
1

Fed-RAA: Resource-Adaptive Asynchronous
Federated Edge Learning with Theoretical Guarantee
Ruirui Zhang, Xingze Wu, Yifei Zou, Member, IEEE, Zhenzhen Xie, Member, IEEE, Peng Li, Senior Member, IEEE,

Xiuzhen Cheng, Fellow, IEEE, Falko Dressler, Fellow, IEEE, and Dongxiao Yu, Senior Member, IEEE,

Abstract—This paper studies an efficient federated learning
(FL) problem involving multiple edge-based clients with heteroge-
neous constrained resources. Compared with numerous training
parameters, the computing and communication resources of clients
in edge scenarios are usually insufficient for fast local training
and real-time knowledge sharing. Besides, training on clients
with heterogeneous resources may result in the straggler problem,
which delays the convergence of FL. To address these issues, we
propose Fed-RAA: a Resource-Adaptive Asynchronous Federated
learning algorithm. Different from vanilla FL methods, where all
parameters are trained by each participating client regardless
of resource diversity, Fed-RAA adaptively allocates submodels
of the global model to clients based on their computing and
communication capabilities. Each client then individually trains its
assigned submodel and asynchronously uploads the updated result.
Theoretical analysis confirms the convergence of our approach.
Additionally, an online greedy-based algorithm is designed for
asynchronous submodel assignment in Fed-RAA, improving the
convergence of Fed-RAA by optimal minimization on the training
delay bound of submodels. Compared to state-of-the-art methods,
our Fed-RAA algorithm reduces the time required to achieve
the target accuracy by an average of 30.89%, demonstrating its
superior efficiency on heterogeneous constrained computing and
communication resources. To the best of our knowledge, this
paper is the first resource-adaptive asynchronous method for
submodel-based FL with guaranteed theoretical convergence.

Index Terms—Asynchronous Federated learning, Resource
heterogeneity, Resource-constrained, Resource adaptive federated
learning

I. INTRODUCTION

FEderated edge learning (FEEL) enables multiple clients
to collaboratively train machine learning (ML) models

on the edge side. This approach not only provides users
with personalized and real-time inference services but also
strengthens user privacy, since raw data is not transferred to
the cloud [1]–[3]. Consider that ML models often consist of
billions or even trillions of parameters [4], [5], which are time-
consuming or even unaffordable for the edge-side clients1 with
limited computing and communication resources to locally train
and transmit in FEEL. How to improve the efficiency of edge

Ruirui Zhang, Xingze Wu, Yifei Zou, Zhenzhen Xie, Xiuzhen Cheng, and
Dongxiao Yu are with the School of Computer Science and Technology,
Shandong University, Qingdao, Shandong 266237, China. E-mail: {sherryz,
wuxingze}@mail.sdu.edu.cn,{yfzou, xiezz21, xzcheng, dxyu}@sdu.edu.cn

Peng Li is with the Department of Computer Science, Xi’an Jiaotong
University, China. E-mail: pengli@xjtu.edu.cn

Falko Dressler is with the School of Electrical Engineering and Computer
Science, TU Berlin, Berlin, 10587, Germany. E-mail: dressler@ccs-labs.org

(Corresponding author: Yifei Zou.)
1For simplicity, the clients in the remaining of this paper indicates edge-side

clients unless otherwise specified.

resources in FEEL for fast model training becomes important
to implement the ML models in real-time decision-making
scenarios, such as healthcare [6] and autonomous driving [7].

Due to its significance, recent works have been proposed,
including [8], [9] improving the computing efficiency, [10]–[16]
reducing the communication cost, and [17]–[20] optimizing
both. For instance, in HeteroFL [17] and PruneFL [18], the
global ML model is shrunk or pruned into smaller submodels,
respectively. These submodels are transmitted through the
edge network and trained by the clients, improving both
computational and communication efficiency compared to
vanilla federated learning methods based on full-model training.

Even with the existing works mentioned above, improving
the computing and communication efficiencies of FEEL among
multiple clients with heterogeneous resources is not an easy
task. The limited computing and networking resources directly
undermine the strategies adopted in [8]–[16], in which the full
ML models are directly transmitted through the edge networks
or trained by the clients. Moreover, all the methods mentioned
above are designed under a synchronous framework. Since
faster clients must wait until the slowest completes its task
during each local training step in the synchronous setting, the
computing resources of faster clients are not fully utilized and
the slowest client becomes a bottleneck on efficiency, known
as the straggler problem [24]. Furthermore, synchronous global
model dissemination and local model aggregation lead to the
communication contention problem [25]: the edge network
spikes when all clients download/upload models synchronously
while it is vacant in the local training steps. Without careful
consideration, the struggler problem and the network contention
problem reduce the convergence speed of FEEL.

To make full use of computing and communication resources
in edge-based clients and improve the convergence speed
of FEEL, this paper investigates the resource-efficient FEEL
problem in an asynchronous setting and proposes a Resource-
Adaptive Asynchronous Federated learning algorithm, named
Fed-RAA. Specifically, considering the heterogeneous and
constrained computing and communication resources of various
clients, our method deploys a full global model on the PS but
only designates submodels to clients for local training, which
are tailored from the full model according to the computing and
communication capabilities of clients. For each client, once it
receives a submodel from the PS, it trains the submodel using
its local data. Considering the disadvantage of synchronous
setting, the asynchronous aggregation is adopted in Fed-RAA,
i.e. once a client uploads its submodel, the parameters of the

2

TABLE I
COMPUTATION AND COMMUNICATION EFFICIENCY OF VARIOUS FEDERATED LEARNING METHODS

Methods Global Model on Local Training Download/Upload between Efficiency Async.Parameter Server on Clients Parameter Server and Clients Comp. Comm.

[8] (SplitFed) submodel submodel submodel and hidden states yes no no
[9] (RAM-Fed) full model submodel full model/submodel yes no no
[10], [11] (OMC, DGC) compressed model full model compressed model no yes no
[12]–[14] (FedSQ, QSGD, Atomo) quantized gradients full model quantized gradients no yes no
[15] (FedScalar) scaled model full model scaled model no yes no
[16] (FedSL) full model full model submodel no yes no
[17]–[19] (IST, PruneFL, HeteroFL) submodel submodel submodel yes yes no
[21]–[23] (FJORD, FedRolex, NeFL) submodel submodel submodel yes yes no
Fed-RAA submodel submodel submodel yes yes yes

The methods are grouped by their primary techniques: Split Methods (e.g., SplitFed, FedSL), Compression-based Methods (e.g., OMC, FedSQ), Scaling Methods
(e.g., FedScalar), Submodel and Pruning-based Methods (e.g., RAM-Fed, IST, FJORD), and Our Approach (Fed-RAA).

Each method is compared on its computation (Comp.), communication (Comm.), and asynchronous (Async.) settings.

Fig. 1. Flowchart of Fed-RAA. In FL algorithms, [8], [9] improve the computing efficiency, [10]–[16] reduce the communication cost, and [17]–[19], [21]–[23]
optimizing both in the synchronous setting. Fed-RAA improves the computing and communication efficiency of FL in the asynchronous setting, which is more
efficient. In particular, Fed-RAA asynchronously assigns different submodels to heterogeneous clients. After receiving the submodels, clients train them locally
and upload the updated ones via the edge network to the parameter server.

submodel are immediately updated to the global model, and the
new submodel is tailored and disseminated. We illustrate the
flowchart of Fed-RAA in Fig. 1 and compare it with previous
works in Tab. I.

Even though our resource-adaptive asynchronous strategy
improves the computing and communication efficiencies of
FEEL, two key technical questions may arise. The first
question is the convergence of the new FEEL algorithm in
which the submodels are asynchronously assigned, locally
trained, and aggregated. The absence of a synchronous global
model undermines the existing convergence analysis under
asynchronous setting [26]. Even for two clients uploading their
submodels simultaneously, their newly assigned submodels may
differ since they have different computing and communication
capabilities. Secondly, in existing resource-efficient methods
based on submodel training, those submodels are synchronously
assigned to all the clients at the beginning of each training step.

Whereas, in our asynchronous setting, once a client uploads
its local submodel, a new tailored submodel is immediately
assigned, which involves an online decision-making problem
ensuring efficient resource utilization on parameters updating.
In this paper, we answer the first question by providing a
theoretical analysis of the convergence of our Fed-RAA even
when only submodels are asynchronously aggregated and
solve the second question by designing an online submodel
assignment strategy that ensures optimal performance on
improving the convergence.

