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Abstract—Many emerging applications in edge computing require processing of huge volumes of data generated by end devices, using
the freshest available information. In this paper, we address the distributed optimization of multi-user long-term average
Age-of-Information (AoI) objectives in edge networks that use NOMA transmission. This poses a challenge of non-convex online
optimization, which in existing work often requires either decision making in a combinatorial space or a global view of entire network
states. To overcome this challenge, we propose a reinforcement learning-based framework that adopts a novel hierarchical
decomposition of decision making. Specifically, we propose three different types of distributed agents to learn with respect to efficiency of
AoI scheduling, fairness of AoI scheduling, as well as a high-level policy balancing these potentially conflicting design objectives. Not only
does the proposed decomposition improve learning performance due to disentanglement of different design objectives/rewards, but it also
enables the algorithm to learn the best policy while also learning the explanations – as actions can be directly compared in terms of the
design objectives. Our evaluations show that the proposed algorithm improves the long-term average AoI by 200%− 300% and 400%

compared to prior works with NOMA and the optimal solution without NOMA, respectively.
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1 INTRODUCTION

THE rapid development of 5G/6G communication tech-
nologies in recent years has prompted an ongoing shift

toward an edge computing paradigm. New techniques such
as Non-Orthogonal Multiple Access (NOMA) [1–3] and Age-
of-Information (AoI) minimization [4–9] are considered to
enhance transmission efficiency and to guarantee information
delivery freshness in edge computing systems, resulting in
significant improvement in response times and enabling
highly elastic edge services.

In usual, an edge network (e.g. [10, 11]) contains multiple
edge devices deployed on base stations (BSs) and massive
end devices connected to the BSs via wireless channels. When
a large number of end devices connect to the BSs, their
uplinks to the BSs may fail due to the heavy interference
and collisions in the open-access wireless channel. The use of
NOMA and AoI minimization techniques can help address
the uplink scheduling problem [12, 13]. Specifically, the
NOMA technique allows multiple uplinks with the same
destination to be scheduled simultaneously even under
physical interference constraints [1–3, 14], and the concept of
AoI accurately depicts the freshness of information, giving
priority to uplink scheduling [15–18].
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This paper studies distributed optimization of multi-
user long-term average AoI objectives with NOMA in edge
networks. The time in edge networks is divided into discrete
slots, each of which is a time unit for users to transmit a
packet in the wireless channel. In each time slot, the users
can decide to transmit or listen, to update their AoI on the
edge side. The final objective is to minimize the average
AoI of all users in a sufficiently long interval, with channel
contention and signal interference as the constraints.

Despite recent progress on NOMA and AoI minimization,
optimizing AoI with NOMA is still an open problem.
Specifically, it requires to solve a challenging non-convex
online optimization that involves a number of discrete
transmission powers as variables, different objectives, and
control knobs. Firstly, while NOMA can substantially boost
network throughput and potentially lead to improved AoI
performance, it also gives rise to a difficult contention
resolution and interference control problem that is known to
be non-convex [2, 3, 19] and thus does not have an amenable
solution. Secondly, the optimization of multi-user AoI must
address a tradeoff between efficiency and fairness [20, 21].
That is, through a joint optimization, we need to achieve two
(potentially) conflicting objectives – maximizing network
throughput for efficiency of AoI scheduling and ensuring
fairness among AoI received by different BSs. Finally, the
nature of edge computing mandates a distributed online
optimization of these problems, adapting to dynamic net-
work conditions. However, existing works either formulate
AoI scheduling with NOMA as an optimization with con-
tention/interference constraints that lead to a combinatorial
optimization [1, 20, 21] or require a global view/information
about the whole network [15–18, 22–24].

To this end, we propose a reinforcement-learning (RL)
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based framework that develops a novel hierarchical decompo-
sition of decision making, for minimizing multi-user long-term
average AoI with NOMA as the final objective. In particular,
we focus on the uplink scheduling in edge networks and
consider AoI for delivering data collected by end devices to
edge servers located at 5G/6G base stations. We need to em-
phasize that while existing works have considered RL-based
approaches for various network optimization problems [15–
18, 22–24], they either focus on average AoI scheduling with
a single, centralized agent or fail to address the tradeoff
between different design objectives in decision making.
Our key idea in this paper is a hierarchical decomposition
of decision-making for distributed optimization of multi-
user average AoI objectives. Specifically, we model (i) each
base station as an individual learning agent that acts upon
only local information, and (ii) each design objective – i.e.,
AoI efficiency (i.e., network throughput) and AoI fairness
– through a separate learning agent with corresponding
reward. Then, a high-level agent/policy is introduced to
explicitly balance different design objectives. Leveraging
independent Deep Reinforcement learning, it enables a
distributed, online optimization algorithm as multiple agents,
representing different design objectives and BSs, interact, self-
teach, and learn to improve the decision-making policies on
the fly.

