
Task Migration with Deadlines using Machine Learning-based Dwell Time Prediction in
Vehicular Micro Clouds

Ziqi Zhoua, Agon Memedia, Chunghan Leeb, Seyhan Ucarb, Onur Altintasb, Falko Dresslera

aSchool of Electrical Engineering and Computer Science, TU Berlin, Germany
bInfoTech Labs, Toyota Motor North America R&D, CA, U.S.A.

Abstract

Edge computing is becoming ever more relevant to offload compute-heavy tasks in vehicular networks. In this context,
the concept of vehicular micro clouds (VMCs) has been proposed to use compute and storage resources on nearby vehicles
to complete computational tasks. As many tasks in this application domain are time critical, offloading to the cloud is
prohibitive. Additionally, task deadlines have to be dealt with. This paper addresses two main challenges. First, we
present a task migration algorithm supporting deadlines in vehicular edge computing. The algorithm is following the
earliest deadline first model but in presence of dynamic processing resources, i.e., vehicles joining and leaving a VMC.
This task offloading is very sensitive to the mobility of vehicles in a VMC, i.e., the so-called dwell time a vehicles spends
in the VMC. Thus, secondly, we propose a machine learning-based solution for dwell time prediction. Our dwell time
prediction model uses a random forest approach to estimate how long a vehicle will stay in a VMC. Our approach is
evaluated using mobility traces of an artificial simple intersection scenario as well as of real urban traffic in cities of
Luxembourg and Nagoya. Our proposed approach is able to realize low-delay and low-failure task migration in dynamic
vehicular conditions, advancing the state of the art in vehicular edge computing.

Keywords: Edge computing, vehicular micro cloud, task migration, task offloading, dwell time prediction

1. Introduction

Vehicle-to-everything (V2X) networking technologies
have been in the focus of our research community for a
long time [1]. Now, with the development of cellular V2X
(C-V2X) [2, 3] and mobile edge computing (MEC) in the
context of 5G [4, 5], new opportunities for advanced com-
munication and computation among modern vehicles arise.
C-V2X enhances communication reliability and scalability,
while MEC deploys computing resources close to vehicles.
These technologies help make the idea of vehicular micro
cloud (VMC) [6, 7] a reality. The concept of VMCs has been
generalized in the form of virtualized edge computing [8],
which is expected to be an integral part of 6G networks.
In general, a VMC (or the virtualized edge) allows vehicles
to utilize computing resources from other vehicles in close
proximity. Migrating tasks within a VMC therefore helps
decreasing task completion time cost and is particularly
beneficial for delay-sensitive tasks. Compared to typical
cloud-based technologies, VMCs serve as local edge servers,
reducing communication delay. By clustering vehicles into
small groups and leveraging the computational capacity of
vehicles in the vicinity, VMCs enable more efficient resource
allocation via task offloading.

Stationary and mobile vehicular micro clous are two
types of VMCs, formed by a certain geographical region
or moving cars respectively. This paper focuses on the sta-
tionary VMC where vehicles enter a predefined region and

offload tasks to other vehicles only in this area. This collab-
orative computing approach can significantly reduce task
completion times by utilizing currently idle high computing
capacity resources from neighboring vehicles. However, the
dynamic nature of vehicular environments brings several
challenges to achieving this efficiently. One of these is the
mobility of vehicles, which can lead to task failures due
to migration problems due to imprecise information about
near-future position, and thus connectivity, of the involved
vehicles. When either the user or the vehicle currently
processing the task leaves the VMC, the task cannot be
completed.

In this paper, we present a heuristic for optimized task
migration in a VMC. This extends our previous work in [9].
Our heuristic task migration strategy minimizes the task-
finishing time. We propose a greedy migration algorithm
that selects the least time-cost destination for each task to
be offloaded. Making use of task deadlines, this resembles
an earliest deadline first (EDF) behavior in a dynamic
and mobile context. Our heuristic makes use of a vehicle
dwell time prediction model to determine an approximate
time the vehicle will still be part of the VMC. Specifically,
we propose a machine learning (ML)-based dwell time
prediction model using a random forest approach.

As an initial reference, we use an artificial single inter-
section to explore the performance of our heuristic. For
proof of concept, we conducted simulations using realistic
urban traffic data from the mid-scale European city Lux-

Article published in Elsevier High-Confidence Computing

embourg [10], and the Japanese city Nagoya [11]. The task
migration performance is evaluated using four metrics and
a utility function that combines both task completion time
and task failure rate, providing a view on practicability of
the approach. It takes two types of task failure cases into
account: i) cars leaving the VMC before task completion,
and ii) task completion time exceeding the deadline.

This paper extends our previous work [9]. The main
contributions beyond the current state of the art can be
summarized as follows:

• We developed a novel task migration algorithm for
use in vehicular micro clouds. The algorithm is based
on a greedy approach, sequentially offloading tasks to
the neighbor where it can be completed the earliest.
In addition, deadlines are considered as a constraint.
This matches the well-known EDF approach, now in
a dynamic and mobile environment.

• In order to estimate the time a vehicle will be part
of the VMC (the dwell time), we propose a new ML-
based dwell time prediction model. In particular,
we use a random forest algorithm that significantly
outperforms previous heuristics.

• In a comprehensive simulation study, we thoroughly
compare our task allocation algorithm and the dwell
time prediction to other published heuristics and
a theoretical optimum. Our results underline the
efficacy of our solution.

The rest of our paper is organized as follows. We review
the state-of-the-art related to both task offloading as well as
vehicular predictions in Section 2. We present the system
model, cost function, and utility function in Section 3.
In Section 4, we introduce our proposed task migration
algorithm. The ML-based dwell time prediction model is
presented in Section 4.4. We discuss selected results from
an extensive performance evaluation in Section 5. Finally,
we present concluding remarks in Section 6.

2. Related Work

In the following, we review related work for our main
contributions: task offloading and dwell time prediction.

2.1. Task Offloading
Previous work on task offloading has focused on various

optimization strategies and optimization goals, including
reducing energy consumption [12], minimizing latency [13],
and monetary cost [14], and increasing task success rates
[15]. In the following, we categorize these works based
on their own optimization approaches: the combination
of task offloading and resource allocation, learning-based,
game-theoretic, or mobility-aware task offloading.

2.1.1. Task Offloading and Resource Allocation
Mao et al. [15] proposed a joint optimization strategy

considering the current system state, including transmitting
energy and CPU resources, to reduce execution costs and
task failures. Hossain et al. [13] introduced small-cell MEC
to enhance offloading decisions and reduce task execution
latency. Tran and Pompili [12] optimized a weighted sum of
task completion time and energy consumption using convex
and quasi-convex optimization techniques, while Zhao et al.
[16] applied a distributed task-offloading algorithm for ve-
hicles in MEC to minimize average delay. Although these
approaches demonstrated improved resource efficiency, they
primarily used simplified network environments and did not
account for complex urban traffic dynamics, which limits
their applicability in more realistic settings.

2.1.2. Learning-Based Approaches
Wu et al. [17] developed a hybrid task offloading scheme

for vehicles using deep Q-learning (DQN) to minimize both
task delay and energy consumption. Qin et al. [18] intro-
duced a multi-vehicle task offloading algorithm using the
multi-armed bandit (MAB) theory, which significantly re-
duced task delay and improved resource utilization. While
these learning-based approaches showed considerable per-
formance gains, they were validated in controlled envi-
ronments that lacked the complexity of real urban traffic.
Moreover, the lack of realistic mobility data in the training
process may lead to significant deviations in performance
when applied in practical scenarios.

2.1.3. Game-Theoretic Approaches
Zhao et al. [19] utilized a Nash equilibrium approach

for optimal computation offloading and resource allocation,
effectively reducing task processing delays and computa-
tion costs. Cheng et al. [14] proposed a pricing mechanism
for resource allocation that minimized users’ total costs
while enhancing the monetary utility of the offloading pro-
cess. These game-theoretic methods provided effective
solutions for resource allocation; however, they were based
on assumptions that may not hold in more dynamic envi-
ronments.