Our main contributions can be summarized as follows:
• This paper studies the computing and communication

efficient federated edge learning problem under an asyn-
chronous setting. Unlike the existing resource-efficient
methods under the synchronous setting, the asynchronous
setting in our work can solve the well-known straggler
problem and communication contention problem under

3

the synchronous setting and further improve the efficiency
of FEEL. As a trade-off, it results in a harder convergence
analysis on the asynchronous submodel training and
aggregating, and an online submodel assignment problem
that involves the convergence of FEEL.

• We propose Fed-RAA, Resource-Adaptive Asynchronous
Federated edge learning algorithm on edge-based clients
with limited computing and communication resources.
Instead of transmitting and training the full ML model on
individual clients, Fed-RAA adaptively assigns submodels
to the clients for local training under the asynchronous
setting. Specifically, once a client completes its local
training, its submodel will be aggregated to the global
model and a new submodel will be assigned immediately
according to its computing and communication capability.
Rigorous theoretical analyses are presented to prove the
convergence of Fed-RAA.

• A greedy-based strategy is designed as a component of
Fed-RAA, to address the online submodel assignment
problem. We prove that our online greedy-based strategy
has an optimal performance on minimizing the training de-
lay bound of submodels, which improves the convergence
of Fed-RAA.

Numerical results with necessary comparisons and ablation
studies are presented, showing that our Fed-RAA has promising
performance in accuracy and time cost. In comparison with
state-of-the-art approaches, our Fed-RAA algorithm achieves
a reduction in the time needed to reach the target accuracy
by an average of 30.89%, highlighting its superior efficiency
on heterogeneous and resource-constrained computing and
communication environments.

Roadmap. The rest of this paper is organized as follows.
Section II reviews related work on resource-efficient federated
learning. Section III outlines the formal problem setting and
the necessary background. Section IV describes the Fed-RAA
algorithm and its theoretical analysis on convergence. Section V
introduces a greedy-based algorithm for online submodel
assignment. Numerical results are reported in Section VI.
Finally, Section VII concludes the paper.

II. RELATED WORK

To federated learn a large ML model on resource-constrained
clients, improving the computing and communication efficien-
cies is much of important for fast and accurate convergence. In
the following, we detail the related works on the optimization
of computing and communication efficiency.

• Computing Efficiency. SplitFed [8] splits the global
model into the client-side model and server-side model.
Each client only trains the client-side model, which
reduces the computing cost of clients. However, in
SplitFed, each client not only has to upload the client-side
model but also exchange intermediate results with the
server during each forward and backward pass, allowing
the server-side model to continue training. In [9], the
global neural network on the PS is decomposed into a
collection of disjoint subnetworks, which are assigned to
clients for local training according to their local computing

resources. Since the global model is required for local
training, the entire ML model must be transmitted between
the PS and all clients in each training round, leading to
significant network strain.

• Communication Efficiency. Techniques such as model
compression [10], [11], [27], sparsification [12], quan-
tization [13], [14], and scaling [15] are proposed to
address communication overhead in FL. For example,
Yang et al. [10] introduce an online model compression
techique, to transmit model parameters in a compressed
format and decompress them on clients for local training.
DGC [11] combines gradient compression and multiple
optimization techniques to reduce communication costs
with comparable accuracy. FedSQ [12] combines gradient
sparsity, quantization, and error compensation to reduce
communication costs while maintaining comparable ac-
curacy. The works in [13], [14] employ model quantiza-
tion techniques, transmitting quantized models during
communication and performing dequantization during
local training to maintain accuracy, thereby reducing
communication costs between the PS and clients. However,
these methods typically incur a high computational cost
since all the parameters of the ML model are updated by
the clients in local training.

• Computing and Communication Efficiency. Het-
eroFL [17] decomposes the large full model into mul-
tiple submodels, which are disseminated and trained by
the clients synchronously in the FL process. Moreover,
PruneFL [18] adapts the model size during FL to reduce
both communication and computation overhead and min-
imize the overall training time. FJORD [21] introduces
the Ordered Dropout technique to dynamically adapt
submodel size for heterogeneous FL clients, enhancing
computational efficiency and enabling participation from
devices with varying resources. FedRolex [22] proposes a
rolling submodel extraction scheme to ensure that all the
parameters of the global server model are evenly trained
over the local data of client devices, while NeFL [23]
divides deep neural networks into submodels through both
depthwise and widthwise scaling. IST [19] partitions fully
connected neural networks into independent submodels,
which are trained separately across workers to overcome
computing and communication challenges.

However, the aforementioned works are built upon a syn-
chronous setting. In this setup, the efficiency of FL in
each training step is constrained by the slowest client, often
referred to as the straggler problem [24]. Additionally, the
synchronous model dissemination and aggregation between
the PS and clients give rise to the communication contention
issue [25]: the edge network experiences congestion when
all clients download/upload ML models simultaneously, while
the network remains underutilized during the local training
steps. Different from the existing works, this paper investigates
the asynchronous resource-efficient FEEL problem, in which
the submodels are online assigned to the clients for resource-
adaptive local training and aggregated asynchronously for
efficient convergence.

4

TABLE II
TABLE OF NOTATIONS

Symbol Meaning

M The number of submodels divided from the global model
N The number of clients
θ Global model, consisting of submodels θ1, θ2, . . . , θM

θj The j-th submodel
Dn The local dataset at client n
fn(θ) The local loss function at client n
ξn Sample data at client n
pn The computation power of client n
bn The bandwidth between client n and the PS
cn,j The delay time for training submodel θj at client n
I(n) The number of local training iterations at client n
α Hyperparameter controlling the model update ratio
γ Learning rate

q(j) The number of updates of submodel θj

s(t, t̂) Function of staleness

III. SYSTEM MODEL AND PROBLEM DEFINITION

We consider an FEEL system consisting of a PS and N
clients on the edge side with reliable communication. The PS
holds an ML model θ which serves as the global model in
FEEL. Each client n (n = 1, . . . , N) holds its own local dataset
Dn of size |Dn|, with computation power denoted as pn and
bandwidth to the PS denoted as bn. The computation power
pn typically refers to the amount of computation the client can
perform per second, expressed in terms of FLOPS (floating-
point operations per second). Moreover, the time required for
client n to upload or download a unit of data to/from the PS
can be expressed as 1/bn.

Global Model Partition. As discussed in the Related Work
Section, methods for partitioning the global model into multiple
submodels have been previously explored in works such as [17],
[19], [28]. However, none of them considers the asynchronous
setting and its associated online submodel assignments. In this
paper, we investigate the asynchronous FEEL problem with
the global model partitioning technique as the background.
Specifically, we assume that the global model θ has been
divided into M submodels, denoted by {θ1, θ2, . . . , θM},
where each submodel corresponds to a subset of the model
parameters. The partitioning of the global model can be done in
various ways (e.g., width/depth scaling, channel/block grouping,
or structured pruning) [17], [18], [21]–[23]. An additional
requirement is that all the submodels must together cover the
entire parameter space of the global model.

Asynchronous FEEL Setting. For each client n, once a
submodel θj is assigned, n starts local training on θj based on
its local dataset Dn. The updated submodel θj will be uploaded
to the PS after the local training is completed. Upon receiving
the updated submodel θj , PS aggregates θj into the global
model θ and a new submodel θj

′
will be assigned to client n for

the next round of local training. Both parameters N and M can
vary from 2 to arbitrarily large values, and we assume that N >
M . The submodel assignment, local training, and uploading
process are repeated until the predesigned training rounds or
accuracy is achieved. The above asynchronous setting enables
non-blocking and independent local training on clients and

submodel uploading/assignment on the edge network, which
improves the efficiency of FEEL.

Objective of Asynchronous FEEL Problem. The objective
of the system is to minimize the global loss function through
empirical risk minimization, expressed as:

min
θ∈Rd

F (θ) :=
1

N

N∑
n=1

fn(θ),

where fn(θ) := Eξn∼Dn
[fn(θ, ξn)] represents the local loss

function of client n with respect to its local dataset Dn.

IV. ALGORITHM DESIGN FOR FED-RAA
In this section, we design the resource-adaptive asynchronous

FEEL algorithm, named Fed-RAA, in which the submodels
{θ1, θ2, . . . , θM} are asynchronously assigned/aggregated and
locally trained by the clients.

A. Algorithm Description

In Fed-RAA, the PS holds a global model θ that has been
divided into submodels of {θ1, θ2, . . . , θM}. The execution of
Fed-RAA is divided into successive epochs with t = 0, 1,
Initially, at t = 0, the PS assigns submodels θj and a time
stamp of 0 to each client n. The submodel assignment, i.e.,
which submodel will be assigned to client n, is determined by
a Model-Assignment-Function (θ) executed by the PS. How
to optimize the Model-Assignment-Function to improve the
convergence of Fed-RAA is presented in the next section. In
this section, we mainly focus on the convergence of Fed-RAA
with a given Model-Assignment-Function, even if it works
with a random assignment strategy.

