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Abstract—Task offloading in mobile edge computing (MEC) is
essential for reducing latency, balancing workload, and meeting
task deadlines. In the scope of vehicular networks, the concept of
a vehicular micro cloud (VMC) has been designed to handle such
edge computing without the need for installed MEC infrastructure.
However, the mobility vehicles and the need to fairly distribute
workload make it vital to develop an adaptive and intelligent
task offloading strategy. We propose a multi-agent twin delayed
deep deterministic policy gradient (MATD3)-based task offloading
strategy that enables vehicles to make decentralized, dynamic
offloading decisions. Our solution significantly enhances overall
fairness stability, and also improves delays to meet relevant
deadlines. Our approach is evaluated in a single intersection
scenario and a real-world traffic scenario from Nagoya. We
compare our approach with a greedy and exhaustive baseline
that sequentially offloads tasks to the current least-loaded vehicle.
Compared to the baselines, our solution can deal with dynamic
scenarios and provide long-term workload fairness in combination
with reduced delays.

Index Terms—virtualized edge computing, task offloading,
fairness, workload balance, task migration, vehicular micro cloud

I. INTRODUCTION

Mobile edge computing (MEC) places computing resources
near users to reduce latency and local computing burdens
by offloading computational tasks to nearby edge servers. In
normal 5G MEC setups [1, 2], these edge nodes are stationary
and can be centrally managed, allowing coordinated task
offloading from users to edge servers. In order to bridge
limited deployments and to provide better resource utilization,
virtual edge computing (V-Edge) has been proposed, which
aims at edge computing not only using 5G edge servers but
also available computational resources at nearby users [3].
Thanks to advancements in cellular V2X (C-V2X) [4, 5], the
concept of a vehicular micro cloud (VMC) [6, 7] has been
developed, allowing vehicles within a cluster to collaboratively
better process the computation tasks of each other. This
decentralized system enables distributed task offloading and
resource allocation without relying on fixed infrastructure.

Task offloading in edge computing but particularly in
VMCs presents several challenges. We observe high vehicular
mobility [8, 9] with uncertain and hard-to-predict dwell
times [10]. Communication quality between vehicles and to the
radio access network fluctuates significantly, and for previous
solutions, the dependence on a central controller limits the
applicability in many scenarios [11]. Breaking down relevant

research questions, we need to understand (1) when and where
tasks should be offloaded, (2) which vehicles or devices should
offload tasks, and (3) what should be the migration order among
tasks. Key performance indicators (KPIs) to be optimized
include minimizing task completion delay, ensuring fair utiliza-
tion and workload of distributed computing resources, reducing
energy consumption, and maintaining robust performance under
changing traffic dynamics.

In this work, we target two primary objectives: minimizing
task completion delay and promoting workload fairness among
vehicles, i.e., the virtual edge servers in a VMC. We propose
a decentralized, learning-based task offloading strategy using
multi-agent twin delayed deep deterministic policy gradient
(MATD3), which enables each vehicle to make continuous
offloading decisions based on its observation of the VMC
environment.

We compare our method against the three baselines. First, a
heuristic policy that offloads tasks to minimize task completion
time, with full knowledge of the system state [12, 13]. Secondly,
an exhaustive fairness-oriented method that always offloads
tasks to the vehicle with the lowest current workload, similar
to the work in [14, 15]. Third, we also use a random
offloading approach where tasks are assigned to random
vehicles regardless of context, which is often used in the related
work as a baseline. To evaluate our approach under realistic
conditions, we consider two types of traffic environments.
A simple single-intersection scenario, which allows for a
very controlled experiment, and three realistic intersections
extracted from Nagoya Urban Mobility (NUMo) scenario [8]:
city (downtown), a state road, and a suburban intersection. For
evaluation, we use task completion time, task punctuality (on-
time vs. late), Jain’s fairness index over vehicular computing
workloads, and utilization rates of each vehicle’s computing
capacity in the VMC as metrics.

