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Abstract—In recent years, model poisoning attacks have
emerged as a threat to the resilience of decentralized federated
learning (DFL), as they corrupt model updates and compromise
the integrity of collaborative training. To defend DFL against
emerging model poisoning attacks based on graph neural net-
works, this paper proposes a specialized defense framework,
visual explanation class activation mapping for DFL (ViCAM-
DFL). The ViCAM-DFL transforms the high-dimensional local
model updates into low-dimensional, visually interpretable heat
maps that reveal adversarial manipulations. These heat maps
are further refined using an integrated auto-encoder, which
amplifies subtle features to enhance separability and improve
detection accuracy. Experimental evaluations based on non-i.i.d.
CIFAR-100 datasets demonstrate that our VICAM-DFL achieves
substantial improvements in detecting adversarial manipulations.
The framework consistently delivers optimal results in terms
of key evaluation metrics, including Recall, Precision, Accuracy,
F1 Score, and AUC (all reaching 1.0), while maintaining a
False Positive Rate (FPR) of 0.0, outperforming baseline meth-
ods. Furthermore, VICAM-DFL exhibits strong robustness and
generalizability across different deep learning architectures, e.g.,
ResNet-50 and REGNETY-800MF, confirming its adaptability and
effectiveness in diverse DFL settings.

Index Terms—Decentralized federated learning, model poison-
ing, resilience, defense frameworks, and visual explanations.

I. INTRODUCTION

CyberEdge networks represent a next-generation architec-
ture that combines mobile edge computing (MEC) with ma-
chine learning to deliver high-bandwidth, low-latency con-
nectivity tailored for immersive metaverse applications, e.g.,
augmented reality (AR), virtual reality (VR), and mixed reality
(MR) [1]. Ensuring user privacy and efficient bandwidth
usage is essential in CyberEdge networks, where edge devices
support real-time interactions and generate sensitive data, such
as biometrics, geolocation, and behavioral patterns, making
them attractive targets for malicious actors [2], [3].

To protect data privacy subject to bandwidth limitations,
decentralized federated learning (DFL) has emerged as a

promising solution in CyberEdge networks, enabling privacy-
preserving and communication-efficient model training across
distributed devices without exposing raw user data [4]-[8].
Specifically, each user communicates and exchanges model
updates directly with its neighboring nodes in a peer-to-
peer fashion. During training, each user updates its local
model using private data and shares model parameters with its
neighbors. These updates are aggregated locally at the user to
align models across the network. This decentralized approach
enhances robustness, trust, and scalability, making it partic-
ularly well-suited for metaverse applications in CyberEdge
networks [9].

While DFL effectively mitigates data privacy leakage by
keeping user data local, its distributed architecture also intro-
duces critical vulnerabilities, particularly to model poisoning
attacks. An attacker-controlled malicious user can deliberately
alter local model parameters and propagate these compromised
updates to neighboring nodes, leading to model corruption
and significantly undermining the resilience of DFL [10].
For instance, as illustrated in Fig. 1, malicious users embed
adversarial features or inject noise into their local updates,
enabling them to bypass conventional poisoning defenses and
degrade the performance of adjacent models.

To address the model poisoning attacks on DFL for en-
hancing the resilience, existing distance-based and machine
learning-based defense mechanisms, e.g., Euclidean distance
[11], cosine similarity [12], support vector machine (SVM)
[13] and K-means [14], [15], have been developed to filter
out suspicious or unreliable local models before aggregation.
However, these defense measures face several challenges.
First, excessive removal of local model updates and the costly
analysis of high-dimensional local model updates may lead to
inefficiency and significant degradation in model quality. Sec-
ond, attackers can eavesdrop on benign local models to craft
malicious updates that closely mimic them, thereby evading
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Fig. 1: Model poisoning attacks on DFL-enabled CyberEdge
networks, where JJ benign users and N malicious users share
locally trained model updates directly with their neighbors.

current defense mechanisms like Krum [16], Trimmed-mean
[11], and Median [11]. Lastly, machine learning-based defense
mechanisms are highly sensitive to parameters and suboptimal
tuned parameters may lead to poor performance. Especially,
the latest graph auto-encoder (GAE)-based model poisoning
attacks [10] have been shown to bypass the existing distance-
based defense mechanisms.