2.1.4. Mobility-Aware Approaches
Cha et al. [20] designed a virtual edge formation frame-

work to predict link duration between vehicles and reduce
offloading failures due to unexpected disconnections. Zou
et al. [21] proposed a collaborative task offloading strategy
for vehicles using MEC, effectively reducing energy con-
sumption by leveraging nearby edge resources. However,
both approaches were validated in simplified scenarios, such
as straight roads or unrealistic highways, which do not fully
capture the complexity of urban traffic conditions.

Despite these advancements, challenges remain in task
offloading, particularly in dynamic and unpredictable ve-
hicular environments. In this regard, we advance the state
of the art by integrating a more sophisticated mobility

2

prediction model exploiting real urban data, to further
improve task offloading efficiency, success, and applicability
in real-world settings.

2.2. Dwell Time and Trajectory Prediction
In dynamic vehicular environments, mobility prediction

models can enhance the offloading process by forecasting
relevant metrics such as vehicle trajectories and dwell time.
Targeting dwell time estimation, Pannu et al. [22], Schettler
et al. [23] utilized artificial neural network (ANN), random
forest, and an empirical approach to predict vehicles’ dwell
time in the Luxembourg city [10] and in Manhattan grid
scenarios. However, these models focus solely on dwell time
prediction without integrating them into the task offloading
or migration strategies.

Other offloading approaches focus on predicting vehicle
trajectories [24], location forecasts [25], or overall traffic
flow [26]. Xu et al. [26] propose a graph-weighted convo-
lution network for traffic flow prediction. However, this
approach diverges from our needs on migration algorithms,
where precise dwell time estimation for individual vehicles
in stationary VMCs, where the VMC region is fixed and
pre-defined), is crucial. General traffic flow statistics do
not provide the level of granularity we require for our dwell
prediction model for each individual vehicle.

Guo et al. [24] develop a dual LSTM-based model to
predict vehicle trajectories for improving task offloading in
software-defined vehicular cooperative networks. However,
the LSTM-based model is complex and requires significant
computational resources for both training and inference. In
contrast, our random forest model is simpler, requires less
computational power, and is thus more practical for real-
time deployment. Zhang et al. [25] use an extended Kalman
filter to predict vehicle locations, relying on linear approxi-
mations that were not validated in a real-world urban traffic
setting. Their experiments involved small unmanned vehi-
cles operating indoors, which fails to capture the complex,
non-linear mobility patterns typical of urban environments.
In contrast, our dwell time prediction model is trained and
predicts the realistic dwell time of vehicles effectively. Lv
et al. [27] propose a DQN-based task offloading scheme in
the handover area of vehicular edge computing networks
based on trajectory prediction. Similarly, the complexity
of a DQN model makes real-time decision-making challeng-
ing in dynamic vehicular environments, and the lack of
real-world validation limits its robustness.

2.3. Open Research Gap and Contributions
Most current research in vehicular task offloading ne-

glects accurate dwell time prediction, which we will show
in this paper is essential to ensure task completion without
failure. Also, task failure rates are often overlooked as an
evaluation metric, which is critical in vehicular environ-
ments, where tasks often have hard deadlines. To address
these gaps, this work introduces a novel heuristic for task
offloading approach aimed at minimizing task completion

Acronym Description

ANN artificial neural network
CPU central processing unit
C-V2X cellular V2X
DQN deep Q-learning
EDF earliest deadline first
FCFS first-come first-served
ITS intelligent transportation system
LSTM long short-term memory
MAB multi-armed bandit
MAE mean absolute error
MB megabyte
MEC mobile edge computing
MI million instructions
MIPS million instructions per second
ML machine learning
MSE mean squared error
RF random forest
SUMO simulation of urban mobility
V2X vehicle-to-everything
VMC vehicular micro cloud

Table 1: List of relevant acronyms

time and reducing task failures. We incorporate vehicle
dwell time prediction using a random forest model, ensuring
tasks are offloaded only when vehicles will remain within
the VMC for the entire task duration. Our utility function
optimizes both task completion time and task failure rates,
making the solution closer to real-world requirements.

3. System Model, Cost Function, and Utility

3.1. System Model
The system incorporates four elements: VMC, vehicles,

tasks, and a controller. The VMC comprises dynamic ve-
hicles in a certain region. Vehicles can act as both task
generators and mobile edge servers with varying computa-
tional capabilities, enabling efficient task processing. Tasks
generated by vehicles are heterogeneous in data size, compu-
tational complexity, and deadlines. The central controller
predicts vehicular dwell times and prepares task migrations
schedules. An example is illustrated in Figure 1. There
are five cars in this VMC and the tasks generated by cars
have identical colors with the generator. Car A processes
locally three generated tasks and migrates two tasks to
Car B for remote processing. Similarly, Car C executes
two local tasks and offloads three tasks to Cars D and
E, respectively. Additionally, Car D migrates one task to
Car C. Our task migration strategy re-arranges computing
resource allocation and changes the task completion delay.

3.1.1. Vehicular Micro Cloud (VMC)
A VMC represents a collection of cars and their compu-

tational resources that are in close physical proximity [6, 7].
All cars in a VMC can have multiple roles: They can act
as mobile edge servers with diverse computational abilities,
and as users requiring reliable and efficient task-processing
services.

3

Variable Interpretation

a the unit time interval
Dwell(i, t) the estimated dwell time of Veh(i) at time t
D datasets of vehicular information
Dtrain training sets for ML
Dtest testing sets for ML
dmax Maximum tree depth for ML
δ maximum local task completion time

in the past
fmax Maximum features for each split for ML
F the constructed feature set of vehicles
g(k) the generator vehicle of task k
i the identification number of a car
j∗ the vehicle having the least workload in the

set OPT(k)
k the identification number of a task
L list of all newly generated tasks
L′ sorted list of all newly generated tasks
MI(k) the complexity of task k
MIPS(i) the computing capacity of car i
Ntrees Number of trees for ML
OPT(k) the set of processor vehicles with the

minimum completion time for Tsk(k)
p(k) the processing vehicle of task k
r(k) the result receiving vehicle of task k
R transmission data rate
S(k) the data size of task k
ssplit Minimum samples required to split

for ML
sleaf Minimum samples required at leaf node

for ML
Tk the decision tree in random forest learning

for ML
Tsk(k) task k
t the current time step
tenter
i the timestep when car i enters the VMC
texit
i the timestep when car i exits the VMC
tgen(k) the generation time of task k
tddl(k) the completion deadline of task k
T c(k, p(k)) the migration time of task k from g(k) to p(k)
Tp(k, p(k)) the processing time of task k
Tw(k, t, p(k)) the waiting time of task k to be processed

in car p(k) at time t
T (k, j) the completion time for Tsk(k) executed

by Veh(j)
Veh(i) car i
V eht set of vehicles in the current VMC
(x, y) coordinates of vehicles
(x, y)t coordinates of vehicles at time t
X the feature set of vehicles
Ŷ the final prediction of all dwell times
Y the accurate dwell time set

Table 2: Used variables

Three main characteristics of tasks generated by vehi-
cles within the VMC significantly impact our migration
performance: task data size, execution complexity, and
associated deadline. The task data size impacts the uplink
and downlink delays between the task generator (user) and
its remote processor (server); execution complexity influ-
ences the actual processing time; and the deadline indicates
the maximum available computation and communication
time.

Vehicular Micro Cloud

A

B

CD

E

Figure 1: Illustration of the VMC. Vehicles that participate in the
VMC are color coded, with corresponding tasks and schedules. Each
vehicle can act both as user and server. Vehicle A is processing most
of its tasks locally and has two tasks offloaded to vehicle B. Vehicle
C has offloaded its tasks to D and E, and it is processing a task of D.