Our main contributions can be summarized as follows:
• We propose a fully decentralized MATD3-based frame-

work for task offloading;
• we particularly focus on improving the fairness in offload-

ing decisions measured using the Jain’s fairness index;
and

• we present and discuss simulation results showing that
our method performs robustly and adapts intelligently to
changing environments, outperforming state of the art
baseline approaches.



II. RELATED WORK

Task offloading in MEC has been extensively studied [1, 16].
This includes work on energy consumption [17], minimizing
latency [18], and monetary cost [19], increasing task success
rates [20], and resilience [21]. Recently, machine learning (ML)
techniques have been widely adopted to dynamically optimize
task offloading decisions, particularly also in vehicular edge
computing domain as addressed in this paper. In the following,
we focus on related work on fairness-aware optimization and
learning-based task offloading approaches, which are related
to our work and contributions.

A. Fairness-Aware Task Offloading

Fairness in task offloading within MEC environments is
crucial for preventing resource monopolization by individual
users and avoiding imbalanced computational loads among edge
servers. Xiao et al. [14] proposed a fairness-aware offloading
strategy by formulating the task-server matching problem as
a bipartite graph and solving it using the Kuhn-Munkres
algorithm. Specifically, their approach defers the scheduling
of less time-sensitive tasks (i.e., tasks with execution time
Ttask < 1

2Tmax) by placing them in a stack to be reconsidered
in subsequent scheduling rounds. This strategy improves overall
system utility, increases task completion rates, and enhances
fairness compared to traditional methods.

Similarly, Zhou and Zhang [15] proposed a two-level
algorithm, where the upper-level component determines a
global offloading strategy, and the lower-level algorithm focuses
on ensuring fairness among tasks. However, their definition
of fairness is task-centric, aiming to provide equal execution
opportunities for tasks, rather than considering fairness across
users or servers. As such, fairness in resource distribution
among different nodes is not addressed in their work.

Zhang et al. [22] propose a two-layer scheme called Two-
Step Fair Task Offloading, which models the problem as a
cooperative game aimed at enhancing fairness while minimizing
task delays. Although their work is situated in the context of
fog computing with cloud server assistance, their methodology
for fairness evaluation remains relevant and insightful. Notably,
they employ Jain’s index to quantify fairness, focusing on
energy consumption rather than workload or latency. By
considering both current and historical energy consumption,
their approach offers a valuable reference for future studies that
incorporate energy-aware fairness in vehicular edge computing.

Building on this, Vu et al. [23] developed an energy-aware
proportional fairness approach that jointly optimizes offloading
and resource assignment. The proposed mechanism considers
energy constraints and dynamically adapts to task demands,
offering a practical balance between efficiency and fairness in
resource-constrained environments.

These fairness-driven approaches lay a strong foundation for
enhancing equity in edge computing. However, they often rely
on deterministic or heuristic methods, which may struggle to
adapt optimally in highly dynamic edge computing scenarios.

B. Reinforcement Learning-based Task Offloading

Reinforcement learning (RL) has emerged as a powerful tool
to address the dynamics and complexity of decision making
involved in task offloading for MEC, particularly in vehicular
environments where latency, mobility, and resource constraints
must be tightly managed.

Shuai et al. [24] proposed a deep reinforcement learning
(DRL)-based adaptive task offloading strategy tailored for
vehicular edge computing networks. Their method leverages
a traditional deep Q-learning (DQL) framework – comprising
a single actor and a single critic network – to make dynamic
offloading decisions. The reward function is designed around
a single objective: minimizing processing delay. While this ap-
proach performs adequately in delay-focused settings, it is less
suitable for systems like ours that require two objectives, such
as both latency and fairness. Nevertheless, their consideration
of multi-hop path selection for task transmission is particularly
noteworthy and aligns with one of our identified directions for
future research.

