaders in slot c ∗ c+ j2 at each set Ab is upper bounded:

π(
√

2ε
6 R)2 ∗ ((b+ 1

2 )2(c− 1)2 − (b− 3
2 )2(c− 1)2)

π((c− 1) ∗ (
√

2ε
12 R))2

≤ 16 ∗ b

Furthermore, the number of simultaneous transmitting
leaders inC1, is at most 5, including v. Thus, the interference
Tu at node u caused by the leaders who simultaneously
transmit with v is at most:

Iu ≤
4Pmax

((
√

2ε(c−1)
6 )R)α

+
∞∑
b=2

16b ∗ Pmax
((b− 1)(c− 1) ∗

√
2ε
6 R))α

≤ (4 + 32 ∗ α− 1

α− 2
) ∗ Pmax ∗ (

√
2ε(c− 1)

6
)−α ∗R−α

By setting c = d((PmaxPmin
∗ 32α−1

α−2 +4

(1+ε/2)−α−(1+ε)−α )
1
α ) ∗ 3

√
2

2ε + 1e,
transmission from v to u successes because of the SINR ratio:

SINR(v, u) ≥ Pmin ∗ d(v, u)−α/(N + Iu) ≥ β.

5.2 Lower bound proof

Theorem 4. Ω(D + log n + k) clean rounds is a lower bound
for k-message dissemination under our byzantine model.

Proof. Since byzantine nodes arbitrarily jam the network,
any transmission in an un-clean round becomes unreliable.
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TABLE 1: Parameters in simulation

n ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0} ∗ 104
F ∈ {1, 2, 3, 4, 5} ∗ 10 N = Pmin/((1 + ε)αRαβ)
k ∈ {1, 2, 3, 4, 5} ∗ 10 ζ ∈ {0.4, 0.8}
R = 30m α = 3 β = 1.5 Pmin = Rαβ
p = 0.2 c = 10 ε = 1.0 Pmax = 4Rαβ
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Fig. 2: Running time of MMD when ζ = 0.4

Considering a lower bound of Ω(log n) reliable rounds for a
successful transmission [20], we get the T (Ω(D+log n+k))
rounds as the lower bound for disseminating k messages in
a network with n nodes and diameter D.

6 SIMULATION RESULT

In this section, we investigate the empirical performances
of our multiple-message dissemination algorithm under
the byzantine model. Specifically, we consider the running
time of our algorithm under the byzantine behaviors when
the number of normal nodes, byzantine nodes, and source
nodes vary.

Byzantine behaviors. Here, we assume that byzantine
nodes jam each round in network with probability ζ ∈
(0, 1). Larger the ζ , more frequently the byzantine jamming
occurs in network. Also, when receiving source messages,
byzantine leaders take the worst behaviors to deal with
the source messages. Specifically, in leader election period
when leaders broadcast the source message to wake up
the inactive normal nodes around, the byzantine leaders
just keep silent. In message dissemination period, byzan-
tine leaders disseminate the fake messages, to overload the
transmissions in network.

Parameters. Basically, n nodes including k source nodes
and (F − 1) byzantine nodes are randomly and uniformly
distributed into a network with size of 300m× 300m. Each
node randomly selects a transmission power between Pmin
and Pmax, and has a constant transmission probability p =
0.2. Table 1 presents the parameters used in our simulation.
Over 20 executions of the simulation have been carried out
for each reported result. All experiments are conducted on a
Linux machine with Intel Xeon CPU E5-2670@2.60GHz and
64 GB main memory, implemented in C++.

6.1 Algorithm Performance
We count the number of rounds used by our algorithm to
disseminate all source messages to every node in network
under various parameter settings. The extensive results on
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Fig. 3: Running time of MMD when ζ = 0.8

running time are presented in figure 2 and figure 3, in which
the x-axes and y-axes represent the number of nodes in
network and the running time TM for multiple-message
dissemination (MMD). The results in Figure 2 and Figure 3
are in the setting of ζ = 0.4 and ζ = 0.8, respectively. From
(a) and (b) in Figure 2, we can see that TM increases when n
gets larger in any cases of F and k. Also, by comparing TM
when the value of n is fixed and F varies in Figure 2(a),
it can be observed that with F getting larger, TM linear
increases, which is better result than that in our theoretical
analysis. Figure 2(b) illustrates the relationship between k
and TM . According to our observation in simulation, when
k is larger, it takes less time for nodes to wake up, but more
time to collect all k source messages. Thus, in Figure 2(b),
When the network is not so spare, the TM is smaller when
k is larger because more source nodes better facilitates the
non-spontaneous wake-up process for inactive nodes .

Figure 3 depicts a similar tendency between TM and
parameters n, k, and F . Also, considering that the clean
rounds used by our algorithm in expectation is (1−ζ)∗TM ,
and the TM in Figure 3 is about three times as large as
that in Figure 2 when F , k and n are the same, we get
the conclusion that a more frequent byzantine jamming will
not increase the demand of our algorithm on the number
of clean rounds, which indicates the byzantine resilience of
our algorithm.

6.2 Summary
In conclusion, our algorithm is verified to be byzantine-
resilient by the above simulation results. Also, the empirical
running time of MMD in simulation indicates that the
performance of our algorithm in reality should be better
than the theoretical result w.r.t parameters k and F , since
the theoretical result in analysis is only an upper bound in
worst cases.

7 CONCLUSION

In this work, we proposed the first byzantine model which
considers the jamming behavior of byzantine nodes in
wireless networks, and is much more comprehensive and
harsh than the byzantine models in previous works that
rely on reliable communications. Under the new proposed
byzantine model, a distributed and randomized byzantine-
resilient algorithm was presented that can complete the ba-
sic multiple-message dissemination task within T (O((D +
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F )(log n + F ) + kF )) rounds w.h.p. Extensive simulations
reveal the efficiency of our algorithm in reality.

The new proposed byzantine model and the protocol
designed in this work shed some light for distributed fault-
tolerant protocol design that may implement in real wireless
networks. It will be interesting to investigate some other
fundamental problems, such as consensus and link schedul-
ing, under the proposed byzantine model.
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