In this work, we propose a new visual explanation-based
defense model, visual explanation class activation mapping
for DFL (ViCAM-DFL), where ViCAM [17] is developed to
create a heat map for every local model update of neighbors
before aggregation. Due to the potential errors of ViCAM-
assisted malicious user identification, an auto-encoder is
smoothly incorporated in VICAM-DFL to highlight the hidden
features of the heat maps by remapping them, which improves
the distinguishability of the heat maps and the success rate
of discerning abnormal heat maps and malicious local model
updates. Our key contributions include:

o Our proposed VICAM-DFL leverages an extended visu-
alization of class activation maps and auto-encoder to ef-
fectively detect inconspicuous manipulations, improving
the resilience of DFL in CyberEdge networks.

o« The VICAM-DFL ingeniously exploits class activa-
tion maps to assist in transforming the high dimen-
sional, indistinct local model updates in DFL into low-
dimensional, visually interpretable heat maps.

o To eliminate potential errors of ViCAM-assisted mali-
cious user identification, an auto-encoder is seamlessly
incorporated into VICAM-DFL, refining the heat maps
to highlight their latent features and enhance their distin-

guishability. This improvement aids in more effectively
identifying anomalous heat maps and detecting malicious
local model updates.

The paper is organized as follows: Section II provides an
overview of defense strategies based on Euclidean distance and
machine learning. In Section III, we explore the DFL model
and the threat model. The ViCAM-DFL defense framework is
proposed in Section IV. We present our performance evalua-
tion in Section V. The paper is concluded in Section VI.

II. RELATED WORK

Several methods have utilized Euclidean distance to identify
poisoned local model updates in DFL. Notably, approaches
such as Krum [16] and its extension Multi-Krum [16] assign
scores to local model updates by summing their Euclidean
distances from neighboring updates. Multi-Krum subsequently
filters out updates with the highest scores, thereby excluding
potential outliers. Alternatively, the Trimmed-mean [11] algo-
rithm adopts a coordinate-wise aggregation strategy, which
reduces sensitivity to anomalous contributions. Beyond Eu-
clidean distance-based defense strategies, machine learning
models have been employed to identify malicious behavior
in DFL. The AUROR framework utilizes K-means clustering
to group local model updates [14]. Updates residing in small
clusters beyond a predefined distance threshold are flagged as
malicious and excluded. Another technique, federated anomaly
analytics enhanced distributed learning (FAA-DL), employs
an unsupervised SVM with a tailored kernel and soft-margin
configuration to delineate nonlinear decision boundaries, ef-
fectively separating benign and adversarial contributions [13].
Given the importance of detecting CyberEdge network attacks,
[18] introduced an FL framework that integrates an isolation
forest algorithm. This approach identifies and filters malicious
local model updates pre-aggregation by noting that malicious
models tend to reside closer to the root in the forest’s leaf
nodes, thereby simplifying their detection. Furthermore, deep
reinforcement learning was utilized to dynamically fine-tune
the threshold for identifying these malicious updates.

Despite these advances, both Euclidean distance and ma-
chine learning-based defenses face challenges. In deep neural
networks, the model updates may involve millions or even
billions of parameters, which creates issues due to the “curse
of dimensionality.” In high-dimensional spaces, Euclidean
distances become less meaningful and may fail to distinguish
between malicious and benign model updates. Meanwhile,
machine learning-based detection methods often require metic-
ulous hyperparameter tuning and precise threshold setting,
which may be unreliable. Recent research [19] further sug-
gested these approaches may not consistently perform well in
anomaly detection scenarios.

To overcome these challenges, our proposed ViCAM-
DFL avoids relying on Euclidean distance-based metrics.
This approach leverages ViCAM to convert complex, high-
dimensional model updates into visual and low-dimensional
heat maps. To further enhance discriminability, we integrate an
auto-encoder that refines the heat maps by emphasizing subtle



features indicative of poisoning. By combining interpretability
with dimensionality reduction, VICAM-DFL significantly im-
proves the robustness and accuracy of malicious model update
detection in DFL CyberEdge networks.

III. MODEL POISONING ATTACKS IN DECENTRALIZED
FEDERATED LEARNING

A. Decentralized Federated Learning

Considering a DFL system with a set of users V. We let
|V| denote the number of users in the system. The network
topology of this DFL system is defined by an undirected
and unweighted communication graph G = (V, ), where £
denotes the set of edges between users, and self-loops are
not allowed. Communication is only possible between two
users if there is an edge connecting them. Each individual
user, denoted as j € V, has its own private dataset D;.