3.1.2. Vehicle Model
The presence of vehicles, their computing capabilities,

and their current resource schedule in a VMC fluctuate
over time, requiring migration decisions to be made at each
time step to ensure optimal task assignment. We use t
and i to denote time steps and individual cars, respectively.
Thus, the tuple (tenter

i , texit
i) indicates the time a car is

available in the VMC. The total number of vehicles that
ever entered the VMC at any given time is represented
by max{i}. As for the tasks generated by each vehicle at
each time step, we assume this number follows a uniform
distribution in [0, n], and a central controller (per VMC) is
assumed to receive all updates at each time step. Vehicles
are assigned varying computing capabilities, measured in
million instructions per second (MIPS). Some studies define
computing power in terms of CPU cycles, but using MIPS
provides a more straightforward measure since one cycle
can execute multiple instructions.

3.1.3. Task Model
We use k to denote the sequence number of a task.

Thus, max{k} represents the total number of tasks gener-
ated by vehicles that have been part of the VMC. Tasks
are heterogeneous in terms of data size, execution com-
plexity, and deadlines. To ensure compatibility with the
vehicles’ computing capacities, we measure task complexity
in million instructions (MI). Additionally, task data sizes
indicate the amount of data that must be transmitted for
task execution, measured in megabytes (MB). We assume
task deadlines are uniformly distributed. The overall delay
Tk of task k comprises communication T c

k , waiting for exe-
cution Tw

k , and processing T p
k where Tk ≜ Tw

k + T c
k + T p

k .
For simplicity, we assume that no congestion or collision
occurs in communication.

4

3.1.4. Controller Model
The central (per VMC) controller is responsible for

collecting information, listing tasks according to their dead-
lines, calculating potential task completion times, training
vehicular dwell time prediction models, predicting dwell
times, and making task migration decisions. Without loss
of generality, we assume such a controller always exists.
This role can be carried out by one of the cars in the VMC,
and handed over if the car leaves.

Information collection and dwell time prediction in-
volves the following steps: (1) For each time slot t, the
central controller adds newly joined vehicles (including
current location, speed, type, lane, task queue, and com-
puting capacity) to the vehicle set. (2) When a vehicle
has left the VMC during the previous time slot t− 1, the
controller removes it from the set. Furthermore, its dwell
time is recorded and added to the dataset used to train
the dwell time prediction model. (3) For all vehicles in the
VMC, the dwell time is predicted to be used in migration
decisions. (4) When a vehicle generates new tasks, the
central controller collects task information, including data
size, computational complexity, and deadlines.

3.2. Preliminaries
Let VMC = {Veh,Tsk} be a vehicular micro cloud with

Veh being the set of all vehicles and Tsk being the set of all
tasks. Veh(i) represents the i-th vehicle in Veh and Tsk(k)
is the k-th task in Tsk.

For each Veh(i), we denote the VMC entering time
tenter(i), VMC exiting time texit(i), and its computing ca-
pability MIPS(i). Thus,

Veh(i) = (tenter(i), texit(i),MIPS(i)). (1)

For each Tsk(k), we denote its generation time tgen(k),
computing complexity MI(k), data size S(k), its genera-
tor vehicle index g(k), its processing vehicle index p(k),
completion deadline tddl(k), and its result receiver vehicle
r(k).1 That is

Tsk(k) = (tgen(k),MI(k), S(k), g(k), p(k), tddl(k), r(k)).
(2)

where p(k) and r(k) can only be known when the task
migration has been decided.

Let T c(k, p(k)) be the uplink time of Tsk(k) migrating
from Veh(g(k)) to Veh(p(k)) and the channel data rate be
R. Then for any Tsk(k), we have

T c(k, p(k)) =

{
0, if g(k) = p(k)
S(k)
R , otherwise.

(3)

In our communication model, as long as g(k) ̸= p(k), the
communication time remains constant.

1To clarity, r(k) represents the car to which the result of the
generated task is returned. This can either be the original task-
generating car, indicating a successful result return, or remain empty,
signifying a failed return.

Let T p(k, p(k)) be the task processing time cost Tsk(k)
processed by Veh(p(k)),

T p(k, p(k)) =
MI(k)

MIPS(p(k)))
(4)

Let Tw(k, t, p(k)) be the duration of Tsk(k) waiting for
its execution by Veh(p(k)) at time t. The waiting task
queue in Veh(p(k)) is Tsk(k0),Tsk(k1), · · · ,Tsk(kq), where
Tsk(k0) is under processing and the other tasks are waiting
for execution. Then

Tw(k, t, p(k)) =
(1− αp(k),t)MI(k0)

MIPS(p(k))
+

q−1∑
n=1

T p(k, p(k)),

(5)

where αi,t implies the proportion of instructions that have
been finished of Tsk(k0).

3.3. Cost Function and Utility Function
Our optimization problem can be formulated in a sim-

plified form by minimizing a time cost function without
accounting for task failure, or more comprehensively by
maximizing a utility function. The time cost function aims
to minimize the total task completion time. The utility
function is designed to balance multiple factors by combin-
ing the average task completion time with two weighted
metrics for task failure: the proportion of tasks that miss
their deadlines and the proportion of tasks where the gen-
erating or processing device exits the VMC before task
completion.

We assume a Tsk(k) is generated and migrated at time
t to Veh(p(k)), where there have been already q−1 tasks in
the waiting queue and Tsk(k) is the qth task in the queue.

The expression T sum(k, t, p(k)) represents the comple-
tion time of task Tsk(k) as

T sum(k, t, p(k)) =T c(k, p(k)) + T p(k, p(k))+

Tw(k, t, p(k))

=I(p(k) ̸= g(k))
S(k)

R
+

MI(k)
MIPS(p(k))

+

(1− αp(k),t)MI(k0)
MIPS(p(k))

+

q−1∑
n=1

T p(kn)

It consists of communication time T c(k, p(k)), processing
time T p(k, p(k)), and the waiting time Tw(k, t, p(k)). The
communication cost is positive only if the task is not exe-
cuted locally, i.e., p(k) ̸= g(k). Therefore, we have

T sum(k, t, p(k)) =I(p(k) ̸= g(k))
S(k)

R
+

q∑
n=1

MI(kn)
MIPS(p(k))

+
(1− αp(k),t)MI(k0)

MIPS(p(k))
(6)

5

The optimization problem can now be formulated as

minimize
k

T sum(k, t, p(k))

subject to t ≥ 0, k, p(k), q ≥ 1
(7)

The sum of completion time for N tasks over a certain
duration δ is

T sum(N, δ) =

k=N,t=δ∑
k=1,t=0

(k, t, p(k)) (8)

Before introducing the utility function, the failure rate
(caused by unpredicted leaving vehicles) Fm(N, δ), and the
failure rate (caused by missing task deadlines) Fd(N, δ)
over a certain time interval δ with N tasks generated in
VMC are respectively defined as:

Fm(N, δ) =

∑N
k=1 I(r(k) ̸= g(k))

N
Fd(N, δ) =

1

N

N∑
k=1

I(T sum(k, t, p(k)) > (tddl(k)− tgen(k)))

(9)
Moreover, these two task failure rates are independent. For
instance, if a task is completed before its deadline but its
generator has left before it is completed, then the task
failure can only be accounted into Fm, but not into Fd.

The overall utility function can now be formulated as

U(N, δ) =− 1

N
T sum(N, δ)− β

∑N
k=1 I(r(k) ̸= g(k))

N
−

σ

∑N
k=1 I(T sum(k, t, p(k)) > (tddl(k)− tgen(k))

N
(10)

where β and σ are the penalty coefficients of tasks being
unsuccessfully returned or missing deadlines, respectively.