In contrast to prior works that simply leverage existing
RL algorithms for network optimization, our hierarchical
decomposition of decision making provides a refreshing
perspective. It not only decomposes the optimization into
meaningful reward types (i.e., design objectives) that are
more suitable for learning and thus lead to more favorable
policies, but also enables the model to learn the best policy
while also learning the explanations. Compared with some
other long-term optimization techniques (i.e. Lyapunov
technique), our distributed RL approach does not rely on any
prior knowledge or assumptions, has a balanced exploration-
and-exploitation to find the stable strategy, and is adaptive
to the mobile environment.

The key contributions of the paper are as follows:

• We propose a reinforcement learning-based frame-
work for distributed optimization of multi-user long-
term average AoI objective with NOMA, a challeng-
ing non-convex online optimization problem.

• Our solution adopts a novel hierarchical decompo-
sition of decision making, leveraging three different
types of agents to learn with respect to efficiency
rewards, fairness rewards, and a high-level tradeoff
policy, respectively.

• The decomposition not only leads to improved learn-
ing performance but also provides interpretability –
as to understand the reasons why an action has an
advantage (or disadvantage) over another, in terms
of efficiency and fairness.

• The framework is evaluated using an edge network
simulator with 100 edge and 800 end devices. By
comparing with the previous works [12, 13] with
NOMA and the optimal solution without NOMA,
the efficiency of our work has an improvement of
200%-300% and 400% in terms of minimizing the
long-term average AoI, respectively. The performance

of our algorithm is close to the optimal solution with
NOMA, obtained by brute force.

The remainder of the paper is organized as follows.
Sec. 2 introduces the related work. Sec. 3 formulates our AoI
scheduling problem, NOMA-SINR model and the system
deployment. Our AoI scheduling algorithm via learning is
covered in Sec. 4, and Sec. 5 presents the simulation results
for evaluation. Concluding remarks are given in Sec. 6.

2 RELATED WORK

Firstly proposed in [25–27], Age-of-Information has become
a quite emerging concept to characterize the freshness of the
information. Currently, a series of works on AoI optimization
problems have been presented in wireless networks and edge
computing domain, including [4–9] in single hop networks,
[28–33] in multi-hop networks and [19–21, 34] directly in
edge computing framework. In [4], based on the SINR model,
the authors prove that minimizing the overall information
age is NP-hard and an integer linear programming formu-
lation is provided to compute the global optimal solution.
In [5] and [6], the AoI optimization problem for uplinks
to a base station is considered. In [30], the authors first
characterize AoI as a convex function of link activation rates
in a single hop network and then extend the above result
to an optimal policy in multi-hop networks. The authors in
[31] directly consider the problem of minimizing average
and peak AoI in multi-hop networks, and present an optimal
stationary scheduling policy. As for those works considering
the AoI scheduling problem in the edge computing domain,
the authors in [21] consider the problem that an edge
server collects the information from a source node over
a delay channel and disseminates the information to its
destination. Three online scheduling policies are proposed
when the constraints and targets of optimization vary. In
[19], a non-convex average AoI minimization problem is
studied with energy and time constraints, which relies on the
frequency division multiple access technique to provide a
reliable communication environment. Unlike the centralized
scheduling schemes mentioned above, a distributed solution
for AoI scheduling in multi-hop networks is provided in [29].
To reach a local optimal scheduling on AoI, the algorithm in
[29] adopts the distributed convex optimization technique,
which entails considerable overhead for the information
singular.

Apart from the above works without using learning skills,
[15–18, 22–24, 35, 36] are a series of works optimizing the
AoI scheduling process with learning schemes from different
views. Over a perfect channel, the authors in [15, 22] use the
deep Q-network (DQN) method and Q-learning to learn the
data arrival statistics in AoI scheduling problem, respectively.
An extension of [15] is provided in [18], in which various
reinforcement learning methods are extensively simulated.
For the unreliable channels, the work in [23] formulates the
AoI problem as a restless multi-armed bandit, and proposes
a suboptimal whittle index policy to solve it. In [24], nodes
exchange status with each other in wireless ad-hoc networks,
and employ the policy gradients and DQN methods to min-
imize their AoI. In [18], a reinforcement learning approach
is proposed to minimize the long-term average AoI at users
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when the channel statistics are unknown. In [35], a DQN-
based scheme is proposed to guide the unmanned aerial
vehicle to wirelessly charge multiple ground nodes. So that
the average AoI of those ground nodes can be minimized.

Even though a series of works with/without learning
schemes have been proposed in the above works to optimize
the AoI scheduling problem, only a few of them use NOMA
to facilitate the AoI scheduling process. The work in [1, 14]
adopts NOMA technology to minimize the average AoI
of downlinks. In [1], an adaptive AoI-aware buffer-aided
transmission scheme is proposed to adjust the transmission
rate and power in NOMA technology and improve the aver-
aged AoI performance. In [14], a heuristic adaptation of the
driftplus-penalty approach from the Lyapunov framework
is used to minimize the average AoI with energy constraint.
Also, the works in [2, 3] shows how the NOMA facilitate
the transmissions in the wireless network, even though they
are not specifically designed for AoI scheduling problem.
Note that the works in [1–3, 14] have the similar assumption
that the power domain is divided into constant levels for
the PDMA (Power Division Multiple Access) in NOMA.
Consequently, the speedup on message transmissions by
adopting NOMA is limited, i.e., also a constant.