To address the requirements of time-critical applications,
Farimani et al. [25] proposed a deadline-aware task offloading
framework based on the Rainbow DQL algorithm. Their method
effectively incorporates task deadlines into the reward design
– using the difference between the number of successful and
failed tasks normalized by time cost. However, they assume that
all tasks are offloaded to road side unit (RSU). This assumption
overlooks the potential of vehicles acting as edge servers in
a VMC, thereby limiting resource utilization. Nevertheless,
the study’s validation using real traffic data from a circular
road in France [26] adds practical credibility. Their algorithm
demonstrates superior performance over classical heuristics
by dynamically adapting offloading decisions to meet real-
time constraints, offering a strong example of deadline-aware
offloading in vehicular networks.

Wang et al. [27] explored the application of the twin delayed
deep deterministic policy gradient (TD3) algorithm in MEC
environments. Although their study does not involve vehicular
edge computing (VEC), their findings offer valuable insights.
Specifically, their work demonstrates the strong learning
capability of TD3 in the context of task offloading, highlighting
its advantages in stability and convergence speed.

Most recently, Memedi et al. [28] presented an open source
tool for RL-based studies. The running example was to
optimize task-resource matching by rewarding successful task
completions.

In summary, these studies collectively demonstrate that
deep and actor-critic-based reinforcement learning approaches
significantly enhance task offloading in vehicular and mobile
edge computing environments. However, challenges remain
in terms of generalization under highly dynamic topologies
and coordinated learning across multiple agents. To this end,
our work builds on the strengths of these RL approaches by
adopting a MATD3 framework specifically designed for coop-
erative vehicular edge computing environments, and integrating
fairness constraints directly into the learning process.
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Figure 1. Task offloading in a vehicular micro cloud. In this example, vehicles
B and D have spare resources, while A and C are overloaded. Therefore, A
offloads their tasks to B and D and C offloads tasks to D, improving overall
time efficiency and promoting a more balanced workload distribution across
vehicles.

III. SYSTEM MODEL

In the following, we introduce the system model as well as
the main problem of task migration.

A. Overview of Vehicular Micro Clouds

A concrete realization of virtualized edge computing is
the concept of a vehicular micro cloud (VMC) [6, 7]. A
VMC comprises of vehicles in a certain region. These vehicles
share available communication and computation resources for
distributed edge computing. An example is depicted in Figure 1.
In this case, four cars form a VMC. Vehicles can act as both task
generators and mobile edge servers with varying computational
capabilities, enabling efficient task processing. Tasks generated
by vehicles may be heterogeneous in data size, computational
complexity, and deadlines. The dynamics of all participating
vehicles can be well described, e.g., in terms of their dwell
times, to support task migrations schedules [10, 13].

B. Task Model

Following the notion in [13], we denote task IDs by k
and use max{k} to represent the total number of tasks
generated in the VMC. Each task varies in data size (measured
in megabytes, MB), computational complexity (measured in
million instructions, MI), and deadline (measured in seconds, s).
The total delay Tk for task k is the sum of its communication
time T c

k , waiting time Tw
k , and processing time T p

k , formulated
as:

Tk ≜ Tw
k + T c

k + T p
k .

C. Vehicle Model

Vehicles in a VMC have heterogeneous computing capa-
bilities (in million instructions per second, MIPS), varying
workloads (in million instructions, MI), and mobility related
parameters such as location and speed. We use t and i to
denote time steps and individual cars, respectively. We use
V ehi to denote the i-th vehicle in a VMC and Wi represents
its corresponding computing workload. For a given task, V eh∗

represents the vehicle that processes it.