For clarity, we use θj to denote the submodel held by the
PS and θ̂j to denote the corresponding local model trained by
a client if θj was assigned. θ̂ji is the submodel trained by a
client in its i-th iteration. In the following epochs, once the
PS assigns its submodel θj to client n at epoch t̂ and receives
the updated result θ̂j from client n at epoch t, it updates the
submodel θj using the following rules:

θj ← [1− α · s(t, t̂)] ∗ θj + α · s(t, t̂) ∗ θ̂j ,

in which α ∈ (0, 1) is a hyperparameter, and s(t, t̂) = 1
t−t̂+1

is a function to determine the value of the error caused by
staleness [29]. Then, the PS executes the Model-Assignment-
Function to assign a new submodel θj

′
to client n.

For each client n, when receiving a submodel θj from PS
at epoch t, it sets its local model θ̂j0 ← θj and solves the
regularized optimization problem:

gθj (θ̂j ; z) = fn(θ̂
j ; z) +

ρ

2
∥θ̂j − θj∥2, ρ > µ,

in the following I(n) local iterations. µ is the hyperparameter
defined in our Definition 2 for weak convexity. In each iteration
i = 1, . . . I(n), client n samples data zni from its local dataset
Dn and updates the model using gradient descent:

θ̂ji ← θ̂ji−1 − γ∇gθj (θ̂ji−1; z
n
i).

After completing the local updates, the client n has θ̂j ← θ̂jI(n)
and uploads the submodel θ̂j back to the PS for aggregation.

5

Fig. 2. The pipeline of Fed-RAA. We show the different ways clients transmit with PS in Vanilla FL and our Fed-RAA.

Submodel Assignment before Aggregation. According to
the setting in vanilla FL, a new submodel will be assigned to
the client n until its previous submodel has been uploaded and
aggregated into the global model. In other words, when the
submodel is being uploaded/assigned via the edge network, the
computing resource on client n is idle and gets wasted. Client
1 in Fig. 2 is given as an example. To address this issue, a
pipeline is designed in Fed-RAA to make sure the submodel
uploading/assignment and local training can be executed in
parallel.

Without loss of generality, we take client 2 in Fig. 2 as an
example, which starts its local training based on submodel
θj from epoch t1 and ends at epoch t4. Firstly, the client n
conducts a statistical prediction on its ending epoch t4 during
its local training. Specifically, when the client n executes its i-
th iteration at epoch t2, it can infer that the total I(n) iterations
end at epoch t4 = t1+(t2− t1)I(n)/i, because the computing
overhead in each iteration is the same. At epoch t2, a new
submodel request will be sent to the PS with the inferred ending
epoch t4. After receiving the new submodel request and inferred
ending epoch, the PS assigns a new submodel θj′ to client n
at epoch t3. Considering the limited bandwidth bn defined in
the model section, the time cost of submodel assignment is
|θj′ |
bn

according to our system model. By setting i sufficiently

small and t3 = t4 − |θj′ |
bn

, we have t1 ≤ t2 ≤ t3 < t4, and the
new submodel θj

′
arrives at the client n when its current local

training ends. At epoch t4, when the client completes its local
training, it immediately uploads the updated submodel θ̂j and
starts the new local training based on θj′ .

With the strategy mentioned above, a client can immediately
start the next round of local training after its current round
of local training ends because the new submodel assigned by
the PS has already arrived. This is possible in most cases

because the time spent on local training is typically longer
than the communication time for uploading/ downloading the
submodel, ensuring that the client can proceed without delay.
However, in very rare cases, when the communication time
exceeds the local training time, the client may need to wait for
the submodel before starting the next round of training. Even
in these cases, the idle time is still shorter than it would be
without the pipeline strategy, where the client would otherwise
experience significant delays between local training rounds. A
detailed discussion is provided in the Appendix.

B. Theoretical Analysis on Convergence

To make the proof clear and easier to follow, we redefine
some of the variables involved in the FL process separately in
the analysis section. In Fed-RAA, when a client n receives a
submodel θj assigned by the server at epoch τ , it updates the
submodel θj for I(n) iterations. θjτ,i−1 is used to denote the
model θj at the beginning of the i-th iteration. Initially, we
have θjτ,0 ← θ̂j0. For the parameters I(n) for all clients, Imin
and Imax are their lower bound and upper bound, respectively.

Definition 1. (Smoothness) A differentiable function f is L-
smooth if for ∀x, y, f(y)−f(x) ≤ ⟨∇f(x), y−x⟩+ L

2 ∥y−x∥
2,

where L > 0.

Definition 2. (Weak convexity) A differentiable function f is
µ-weakly convex if the function g with g(θ) = f(θ) + µ

2 ∥θ∥
2

is convex, where µ ≥ 0. f is convex if µ = 0, and non-convex
if µ > 0.

Definition 3. (Training delay) For any submodel θj assigned
by PS to client n for local training at epoch τ , and later
received by PS from client n for model aggregation at epoch
t, its training delay is defined as the time gap between epochs
τ and t. For all the submodels already assigned and received

6

Algorithm 1 Fed-RAA
1: Definition
2: Dn: local dataset of client n;
3: θ: global model held by the PS, θ = {θ1, θ2, . . . , θM};
4: θj : submodels held by the PS, j ∈ {1, 2, . . . ,M};
5: θ̂j : submodels updated by the clients, j ∈ {1, 2, . . . ,M};
6: θ̂ji : submodels trained by a client in its i-th iteration;
7: s(t, t̂): function of staleness;
8: α: hyperparameter, α ∈ (0, 1);

9: For parameter server:
10: if t = 0 then
11: for n = 1, · · · , N do
12: θj ← Model-Assignment-Function (θ);
13: PS sends submodel θj and time stamp 0 to client n;
14: end for
15: end if // Initial submodel assignment
16: for t = 1, · · · , T do
17: if receive (θ̂j , t̂) from client n then
18: θj ← [1− α ∗ s(t, t̂)] ∗ θj + α ∗ s(t, t̂) ∗ θ̂j ;
19: θj

′ ← Model-Assignment-Function (θ);
20: PS sends submodel θj

′
and time stamp t to client n;

21: end if // Asynchronous submodel assignment
22: end for

23: For each client n:
24: if receive submodel θj and time stamp t from PS then
25: Define: gθj (θ̂j ; z) = fn(θ̂

j ; z) + ρ
2∥θ̂

j − θj∥2, ρ > µ;

26: θ̂j0 ← θj ;
27: for local iteration i = 1, · · · , I(n) do
28: Sample zni ∼ Dn;
29: Update local model: θ̂ji ← θ̂ji−1 − γ∇gθj (θ̂ji−1; z

n
i);

30: end for // Local training for I(n) iterations
31: θ̂j ← θ̂jI(n);
32: Send updated submodel and time stamp (θ̂j , t) to server;
33: end if

by the PS, let variable K be an upper bound for the training
delays of these submodels.

Definition 4. (Imbalance ratio of local updates) The imbalance
ratio δ of local updates is defined as the ratio between the
maximum and minimum number of local updates performed
by each client before pushing the model to the server: δ =
Imax/Imin, where Imin and Imax are the minimum and maximum
numbers of local updates, respectively.

Assumption 1. (Gradient bounds) For all θ ∈ Rd, n ∈ [N],
and z ∼ Dn, the gradient of the loss functions f(θ; z) and
gθ′(θ; z) are bounded by constants V1 and V2, respectively:

∥∇f(θ; z)∥2 ≤ V1 and ∥∇gθ′(θ; z)∥2 ≤ V2.

Assumption 2. (Condition on ρ) For any small constant ϵ > 0,
we assume that ρ is large enough such that ρ > µ and the
following inequality holds:

−(1 + 2ρ+ ϵ)V2 + ρ2∥θjτ,i−1 − θjτ∥2 −
ρ

2
∥θjτ,i−1 − θjτ∥2 ≥ 0,

for all θjτ,i−1, θ
j
τ , and j ∈ [M].

Assumption 3. (Condition on γ) We assume that the step size
γ is sufficiently small, such that γ < 1/L, where L is the
smoothness constant of the objective function.

Theorem 1. Let all assumptions hold. If every submodel θj

has been updated for at least Q times until epoch T , Fed-RAA
converges to a critical point:

T−1
min
q=0

E∥∇F (θq)∥2 ≤
E[F (θ0)− F (θT)]

αγϵQMImin

+O
(
γI3max + αKImax

ϵImin

)
+O

(
α2γK2I2max + γK2I2max

ϵImin

)
.

where θq denotes the global model at epoch q.

Theorem 1 shows the convergence rate of algorithm Fed-
RAA by giving the upper bound on the gradient of all clients
for all trained submodels.