Compared with previous works, we remove the constant
division on the power levels in the conventional NOMA
transmission, and use deep reinforcement learning to fully
explore the optimal solution for AoI minimization with
NOMA. Consequently, a more efficient AoI scheduling in
our work significantly outperforms that of previous works.

3 NETWORK MODEL AND PROBLEM DEFINITION

3.1 Network and Communication Model
We consider an edge network with m base stations (BSs)
and n users (i.e., end devices) randomly placed on a 2-
dimensional Euclidean space. We assume that BSs within a
given distance are connected by wired links, and the users
always choose the closest BS to connect via a wireless channel.
In the most extreme case, in which the distance from the user
to multiple BSs was the same, the user would randomly
select a BS to connect. The time for communications between
users and BSs is divided into equal-length discrete rounds,
each of which contains three slots. For each round, the slot 1
is for the connected BSs to exchange information with each
other via wired links, the slot 2 is for the BSs to broadcast
the control messages to their users, and slot 3 is for the
users to upload their information packets to BSs through
a wireless channel. Figure 1 is an illustration for the three-
slot communications in one round. In this paper, we mainly
focus on the uplinks in slot 3, in which the data packets from
users are uploaded to the edge servers at BSs. Additional
assumptions for communications between BSs in slot 1, and
downlinks from BSs in slot 2 are given in the following. As
mentioned above, due to a constructed backbone network,
the communications between neighboring BSs in slot 1 are
stable and always succeed. Besides, we assume that the BSs
are relatively far away from each other or scheduled by a
TDMA (Time Division Multiple Access) scheme so that their
downlinks in slot 2 will not interfere with each other. In other
words, when a BS broadcasts its message in slot 2, all users
connected to the BS can receive it. To depict the mobility of

end devices, we assume that the users can move with a given
speed in arbitrary directions in our 2-dimensional Euclidean
space. If a user finds that its closest BS changes due to its
mobility, it will connect to the new closest BS in the following
rounds.

Fig. 1: Three-slot communications in one round.

In each slot of uplinks, multiple users may transmit
signals to the BSs (i.e., receivers) and thus interfere with each
other as the receivers try to decode their received signals. A
signal will be decoded by the receiver when its strength
is relatively larger than the strength of the interference
plus the ambient noise. Different from traditional OMA
(orthogonal multiple access) technologies, in which a receiver
can at most decode one signal in each slot, NOMA makes
it possible for a receiver to decode multiple signals in one
slot. Specifically, by making full use of the SIC (Successive
Interference Cancellation), the interference of a decoded
signal can be removed from subsequent decoding processes
of the remaining signals. To model NOMA in wireless
communications with fading and interference cancellation,
we consider the following NOMA-SINR equation:

SINR(u, v) =
Pu/d(u, v)

α∑
w∈S\(S′∪{u}) Pw/d(w, v)α +N

. (1)

In the above equation, u and v are the transmitter
and receiver, respectively; Pu is the power of the signal
transmitted by u, d(u, v) is the Euclidean distance between
u and v. S is the set of synchronous transmitters. S′ is the
set of transmitters whose signals have been decoded by v. α
is the path loss exponent and thus d(u, v)α is the path loss
between the transmitter u and the receiver v. β is a threshold
determined by the hardware, and N is the ambient noise. In
usual, α ∈ (2, 6) and β > 1. In our SINR model, only when
u transmits, v listens, and their SINR ratio SINR(u, v) is
larger than the threshold β, this signal from u can be decoded
by the receiver v.

Power Level in NOMA Technique. According to Equa-
tion 1, for x users that connect to a base station b, by
letting the i-th user (denoted by vi) transmits with power
Pi = β(cβ + c)i−1 × d(vi, b)

α ×N , in which constant c ≥ 1
and i = 1, 2, ...x, the BS b can decode the messages from vx,
vx−1,..., v1 one by one. Then, for the node transmitting with
power Pi, we say it transmits with power level i in NOMA.
From the above description, we can see that the energy
consumption of a node exponentially increases when its
power level gets larger. We use a positive integer x̂ to denote
the maximum power level in NOMA technique, which is in
usual determined by the hardware and the energy budget
of devices. Different from the previous works with x̂ = 2, a
more general setting of x̂ ≥ 2 is considered in our paper.
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3.2 Definition and Problem Statement

To model the freshness of the information delivery from
users to BSs, the definition of Age-of-Information similar
to [37–40] is considered. Specifically, we assume that in slot
3 of each round t, each user v can choose one of the two
actions after receiving the control message from its BS: (1)
generate a data packet containing its most fresh information
and transmit the generated data packet to its BS instantly,
(2) do nothing. Let the AoI with respect to a user v be the
time that elapsed since the generation of the freshest message
transmitted from v to its BS, and let Av(t) be the AoI of the
user v at round t. According to the above assumption, once
a data packet from v was received and successfully decoded
by its BS at round (t − 1), Av(t) drops to 1, and increases
linearly in time otherwise. By setting Av(0) = 1 initially, and
defining Ev(t− 1) as the event that the freshest packet from
v is received by its BS at round (t − 1), the Av(t) has the
following formulation.