D. Communication Model

The transmission rate between two vehicles is calculated
using the free space path loss (FSPL) model and the Shannon
capacity. Let vehicle i be the transmitter and vehicle j be the
receiver. At simulation time t, the transmission rate Ri,j(t) in
Mbps is computed as:

Ri,j(t) =
B

106
· log2 (1 + SNRi,j(t)) (1)

where B is the communication bandwidth in Hz (typically
10 MHz), and SNRi,j(t) is the signal-to-noise ratio between
vehicles i and j at time t. The SNR is derived from the received
signal power and noise power as:

SNRi,j(t) = 10
Prx,i,j(t)−N0

10 (2)

where: Prx,i,j(t) is the received power in dBm, N0 is the
noise power in dBm, Ptx is the transmit power, di,j(t) is the
Euclidean distance in meters between vehicle i and j at time
t, and f is the carrier frequency.

The received power is computed using the FSPL model as:

Prx,i,j(t) = Ptx − FSPL(di,j(t)) (3)

FSPL(d) = 20 log10(d) + 20 log10(f) + 20 log10

(
4π

c

)
(4)

with c = 3× 108 m/s being the speed of light.

E. Agent Model

In the decentralized MATD3 framework, each vehicle acts
as a learning agent responsible for making task migration
decisions based on observations of the environment. Unlike
the centralized controller, there is no global information
collection and coordination. Each agent observes the common
environment while independently adapts its migration policy
and updates reinforcement network parameters.

At each time slot t, an agent performs the following steps:
1) State observation: The agent observes the state st in the

current VMC, including vehicular computing capacity and
cars’ workload.

2) Information Recording: Upon task generation, the agent
records their task attributes (e.g., data size, deadline,
computational load).

3) Action selection: The actor network πθi(st) determines
where to offload the task based on the current state st.

4) Learning: During training, the agent stores observations
and actions and updates its network parameters.

F. Baseline Algorithms

1) Workload Balance-oriented Greedy Task Migration
Heuristic: In the first baseline approach (Algorithm 1), each
newly generated task is offloaded to the vehicle with the lowest
current workload. Although there is no widely adopted heuristic
that simply "always offloads tasks to the least-loaded server" or
uses "workload fairness" as the sole objective, many existing
studies take into account factors such as server idleness and
current workload, such as [14, 15]. The tasks generated in the



Algorithm 1 Heuristic Offloading: Least-Workload First
Input: Set of vehicles V eh, tasks T, current workloads Wi

for each vehicle V ehi

Output: Task offloading based on minimum workload
1: for each task Tskk in T do
2: Identify generator vehicle V ehi for task Tskk
3: Find target vehicle with minimum workload:

V eh∗ = arg min
V ehj∈V eh

Wj

4: if V eh∗ = V ehi then
5: Process task locally
6: else
7: Offload task Tskk to V eh∗

8: end if
9: Update workload WV eh∗+ = MI(Tskk) and

WV ehi− = MI(Tskk)
10: end for

Algorithm 2 Heuristic Offloading: Shortest-Completion-Time
First
Input: Set of vehicles V eh, sorted tasks Tsorted, current

workloads Wi, CPU capacities Ci for each vehicle V ehi

Output: Task offloading based on estimated completion time
1: Tsorted ← Newly generated tasks sorted by deadline
2: for each task Tskk in Tsorted do
3: Identify generator vehicle V ehi for task Tskk
4: Calculate the completion time on all vehicles V ehj :

Tk ≜ Tw
(j,k) + T c

(j,k) + T p
(j,k)

5: Find target vehicle with minimum estimated completion
time:

V eh∗ = arg min
V ehj∈V eh

T (j,k)
comp

6: if V eh∗ = V ehi then
7: Process task locally
8: else
9: Offload task Tskk to V eh∗

10: end if
11: Update workload WV eh∗+ = MI(Tskk) and

WV ehi− = MI(Tskk)
12: end for

current time slot are ordered by their generation time, with
no pre-scheduling applied. The central controller selects the
car with the minimum workload for each task. If the source
vehicle already has the least workload, the task is processed
locally.