Remark 1. Impact of the training delay bound K. Our
convergence result shows that the smaller the upper bound K
of staleness (t− τ) would lead to a faster convergence rate
and better performance in our federated learning process.

Corollary 1. Let all assumptions hold. Using δ = Imax
Imin

, and
taking α = 1√

Imin
, γ = 1√

QM
, Imin = (QM)

1
5 , we have the

convergence rate as follows:

T−1
min
q=0

E[∥∇F (θq)∥2] ≤ O
(

1

(QM)
3
5

)
+O

(
δ3

(QM)
1
10

)
+O

(
Kδ

(QM)
1
10

)
+O

(
K2δ2

(QM)
1
2

)
+O

(
K2δ2

(QM)
3
10

)
.

Corollary 1 indicates that the term O
(

δ3+Kδ

(QM)
1
10

+ K2δ2

(QM)
3
10

)
will dominate the convergence rate. The proof of Theorem 1
is given in the Appendix.

V. ONLINE STRATEGY FOR SUBMODEL ASSIGNMENT

In Fed-RAA, the PS assigns submodels to clients for local
training with a Model-Assignment-Function. According to our
theoretical analysis in Theorem 1, when the submodels have
been updated for a sufficient time (i.e., Q is sufficiently large),
the convergence of Fed-RAA is mainly impacted by the training
delay bound K, and a smaller K results in a smaller global loss.
Thus, an online submodel assignment strategy that minimizes
the delay bound K is important for the convergence of Fed-
RAA. In the following, we first formulate the algorithm design
for submodel assignment as an optimization problem on the
training delay bound K with the constraint on Q. Later, an
online Greedy and Resource Adaptive strategy is presented,
abbreviated as Greedy, and proved to be optimal.

A. Problem Formulation for Submodel Assignment

The primary goal of submodel assignment is to optimize the
training delay bound K, i.e., minimize the maximum training
delay in Fed-RAA for all submodels. According to Algorithm 1,
the training delay of a submodel θj assigned to client n consists
of three components: (1) the time cost for client n to download
the submodel θj , (2) the time cost on I(n) iterations in local

7

updating, and (3) the time cost for client n to upload the
submodel. Since the network bandwidth for client n is bn,
the time cost to download/upload the submodel is |θj |/bn.
According to our model definition, the computation power
of client n is pn, then the time cost for local updating is
I(n)|zni |C/pn, where C is the computational complexity of
local training on each sample, |zni | is the size of data sampled
from its local dataset in each iteration, and I(n) is the number
of iterations in local training. Let cn,j = 2 |θj |

bn
+

I(n)|zn
i |C

pn
be

the training delay if a submodel θj is assigned to client n.
With the above formulation, the submodel assignment

strategy aims to minimize the training delay bound K =
maxn,j (cn,j) across any client n and submodel j if submodel
θj is assigned to clients n for local training, subject to the
constraint that each submodel must be trained at least Q times
for convergence. We define xn,j,t as a binary variable that
indicates whether submodel θj is assigned to client n at epoch
t. The optimization problem can be formally written as:

min
{xn,j,t}

max
n,j,t

(xn,j,tcn,j)

subject to:
T∑

t=1

N∑
n=1

xn,j,t ≥ Q, ∀j ∈ {1, . . . ,M}

xn,j,t ∈ {0, 1}, ∀n, j, t

B. Algorithm Design for Online Submodel Assignment

As illustrated in Fig. 2, when the PS receives a submodel
request from client n, a new submodel will be assigned to
client n with the following online strategy:

• In step 1, the PS figures out a set of submodels S =
{θj |cn,j ≤ K,∀j ∈ [M]}, which means that assigning
every submodel from the set S will not increase the current
training delay bound K. K ← K+1 until S is non-empty

• In step 2, the PS selects a submodel θj from the set S
with the smallest q(j), in which q(j) is the number of
times θj has been updated by the clients. The submodel
θj will be assigned to client n for its next-round local
training. If there are more than one submodel θj with the
smallest update count (i.e., q(j)), then randomly select
one and assign it to client n.

Initially, we have K = 1. Obviously, step 1 is designed as
the greedy strategy to minimize the training delay bound K.
The strategy in step 2 prioritizes those submodels with fewer
updates while also handling ties in a random manner to avoid
deterministic bias in the selection process. With step 2, we make
sure that each submodel can be trained at least Q times when
minimizing the training delay bound K. The pseudocode of
our online model assignment strategy is given in Algorithm 2.

C. Algorithm Analysis

Theorem 2. Algorithm 2 reaches an optimal performance
on minimizing the training delay bound K.

Proof. Let KOPT and KALG be the training delay bounds
obtained by an optimal offline submodel assignment strategy
and our online greedy-based model assignment algorithm,
Algorithm 2. In the online setting, the PS makes decisions

Algorithm 2 Model-Assignment-Function (θ) on the PS
1: Definition
2: cn,j : the training delay if submodel θj was assigned to

client n for local training;
3: q(j): the number of times θj has been updated by clients;
4: K: training delay bound. Initially, K = 1;

5: For PS:
6: if receive a submodel request from client n then
7: while set {θj |cn,j ≤ K,∀j ∈ [M]} = ∅ do
8: K ← K + 1;
9: end while

10: S ← {θj |cn,j ≤ K,∀j ∈ [M]};
11: Select θj with the smallest q(j) from the set S;
12: Assign θj to client n;
13: q(j)← q(j) + 1;
14: end if

according to the history and current information when it
receives the submodel requests from clients. While, in the
offline setting, the PS knows all the information of clients and
when they will require submodels for local training during the
execution of Fed-RAA. We now prove that KALG = KOPT.

Step 1: Proving KOPT ≥ KALG. In Algorithm 2,
parameter K = 1 initially. When PS receives a submodel
request from client n, K ← K + 1 until the set S is non-
empty. Then, a submodel θj with the smallest update count
q(j) from set S is assigned to client n. When Fed-RAA
terminates, the parameter K records the largest training delay
bound obtained by our online strategy. We then obtain a result
that when the value of K increases to maxMj=1 minNn=1 cn,j in
the first time, K no longer increases. This is because, when
K = maxMj=1 minNn=1 cn,j , we can always find a submodel
θj satisfying that cn,j ≤ K for arbitrary client n ∈ [M].
Then, S is always a non-empty set for the following clients
and K no longer increases. With the above analysis, we have
KALG ≤ maxMj=1 minNn=1 cn,j .

Since KOPT is the training delay bound obtained by an
optimal offline strategy, we obtain the result that KOPT ≥
maxMj=1 minNn=1 cn,j . Otherwise, we can at least find a sub-
model θj satisfying that minNn=1 cn,j > KOPT , which means
the submodel θj was never updated by any clients. Obviously,
this inference violates the constraint that each submodel must
be updated at least Q times and results in a contradiction.

With the above results, we obtain the result that KOPT ≥
maxMj=1 minNn=1 cn,j ≥ KALG

Step 2: Proving KOPT ≤ KALG. By directly executing
our online Algorithm 2 in the offline setting, we obtain
a feasible offline solution with training delay bound KALG.
Since KOPT is defined as the optimal training delay bound in
the offline setting, we have KOPT ≤ KALG.

From the two steps above, we have shown that:

KALG ≤ KOPT and KOPT ≤ KALG

Therefore, we conclude that KALG = KOPT, meaning that the
upper bound of the training delay produced by our algorithm

8

is equal to the upper bound produced by the optimal offline
model assignment strategy.

VI. EXPERIMENT

In this section, we present the experimental setup and perfor-
mance evaluation of the Fed-RAA algorithm. The experiment
setups describe the simulation environment, hardware, datasets,
models, and partitioning strategies used for comparison. We
then assess Fed-RAA’s performance through comparisons with
baseline algorithms, ablation studies on model assignment
strategies, and scalability analysis, highlighting the trade-offs
between efficiency, accuracy, and resource usage.

A. Experiment Setup

In this part, we present the experiment setups for evaluating
Fed-RAA, which include the simulation environment, hardware
specifications, and the setup of devices with varying computing
capabilities and network bandwidth. We also outline the
datasets, models, and model partitioning strategy used to
compare Fed-RAA with baselines.

1) Implementation: We implement the algorithmic simula-
tion using PyTorch with multi-threading, where each thread
maintains a local client model for individual training, while
the master program manages the global model. The simulation
software runs on Linux servers equipped with an AMD EPYC
9654 96-core processor, an NVIDIA RTX 4090 GPU with
24GB VRAM, and 60GB of memory.