By minimizing the cost function, we determine the least
completion time for a single task. Our approach uses a
greedy heuristic that evaluates all potential processors,
including the task generator, to offload the task to the
least time-consuming option. This procedure is repeated
for each subsequent task to achieve the shortest offloading
time. The primary difference between the cost function and
the utility function lies in their scope: the cost function
focuses on minimizing the completion time for a single
task, forming the foundation for the system utility function.
In contrast, the utility function considers both delay and
failure costs for all tasks within the VMC over a specified
duration. Locally processed tasks are guaranteed to be
completed without failure caused by unpredictably leaving
vehicles, though they may still miss deadlines.

4. Comprehensive Task Migration Algorithms

We designed a task migration algorithm taking the
following objectives into consideration. First, we aim to

realize the sequence of tasks being selected for offloading
based on their deadlines (Algorithm 1). Second, the central
controller steers the offloading process, taking dynamic
vehicular dwell time prediction into account (Algorithm 2).
Last and essentially, we identify the best vehicle for task
migration based on a pre-sorted sequence (Algorithm 3),
especially by leveraging future dwell times to reduce the
probability of task failures (Algorithm 4).

4.1. Task Pre-Scheduling
The task pre-scheduling function is applied only to tasks

generated in the last time step. It prioritizes urgent tasks
based on their deadlines, similar to the earliest deadline
first (EDF) approach, but excludes tasks generated from
previous time steps.2 By reordering tasks, those with more
urgent deadlines are prioritized over those with less strict
deadlines. Algorithm 1 depicts all the task pre-scheduling
steps.

4.2. Central Task Scheduling
The central task scheduling (Algorithm 2) is designed to

optimize task assignment decisions in a VMC by predicting
the remaining dwell time of vehicles and leverages the
prediction result to dynamically offload tasks to the most
appropriate vehicles for remote execution.

4.3. Task Migration
The task migration algorithm concretely manages task

offloading based on an ordered list of undecided tasks
(Algorithm 3). The controller selects suitable processing
cars based on the shortest task completion time within
their dwell time constraints and with the least workload.
If the original vehicle offers the shortest completion time,
the task is assigned for local task processing.

4.4. ML-based Dwell Time Prediction
Accurately predicting the entire dwell time of vehicles

from entry to exit in VMC has been shown challenging in
[22, 23]. We propose a random forest regression model (cf.
Algorithm 4) to estimate only the future remaining time of
cars, using previous location information and an adaptive

2Please note that we do not support preemption and re-migration
at the moment.

Algorithm 1 Task pre-scheduling
Input: L: List of all newly generated tasks
Output: L′: Sorted list of tasks by deadline
1: function Pre-Schedule-Tasks(L)
2: L← collect tasks generated by vehicles in VMC at

time t
3: L′ ← sort L in increasing order of deadlines
4: return L′

5: end function

6

Algorithm 2 Central scheduling
Input: Set of vehicles V eht in the current VMC
Output: Predicted dwell times and task migration deci-

sions
1: for each time step t = 1, . . . , T do
2: for each vehicle V eh(i) in the set of Veht do
3: Predict dwell time of V eh(i) using Algorithm 4
4: end for
5: for each vehicle V eh(i) in the set of Veht do
6: Execute task migration using Algorithm 3
7: end for
8: end for

Algorithm 3 Task migration
Input: Initial vehicle set Veh, task set Tsk
Output: Optimized task assignment decisions
1: for each time slot t = 1, 2, . . . do
2: for each vehicle Veh(i) in latest Veh set do
3: Collect predicted dwell time Dwell(i) of Veh(i)
4: Collect new and already assigned tasks
5: end for
6: Controller forms list of unassigned tasks L
7: L′ ← sorted list of L from Algorithm 1
8: for each task Tsk(k) in L′ do
9: for each vehicle Veh(j) in Veh do

10: if T (k, j) ≤ Dwell(i) then
11: T (k, j)← T c(k, j)+T p(k, j)+Tw(k, t, j)
12: end if
13: end for
14: OPT(k)← argminj T (k, j)

▷ Find vehicles with minimum completion time
for Tsk(k)

15: if g(k) ∈ OPT(k) then ▷ g(k) is preferred
vehicle for Tsk(k)

16: p(k)← g(k)
17: else
18: Find j∗ ∈ OPT(k) with minimum workload

▷ Select vehicle with least load
19: p(k)← j∗

20: end if
21: end for
22: end for

upper bound. The model predicts the future dwell time that
will suffice for task completion, disregarding any exceeding
time longer than needed. By collecting the maximum task
completion time denoted as δ over a time window [t−∆, t],
the upper bound δ serves as an adaptive threshold. Used
features include the current time t, current position (x, y),
and past positions sampled at time steps up to δ, ensuring
sufficient temporal context for accurate predictions.

Our proposed random forest model predicts the future
dwell time of each vehicle at each time step. Initially, it
prepares a set of features, including the current time and
its previous and current location, the previous time has

Algorithm 4 Random forest dwell time prediction
1: Input: Floating car data collected over a certain time

duration T
2: Output: Predicted future dwell time Dwell(i) for each

vehicle at each time step
3: δ ← maximum local task completion time in the past
4: a← interval between two time steps ▷ we use

a = 0.2 s in this paper
5: t ← {t − T, t − T + a, t − T + 2a . . . , t − 2a, t − a, t},

where t is the current time step
6: for each vehicle V eh(i) do
7: for each time step t in the duration of [t− δ + a, t]

do
8: Extract coordinates (x, y) for t− a
9: end for

10: Calculate the dwell time of V eh(i) at t and upper
bound it by δ

11: end for
12: Feature preparation:
13: Construct feature set F =
{t, (x, y)t, (x, y)t−a, . . . , (x, y)t−δ}

14: Split dataset D into training Dtrain and testing Dtest

sets
15: Model initialization and hyperparameter tuning:
16: Define random forest hyperparameters (Ntrees, dmax,

ssplit, sleaf , fmax) to optimize with Optuna
17: Training process:
18: for k = 1, . . . , Ntrees do
19: Train decision tree Tk on the training set D(k)

train

20: end for
21: The final prediction Ŷ is

Ŷ =
1

Ntrees

Ntrees∑
k=1

Tk(F)

22: The predicted future dwell time of V eh(i) is

Dwell(i) = Ŷi

23: Model evaluation:
24: Compute MSE and MAE on Dtest:

MSE =
1

|Dtest|
∑

(Xi,Yi)

∈ Dtest(Yi − Ŷi)
2

MAE =
1

|Dtest|
∑

(Xi,Yi)

∈ Dtest|Yi − Ŷi|

25: Model deployment:
26: Save trained model fRF for future predictions

threshold δ, and then it splits the dataset into training and
testing sets. Key hyperparameters of the random forest
model are Ntrees: number of trees; dmax: maximum tree
depth; ssplit: minimum samples required to split; sleaf :

7

Model Scenario MSE [s2] MAE [s]

Proposed Single Low 0.003 0.015
intersection Medium 0.006 0.028

High 0.008 0.037
Proposed Luxem- Suburb 0.008 0.046

bourg Highway 0.021 0.110
City 0.008 0.046

Proposed Nagoya Suburb 0.066 0.027
State 0.030 0.026
City 0.013 0.014

Johnson SU Single Low 552.727 18.976
intersection Medium 491.971 17.680

High 648.250 18.552
Johnson SU Luxem- Suburb 0.615 0.633

bourg Highway 1177.998 27.880
City 790.667 17.157

Johnson SU Nagoya Suburb 953.707 28.740
State 690.588 21.335
City 367.292 15.387

Table 3: Performance metrics of dwell time prediction across different
models and scenarios (time step 0.2 s).

minimum samples required at leaf node; fmax: maximum
features for each split. We used the Optuna hyperparameter
optimization framework3 for training and optimization.

During training, the algorithm creates multiple decision
trees using bootstrapped samples. Each tree in the forest
maps the input features (time and locations from δ seconds
ago till now) to the future dwell time. The random forest
model then makes predictions ŷ by averaging the future
dwell time outputs from all decision trees. The algorithm
evaluates the model performance by mean squared error
(MSE) and mean absolute error (MAE). Finally, the trained
model is saved for future dwell time predictions.