2) Shortest Time-oriented Greedy Task Migration Heuristic:
In the second baseline approach (Algorithm 2) [13], we assume
perfect knowledge about the mobility of cars and assign newly
generated tasks according to earliest deadline first (EDF). That
is, we offloaded to the vehicle that will complete it in the
shortest time. The task completion time is calculated following
[13] and the vehicle with the minimum estimated completion

time is selected for execution. This strategy aims to minimize
individual task delay instead of balancing workload across the
VMC.

IV. MATD3-BASED FAIRNESS-AWARE TASK MIGRATION

This section introduces our proposed MATD3 approach for
decentralized task migration. Our goal is to optimize task
completion time and balance workload among vehicles in a
dynamic traffic environment.

MATD3 adopts a multi-agent framework where each vehicle
acts as an independent agent, making task offloading decisions.
Once an action is taken (e.g., task offloading), the global
state, including updated workloads and task assignments, is
shared across all agents within the VMC. Importantly, the
twin critic networks evaluate action-state pairs across the
entire environment, not just for their own agents. This global
evaluation stimulates more effective learning and accelerates
convergence to better offloading strategies. The decentralized
nature of MATD3, with each vehicle as a decision-maker,
enhances system scalability and flexibility. This design is
generally well-suited to dynamic traffic conditions, where
centralized control may become inconvenient due to high
mobility and communication delays.

A. MATD3 Structure

Figure 2 illustrates the architecture of the proposed MATD3-
based task offloading framework adapted to task offloading
decision-making in VMC. In this multi-agent system, each
vehicle acts as an agent, interacting with the environment,
i.e., observing the VMC and obtaining the current state. An
actor network within each agent generates offloading actions,
while two independently parameterized critic networks use
the global state and action of all agents as input, to reduce
overestimation bias. However, critics do not communicate with
each other’s network parameters. To stabilize training, target
networks – soft copies of the actor and critics – are used for
stabilizing target value computation. This architecture enables
decentralized decision-making across vehicles; but critics still
evaluate the global situation for better and meaningful learning.

B. Reward Function

The average completion time of N tasks at time t is
computed as:

T̄comp(t) =
1

N

k=N∑
k=1

T sum(k, t, p(k)) (5)

where p(k) is the processing car of task k. The computational
workload of a vehicle is formulated as how many of instructions
it still needs to execute:

W (i, t) =

N∑
k=1

MI(k) + (1− αk0,t)MI(k0) (6)

where k represents the k-th task in the waiting queue of car i,
k0 implies the current being processed task, αk0,t implies the
proportion of instructions that have been finished of Tsk(k0).
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Figure 2. MATD3 Architecture of the proposed MATD3-based task offloading
framework in vehicular edge computing. 1) Agents: Each vehicle (agent)
interacts with the VMC, observing local states. 2) Actor network: The actor
network generates continuous offloading actions. 3) Twin critic networks: Two
independently parameterized critics evaluate actions to reduce overestimation
bias, which a single critic cannot effectively achieve. 4) Replay buffer: The
replay buffer stores past experiences, which are sampled to update the networks
using off-policy learning. 5) Three target networks: To stabilize training, target
networks (soft copies of the actor and two critics) are used for smoothed
target value computation. The multi-agent architecture allows vehicles to learn
optimal migration policies, adapting to mobility and resource variations.

To quantify how the computational workload is distributed
across vehicles, we adopt Jain’s fairness index [29], a widely
used metric alsd in the field of task offloading [14, 22]. A higher
value indicates a better-balanced task computing workload
among cars, showing less likely resource overloading and
implying fairness. Jain’s fairness index of cars’ computing
workload at time t is computed as:

J(t) =

(∑i=n
i=1 W (i, t)

)2

n
∑i=n

i=1 W (i, t)2
(7)

where W (i, t) is the workload of car i at time t, and n is
the number of vehicles. The reward function in the MATD3-
based task migration strategy is designed to optimize both task
completion time and workload fairness among vehicles. It is
defined as:

R(t) = λ

(
1

T̄comp(t)

)
+ (1− λ)J(t) (8)

where λ is a weight parameter that balances between task
completion time and fairness, T̄comp(t) is the average task
completion time across all tasks that have been completed no

Algorithm 3 Multi-Agent TD3 Training
Input: Vehicles V eh, tasks T, actor networks πθ, critic

networks Qϕ1
, Qϕ2

, replay buffer D, state s, target actor
networks π̂θ, target critic networks Q̂ϕ1 , Q̂ϕ2

Output: Trained policies for distributed offloading
1: Initialize each generator V ehi ∈ V eh with:

• Actor network πθi (offloading decision)
• Twin critics Qϕi1

, Qϕi2
(action evaluation)

• The replay buffer D
2: for each timestep t do
3: for each generator V ehi of T do
4: Each car observes st,j∀V ehj

5: Select action at,j = πθj (st,j)+ϵ (exploration noise)
6: Execute at,j , observe reward rt,j , new state st+1,j

7: Store (st,j , at,j , rt,j , st+1,j) in D

8: end for
9: if buffers are sufficiently full then

10: for each vehicle V ehi do
11: Sample mini-batch (s, a, r, s′) from D

12: Compute target

Q̂target = r + γmin(Qϕ′
i1
(s′, a′), Qϕ′

i2
(s′, a′))

13: Update critics: minimize loss
14: if update step then
15: Update actor πθi via gradient ascent
16: Update target networks
17: end if
18: end for
19: end if
20: end for

later than time t, and J(t) is the contemporary fairness metric
of the computing workload of cars at time t. The average
reward value over a duration δ is

R(δ) =

t=δ∑
t=0

R(t). (9)

The reward function encourages lower task completion time
while maintaining fairness in workload distribution.

C. Algorithm

Our proposed Multi-Agent TD3 framework operates in
two distinct phases: training (Algorithm 31) and execution
(Algorithm 4). During the training phase, vehicles iteratively
refine their offloading policies using actor-critic networks,
leveraging a replay buffer to store past experiences and improve
decision making through policy updates. Each vehicle selects
actions with exploration noise, updates its critic networks by
minimizing loss, and periodically refines the actor network.

1In Algorithm 3, r is the immediate reward received after taking action a
in state s, γ is the discount factor that balances immediate and future rewards,
s′, a′ is the next state and the next action; Qϕ′

i1
, Qϕ′

i2
is the two target critic

Q values, and Q̂target is the ultimate target Q-value used for updating critic
networks.



Algorithm 4 Multi-Agent TD3 Task Offloading Execution
Input: Trained actor network πθi for each vehicle
Output: Dynamic task migration decisions following EDF

1: for each timestep t do
2: T← All newly generated tasks
3: for each task Tskk in T do
4: Identify generator car V ehi for task Tskk
5: Observe state st,j = (workload Wj , MIPS)∀V ehj

6: Select offloading action at,j = πθj (st,j)
7: if at,j indicates offloading to a car V ehj then
8: Offload task to V ehj

9: else
10: Process task locally
11: end if
12: Update vehicle workloads after execution
13: end for
14: end for

Once training is complete, execution uses the trained policies
to perform task offloading. Tasks are sorted based on deadlines
and sequentially offloaded, guided by the learned policies.
By dynamically adapting to network conditions and vehicle
mobility patterns, the model improves both system efficiency
and fairness.

V. EVALUATION

Without loss of generality, we evaluate our approach in
two traffic environments (cf. Figure 3): (1) a simple single-
intersection scenario with new vehicles regularly driving into
the VMC at a fixed frequency and (2) the Nagoya Urban Mo-
bility (NUMo) scenario [8] as one of the most comprehensive
urban traffic scenarios, providing a highly realistic vehicle
mobility of the entire city of Nagoya, Japan. In particular, we
selected a city, a state road, and a suburban location. These
scenarios differ in terms of average vehicle count at each time
step and driving speed distribution. Table I presents key traffic
parameters among the selected four scenarios.