TABLE III
COMPUTING CAPABILITY AND NETWORK BANDWIDTH LEVEL SETTING

Level CPU GPU Bandwidth

1 3.0 GHz - 10.0 GHz 2.0 GHz - 10.0 GHz 200 Mbps - 500 Mbps
2 2.0 GHz - 3.0 GHz 1.5 GHz - 2.0 GHz 50 - 200 Mbps
3 1.0 GHz - 2.0 GHz 500 MHz - 1.5 GHz 10 - 50 Mbps

We conduct the experiments across 100 clients. The capa-
bility of simulated clients consists of two parts: computing
capability and network bandwidth, each with three levels, as
shown in Table III. Level 1 clients have the highest performance
in both computing resources and network bandwidth, while
Level 3 clients have the lowest. The distribution of clients
is set to reflect common network environments, with 40%
low-performance, 30% medium-performance, and 30% high-
performance clients. When a client is assigned to level 1/2/3,
it randomly and uniformly selects its CPU/GPU/bandwidth
capability from the corresponding intervals.

2) Datasets, Models and Model Splitting Strategy: To
evaluate the performance of Fed-RAA and compare it with other
algorithms, we selected four benchmark datasets commonly
used in image classification: CIFAR-10 [30], CIFAR-100 [30],
MNIST [31], and Tiny ImageNet [32]. We focus on observing
the convergence rate and maximum achievable accuracy of the
global model during the simulation.

For the independent and identically distributed (IID) setting,
each client contains samples from all classes, with the class
distribution on each client matching the overall distribution

of the dataset. In the Non-IID setting, we refer to the class
partitioning strategy proposed in [16], where each client
contains only half of the classes, and the amount of data
per class is kept equal across clients. To evaluate perfor-
mance across different scenarios and datasets, we adopted
dataset-specific backbones. For MNIST, we used a three-layer
MLP model with 784 input units, resulting in approximately
158,000 parameters. For CIFAR-10, we employed an improved
CNN architecture, totaling about 1.2 million parameters. For
CIFAR-100, we utilized a ResNet-18 architecture with Group
Normalization (GN) instead of Batch Normalization (BN),
with a total of 11.2 million parameters. Lastly, for Tiny-
ImageNet, we adopted a ResNet-50 architecture, consisting
of approximately 25.6 million parameters. In the Fed-RAA
framework, submodels are created by randomly partitioning the
global model into smaller segments like [9], enabling clients
to train fewer parameters and speed up convergence. This
partitioning is controlled by predefined hyperparameters, which
segment the model into 2, 3, 4, or 5 parts, as detailed in
Table IV. The partition strategy is non-uniform, where weaker
devices receive smaller submodels to minimize training time,
and more capable devices are assigned larger submodels to
maximize their processing power. More details can be seen in
the Appendix. We have made the source code publicly available
at https://github.com/tdwxz/Fed raa.

TABLE IV
MODEL PARTITION STRATEGY

Number of partitions Partition ratio

2 50%, 100%
3 30%, 60%, 100%
4 25%, 50%, 75%, 100%
5 20%, 40%, 60%, 80%, 100%

B. Performance of Fed-RAA

In this subsection, we evaluate the performance of the
Fed-RAA algorithm through comparisons with state-of-the-
art federated learning methods, ablation studies, and scalability
analysis. First, we benchmark Fed-RAA against several baseline
algorithms, demonstrating its superior training speed and
convergence. Next, we conduct an ablation study to assess the
impact of different model assignment strategies and aggregation
methods on Fed-RAA’s efficiency and accuracy. Finally, we
explore the scalability of Fed-RAA by analyzing the effects
of user heterogeneity and submodel fragmentation on training
performance, highlighting the key trade-offs between time,
accuracy, and resource usage.

1) Comparisons with Baselines: To substantiate the superior
performance of Fed-RAA, we benchmark it against classical
or state-of-the-art methods in FL, namely, FedAvg [33],
FedSync [29], FedProx [34], FedPrun [28], SplitFed [8],
RAM-Fed [9], FJORD [21], FedRolex [22], and NeFL [23].
FedAvg represents a classical synchronous full-model FL frame-
work, while FedSync exemplifies the classical asynchronous
approach. FedProx, SplitFed, and RAM-Fed focus primarily

9

on the local computational limitations of users. In FedProx,
users train the full model. In SplitFed and RAM-Fed, users
employ a submodel for synchronous FL. FedPrun considers
both computational and communication resources but operates
within a synchronous FL framework. FJORD and NeFL handles
system heterogeneity via ordered dropout, producing nested
submodels matched to client resources. FedRolex enables
model-heterogeneous FL with rolling submodel extraction,
evenly updating the global model across rounds.

We conducted experiments comparing the Fed-RAA algo-
rithm with baseline methods across multiple datasets, and
the results in Table V and Fig. 3 demonstrate that Fed-
RAA converges more rapidly. As shown in Table V, Fed-
RAA outperforms other federated learning algorithms in most
cases across both IID and Non-IID client distributions. On
MNIST (IID), Fed-RAA reaches 80% accuracy in 3.07 seconds,
markedly faster than FedProx with 14.77 seconds and Ram-
Fed with 56.33 seconds, and it is also the fastest to reach
90% accuracy (Fed-RAA with 21.80 s vs. FedAvg with 59.87 s
and FedSync with 126.72 s). Under MNIST (Non-IID), Fed-
RAA remains the quickest, showing strong robustness to data
heterogeneity. On CIFAR-10, Fed-RAA dominates the higher
targets in the IID setting: its time-to-target is 15.94 s, 36.46 s,
and 80.41 s to reach 60%, 70%, and 75% accuracy, respectively.
Whereas, several baselines are substantially slower or did not
reach these targets within the evaluation budget (reported
as “N/A”). Under Non-IID partitions, it is consistently the
fastest (e.g., Fed-RAA with 12.22 s vs. FedSync with 80.57 s,
FedAvg with 366.41 s, and FedRolex with 15.73 s to achieve
40% accuracy). For CIFAR-100 (IID), Fed-RAA is the fastest
to achieve the accuracy 60% within 273.38 s and is the only
method to reach 65% (within 732.85 s). For CIFAR-100 (Non-
IID), it is the fastest to reach accuracy 45% and 50% (within
173.90 s and 314.68 s respectively), with other methods slower
or failing to reach the targets. On Tiny-ImageNet, while
FedSync has the best time-to-accuracy performance at the
very low accuracy (10%) threshold, Fed-RAA has the shortest
time-to-accuracy for essentially all higher accuracy thresholds
(e.g., 55.18–280.19 seconds to achieve 20%–80% accuracy
with IID data, 42.73–293.55 seconds to achieve 20%–70%
accuracy with Non-IID data). Overall, these results show that
Fed-RAA scales favorably to harder datasets and Non-IID
partitions.

The experimental results in Fig. 3 indicate that Fed-RAA
produces curves that are consistently left-shifted (faster to
reach a given accuracy) and/or above competing methods
(higher accuracy at the same time) across all four datasets and
under both IID and Non-IID partitions. On MNIST, the Fed-
RAA trajectory rises sharply and saturates early, staying above
FedAvg, FedSync, and other baselines; the gap is even more
visible under Non-IID splits, where alternatives plateau lower.
On CIFAR-10, strong baselines (e.g., FedSync/FedRolex) climb
quickly at the very beginning, but Fed-RAA sustains a steeper
improvement and maintains the highest envelope over time;
under Non-IID partitions, its curve dominates the entire horizon.
On CIFAR-100, although one or two methods exhibit a brief
early surge at very low accuracy, Fed-RAA soon overtakes and
attains a higher terminal level; the advantage persists under Non-

IID settings, particularly in the medium-to-high accuracy range.
For Tiny-ImageNet, Fed-RAA preserves a clear mid–high
accuracy advantage, the curve keeps improving while others
flatten, showing better robustness as heterogeneity increases.
Overall, the trajectories corroborate that Fed-RAA converges
faster and to higher accuracy than competing algorithms, and
this advantage is amplified when data are Non-IID, consistent
with the design that reduces synchronization bottlenecks and
better tolerates client heterogeneity.

In summary, Fed-RAA outperforms baseline algorithms
in terms of both training speed and model convergence. It
achieves faster training speed, and balances time and accuracy
effectively.

2) Ablation Study: We designed the Greedy-based submodel
online assignment algorithm (abbreviated as Greedy) to address
the model assignment problem within Fed-RAA, as described
in Algorithm 2. While Greedy has been theoretically proven to
achieve the same upper bound of training delay as the optimal
offline strategy, we conducted ablation studies to validate
its impact on convergence speed and maximum accuracy in
Fed-RAA. The study involved three variant algorithms: (1)
Random, which randomly assigns a submodel when receiving
the submodel request from a client; (2) Minimum Priority,
which assigns the submodel with the least updating times; and
(3) Sync, which uses synchronous aggregation while keeping
all other aspects of Fed-RAA unchanged. The results of these
variants on three datasets (MNIST, CIFAR-10, CIFAR-100,
and Tiny-ImageNet) are shown in Fig. 4 and Table VI.