We validate our random forest model for dwell time
estimation using three scenarios (cf. Section 5.1). Using
the Optuna hyperparameter optimization framework, our
proposed model achieves a MSE of less than 0.06 s2 and a
MAE of less than 0.03 s. In comparison, the Johnson SU
distribution performs less effectively with a MSE of up to
1177 s2 and a MAE of up to 29 s, which is in line with the
results reported in [23]. The performance comparison is
presented in detail in Table 3.

4.5. Example of Operation and Underlying Conflicts
For further clarification, concretely, all newly generated

tasks are ordered at each step based on their generation
time. For instance, at time step t, tasks generated within
the interval (t − a, t] are considered.4 Let’s assume that
only two tasks are generated during the interval (t− a, t]:
task k, generated at t− a+ 0.001 seconds with a deadline
of t+ 2 seconds, and task k + 1, generated at t− a+ 0.002
seconds with a deadline of t+1 seconds. Initially, the tasks
are sequentially ordered according to their generation times

3https://github.com/optuna/optuna
4Here, a represents the interval between time steps, which is set

to 200ms in our experiments.

Reference Data size Complexity CPU
[MB] [MI] [MIPS]

Chen et al. [28] 0.5 1000 500–10 000
Jang et al. [29] 1.25–3.125 - -
Mao et al. [15] 0.125 0.7375 1500
Liu et al. [30] 0.1–0.3 100–400 1000–5000
Bute et al. [31] 0.0125–0.125 1000–5000 1000–4000
Shi et al. [32] 0.02–0.2 200–3200 5000–10 000

Our evaluation 0.1–1 1000–5000 1000–5000

Table 4: Typical task properties used in the literature. If a range is
given, a uniform distribution is assumed.

in the list L. However, as described in Algorithm 1, tasks
generated during (t−a, t] are re-sorted in the list L′ at time
t based on their priority, determined by their deadlines.
Consequently, task k + 1 is prioritized for offloading, as it
has an earlier deadline.

In the decision-making process, the selected task’s k+1
completion time is calculated for each potential offloading
option. This time contains the communication time (only
required for remote offloading), the waiting time for execu-
tion on a potential processor vehicles, and the processing
delay give the different computing resources. Next, task
k + 1 is offloaded to the vehicle that minimizes its comple-
tion time. Meanwhile, the remaining computing resources
are updated. Possible completion times of task k are calcu-
lated and it is offloaded accordingly. When an underlying
conflicts occur, i.e., multiple tasks have the same deadline
in the same time slot, the one that has been generated
earlier will be prioritized in the list L′.

5. Simulation Setup and Results

In the following, we first present the simulation setup
we used followed by an in-depth look at selected results.

5.1. Simulation Parameters
Selecting representative parameters for task settings

remains a challenge. This includes task types, data size,
deadlines, and computing resource requirements. Following
a literature study, we found that there is a huge variety
of applications considered. Table 4 gives an overview of
typical settings. If a range is given, a uniform distribution
is assumed. Based on this overview, we selected the pa-
rameters for our performance evaluation (last row in the
table). In addition, we assume task deadlines in the range
1–1.5 s, which conceptually matches our time slots.

Without loss of generality and also following the ob-
servations in [9], we set the data rate to 50 Mbit/s, which
can be easily supported by most current communication
technologies. For accurate mobility simulation, we used
SUMO Version 1.19.05 [33]. For best comparability, we use
three different traffic scenarios.

8

Parameter Low Med High

Total number of cars 480 900 1200
Average speed [km/h] 27.86 25.74 21.20
Average dwell time [s] 865.16 1002.77 887.46
Simulation duration [s] 3600 3600 3600
Car generation period [s] 7.5 4 3
Tracking Time Step [ms] 200 200 200

Table 5: Road traffic parameters: simple intersection scenario

(a) City (b) Highway (c) Suburban

Figure 2: Luxembourg scenario

5.1.1. Simple intersection
For ease of validation, we use a single intersection sce-

nario. This scenario contains a single traffic light, four entry
points, and 16 possible routes, including straight paths,
right turns, left turns, and U-turns. The map covers an
area of approximately 400m× 400m. Trips were generated
using the SUMO random trip generator, which allows for
flexible control over car generation periods, thereby affect-
ing car density. After generating mobility for three different
traffic densities (low, medium, high), the simulation out-
puts floating car data, including position, speed, lane, and
other information about every vehicle at each time step in
the simulation. Important characteristics such as the total
number of cars, average speed, and average duration of
cars can be analyzed and obtained from the traces output.
The key parameters are summarized in Table 5.

5.1.2. Luxembourg scenario
The Luxembourg SUMO Traffic (LuST) Scenario [10]

is a highly cited, detailed, and realistic traffic simulation
model for the mid-sized European city of Luxembourg.
This scenario provides an ideal environment for testing and
evaluating the efficiency and robustness of our algorithm
because of its complexity and representativeness of real-
world urban traffic conditions. To assess the effectiveness
of our migration mechanism in real traffic, we selected
three distinct regions within the map as VMC zones, each
characterized by varying vehicle flow and density. These
zones are strategically located in the city center, on a
highway, and in a suburban area (Figure 2). For the
SUMO simulations, we chose three representative time
periods throughout the day: midnight, morning peak hour,

5https://eclipse.dev/sumo/

Time Parameter City High-
way

Sub-
urban

Midnight Total number of cars 5 8 0
00:20 Avg. speed [km/h] 16.778 87.846 0

Avg. dwell time [s] 28.4 16.375 0
Max. dwell time [s] 77.000 36.000 0
Simulation time [s] 100 100 100
Time Step [ms] 200 200 200

Morning Total number of cars 102 168 10
08:20 Avg. speed [km/h] 8.040 89.920 52.730

Avg. dwell time [s] 37.921 9.125 10.0
Max. dwell time [s] 99.000 41.000 20.000
Simulation time [s] 100 100 100
Time Step [ms] 200 200 200

Afternoon Total number of cars 68 64 2
16:20 Avg. speed [km/h] 11.826 104.970 43.077

Avg. dwell time [s] 29.191 8.828 10.5
Max. dwell time [s] 75.000 40.000 15.000
Simulation time [s] 100 100 100
Time Step [ms] 200 200 200

Table 6: Road traffic parameters: Luxembourg scenario

(a) City (b) State road (c) Suburban

Figure 3: Nagoya scenario

and non-peak afternoon, each reflecting distinct traffic
conditions. The key parameters are summarized in Table 6.

Time Parameter City State
Road

Sub-
urban

Midnight Total number of cars 7 7 3
00:20 Avg. speed [km/h] 20.629 25.659 16.605

Avg. dwell time [s] 25.571 21.000 22.000
Max. dwell time [s] 33.000 59.000 43.000
Simulation time [s] 100 100 100
Time Step [ms] 200 200 200

Morning Total number of cars 70 48 28
08:20 Avg. speed [km/h] 24.864 22.976 19.090

Avg. dwell time [s] 17.028 31.520 27.285
Max. dwell time [s] 58.000 67.000 92.000
Simulation time [s] 100 100 100
Time Step [ms] 200 200 200

Evening Total number of cars 21 13 8
20:20 Avg. speed [km/h] 24.802 18.205 17.242

Avg. dwell time [s] 24.809 41.076 31.000
Max. dwell time [s] 50.000 66.000 47.000
Simulation time [s] 100 100 100
Time Step [ms] 200 200 200

Table 7: Road traffic parameters: Nagoya scenario

9

5.1.3. Nagoya scenario
We also selected the Nagoya Urban Mobility (NUMo)

scenario [11] as one of the most comprehensive urban traf-
fic scenarios, providing a highly realistic vehicle mobility
of the entire city of Nagoya, Japan. Featuring a densely
populated urban environment with complex traffic pat-
terns, NUMo enhances our vehicular mobility simulations
by reflecting a more accurate representation of real-world
dynamics compared to other scenarios. NUMo’s traffic
signals are meticulously calibrated, and its primary data
source is actual traffic counts. This makes NUMo an even
closer approximation to real-world conditions, making it
particularly valuable for our research. Three distinct re-
gions within the map are chosen as VMC zones. These
zones are located in the city center, on an entrance of a
state road, and in a suburban area (cf. Figure 3). For the
SUMO simulations, we again chose three representative
times of the day: midnight, morning peak hour, and non-
peak afternoon, each reflecting distinct traffic conditions.
The key parameters are summarized in Table 7.