Av(t) =

{
1 Ei(t− 1) occurs,
Av(t− 1) + 1 otherwise,

For a base station, it maintains all the AoI of its users.

Definition 1. Average Age-of-Information. For each user v,
its average Age-of-Information (AoI) in an interval I that
contains |I| rounds is defined as Ãv(I) =

∑|I|
t=1 Av(t)/|I|.

For the end-to-edge information system, its average AoI
is the average value of Ãv(I) for all users, i.e., Ã(I) =∑

v∈V Ãv(I)/n, in which V and n are the set and number
of users.

As has been discussed in [32], the AoI scheduling has a
close relationship with the throughput of the network. In this
paper, the throughput of each BS is also defined to help our
algorithm design.

Definition 2. Throughput. Let tpbt be the throughput of the
BS b in round t. If the BS b successfully receives packets
from f users in the slot 3 of round t, tpbt = f .

Our Optimization Problem. Our objective is to minimize
the average AoI of the end-to-edge information system in
a sufficient long interval, which is also termed as multi-
user long-term average AoI minimization problem in this
paper. Note that our optimization problem is based on
the NOMA transmission. Thus, in each slot 3 of a round,
every user can choose to transmit or not, by its own will or
according to the control message from its BS. If to transmit,
it also has to determine the power level to satisfy the
successive interference cancellation requirement in NOMA.
Then, the BSs update the AoI of their users according to
the Equation 1. Let π denote a stochastic policy. π is a
random variable representing the probability of performing
an action in a given state Thus, the final scheduling policy
for our optimization problem can be denoted as sequences
πv = {πv(1), πv(2), ..., πv(|I|)} for each node v ∈ V , where
πv(t) ∈ {0, 1, 2, ..., x̂}. πv(t) = i with integer i = 1, 2, ..., x̂
means the user v will transmit its freshnest data packet with
power level i at round t. Additionally, we use πv(t) = 0 to
denote the special case that v keeps silent in round t. Thus,

Acronyms Definitions
BS Base station
BF Brute force
AoI Age-of-Information
SIC Successive Interference Cancellation

OMA Orthogonal multiple access
NOMA Non-orthogonal multiple access
PDMA Power division multiple access
TDMA Time Division Multiple Access

DeepRL Deep reinforcement learning
Notations Definitions

m The number of BS
n The number of users
t Current round
|I| A time interval
Vb The set of users in BS b
N Ambient noise determined by environment

d(u, v) Euclidean distance between u and v
Pu Transmission power of transmitter u
α, β SINR parameters
Av(t) AoI of user v at round t

Âv(I) The average AoI of user v in the interval I
Â(I) The average AoI of all users in the interval I
S The set of synchronous transmitters
S′ The set of transmitters whose signals have been decoded

Ev(t− 1)
The event that packet from a transmitter v
is received by its BS at round t

tpbt The throughput of the BS b in round t

kbt
Highest power level in NOMA technique
in round t for the users in BS b

sb,Xt
State vector of the X-agent(X is one of T, F and B)
in BS b at round t

ab,Xt
Action vector of the X-agent(X is one of T, F and B)
in BS b at round t

rb,Xt
Reward vector of the X-agent(X is one of T, F and B)
in BS b at round t

J(α) The temperature parameter of SAC-Discrete algorithm.

H̄
A constant vector equal to the hyperparameter representing
the target entropy of SAC-Discrete algorithm

Q(at) The Q-value of action at
πv The policy of user v on average AoI minimization
γ Attenuation factor in Q-learning.
θ The parameter of the actor network.
ω The parameter of the critic network.

TABLE 1: Table of acronyms and math notations.
the multi-user long-term average AoI minimization problem
has the following formulation:

min
π

Ã(I) =
1

|I|n
∑
v∈V

|I|∑
t=1

Av(t) with π = ∪v∈V πv, (2)

in which I is a sufficient long interval and π is the scheduling
policy for all nodes. From a given policy π and NOMA-SINR
Equation 1, we know whether the data packet of a node v
can be received by its BS at each round t of the interval I .
Then, the AoI of v in interval I can be evolved. Our final
objective is to find such a scheduling policy π to minimize
the average AoI of all nodes in the interval I .

The most important notations and parameters are listed
in the Table 2 for reference.