Typically, the training procedure of DFL can be formulated
as an empirical risk minimization (ERM) problem For each
user j € V with |D | training samples {(xl,yl)}z 1 , model
parameters w; € R%, and a loss function f;(x;,y;; w;), ERM
can be defined as

2
. 1
min f;(w;) = WZf(xkzthj)- (D
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The DFL aims to solve the following problem in a fully
distributed manner without requiring assistance from a server:

w; = argmin f;(w;), )
w;

where w7 is the optimal model weight parameters of j.
Local model training: Each user performs local training

. . t+1) .
to get an intermediate model wj(- +2), ie.,
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Local models aggregation: Each user subsequently sends
w( 1) to its neighboring user i € NV, where N is the set of

neighbors of user j, excluding the user j itself.
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where |D| = | D;]| "‘Zie/\/j |D;| and AGG{-} is the aggrega-

tion function. The above two steps are repeated for multiple

rounds until the DFL converges.
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B. Threat Model

As in prior study [20], an attacker controls a subset of
malicious users, which may either inject poisoned data into
their local training or deliberately alter their model updates
before transmitting them to neighboring nodes. It is important
to highlight that each malicious user can only affect its direct
neighbors by sending manipulated updates. In particular, the
threat model described in [10] represents a specific instance
of the general model poisoning attack considered in our paper,
where the malicious update is generated to minimize the model

accuracy of neighbors. By exploiting the feature correlation
between benign neighbors’ models, the attacker in [10] intro-
duces subtle perturbations to the local model updates, while
the malicious model remains undetected given the existing
Euclidean distance-based or similarity-based defenses.

IV. PROPOSED VICAM-DFL DEFENSE FRAMEWORK

We propose ViICAM-DFL, a novel malicious user detec-
tion architecture for DFL, grounded in visual interpretability.
Each user j replaces its own model parameters with those
models received from neighboring users one by one. After
that, the user j visualizes all neighbor’s model updates as a
heat map leveraging the ViCAM technique on a test image.
Although ViCAM allows high-dimensional model updates to
be transformed into visually interpretable heat maps, these
visualizations remain unlabeled and indistinct to the user. To
address this, we incorporate an unsupervised auto-encoder
into VICAM-DFL, which does not require labeled data. The
auto-encoder is trained to learn the latent patterns of typical
(benign) heat maps, enabling it to detect anomalies by identi-
fying significant deviations from this norm. This integration
enhances the discriminative power of the heat maps and
strengthens the system’s ability to recognize irregular patterns
linked to malicious updates.

The ViCAM-DFL architecture comprises two integral com-
ponents: a ViCAM-driven module responsible for heat map
generation and an auto-encoder-based mechanism for anomaly
detection, as depicted in Fig. 2. Initially, VICAM is applied
to local model updates alongside a test image to produce
activation heat maps. These maps are subsequently encoded
and reconstructed by the auto-encoder, with reconstruction
discrepancies serving as indicators of anomalous behavior.

ViCAM-based processing module. Each user j selects a
random image from the test dataset and forwards it through
convolutional layers whose weights and biases have been re-

placed with the intermediate local model updates w( ) 1€
Nj;. This process yields a set of feature maps M with K
channels. These feature maps are then passed through one
or more fully connected (FC) layers to produce classification
outputs. To derive a class-specific activation map LZ(-C) €
RW>H for a target class ¢, VICAM calculates the gradient
of the pre-softmax classification score y(¢) with respect to
each spatial location gp, q) of the k-th channel in the feature

E,Mafifiw Here, p € [1,W],q € [1, H], and

k € [1, K] represent the spatial and channel indices of the
feature map. The relative i 1m ortance of each spatial position,
denoted by the weight a < (p,q), is determined using the
rectified linear unit (ReLU) actlvation function to emphasize
positively contributing gradients, i.e.,

oy
oM™ (p, q)

maps M;, i.e.,

o) (p, q) = ReLU ( ),\ﬁ €N,
where Mi(k)(p7 q) denotes the activation at position (p,q)
in the k-th channel of the feature map Mi(k). The ViCAM
assigns an importance score to each spatial location and
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Fig. 2: Overview of the proposed VICAM-DFL framework, where the user j samples an image (e.g., one labeled as “butterfly”)
from its test dataset. This image is processed by VICAM to generate heat maps for the aggregated neighbors’ model updates.