5.2. Baselines for Performance Evaluation
5.2.1. No migration

In this approach, tasks are processed locally without
any offloading or migration to other vehicles in the same
VMC. By comparing task completion times between the
no migration strategy and migration mechanisms, we can
quantify the performance gains achieved through task mi-
gration strategies.

5.2.2. Migration based on accurate dwell time
All migration strategies use the same offloading algo-

rithm but rely on different sources for future vehicular
dwell times. This baseline assumes accurate knowledge of
the dwell time, obtained from the SUMO traces. It is rep-
resenting the theoretical optimal performance achievable.

5.2.3. Johnson SU distribution of dwell times
The Johnson SU distribution has been empirically iden-

tified as a good representation of dwell time distribution in
Luxembourg (cf. [22]). Schettler et al. [23] already used it
as a baseline in their research. Unlike other prediction ap-
proaches, this method does not require training a machine
learning model.

5.3. Simple Intersection Scenario
Figure 4 shows the performance of the four task of-

floading strategies for the simple intersection scenario. We
plot the task completion time in Figure 4a and the saved
time ratio, i.e., the proportion of time saved by using three
migration strategies compared to the no migration strategy,
in Figure 4b.

Task completion time, defined as the duration from
a task’s generation to its completion – whether executed
entirely within the VMC or partially outside it – is a
straightforward and direct metric. In our setup, each car

uniformly randomly generates 0–3 tasks per time-step. For
no migration, the high-, medium-, and low-density scenarios
show a descending order of completion times, which is rea-
sonable. All migration approaches, whether using accurate
knowledge or dwell time prediction models, demonstrate a
significant decrease in completion delay compared to the no
migration strategy. The benefit increases with increasing
traffic density, i.e., increasing candidates for task migration.

The saved time ratio Tsave(k, t, p(k)) is calculated as
the proportion of the time difference between no migration
and migration strategies, divided by no migration time as

Tsave(k, t, p(k)) =
T local(k, t, p(k))− Tmig(k, t, p(k))

T local(k, t, p(k))

It effectively illustrates the time-saving benefits of task
offloading. Regardless of the offloading methods used,
the proportions of saved time are similar. Additionally,
the medium- and high-density scenarios show a higher
proportion of tasks saving around 40 to 50% of the time
when migrations using accurate dwell time knowledge or
using our random forest model. In contrast, migration
decisions based on Johnson SU distribution leads to only
below 40% of the saved time ratio.

Figure 4c shows the task failure rate due to missing
deadlines, where a task result is completed after its deadline.
Figure 4d illustrates the task failure rate due to wrong
predictions on cars’ mobility, which occurs when the task
generator or its processor car leaves the VMC before the
task is completed. Both are two independent events. As
can be seen, our proposed solution always outperforms
Johnson distribution across all scenarios. No migration
leads to a high task failure rate due to missing deadlines,
and Johnson SU prediction leads to higher failure rates due
to wrong mobility prediction.

5.4. Luxembourg Scenario
For the Luxembourg scenario, we selected the morning

rush hour data for discussion in this paper. During the
non-peak period in the afternoon at 4 pm, the algorithm
operates similarly to the peak hour. However, during
midnight, only very few vehicles are present, limiting task
processing to local execution. So, we concentrate on the
different locations in the city. The results of our simulations
for average task completion time and saved time ratio as
well as the task migration failure rate are shown in Figure 5.

In terms of reducing task completion time, all migra-
tion strategies are effective. The results for our proposed
algorithm and for the theoretical optimum using perfect
dwell time knowledge yield nearly identical performance,
demonstrating the superiority of our solution. Again, the
Johnson SU based task mitigation results in slightly in-
creased task completion times (Figure 5a) and lower saved
time ratios (Figure 5b), but the differences are not sig-
nificant. However, when evaluating the task failure rate,
Johnson SU leads to a pronounced failure rate, whereas
our prediction model reduced this by about 36%.

10

Perfect
Knowledge

Proposed Johnson No Migration

Migration Strategies

0
1
2
3
4
5
6
7
8

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(s

) Low Medium High

(a) Task completion time

Perfect
Knowledge

Proposed Johnson

Migration Strategies

0
10
20
30
40
50
60
70
80
90

100

Sa
ve

d
Ti

m
e

R
at

io
 (%

) Low Medium High

(b) Saved time ratio

Perfect
Knowledge

Proposed JohnsonNo Migration

Migration Strategies

0
10
20
30
40
50
60
70
80
90

100

Ta
sk

 F
ai

lu
re

 (d
dl

) R
at

e
(%

) Low Medium High

(c) Task failure rate due to missed deadline

Perfect
Knowledge

Proposed JohnsonNo Migration

Migration Strategies

0
2
4
6
8

10

Ta
sk

 F
ai

lu
re

 R
at

e
(%

)

Low Medium High

(d) Task failure rate due to mobility prediction

Figure 4: Migration performance, simple intersection scenario

Perfect
Knowledge

Proposed Johnson No Migration

Migration Strategies

0
1
2
3
4
5
6
7
8

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(s

) Suburban Highway City

(a) Task Completion Time

Perfect
Knowledge

Proposed Johnson

Migration Strategies

0
10
20
30
40
50
60
70
80
90

100

Sa
ve

d
Ti

m
e

R
at

io
 (%

) Suburban Highway City

(b) Saved Time Ratio

Perfect
Knowledge

Proposed JohnsonNo Migration

Migration Strategies

0
10
20
30
40
50
60
70
80
90

100

Ta
sk

 F
ai

lu
re

 (d
dl

) R
at

e
(%

) Suburban Highway City

(c) Task failure rate due to missed deadline

Perfect
Knowledge

Proposed JohnsonNo Migration

Migration Strategies

0
2
4
6
8

10
12

Ta
sk

 F
ai

lu
re

 R
at

e
(%

)

Suburban Highway City

(d) Task failure rate due to mobility prediction

Figure 5: Migration performance, Luxembourg scenario during morning rush hour

11

Perfect
Knowledge

Proposed Johnson No Migration

Migration Strategies

0
1
2
3
4
5
6
7
8

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(s

) Suburban State City

(a) Task Completion Time

Perfect
Knowledge

Proposed Johnson

Migration Strategies

0
10
20
30
40
50
60
70
80
90

100

Sa
ve

d
Ti

m
e

R
at

io
 (%

) Suburban State City

(b) Saved Time Ratio

Perfect
Knowledge

Proposed JohnsonNo Migration

Migration Strategies

0
10
20
30
40
50
60
70
80
90

100

Ta
sk

 F
ai

lu
re

 (d
dl

) R
at

e
(%

) Suburban State City

(c) Task failure rate due to missed deadline

Perfect
Knowledge

Proposed JohnsonNo Migration

Migration Strategies

0
1
2
3
4
5
6
7
8
9

10

Ta
sk

 F
ai

lu
re

 R
at

e
(%

)

Suburban State City

(d) Task failure rate due to mobility prediction

Figure 6: Migration performance, Nagoya scenario during morning rush hour

5.5. Nagoya Scenario
Also for the Nagoya scenario, we selected the morning

rush hour data for discussion in this paper. During the
non-peak periods in the evening at 8 pm, the algorithm
operates similarly to the peak hour. During midnight, in
the city and suburban areas of Nagoya, only one vehicle is
present. As a result, the migration strategy requirements
are not effective. Thus, again, we focus on the morning
rush hour. The results of our simulations for average task
completion time and saved time ratio as well as the task
migration failure rate are shown in Figure 6.