In our ablation study, the Greedy algorithm demonstrates high
efficiency on the MNIST dataset with IID data distribution,
achieving 92.85% accuracy in just 3.52 seconds. Similarly,
Greedy also attains a high accuracy on the CIFAR-10 dataset
in a very short amount of time, reaching 38.70% accuracy
in 49.11 seconds. In contrast, other algorithms, such as
Minimum Priority, take 50.00 seconds to achieve 37.96%
accuracy, while Sync requires significantly more time (55.02
seconds) to achieve a slightly higher accuracy of 37.89%.
On the CIFAR-100 dataset, Greedy and other algorithms
still perform with comparable efficiency, requiring around
97.32 seconds to achieve similar accuracy (25.53%). For the
Tiny-ImageNet dataset, the Greedy algorithm achieves 26.00%
accuracy in 91.13 seconds, whereas the other algorithms require
longer times (ranging from 154.29 to 210.58 seconds) for
comparable accuracy levels. In the Non-IID scenario, Greedy
also demonstrates the same advantage.

3) Scalability of Our Approach: In this part, we investigate
the impact of two key hyperparameters on the performance of
Fed-RAA: the proportion of lowest-capability users (β) and
the number of submodels (M) after segmentation.

To quantify the impact of low-capability users on the overall
training process of Fed-RAA, we introduce the parameter β,
which represents the proportion of the lowest-capability users
(Level 3) among all users. During user allocation, we set β
as the proportion of Level 3 users, 1−β

2 for Level 2 users,
and 1−β

2 for Level 1 users. Additionally, when comparing the
effect of different submodel partitioning strategies on the overall
Fed-RAA training, the corresponding partitioning strategy for
various values of M is shown in Table IV.

10

TABLE V
COMPARISON OF TIME (IN SECONDS) REQUIRED TO ACHIEVE SPECIFIED ACCURACY LEVELS UNDER BOTH IID AND NON-IID CLIENT DATA

DISTRIBUTIONS. N/A MEANS THE TARGET WAS NOT ACHIEVED WITHIN THE RECORDED HORIZON.

Dataset Distribution Accuracy
Target FedAvg FedSync FedProx FedPrun SplitFed Ram-Fed FJORD FedRolex NeFL Fed-RAA

MNIST

IID

30 0.79 1.97 1.84 8.55 0.47 3.67 1.96 0.87 2.84 0.30
40 1.06 2.91 2.46 14.40 0.63 5.42 5.72 1.20 3.52 0.32
50 1.46 3.37 3.32 19.58 0.85 7.82 10.22 1.66 4.34 0.49
60 2.15 5.00 4.99 28.92 1.12 11.33 38.84 2.41 5.74 0.72
70 3.75 8.65 7.71 47.31 1.75 21.82 42.65 4.11 15.46 1.38
80 8.45 18.45 14.77 135.24 3.51 56.33 48.72 9.55 27.13 3.07
90 59.87 126.72 87.67 805.73 25.87 466.48 100.27 65.67 N/A 21.80

Non-IID

30 1.05 2.40 3.59 13.91 0.54 5.32 2.30 0.83 3.18 0.30
40 2.16 5.42 4.10 36.24 0.77 10.26 6.59 1.34 3.74 0.31
50 3.85 10.20 7.38 81.33 1.15 21.26 10.25 2.45 5.09 0.48
60 5.94 14.39 14.28 130.43 1.92 33.83 48.01 5.47 12.13 0.67
70 9.70 20.60 25.29 193.16 2.95 53.95 170.06 11.61 24.39 1.13
80 20.14 57.66 72.31 N/A 8.22 84.10 N/A 20.29 N/A 2.54
90 100.99 N/A 202.14 N/A 49.99 N/A N/A 118.14 N/A 20.14

CIFAR-10

IID

30 101.16 1.06 7.54 8.07 41.04 2.62 23.58 1.94 1.03 0.74
40 175.38 5.22 7.57 16.61 N/A 3.40 44.70 2.54 5.52 2.87
50 320.56 12.17 11.50 19.32 N/A 10.45 87.23 4.80 17.13 8.34
60 N/A 26.83 24.84 45.38 N/A 23.19 370.61 17.13 21.64 15.94
70 N/A 60.76 58.92 138.30 N/A 58.44 N/A 171.18 45.24 36.46
75 N/A 134.76 N/A N/A N/A 195.53 N/A N/A N/A 80.41

Non-IID

20 130.52 27.26 134.02 262.53 42.90 4.14 5.99 5.52 3.72 1.98
30 218.24 45.96 279.83 495.58 83.55 13.92 12.93 9.28 30.50 6.19
40 366.41 80.57 1049.86 3550.49 167.56 29.36 55.51 15.73 76.81 12.22
50 3422.11 151.82 N/A N/A 3623.31 60.46 N/A 29.75 131.90 25.30
60 N/A 586.22 N/A N/A N/A 155.81 N/A 82.08 N/A 51.71
70 N/A N/A N/A N/A N/A N/A N/A N/A N/A 171.92

CIFAR-100

IID

10 29.94 15.09 35.12 57.04 9.67 18.22 12.48 18.96 21.43 18.20
20 58.36 35.39 76.21 122.48 16.70 48.59 30.44 25.97 34.91 29.63
30 101.98 58.55 124.33 276.28 29.42 93.35 41.88 45.84 62.25 56.26
40 177.39 118.02 266.77 572.41 51.35 256.38 80.43 68.88 126.56 78.60
50 322.35 318.60 1423.29 N/A 99.70 N/A 144.28 136.73 756.89 115.81
60 7125.43 5143.23 N/A N/A 2946.46 N/A 443.06 685.01 N/A 273.38
65 N/A N/A N/A N/A N/A N/A N/A N/A N/A 732.85

Non-IID

10 65.33 21.73 33.66 109.65 19.57 51.51 22.18 28.28 29.59 19.16
15 100.01 32.79 78.99 177.80 30.02 76.22 40.59 34.57 44.90 36.42
20 130.52 48.20 134.02 262.53 44.71 132.53 74.96 40.33 68.98 41.77
25 166.89 71.69 213.88 342.05 61.70 181.66 114.60 53.56 97.72 52.07
30 218.24 100.49 279.83 495.58 82.90 286.96 141.50 64.18 136.75 61.08
35 288.50 143.81 384.02 773.06 106.74 904.14 183.45 88.84 232.64 97.41
40 366.41 318.73 1049.86 3550.49 142.71 4256.81 240.73 114.48 441.22 161.98
45 567.47 855.93 2749.02 N/A 209.29 N/A 325.78 177.48 N/A 173.90
50 3422.11 3783.14 N/A N/A 772.71 N/A 430.69 358.63 N/A 314.68

Tiny-ImageNet

IID

10 87.27 38.13 259.33 254.86 88.08 158.50 65.16 45.66 53.44 47.12
20 164.30 56.50 398.56 370.14 114.46 227.53 88.09 62.63 73.86 55.18
30 253.96 84.27 521.56 500.18 147.32 351.48 99.89 79.32 95.93 64.16
40 321.76 99.50 644.56 627.01 184.97 457.91 159.24 100.98 117.36 74.26
50 387.18 120.43 767.56 753.84 221.28 590.52 175.00 141.80 140.18 84.78
60 463.41 154.55 890.55 880.68 274.29 721.32 306.52 204.08 168.23 104.43
70 563.26 302.33 1013.55 1007.51 382.84 852.12 583.84 277.16 214.71 149.43
80 663.16 3678.09 1136.55 1134.34 809.59 982.93 N/A 589.68 282.29 280.19

Non-IID

10 174.75 35.49 282.71 358.18 99.48 307.48 67.10 56.18 49.83 35.53
20 295.33 55.97 N/A 490.92 139.28 428.75 115.04 87.64 62.26 42.73
30 377.74 75.80 N/A N/A 172.69 532.44 148.37 111.87 101.14 63.19
40 495.78 100.78 N/A N/A 212.72 N/A 229.32 132.74 151.40 78.82
50 N/A 125.15 N/A N/A 279.09 N/A 249.19 175.32 197.18 111.15
60 N/A 212.17 N/A N/A 417.38 N/A 361.54 355.05 352.33 177.04
70 N/A N/A N/A N/A N/A N/A N/A N/A 515.46 293.55

TABLE VI
ALGORITHM COMPARISON ON MNIST, CIFAR-10, CIFAR-100, AND TINY-IMAGENET UNDER BOTH IID AND NON-IID CLIENT DATA DISTRIBUTIONS.