4 ALGORITHM DESCRIPTION

4.1 Challenges and Solutions
In this paper, we propose a learning-based algorithm to solve
the Age-of-Information scheduling problem with NOMA
transmission. The proposed algorithm is a distributed one
in terms of the BSs, as is illustrated in Figure 2(a). In other
words, in each round t, according to the communications in
slot 3 of round (t− 1) and slot 1 of round t, each BS knows
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the information of its users and neighboring BSs, respectively.
Then, each BS independently executes our learning-based
algorithm to figure out the transmission policies for all its
users and disseminate them by broadcasting in slot 2 of
the current round. Then, in slot 3 of round t, each user v
transmits or not according to its policy πv(t), and its AoI at
the current round gets updated by its BS.

The objective of our algorithm is to minimize the long-
term average AoI of all users. An intuitive learning-based
approach for this optimization is to use the average AoI as
the reward to guide the learning process. Whereas, in our
final learning framework, two RL agents (T- and F-agents)
are designed at each BS to optimize its efficiency and fairness
of information scheduling, respectively. Then, a third RL
agent (B-agent) leverages the actions generated by these
two agents and aims to learn a high-level policy to make
final scheduling decisions at the BSs. The total three agents
on each BS constitute our distributed learning framework.
In the following, we further explain why we need such a
multi-agent setting in each BS.

Firstly, due to multi-hop connections between BSs, it is
hard for each BS to obtain the real-time average AoI of all
users in its learning process. Even though the local average
AoI is accessible for each BS, 1 directly adopting it as the
reward of learning misleads the BS on AoI minimization.
Specifically, for each BS b, no matter which policies the other
BSs take, choosing the highest power levels in NOMA for its
uplinks makes its local average AoI more likely to be reduced
in the next round. Because its uplinks with higher power
levels are more likely to succeed, despite the interference
from the users of other BSs. However, when all BSs choose the
highest power levels for their users, the heavy interference
with each other fails most of the uplinks and the average AoI
of all users gets increased. Secondly, the average AoI may
not serve as an accurate reward signal, because the average
AoI is a time accumulative metric while the states, rewards,
and actions in learning process are mainly roundly based,
which reduces the accuracy of learning.

To avoid such disadvantages, it is important for BS to
appropriately contend the multi-access channel for their
users to minimize the local average AoI and meanwhile
control their interference to the link schedulings proceed
by other BS. Since the contention and interference in the
wireless channel cannot be intuitionistically observed in AoI
minimization problem, an alternative approach proposed
in this paper is to optimize the efficiency and fairness
simultaneously in information scheduling. First, we can show
that maximizing throughput and minimizing average AoI
are two equivalent problems for a base station. Therefore,
each BS tries to maximize its throughput to minimize its local
average AoI.However, maximizing local AoI alone can create
a prisoner’s dilemma between base stations, leading to heavy
competition. Hence, the fairness with its neighbors in terms
of minimizing the local average AoI should be maintained.
The detailed proof is in the appendix. In other words, a
BS should firstly try to maximize its throughput. Thus, the
uplinks from its users with the largest ages can be efficiently
scheduled, and the local average AoI at the next round can be

1. The local average AoI for a BS means the average AoI of the users
connected to the BS.

minimized. Meanwhile, when a BS finds that its average AoI
is much smaller than that of its neighbors, it should choose
the lower power levels in NOMA to decrease its interference
to its neighboring BS, so that more uplinks can be scheduled
by its neighbors and the global average AoI becomes smaller.

Both of the optimizations on efficiency and fairness are
important for the global average AoI minimization problem.
As discussed above, each BS only maximizing its own
throughput results in a local optimal and energy consuming
policy. If the fairness is optimized without considering the
efficiency, a “lazy” policy cannot be avoided, in which all
users choose not to transmit and their AoI equally increases.
However, achieving both efficiency and fairness in a single-
agent system is nearly impossible, due to the inherent conflict
between these two objectives. For example, a strategy for a BS
to maximize its efficiency would allocate higher power levels
to its users, potentially exacerbating the unfairness due to its
interfere to the uplink schedulings of other BSs. A solution
to avoid this contradiction is to use two different learning
agents (denoted by T-agent and F-agent) to address efficiency
and fairness separately, and leverage another agent (denoted
by B-agent) at each BS to integrate the actions generated by
T-agent and F-agent, in order to obtain a joint action for the
AoI scheduling problem. This B-agent optimizes the weights
for combining different actions to balance efficiency and
fairness, which allows direct interpretation of our learned
outcomes.

In summary, the real-time global average AoI is not acces-
sible for BSs in the multi-hop edge network, and optimizing
the local average AoI misleads the learning process, due
to the time-accumulative nature of AoI. Maximizing the
throughput of BS in each round is equivalent to minimizing
the MLA-AoI in a single-hop wireless network. Whereas,
in a multi-hop wireless network, each BS maximizing its
throughput results in a Prisoner Dilemma. Thus, fairness is
considered as one of the objectives, to avoid the Prisoner
Dilemma. Our approach in this paper is to optimize the
efficiency and fairness of BSs in each round during the
AoI scheduling process. Then, considering the branches on
optimizing these two problems, two agents are designed on
each BS for the efficiency and fairness problems, respectively.
Finally, to well integrate the branched actions from the two
agents, a reinforcement learning agent is used. Additionally,
the learning states and rewards designed in our work do not
rely on the number of users and network topology. Thus,
compared with the existing work [12] whose states are closely
determined by the number of users, our learning scheme
is more concise and stable, especially when the position of
users changes in mobile networks.