scales the corresponding activations accordingly. The weighted
activations are aggregated across channels to generate the
class-specific activation map, after which ReL.U is applied to
retain only positive contributions, as expressed by

ReLU(Za q) - M® (p, )). (6)

Auto-encoder-based detection module. Each ViCAM-
generated heat map M, (e )( q), sized W x H, is flattened into
a 1xW x H vector. These vectors from different neighbors are
concatenated into a composite input matrix M for the encoder.
Parameterized by 6, the encoder function ey(+) projects M into
a compact latent space, producing an embedding z = eg(M).
This latent representation captures the essential features of the
input heat maps. The decoder function dy(-), with parameter
¢ reconstructs the original input heat maps from z, yielding
M’ = dy(z) = dg (eg(M)). The reconstructed heat maps are
reshaped back to their original dimensions. Training is guided
by minimizing the reconstruction loss, measured via the mean
squared error (MSE) between input M and output M
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After the auto-encoder training, the user j computes the
reconstruction error F; for each neighbor’s heat map:

w H c /
S S M (pq) — M (p,q)|
W x H ’
The average reconstruction error over j’s all neighbors is:

5w, 2.5 ‘9)

E; =
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A dynamic threshold ¢ is computed as:

PZGN E;)?
;] ’

where « is a tunable coefficient. The binary decision rule for
each neighbor 7 at round ¢ is defined as follows: if F; is less
than or equal to the threshold ¢, the output Ogt) is set to
1, indicating that the model is considered trusted (benign).
Conversely, if F; exceeds the threshold d, Ol(t) is set to
0, indicating suspected malicious behavior. Malicious model
updates are excluded from model aggregation. Therefore, the
models aggregation for user j in Eq. (4), can be rewritten as

D, Dil (a2
wt+D _ 1Dil | |W§t+é)}. (11
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V. PERFORMANCE EVALUATION
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We take the example that user j is connected to 24 peers, 3
of which are malicious participants. The ViCAM-DFL frame-
work is configured with 7' = 100 communication rounds.
Each user trains a local model for 25 epochs using the Adam
optimizer with a batch size of 64 and a learning rate of le-4.
For the auto-encoder, training is performed over 200 epochs
using Adam with a learning rate of le-3, a hidden layer size
of 128, and a weight decay (a hyperparameter of the penalty
term of the local model loss function) of le-5. The tunable
coefficient o is 1.50. All experiments are run on a single
GeForce RTX 4090 GPU with 24 GB GDDR6 memory.

To evaluate the effectiveness of defense mechanisms, we
utilize the ResNet-50 [21] and REGNETY-800MF [22] models
trained on non-i.i.d. CIFAR-100 data. In addition to the base-
line methods AUROR, Multi-Krum, and FAA-DL (referenced
in Section II), we also include two additional alternatives:



GCAMA [23], which uses GradCAM [24] with an auto-
encoder to detect abnormal heat maps, and LayerCAM-Krum,
which integrates LayerCAM-generated heat maps with the
Krum [16] aggregation method for anomaly detection.

For quantifying detection performance, we use the following
widely used metrics. i) Recall: the proportion of true mali-
cious users correctly detected, relative to the total number of
malicious users; ii) Precision: the fraction of users correctly
identified as malicious among all users flagged as malicious
by the defense strategies; iii) false positive rate (FPR): the
percentage of benign users that are mistakenly classified as
malicious, relative to the total number of benign users; iv)
Accuracy: the overall proportion of correctly classified users
(both benign and malicious) among all users evaluated; v) F/
Score: the harmonic mean of precision and recall, which is
computed using values from the confusion matrix; vi) Area
Under the ROC Curve (AUC): a scalar value ranging from 0
to 1 that reflects the capability of the defense to distinguish
between benign and malicious users. A higher AUC value
indicates better discriminatory power of the defense.

Fig. 3 plots the test accuracy of ResNet-50 on the non-
ii.d. CIFAR-100 dataset, demonstrating that our ViCAM-DFL
achieves the highest test accuracy. Moreover, ViCAM-DFL
can quickly converge (around the 10th round), as it involves
more benign users in aggregation. This indicates that ViCAM-
DFL can accurately filter malicious model updates, as can
also be confirmed by the detection rates in Table I. Although
LayerCAM-Krum can avoid malicious users being aggregated
by the user 7, it sacrifices accuracy and robustness, as it selects
only one local model update as the updated model. The more
divergent the local models, the more diverse the heat maps.
The LayerCAM-Krum struggles to screen malicious models,
which coincides with the precision of 0.637 for LayerCAM-
Krum on non-i.i.d. CIFAR-100, as shown in Table I.