Algorithm MNIST CIFAR-10 CIFAR-100 Tiny-ImageNet

IID Non-IID IID Non-IID IID Non-IID IID Non-IID

Acc. (%) Time (s) Acc. (%) Time (s) Acc. (%) Time (s) Acc. (%) Time (s) Acc. (%) Time (s) Acc. (%) Time (s) Acc. (%) Time (s) Acc. (%) Time (s)

Greedy 92.85 3.52 87.37 6.91 38.70 49.11 44.31 47.62 26.00 91.13 15.08 95.83 48.90 183.62 56.11 150.67
Random 91.90 5.04 85.81 7.38 37.60 50.08 41.40 49.67 15.78 92.23 13.27 96.28 45.15 189.50 52.23 194.75
Minimum Priority 92.03 4.81 86.50 7.19 37.96 50.00 41.79 47.98 25.53 154.29 11.79 97.27 42.46 200.17 53.01 199.89
Sync 92.13 6.81 47.41 21.07 37.89 55.02 22.74 50.38 23.57 97.32 7.42 93.16 7.50 210.58 23.03 206.11

11

(a) MNIST (IID) (b) CIFAR-10 (IID) (c) CIFAR-100 (IID) (d) Tiny-ImageNet (IID)

(e) MNIST (Non-IID) (f) CIFAR-10 (Non-IID) (g) CIFAR-100 (Non-IID) (h) Tiny-ImageNet (Non-IID)
Fig. 3. Detailed results of comparison among different algorithms. The top row shows the results for IID, while the bottom row shows those for Non-IID.

(a) MNIST (IID) (b) CIFAR-10 (IID) (c) CIFAR-100 (IID) (d) Tiny-ImageNet (IID)

(e) MNIST (Non-IID) (f) CIFAR-10 (Non-IID) (g) CIFAR-100 (Non-IID) (h) Tiny-ImageNet (Non-IID)
Fig. 4. The comparison of ablation methods on different datasets. The top row shows the results for IID, while the bottom row shows those for Non-IID.

Impact of Client Heterogeneity (β). As shown in Fig. 5, as
β increases, Fed-RAA continues to perform well even in weaker
environments, still making efficient use of the computational
power of weak clients with minimal impact. Specifically, in
most cases (e.g., MNIST in both IID and Non-IID settings,
CIFAR-10 in IID, CIFAR-100 in Non-IID, and Tiny-ImageNet
in Non-IID scenarios), we observe that as β increases, Fed-
RAA still converges at a very fast rate, with the data lines
for β = 0.9 and β = 0.1 being very close, and with the
difference between the largest curves being less than 5%. This
indicates that Fed-RAA is little affected by the increase in the
proportion of weak clients, and can still fully utilize their local
computational power for fast convergence to high accuracy.
However, in a few scenarios (such as CIFAR-10 in Non-IID,

CIFAR-100 in IID, and Tiny-ImageNet in IID), increasing
β does have some impact on the results. Nevertheless, the
effect remains relatively limited, with the largest accuracy drop
occurring in the Tiny-ImageNet IID case, where the accuracy
decreases by 15% when β is 0.9 compared to when β is 0.1.
Overall, this demonstrates that Fed-RAA is quite resilient to
increases in the proportion of weak clients, particularly for
most datasets.

Impact of Submodel Number (M). The results from Fig. 6
highlight the varying impacts of the number of submodels M
on training time and accuracy across different datasets and
distributions. On the MNIST dataset, under the IID condition,
the curves for different values of M are closely overlapping,
indicating minimal differences in accuracy. However, under
the Non-IID condition, the curve for M = 4 consistently

12

(a) MNIST (IID) (b) CIFAR-10 (IID) (c) CIFAR-100 (IID) (d) Tiny-ImageNet (IID)

(e) MNIST (Non-IID) (f) CIFAR-10 (Non-IID) (g) CIFAR-100 (Non-IID) (h) Tiny-ImageNet (Non-IID)
Fig. 5. The influence of β on different datasets. The top row shows the results for IID, while the bottom row shows those for Non-IID.

(a) MNIST (IID) (b) CIFAR-10 (IID) (c) CIFAR-100 (IID) (d) Tiny-ImageNet (IID)

(e) MNIST (Non-IID) (f) CIFAR-10 (Non-IID) (g) CIFAR-100 (Non-IID) (h) Tiny-ImageNet (Non-IID)
Fig. 6. The influence of M on different datasets. The top row shows the results for IID, while the bottom row shows those for Non-IID.

performs the best, achieving the highest accuracy. This trend
is also observed on other datasets, such as CIFAR-100, where
both IID and Non-IID distributions show M = 4 as yielding
the optimal results. However, on the Tiny-ImageNet dataset,
particularly under the Non-IID condition, M = 3 proves to
be the most effective configuration, yielding the best accuracy.
These findings suggest that the optimal value of M is not fixed
and depends on both the dataset and the data distribution, with
careful selection necessary to avoid unnecessary overhead and
ensure optimal performance.

VII. ACKNOWLEDGE

This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 62572280, U24A20244,

U23A20302, and the Shandong Science Fund for Excellent
Young Scholars under Grant 2023HWYQ-007.

VIII. CONCLUSION

This paper presents Fed-RAA, a Resource-Adaptive Asyn-
chronous Federated Learning algorithm designed to address
the inefficiencies of traditional federated learning methods
in resource-constrained edge environments. Unlike previous
synchronous approaches, which suffer from the straggler
and communication contention problems, Fed-RAA adapts
to clients’ heterogeneous resources by assigning tailored
submodels and enabling asynchronous updates. This ensures
that clients with stronger computing/communication abilities
are not delayed by weaker ones, optimizing both computing and

13

communication efficiency. The greedy-based online submodel
assignment strategy further enhances resource utilization in
local training, offering a practical solution to the online
decision-making challenge. Our theoretical analysis guarantees
convergence, and extensive experiments on MNIST, CIFAR-10,
CIFAR-100, and Tiny-ImageNet show significant improvements
in training speed and accuracy compared to existing methods.
Scaling Fed-RAA for large model architectures like Mixture
of Experts will be our work in the future.

REFERENCES

[1] Q. Nguyen, H. H. Pham, K. Wong, P. L. Nguyen, T. T. Nguyen, and
M. N. Do, “Feddct: Federated learning of large convolutional neural
networks on resource-constrained devices using divide and collaborative
training,” IEEE Trans. Netw. Serv. Manag., vol. 21, no. 1, pp. 418–436,
2024.

[2] J. Qin, X. Zhang, B. Liu, and J. Qian, “A split-federated learning
and edge-cloud based efficient and privacy-preserving large-scale item
recommendation model,” J. Cloud Comput., vol. 12, no. 1, p. 57, 2023.

[3] L. Song, J. Li, H. Jiang, S. Wei, and Y. Guo, “Chpfl: Clustered
adaptive hierarchical federated learning for edge-level personalization,”
High-Confidence Computing, p. 100343, 2025. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2667295225000479

[4] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity.” arXiv:
Learning,arXiv: Learning, Jan 2021.

[5] B. Yan, K. Li, M. Xu, Y. Dong, Y. Zhang, Z. Ren, and
X. Cheng, “On protecting the data privacy of large language
models (llms) and llm agents: A literature review,” High-Confidence
Computing, vol. 5, no. 2, p. 100300, 2025. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2667295225000042

[6] R. Yang, T. F. Tan, W. Lu, A. J. Thirunavukarasu, D. S. W. Ting, and
N. Liu, “Large language models in health care: Development, applications,
and challenges,” Health Care Science, vol. 2, no. 4, pp. 255–263, 2023.

[7] C. Cui, Y. Ma, X. Cao, W. Ye, Y. Zhou, K. Liang, J. Chen, J. Lu,
Z. Yang, K.-D. Liao et al., “A survey on multimodal large language
models for autonomous driving,” in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, 2024, pp. 958–979.

[8] C. Thapa, M. A. P. Chamikara, S. Camtepe, and L. Sun, “Splitfed: When
federated learning meets split learning,” in Thirty-Sixth AAAI Conference
on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on
Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2022
Virtual Event, February 22 - March 1, 2022. AAAI Press, 2022, pp.
8485–8493.

[9] Y. Wang, X. Zhang, M. Li, T. Lan, H. Chen, H. Xiong, X. Cheng, and
D. Yu, “Theoretical convergence guaranteed resource-adaptive federated
learning with mixed heterogeneity,” in Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
2023, Long Beach, CA, USA, August 6-10, 2023, A. K. Singh, Y. Sun,
L. Akoglu, D. Gunopulos, X. Yan, R. Kumar, F. Ozcan, and J. Ye, Eds.
ACM, 2023, pp. 2444–2455.

[10] T. Yang, Y. Xiao, G. Motta, F. Beaufays, R. Mathews, and M. Chen,
“Online model compression for federated learning with large models,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing ICASSP 2023, Rhodes Island, Greece, June 4-10, 2023. IEEE,
2023, pp. 1–5.