To evaluate our system under various traffic and computing
conditions, we configure a set of scenarios based on both task
and vehicular computational ability parameters. Table II sum-

Table I
ROAD TRAFFIC PARAMETERS ACROSS 4 SCENARIOS

Scenario Avg. # of cars Avg. speed [km/h]

Single Intersection 6.00 27.86

Nagoya
Downtown 17.20 24.864
State 10.01 22.976
Suburb 6.30 19.090

Table II
TASK AND CAR PROPERTIES

Data size [MB] Complexity [MI] CPU [MIPS] Deadline [s]

U(0.1, 1) U(1000, 5000) U(1000, 5000) U(1, 1.5)

(a) Simple inter-
section

(b) Nagoya city (c) Nagoya state
road

(d) Nagoya subur-
ban

Figure 3. Selected mobility scenarios

marizes the characteristics of tasks and computer capabilities of
cars, including data size, computational complexity, processing
power, and deadlines. We simulated 200 seconds with a time
step of 1 s in all traffic scenarios.

A. Simple Intersection

We first use the single intersection scenario (cf. Figure 3a).
This scenario contains a single traffic light, four entry points,
and 16 possible routes, including straight paths, right turns, left
turns, and U-turns. The map covers an area of approximately
400m × 400m. After generating mobility for low traffic
densities, the simulation outputs floating car data, including
position, speed, lane, and other information about every vehicle
at each time step in the simulation.

Figure 4a presents the overall distribution of task completion
times, while Figure 4b further distinguishes between on-time
and late task completions (both figures use violin plots to
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indicate the underlying distributions). In these figures, fully
opaque colors represent tasks completed within their deadlines,
whereas semi-transparent areas indicate tasks that missed
their deadlines. Notably, the performance of the shortest-time
approach aligns closely with the EDF-based method proposed
in our previous work [13]. Our proposed method achieves a
lower average task completion time, while the shortest-time
approach gains a higher on-time completion rate. Both methods
outperform the other two baselines in terms of time efficiency.
Interestingly, the least-workload strategy also demonstrates a
relatively strong on-time rate in this scenario, suggesting that,
under suitable conditions, it has potential and warrants further
investigation.

Although the Jain’s fairness index (Figure 5a) for MATD3
does not surpass those of the least-workload and random
approaches in the single-intersection scenario, it still achieves
a satisfactory level of fairness, which, importantly, is much
better than the shortest-time scheme. The computing resource
utilization results (Figure 5b) reveal an interesting phenomenon:
The workload balance-oriented methods consistently maximize
the use of all available computing resources, resulting in a
utilization rate of 1. In contrast, our proposed MATD3 also
achieves high-level resource utilization.

B. Nagoya Scenarios

We focus on the Nagoya city scenario and analyze data
from the morning rush hour. The simulation results for task
completion time versus task deadlines, vehicle workload
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Figure 6. Nagoya city: time efficiency performance

0.0 0.2 0.4 0.6 0.8 1.0
Jain's Index

0.0

0.2

0.4

0.6

0.8

1.0

eC
D

F

MATD3 (mean=0.929)
Shortest-Time (mean=0.887)
Least-Workload (mean=0.936)
Random (mean=0.824)

(a) Jain’s fairness index

MATD3 Shortest-Time Least-Workload Random0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

C
ar

 U
til

iz
at

io
n 

R
at

e

98.0%

88.2%

100.0% 100.0%

MATD3
Shortest-Time
Least-Workload
Random

(b) Utilization

Figure 7. Nagoya city: fairness and resource utilization



MATD3 Shortest-Time Least-Workload Random0

1

2

3

4

5

6

Ta
sk

 C
om

pl
et

io
n 

Ti
m

e 
(s

)