4.2 Distributed Learning Framework

As mentioned above, we leverage three different types
of learning agents to optimize the efficiency and fairness
objectives and to balance them in a joint optimization.
Specifically, for each BS, we define T-agent for throughput
optimization, F-agent for fairness optimization, and B-agent
for learning a high-level policy for balancing the two design
objectives, respectively. T-agent in each BS aims to maxi-
mize its throughput in each round relying only on local
information, thus enabling a distributed solution; F-agent
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Wired connection Wireless connection Base Station User

(1) The time solt 3 in round t-1 (4) The time solt 3 in round t(2) The time solt 1 in round t (3) The time solt 2 in round t

(a) 3-slots communications in each round.
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Fig. 2: Distributed deep reinforcement learning approach for AoI optimization.

adjusts the average AoI of its own users and aims to balance
the average AoI of users connected to the neighboring BSs.
Finally, B-agent decides how to balance the two design
objectives by choosing the actions generated by T-Agent and
F-Agent. And the action from B-agent is directly executed by
the BS. This hierarchical decomposition of decision making
enables the model to learn the best policy while also to learn
the explanations. Since B-agent adopts a high-level policy
discriminating the actions generated by T-Agent and F-Agent,
it allows actions to be directly compared in terms of tradeoffs
between the two design objectives. It helps understand the
reasons why an action of BS b at round t has an advantage
(or disadvantage) over another, with respect to efficiency
and fairness in optimizing multi-user AoI objectives with
NOMA.

Deep reinforcement learning (RL) scheme adopted in our
agents is a combination of reinforcement learning and deep
neural networks (DNNs), which is more powerful than RL
in handling complex tasks. Different from the supervised
learning schemes with external knowledge guidance, Deep
RL agents learn their behaviours by interacting with the
environment. In each iterative step, the Deep RL agents
observe the current state of the environment and make
corresponding decisions/actions. The environment then
evolves from the current state to a new one and returns
a reward to the agents, which is a feedback about the quality
of the agents’ actions. The final goal of the agents is to learn
a strategy, which is a DNN that maps states to all action
rewards. To find a satisfactory strategy, Deep RL takes an
exploration-exploitation-based method. A Deep RL agent
can empirically select the action with the largest reward in

the current state, which is called action exploitation. Also,
it can try a new action for a potentially higher reward,
which is called action exploration. A good balance between
exploitation and exploration helps the agent “understand”
the environment well and learn an optimized policy through
enough iterations.

Figure 2 is presented to illustate our framework. Specifi-
cally, in Fig.2 (a), the first subgraph represents that at time
slot 3 of the previous round, the BSs receive signals from
their users and update the relevant information according
to the received packets. The second subgraph shows that at
time slot 1 of the current round, the wired-connected BSs
exchange the required information with each other to obtain
the average AoI of their neighboring BSs. The third subgraph
reveals time slot 2 of the current round. BSs use Deep RL
agents to obtain their actions. Afterward, the BSs broadcast
the commands to their users, about which users should send
signals with which power. The final subfigure shows the
time slot 3 of the current round, users send signals to BSs
or not based on the messages from BSs. Then, BSs update
the AoI information as the reward. In In Fig.2 (b), each BS
uses its T-agent and F-agent to obtain its T-action and F-
action, according to its state from the environment. Then,
the T-action and F-action will be combined into the final
action by B-agent. The BS delivers the final action to its users
at the end of the time slot 2. In Fig.2 (c), the users execute
the final action and T-/F-/B-agent get a reward from the
environment in slot 3. The rewards fed from the environment
are forwarded to T-/F-/B-agent to update itself.
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4.3 Design of T-agents

Aiming at maximizing the throughput of BSs, the state space,
action space and reward in T-agent are designed as follows.

State Space. As the input of an agent, the state is the most
direct way for the agent to know the network environment
in each round, and is the most important basis for it to select
the appropriate actions. Besides, the action to be taken by
the agent in the coming round is also partially determined
by the state. Thus, a well designed state space not only
should include all the useful information for the agent to
take the appropriate action, but also should be as brief
as possible. Obviously, if some important features of the
network environment are missing, it is very likely for the
agent to get confused or be misled, which causes the failure
of convergence in a learning process. On the other hand,
when too much irrelevant information is contained in the
state space, it will be hard for the agent to find the hidden
relationship between the states and the optimal actions.

Formally, we define sb,Tt as the state vector of the T-agent
in BS b at iteration step t, given as

sb,Tt = [kbt−1, tp
b
t−1]. (3)

In the above Equation, kbt−1 is the highest power level in
NOMA technique in round t− 1 for the users in BS b; and
tpbt−1 is the throughput of BS b in round (t−1). kbt−1 indicates
the contention level of BS b for the wireless channel, and
state vector sb,Tt records the throughput of BS b under such
a contention level in last round.