[11] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” arXiv preprint arXiv:1712.01887, 2017.

[12] Z. Long, Y. Chen, H. Dou, Y. Zhang, and Y. Chen, “Fedsq: Sparse-
quantized federated learning for communication efficiency,” IEEE
Transactions on Consumer Electronics, vol. 70, no. 1, pp. 4050–4061,
2024.

[13] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
in Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017.

[14] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and S. Wright,
“Atomo: Communication-efficient learning via atomic sparsification,”
Advances in neural information processing systems, vol. 31, 2018.

[15] M. Rostami and S. S. Kia, “Fedscalar: A communication efficient
federated learning,” 2024.

[16] W. Zhang, T. Zhou, Q. Lu, Y. Yuan, A. Tolba, and W. Said, “Fedsl: A
communication-efficient federated learning with split layer aggregation,”
IEEE Internet of Things Journal, vol. 11, no. 9, pp. 15 587–15 601, 2024.

[17] E. Diao, J. Ding, and V. Tarokh, “Heterofl: Computation and commu-
nication efficient federated learning for heterogeneous clients,” arXiv:
Learning,arXiv: Learning, Oct 2020.

[18] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and
L. Tassiulas, “Model pruning enables efficient federated learning on edge
devices.” IEEE Transactions on Neural Networks and Learning Systems,
p. 1–13, Jan 2022.

[19] B. Yuan, C. R. Wolfe, C. Dun, Y. Tang, A. Kyrillidis, and C. Jermaine,
“Distributed learning of fully connected neural networks using independent
subnet training,” Proceedings of the VLDB Endowment, p. 1581–1590,
Apr 2022.

[20] M. Wu, M. Boban, and F. Dressler, “Flexible Training and Uploading
Strategy for Asynchronous Federated Learning in Dynamic Environments,”
IEEE Transactions on Mobile Computing, vol. 23, no. 12, pp. 12 907–
12 921, 12 2024.

[21] S. Horvath, S. Laskaridis, M. Almeida, I. Leontiadis, S. Venieris, and
N. Lane, “Fjord: Fair and accurate federated learning under heterogeneous
targets with ordered dropout,” Advances in Neural Information Processing
Systems, vol. 34, pp. 12 876–12 889, 2021.

[22] S. Alam, L. Liu, M. Yan, and M. Zhang, “Fedrolex: Model-heterogeneous
federated learning with rolling sub-model extraction,” Advances in neural
information processing systems, vol. 35, pp. 29 677–29 690, 2022.

[23] H. Kang, S. Cha, J. Shin, J. Lee, and J. Kang, “Nefl: Nested model
scaling for federated learning with system heterogeneous clients,” IEEE
Transactions on Mobile Computing, 2025.

[24] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the
objective inconsistency problem in heterogeneous federated optimization,”
Advances in neural information processing systems, vol. 33, pp. 7611–
7623, 2020.

[25] F. Nikolaidis, M. Symeonides, and D. Trihinas, “Towards efficient
resource allocation for federated learning in virtualized managed en-
vironments,” Future Internet, vol. 15, no. 8, 2023.

[26] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
CoRR, vol. abs/1903.03934, 2019.

[27] L. Gao, W. Li, H. Ma, Y. Liu, and C. Li, “Data cube-based storage
optimization for resource-constrained edge computing,” High-Confidence
Computing, vol. 4, no. 4, p. 100212, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2667295224000151

[28] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and
L. Tassiulas, “Model pruning enables efficient federated learning on edge
devices,” IEEE Transactions on Neural Networks and Learning Systems,
2022.

[29] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arXiv preprint arXiv:1903.03934, 2019.

[30] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[31] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
141–142, 2012.

[32] M. A. mnmoustafa, “Tiny imagenet,” 2017. [Online]. Available:
https://kaggle.com/competitions/tiny-imagenet

[33] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Feder-
ated learning of deep networks using model averaging,” CoRR, vol.
abs/1602.05629, 2016.

[34] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine learning and systems, vol. 2, pp. 429–450, 2020.

14

Ruirui Zhang received the B.S. degree from Tais-
han College, Shandong University, in 2022. She is
currently pursuing a Ph.D. degree with the School
of Computer Science and Technology, Shandong
University. Her research interests include mobile edge
computing, Internet of Things, and federated learning.

Xingze Wu received his Bachelor’s degree from
North China Electric Power University, China, in
2023. He is currently pursuing his Master’s degree
at the School of Computer Science and Technology,
Shandong University. His research interests include
edge computing, wireless sensor networks, and fed-
erated learning.

Yifei Zou (Member, IEEE) received the BEng degree
from Wuhan University, China, in 2016, and the Ph.D.
degree from The University of Hong Kong, China,
in 2020. He is currently an assistant professor at
the School of Computer Science and Technology,
Shandong University, Qingdao, China. His research
interests include wireless networks, ad hoc networks,
and distributed computing.

Zhenzhen Xie (Member, IEEE) received her M.S.
and Ph.D. degrees in Computer Science from Jilin
University, China, in 2014 and 2021, respectively. She
currently holds a post-doctoral position in the School
of Computer Science and Technology, Shandong
University. Her research areas are edge computing,
the Internet of Things, and federated learning.

Peng Li (Senior Member, IEEE) is currently a
Professor with the Xi’an Jiaotong University, China.
He received the PhD degree in computer science
from The University of Aizu, Japan. His research
interests mainly focus on wired/wireless networking,
cloud/edge computing, distributed AI systems, and
blockchain. He has authored or co-authored over 100
papers in major conferences and journals. He won
the 2020 Best Paper Award of IEEE Transactions on
Computers. He serves as the chair of SIG on Green
Computing and Data Processing in IEEE ComSoc

Green Communications and Computing Technical Committee. He is a guest
editor of IEEE Journal of Selected Areas on Communications, the editor
of IEEE Open Journal of the Computer Society and IEICE Transactions on
Communications. He is a senior member of IEEE.

Xiuzhen Cheng received her M.S. and Ph.D. degrees
in computer science from the University of Minnesota
Twin Cities in 2000 and 2002, respectively. She is
a professor in the School of Computer Science and
Technology, Shandong University, Qingdao, China.
She has published more than 170 peer-reviewed
papers. Her current research interests include cyber
physical systems, wireless and mobile computing,
sensor networking, wireless and mobile security, and
algorithm design and analysis. She worked as a
professor with the Department of Computer Science,

the George Washington University, Washington, DC, USA, from 2013 to 2017.
She worked as a program director for the US National Science Foundation
(NSF) from April to October in 2006 (full time), and from April 2008 to
May 2010 (part time). She received the NSF CAREER Award in 2004. She is
Fellow of IEEE and a member of ACM.

Falko Dressler received his M.Sc. and Ph.D. degrees
from the Dept. of Computer Science, University of
Erlangen in 1998 and 2003, respectively. He is a full
professor and Chair for Data Communications and
Networking at the School of Electrical Engineering
and Computer Science, TU Berlin. Dr. Dressler has
been associate editor-in-chief for IEEE Trans. on
Mobile Computing and Elsevier Computer Commu-
nications as well as an editor for journals such as
IEEE/ACM Trans. on Networking, IEEE Trans. on
Network Science and Engineering, Elsevier Ad Hoc

Networks, and Elsevier Nano Communication Networks. He has been chairing
conferences such as IEEE INFOCOM, ACM MobiSys, ACM MobiHoc,
IEEE VNC, IEEE GLOBECOM. He authored the textbooks Self-Organization
in Sensor and Actor Networks published by Wiley & Sons and Vehicular
Networking published by Cambridge University Press. He has been an IEEE
Distinguished Lecturer as well as an ACM Distinguished Speaker. Dr. Dressler
is an IEEE Fellow as well as an ACM Distinguished Member. He is a member
of the German National Academy of Science and Engineering (acatech).
He has been serving on the IEEE COMSOC Conference Council and the
ACM SIGMOBILE Executive Committee. His research objectives include
adaptive wireless networking (radio, visible light, molecular communications)
and embedded system design (from microcontroller to Linux kernel) with
applications in ad hoc and sensor networks, the Internet of Things, and
cooperative autonomous driving systems.

Dongxiao Yu (Senior Member, IEEE) received the
B.S. degree in 2006 from the School of Mathematics,
Shandong University and the Ph.D degree in 2014
from the Department of Computer Science, The
University of Hong Kong. He became an associate
professor in the School of Computer Science and
Technology, Huazhong University of Science and
Technology, in 2016. He is currently a professor in
the School of Computer Science and Technology,
Shandong University. His research interests include
wireless networks, distributed computing and graph

algorithms.