0.80

1.70

on-time
 rate:

 62.0%

1.03

1.64

on-time
 rate:

 65.1%

1.08

1.90

on-time
 rate:

 35.7%

0.94

2.04

on-time
 rate:
 9.6%

Average value
MATD3 (on-time/late)
Shortest-Time (on-time/late)
Least-Workload (on-time/late)
Random (on-time/late)

(a) Distribution of on-time / late tasks

0.0 0.2 0.4 0.6 0.8 1.0
Jain's Index

0.0

0.2

0.4

0.6

0.8

1.0

eC
D

F

MATD3 (mean=0.840)
Shortest-Time (mean=0.703)
Least-Workload (mean=0.937)
Random (mean=0.812)

(b) Jain’s fairness index

Figure 8. Nagoya state road

fairness, and its utilization rate are presented in Figures 6
and 7. As can be seen in Figure 6a, our proposed method
significantly decreases task completion times compared to the
other approaches. Figure 6b further illustrates that our approach
effectively avoids excessively long task completion cases and
achieves a an 80 % on-time completion rate. While the least-
workload method achieves on average a slightly better fairness,
our proposed approach still maintains a reasonable level of
fairness, as shown in Figure 7a. In contrast, shortest-time and
random results in noticeably reduced fairness. Similar to the
single intersection scenario, the computing resource utilization
rate shows that the least-workload mechanism still maintains
a consistent 100% utilization rate (cf. Figure 7b). In contrast,
our proposed solution achieves almost full utilization, which
can be attributed to its double-objective design that considers
both efficiency and fairness.

Since the other two scenarios exhibit similar performance
across the four approaches, we decided to only briefly report
on these results. The simulation results for task completion
time versus task deadlines and workload fairness are presented
in Figure 8 for the state road and in Figure 9 for the suburban
intersection. As can be seen, the same effects can be seen, i.e.,
our MATD3-based algorithm enables lowest task completion
times with best on-time ratio, while achieving second to best
fairness distribution (only least-workload performs better but
is much worse in task completion time).
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VI. CONCLUSION

We presented a MATD3 framework for efficient and fair task
offloading in vehicular micro clouds. By integrating actor-critic
reinforcement learning with decentralized decision-making,
our approach effectively addresses the trade-off between task
completion delay and users’ computing workload fairness. Each
agent independently makes optimal offloading strategies, and
its critic networks learns from global information and feedback
to its actor, while target networks stabilize performance. The
decision-making process dynamically evaluates environments
and computes migration costs and benefits to determine the
optimal offloading strategy. This approach considers both task
completion delays and workload fairness among vehicles in
the same VMC, which is also shown in the reward function.
Overall, the proposed MATD3 effectively balances the primary
objective of efficient task completion with the secondary goal of
maintaining moderate workload fairness. Experimental results
demonstrate that the MATD3 framework significantly improves
the comprehensive performance of task migration, compared
to the random, fairness-oriented exhaustive, and the shortest-
time-oriented approach. The combination of multiple agents
(decentralized task offloading decisions), one actor and twin
critic networks with extra target networks for more stable
policy updates, ensures that delay-sensitive tasks are effectively
managed in dynamic vehicular environments with vehicles’
workload fairness aware.



Future work may explore several directions to further
improve the effectiveness and adaptability of the proposed
MATD3-based task offloading strategy. These include refining
the reward function to better capture fairness in workload
distribution, validating the model across a wider range of
real-world traffic scenarios, and enabling task partitioning or
replication to increase flexibility and reliability. Additionally,
embedding dwell time prediction from [13] can make the
system more realistic. Multi-hop task migration, where tasks
are relayed through intermediate vehicles, could also be
investigated to extend offloading range and optimize latency in
sparse or highly dynamic networks. By advancing these areas,
we aim to enhance the robustness, scalability, and fairness of
intelligent task offloading in vehicular edge computing systems.
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