Action Space. The agent interacts with the environment
by choosing an action. For each agent, its action in each
round is mainly determined by its received state in current
round and its learning experience so far. In this paper, we
define ab,Tt as the action vector of the T-agent in BS b at round
t. The action vector can be expressed as Equation 4

ab,Tt = [kb,Tt ], (4)

in which kb,Tt ≤ x̂ is the highest power level in NOMA
technique for users connected to BS b at round t.

Reward. After an action was chosen by the agent, a
reward will be returned from the environment. Ideally, when
the agent makes a good action, the environment should
return a positive reward; on the other hand, when a bad
decision was chosen by the agent, the agent should receive
a negative reward. In this way, agents can be motivated
to execute those good actions to maximize their rewards,
which makes the learning scheme work. Note that the reward
values are computed through a reward function based on
current network status. Thus, the reward function on each
agent should be carefully designed to make sure those good
actions with maximum rewards are also the optimal solutions
for the real problem we want to solve.

Aiming at maximizing its throughput, the throughput
of a BS can be directly set as the reward of its T-Agent. A
formal definition is given in Equation 5, in which rb,Tt is the
reward received by the agent T of BS b on round t.

rb,Tt = tpbt (5)

4.4 Design of F-agents

The goal of F-agent on each BS b is to average the AoI of
users which belongs to BS b and its neighbors. The designs
of its state space, action space and reward are given below.

State Space. Different from the state space in T-agent, in
which only b’s own information is used, the state space in
F-agent not only includes the age information of users within
BS b, but also contains the age information of the users which
belong to b’s neighbors. Equation 6 is a formal definition for
the state vector in F-agent, in which sb,Ft denotes the state of
F-agent on BS b in round t, Vb is the set of users connected to
BS b. Set Ub includes all the neighboring BSs of b.

sb,Ft =

[∑
v∈Vb

Av(t)

|Vb|
,

∑
b′∈Ub

∑
v∈Vb′

Av(t)∑
b′∈Ub

|Vb′ |

]
(6)

Action Space. Similar with the action space of T-Agent,
the action space of F-agent is also the highest power level in
NOMA technique. In Equation 7, ab,Ft is an action made by
F-agent at BS b in round t with kb,Ft ≤ x̂.

ab,Ft = [kb,Ft ] (7)

Reward. The reward of the F-agent is about the difference
between the average age of users within BS b and the average
age of users within b’s neighboring BSs. Consider that larger
the difference, farther away an action is from the goal of the
F-agent. Thus, the reward in F-agent is set as the inverse of
the difference. A formal definition is given in the following
Equation 8.

rb,Ft =
1

|
∑

v∈Vb
Av(t)

|Vb| −
∑

b′∈Ub

∑
v∈V

b′
Av(t)∑

b′∈Ub
|Vb′ |

|
(8)

4.5 Design of B-agents

So far, we have presented the states, actions, and rewards of
T-Agent and F-agent, but left the integration part unsolved.
Note that the optimal point on integrating the actions from
T-agent and F-agent varies with many factors, such as the
network topology. In this part, we design an independent
agent to learn the optimal integration ratio of the actions
from T-Agent and F-agent.

Action Space. The action of B-agent is the integration
ratio of the actions from F-agent and T-Agent. Define ab,Bt as
the action of B-Agent on BS b in round t, and abt as the final
action of BS b in round t. The relationship between abt , ab,Tt ,
ab,Ft and ab,Bt is given as

abt = ⌊a
b,B
t × ab,Tt + (1− ab,Bt )× ab,Ft + 0.5⌋ (9)

Since the action ab,Tt of T -agent and action ab,Ft of F -
agent are all the highest power level in NOMA, the final
action abt of the BS b at round t will also be the highest
power level in NOMA. To ensure that the final action is
an integer, abt is rounded from ab,Bt × ab,Tt + (1 − ab,Bt ) in
Equation 9. Specifically, in round t, the BS will sort its users
in descending order in terms of their AoI, and let the i-th
user transmit with the power level max{abt − i + 1, 0}. In
other words, the power level abt will be allocated to the user
with the largest AoI, and the user with the second largest
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AoI will transmit with the power level of abt − 1. When all
the power levels {1, 2, ..., abt} have been assigned, the other
users will have the power level 0, i.e., listening. For example,
if there are 6 users numbered 1 − 6 under the current BS,
with their AoI as {3, 1, 3, 2, 2, 4}. By executing our DeepRL
algorithm, the BS gets a final action of 3. That is to say, in
the current round, this BS gets 3 quotas of communications
using the power levels 1, 2, and 3, respectively. Then, the
action received by the users will be: user #6 sends signal with
the power level 3; user #1 sends signal with the power level
2; and user #4 sends signal with the power level 1. The users
#2, #3, and #5 do nothing. These policies from the BSs will be
disseminated to their users in slot 2. In slot 3, the users will
transmit according to the policies received from their BSs.