Task completion times (cf. Figure 6a) across the three
migration strategies are significantly reduced compared
to no migration (cf. Figure 6b). Our proposed model
clearly outperforms the Johnson SU approach w.r.t. the
task failure rate (mobility reason, cf. Figure 6d): Our
proposed solution exhibits a failure rate of around 0.5–
1.5 %, whereas the Johnson SU approach leads to 2.0–5.0 %
across all locations in Nagoya. This demonstrates the
robustness and effectiveness of our migration mechanism
when combined with the dynamic prediction model.

5.6. Discussion
An effective task migration strategy in dynamic vehicu-

lar environments, involving predicted vehicle dwell times,
is crucial for reducing task completion time and minimizing
failures. Using a shortest-delay-oriented greedy algorithm
significantly reduces delays and deadline misses compared

to no migration. Overall, our strategy excels by addressing
two key challenges: minimizing task delay and reducing
the risk of failure due to vehicle mobility.

Accurate dwell time prediction prevents failures due
to unpredictable mobility. The proposed random forest
model outperforms previous approaches like Johnson’s SU
distribution, achieving near-optimal dwell time prediction
for offloading. Our random forest model enhances task
offloading by selecting candidates that minimize completion
time and remain in the VMC until task completion. By
combining the shortest-delay-oriented algorithm with close-
to-accurate dwell time prediction, our strategy optimizes
task offloading, ensuring tasks are assigned to vehicles that
minimize completion time and remain in the VMC until
completion.

Lessons learned from the evaluation are twofold. First,
unlike previous work relying on static assumptions, we
used realistic urban traffic data for dwell time prediction,
significantly reducing failures due to mobility. Second, we
evaluated both time efficiency and task failure metrics,
resulting in a comprehensive utility function that aligns
with real-world efficiency and reliability concerns.

6. Conclusion

In this paper, we presented a task migration mechanism
for vehicular micro clouds (VMCs), focusing on minimiz-
ing task completion time and eliminating task failures by

12

utilizing a dynamic dwell time prediction model. Our ap-
proach estimates the upper-bounded remaining duration
for vehicles within VMCs at each time step, letting optimal
offloading decisions without results loss. The proposed
mechanism is based on two main pillars: (1) selecting the
optimal target for task migration based on the shortest esti-
mated task completion time, and (2) ensuring that both the
sender and target vehicles remain within the VMC till task
completion by leveraging precise dwell time predictions.

We evaluated our approach using a simple intersection
scenario as well as two real-world urban mobility scenarios,
Luxembourg and Nagoya. The use of diverse traffic data
from different urban conditions and various times of the
day provided a realistic and comprehensive validation en-
vironment for our task migration strategy and dwell time
predictions. The results demonstrate significant reductions
in task completion times and the elimination of two types
of task failures: unpredicted vehicle leaves and deadline
misses. Our findings validate both the effectiveness of our
task migration mechanism and the accuracy of the dwell
time prediction model.

For future work, we plan to explore how task splitting
and task dependencies can be integrated to further enhance
task migration performance. Also, applicability to highway
scenarios with high-speed vehicles needs to be explored.

References

[1] Christoph Sommer and Falko Dressler. Vehicular Networking.
Cambridge University Press, 2014. ISBN 978-1-107-04671-9. doi:
10.1017/CBO9781107110649.

[2] S.A. Abdel Hakeem, A.A. Hady, and Hyungwon Kim. 5G-
V2X: standardization, architecture, use cases, network-slicing,
and edge-computing. ACM/Springer Wireless Networks, pages
6015–6041, July 2020. ISSN 1022-0038. doi: 10.1007/
s11276-020-02419-8.

[3] Rafael Molina-Masegosa, Javier Gozalvez, and Miguel Sepulcre.
Configuration of the C-V2X Mode 4 Sidelink PC5 Interface for
Vehicular Communication. In 14th International Conference on
Mobile Ad-Hoc and Sensor Networks (MSN 2018), Shenyang,
China, December 2018. doi: 10.1109/msn.2018.00014.

[4] P. Mach and Z. Becvar. Mobile Edge Computing: A Survey on
Architecture and Computation Offloading. IEEE Communica-
tions Surveys & Tutorials, 19(3):1628–1656, March 2017. ISSN
1553-877X. doi: 10.1109/COMST.2017.2682318.

[5] Mustafa Emara, Miltiades C. Filippou, and Dario Sabella. MEC-
Assisted End-to-End Latency Evaluations for C-V2X Communi-
cations. In European Conference on Networks and Communi-
cations (EuCNC 2018), Ljubljana, Slovenia, June 2018. IEEE.
doi: 10.1109/eucnc.2018.8442825.

[6] Takamasa Higuchi, Joshua Joy, Falko Dressler, Mario Gerla, and
Onur Altintas. On the Feasibility of Vehicular Micro Clouds. In
9th IEEE Vehicular Networking Conference (VNC 2017), pages
179–182, Turin, Italy, November 2017. IEEE. ISBN 978-1-5386-
0986-6. doi: 10.1109/VNC.2017.8275621.

[7] Falko Dressler, Gurjashan Singh Pannu, Florian Hagenauer,
Mario Gerla, Takamasa Higuchi, and Onur Altintas. Virtual
Edge Computing Using Vehicular Micro Clouds. In IEEE In-
ternational Conference on Computing, Networking and Com-
munications (ICNC 2019), Honolulu, HI, February 2019. IEEE.
ISBN 978-1-5386-9223-3. doi: 10.1109/ICCNC.2019.8685481.

[8] Falko Dressler, Carla Fabiana Chiasserini, Frank H. P. Fitzek,
Holger Karl, Renato Lo Cigno, Antonio Capone, Claudio Ettore

Casetti, Francesco Malandrino, Vincenzo Mancuso, Florian Klin-
gler, and Gianluca A. Rizzo. V-Edge: Virtual Edge Computing
as an Enabler for Novel Microservices and Cooperative Comput-
ing. IEEE Network, 36(3):24–31, May 2022. ISSN 1558-156X.
doi: 10.1109/MNET.001.2100491.

[9] Ziqi Zhou, Youming Tao, Agon Memedi, Chunghan Lee, Seyhan
Ucar, Onur Altintas, and Falko Dressler. Optimizing Task Migra-
tion Decisions in Vehicular Edge Computing Environments. In
1st IEEE International Conference on Meta Computing (ICMC
2024), Qingdao, China, June 2024. IEEE.

[10] Lara Codeca, Raphaël Frank, and Thomas Engel. Luxembourg
SUMO Traffic (LuST) Scenario: 24 Hours of Mobility for Vehic-
ular Networking Research. In 7th IEEE Vehicular Networking
Conference (VNC 2015), Kyoto, Japan, December 2015. IEEE.
ISBN 978-1-4673-9411-6. doi: 10.1109/VNC.2015.7385539.

[11] Takamasa Higuchi, Lei Zhong, and Ryokichi Onishi. NUMo:
Nagoya Urban Mobility Scenario for City-Scale V2X Simulations.
In 15th IEEE Vehicular Networking Conference (VNC 2024),
pages 17–24, Kobe, Japan, May 2024. IEEE. doi: 10.1109/
VNC61989.2024.10575975.

[12] Tuyen X. Tran and Dario Pompili. Joint Task Offloading and
Resource Allocation for Multi-Server Mobile-Edge Computing
Networks. IEEE Transactions on Vehicular Technology, 68(1):
856–868, January 2019. ISSN 1939-9359. doi: 10.1109/TVT.
2018.2881191.