We replace the ResNet-50 with the REGNETY-800MF. The
trend of the test accuracy of the defenses with the commu-
nication rounds is consistent with the observation in Fig. 3,
except for LayerCAM-Krum, as shown in Fig. 4. The reason
is that the performance of LayerCAM-Krum may vary with
the architecture of the neural network analyzed. It may not
be as effective for models with complex architectures, such
as attention-based models, where the relationships between
features are more intricate. The LayerCAM-Krum mistakenly
selects the malicious model as the model update in the 68th
communication round, causing the test accuracy of the model
to drop sharply. The detection rates of ResNet-50 on non-i.i.d.
CIFAR-100 are given in Table I.

Compared to GCAMA, ViCAM-DFL is designed to be
compatible with various network architectures, including both
traditional DNNs and more complex model architectures such
as ResNets or REGNETY-800MF. This flexibility enables
ViCAM-DFL seamless integration with diverse model types
without requiring structural modifications. In essence, the
performance of ViICAM-DFL remains robust and largely in-
variant to the underlying network architecture, a trend clearly
observed in Fig. 3 and Fig. 4. This architectural robustness is
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Fig. 3: The test accuracy of ResNet-50 on non-i.i.d. CIFAR-
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Fig. 4: The test accuracy of REGNETY-800MF on non-i.i.d.
CIFAR-100.

further validated by the results in Table I, where ViCAM-DFL
consistently outperforms baseline methods, achieving near-
ideal scores across all evaluation metrics, i.e., Recall: 1.0,
Precision: 1.0, FPR: 0.0, Accuracy: 1.0, FI score: 1.0, and
AUC: 1.0. Specifically, we assume that the server and benign
users operate on the same datasets in our proposed system,
while the attackers have no direct knowledge of the underlying
data. The server detects potentially malicious models by
comparing the heat maps generated by the server for local
models using the shared dataset; any significant divergence
can be used to identify a malicious model with highly accurate
identification. In contrast, baseline methods based on distance
or similarity measures exhibit degraded detection performance
when malicious models are highly correlated with benign ones.

VI. CONCLUSION

In this paper, we proposed a novel visual explanation-driven
defense strategy, VICAM-DFL, to enhance the resilience of
DFL against model poisoning attacks. The proposed ViCAM-



TABLE I: Detection rates of ResNet-50 and REGNETY-800MF on non-i.i.d. CIFAR-100.

non-i.i.d. CIFAR-100 ResNet-50 REGNETY-800MF

Methods Recall  Precision FPR  Accuracy FI score AUC Recall  Precision FPR  Accuracy  F1 score AUC
AUROR 0.020 0.013 0.181 0.718 0.016 0.419 | 0.013 0.008 0.158 0.738 0.01 0.427
Multi-Krum 0.077 0.077 0.132 0.769 0.077 0.472 0.1 0.1 0.129 0.775 0.1 0.486
FAA-DL 0.703 0.128 0.680 0.368 0.215 0.512 | 0.727 0.123 0.730 0.327 0.210 0.498
GCAMA 1.0 0.95 0.010 0.992 0.971 0.999 | 0.828 0.828 0.02 0.974 0.820 0.917
LayerCAM-Krum 0.337 0.337 0.095 0.834 0.337 0.621 0.95 0.95 0.007 0.987 0.95 0.971
ViCAM-DFL 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0

DFL leverages an auto-encoder-assisted defense mechanism to
detect adversarial manipulations in local model updates. The
defense operates by applying a representative test image to
generate ViICAM-based heat maps from local updates, which
are refined using an extended auto-encoder to enhance the
visibility of subtle, embedded features. Experimental results
on the non-i.i.d. CIFAR-100 dataset demonstrate that VICAM-
DFL achieves exceptional detection performance, attaining
near-ideal detection rates across all evaluation metrics (Recall:
1.0, Precision: 1.0, FPR: 0.0, Accuracy: 1.0, F1 Score: 1.0, and
AUC: 1.0), and significantly outperforming baseline methods.
Furthermore, ViICAM-DFL consistently delivers optimal re-
sults across various deep learning architectures, confirming its
robustness and adaptability.
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