[13] Md Delowar Hossain, Luan N. T. Huynh, Tangina Sultana,
Tri D.T. Nguyen, Jae Ho Park, Choong Seon Hong, and Eui-
Nam Huh. Collaborative Task Offloading for Overloaded Mobile
Edge Computing in Small-Cell Networks. In 34th International
Conference on Information Networking (ICOIN 2020), pages
717–722, Barcelona, Spain, January 2020. IEEE. doi: 10.1109/
ICOIN48656.2020.9016452.

[14] Siyao Cheng, Tian Ren, Hao Zhang, Jiayan Huang, and Jie Liu.
A Stackelberg-Game-Based Framework for Edge Pricing and
Resource Allocation in Mobile Edge Computing. IEEE Internet
of Things Journal, 11(11):20514–20530, June 2024. ISSN 2327-
4662. doi: 10.1109/JIOT.2024.3372016.

[15] Yuyi Mao, Jun Zhang, and Khaled B. Letaief. Dynamic Com-
putation Offloading for Mobile-Edge Computing with Energy
Harvesting Devices. IEEE Journal on Selected Areas in Com-
munications, 34(12):3590–3605, December 2016. ISSN 0733-8716.
doi: 10.1109/JSAC.2016.2611964.

[16] Haitao Zhao, Qixing Zhu, Yue Chen, and Yinyang Zhu. A
Research of Task-Offloading Algorithm for Distributed Vehicles.
In IEEE International Conference on Communications (ICC
2020), Workshops, pages 1–5, Virtual Conference, June 2020.
doi: 10.1109/ICCWorkshops49005.2020.9145331.

[17] Chenhao Wu, Zhongwei Huang, and Yuntao Zou. Delay Con-
strained Hybrid Task Offloading of Internet of Vehicle: A Deep
Reinforcement Learning Method. IEEE Access, 10:102778–
102788, September 2022. ISSN 2169-3536. doi: 10.1109/ACCESS.
2022.3206359.

[18] Hao Qin, Guoping Tan, Siyuan Zhou, and Yong Ren. Adaptive
Learning-Based Multi-Vehicle Task Offloading. In IEEE/CIC
International Conference on Communications in China (ICCC
2020), pages 1033–1038, Chongqing, China, August 2020.
IEEE. ISBN 978-1-7281-7328-3. doi: 10.1109/ICCC49849.2020.
9238793.

[19] Junhui Zhao, Qiuping Li, Yi Gong, and Ke Zhang. Computation
Offloading and Resource Allocation For Cloud Assisted Mobile
Edge Computing in Vehicular Networks. IEEE Transactions
on Vehicular Technology, 68(8):7944–7956, August 2019. ISSN
1939-9359. doi: 10.1109/TVT.2019.2917890.

[20] Narisu Cha, Celimuge Wu, Tsutomu Yoshinaga, Yusheng Ji,
and Kok-Lim Alvin Yau. Virtual Edge: Exploring Computation
Offloading in Collaborative Vehicular Edge Computing. IEEE
Access, 9:37739–37751, January 2021. ISSN 2169-3536. doi:
10.1109/access.2021.3063246.

[21] Yufei Zou, Li Lin, and Lei Zhang. A Task Offloading Strategy
for Compute-Intensive Scenarios in UAV-Assisted IoV. In 5th
IEEE International Conference on Electronic Information and

13

Communication Technology (ICEICT 2022), pages 427–431,
Hefei, China, August 2022. IEEE. ISBN 978-1-66547-212-8. doi:
10.1109/ICEICT55736.2022.9909200.

[22] Gurjashan Singh Pannu, Seyhan Ucar, Takamasa Higuchi, Onur
Altintas, and Falko Dressler. Dwell Time Estimation at Intersec-
tions for Improved Vehicular Micro Cloud Operations. Elsevier
Ad Hoc Networks, 122:102606, November 2021. ISSN 1570-8705.
doi: 10.1016/j.adhoc.2021.102606.

[23] Max Schettler, Gurjashan Singh Pannu, Seyhan Ucar, Takamasa
Higuchi, Onur Altintas, and Falko Dressler. Learning-based
Dwell Time Prediction for Vehicular Micro Clouds. In 18th IEEE
International Conference on Mobility, Sensing and Networking
(MSN 2022), pages 542–549, Guangzhou, China, December 2022.
IEEE. doi: 10.1109/MSN57253.2022.00091.

[24] Hui Guo, Lan-lan Rui, and Zhi-peng Gao. V2V Task Offloading
Algorithm with LSTM-based Spatiotemporal Trajectory Pre-
diction Model in SVCNs. IEEE Transactions on Vehicular
Technology, 71(10):11017–11032, October 2022. ISSN 1939-9359.
doi: 10.1109/TVT.2022.3185085.

[25] Zhiwei Zhang, Zehan Chen, Yulong Shen, Xuewen Dong, and
Ning Xi. A Dynamic Task Offloading Scheme Based on Location
Forecasting for Mobile Intelligent Vehicles. IEEE Transactions
on Vehicular Technology, 73(6):7532–7546, June 2024. ISSN
1939-9359. doi: 10.1109/TVT.2024.3351224.

[26] Xiaolong Xu, Chenyi Yang, Muhammad Bilal, Weimin Li, and
Huihui Wang. Computation Offloading for Energy and Delay
Trade-Offs With Traffic Flow Prediction in Edge Computing-
Enabled IoV. IEEE Transactions on Intelligent Transportation
Systems, 24(12):15613–15623, December 2023. ISSN 1558-0016.
doi: 10.1109/TITS.2022.3221975.

[27] Baiquan Lv, Chao Yang, Xin Chen, Zhihua Yao, and Junjie
Yang. Task Offloading and Serving Handover of Vehicular Edge
Computing Networks Based on Trajectory Prediction. IEEE
Access, 9:130793–130804, September 2021. ISSN 2169-3536. doi:

10.1109/ACCESS.2021.3112077.
[28] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. Ef-

ficient Multi-User Computation Offloading for Mobile-Edge
Cloud Computing. IEEE/ACM Transactions on Network-
ing, 24(5):2795–2808, October 2016. ISSN 1063-6692. doi:
10.1109/TNET.2015.2487344.

[29] Youngsu Jang, Jinyeop Na, Seongah Jeong, and Joonhyuk Kang.
Energy-Efficient Task Offloading for Vehicular Edge Computing:
Joint Optimization of Offloading and Bit Allocation. In 91st
IEEE Vehicular Technology Conference (VTC 2020-Spring),
pages 1–5, Virtual Conference, May 2020. IEEE. ISBN 978-1-
7281-4053-7. doi: 10.1109/VTC2020-Spring48590.2020.9128785.

[30] Yujiong Liu, Shangguang Wang, Qinglin Zhao, Shiyu Du,
Ao Zhou, Xiao Ma, and Fangchun Yang. Dependency-Aware
Task Scheduling in Vehicular Edge Computing. IEEE Internet
of Things Journal, 7(6):4961–4971, June 2020. ISSN 2327-4662.
doi: 10.1109/JIOT.2020.2972041.

[31] Muhammad Saleh Bute, Pingzhi Fan, Gang Liu, Fakhar Abbas,
and Zhiguo Ding. A Collaborative Task Offloading Scheme in
Vehicular Edge Computing. In 93rd IEEE Vehicular Technology
Conference (VTC 2021-Spring), pages 1–5, Virtual Conference,
April 2021. IEEE. doi: 10.1109/VTC2021-Spring51267.2021.
9448975.

[32] Jinming Shi, Jun Du, Jingjing Wang, Jian Wang, and Jian Yuan.
Priority-Aware Task Offloading in Vehicular Fog Computing
Based on Deep Reinforcement Learning. IEEE Transactions
on Vehicular Technology, 69(12):16067–16081, December 2020.
ISSN 1939-9359. doi: 10.1109/TVT.2020.3041929.

[33] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura
Bieker-Walz. Recent Development and Applications of SUMO
- Simulation of Urban MObility. International Journal On
Advances in Systems and Measurements, 5(3&4):128–138, De-
cember 2012.

14