Reward. Here, we set the average AoI of users within
BS b and its neighbors as the reward of B-agent on BS b.
Obviously, the smaller the reward value we have, the better
the integration ratio we selected in B-agent. rb,Bt is the reward
of B-agent on BS b in round t, as is shown in Equation 10.

rm,B
t = −

∑
b′∈Ub∪{b}

∑
v∈Vb′

Av(t)∑
b′∈Ub∪{b} |Vb′ |

(10)

It is necessary to say, that the reward of B-agent is very
close to the original problem (2). Specifically, the optimization
objective in the original problem (2) is to minimize the global
average AoI. To ensure the learning objective of B-agent
is the same as that of the original problem (2), the best
solution is to directly set the global average AoI as the
reward. Whereas, such global information is time-consuming
to obtain in a distributed system, which reduces the efficiency
of our learning process. So, we settle for the second best by
using the local AoI as the reward of the B-agent.

4.6 Summary of the Training Algorithm

T-agent and F-agent in our solution are implemented by soft
actor-critic (SAC)[41] algorithms based on Deep RL, to find
some good solutions for the throughput of BS and fairness
of users. The B-agent is constructed by an RL algorithm to
combine the actions of T-agent and F-agent. Thus, an efficient
AoI scheduling can be achieved.

As one of the efficient RL algorithms, SAC uses the
entropy-regularized formalism to augment exploration [41].
This approach is based on an AC (actor-critic) framework that
specifies the stochastic policy and soft Q-function separately.
It attempts to find a stochastic policy that maximizes the
expected cumulative reward while taking as many different
actions as possible. But the sample SAC algorithm is used
for continuous action settings. So in this paper, we use a
discrete variant of SAC learning called SAC for discrete
(SAC-Discrete) to handle the discrete settings by fitting the
probability of the action [42].

In the policy evaluation step of soft policy iteration, the
SAC-Discrete algorithm aims to compute the value of a policy
π̂ according to the maximum entropy objective.2 Different
from the SAC algorithm, the SAC-Discrete algorithm can
make the soft Q-function output the Q-value of each possible
action rather than simply the action provided as an input, i.e.,

2. Here, we use π̂ to denote a policy in the SAC-Discrete algorithm,
which is distinguished from πv(t), the policy of a user v at round t.

the Q-function moves from Q : S ×A→ R to Q : S → R|A|.
The policy is defined as π̂ : S → [0, 1]

|A| to output the action
distribution. A softmax function is adopted in the final layer
of the policy to ensure that a valid probability distribution
for all actions can be output.

Because the action set is discrete, we can calculate
the expectation for actions directly. The soft state-value
calculation equation is defined as:

V (st) := π̂ (st)
T
[Q (st)− α log (π̂ (st))] . (11)

In the above definition, V (st) refers to the state-value at state
st, which represents the expected future reward obtained
by the following policy π̂ from state st onwards. The Q-
value at the state st is denoted by Q(st). The discount
factor is represented by α, which balances the importance of
immediate and future rewards in the Q-function. And the
policy π̂ determines the probabilities of different actions to
be taken in a given state.

The SAC-Discrete algorithm also provides an optional
way of learning the temperature parameter J(α) so that
we do not need to set it as a hyperparameter [42]. The
formulation of J(α) is given in the following,

J(α) = π̂t (st)
T [
−α

(
log (π̂t (st)) + H̄

)]
, (12)

in which H̄ is a constant vector equal to the hyperparameter
representing the target entropy.

Similar to many RL algorithms, the SAC-Discrete algo-
rithm adopted in our algorithm also uses the double network
to avoid overestimating state-action values. Specifically, we
use Figure 3 and Figure 4 to show the update strategy for
critic and actor in SAC, respectively. In those two figures,
the quadruple (s, a, r, s′) means the state in this round, the
action made by the agent, the reward in this round, and the
state in the next round. For the actor, the gradient descent
with policy loss is used to update the policy π̂ in the actor-
network. For the critic network, two critics are designed for
overestimation avoidance.
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𝑟

𝑎

𝑠

Environment

(𝑠, 𝑎, 𝑟, 𝑠′)
Critic1

𝑉1(𝑠, 𝑎; 𝜔1)

Critic2
𝑉𝟐(𝑠, 𝑎; 𝜔𝟐)

Actor
ො𝜋(𝑠|𝑎; 𝜃)

ො𝜋(𝑠)
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𝑄𝑚𝑖𝑛
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= ො𝜋 𝑠 𝑇[𝛼 log ො𝜋 𝑠 − 𝑄𝑚𝑖𝑛]

backward

Fig. 3: Update dialog of SAC’s actor network

Specifically, Figure 3 shows the updating of actor net-
works. The actor network is set to get the policy of the
algorithm and two critic networks assist actor network
updates. When a quadruple (s, a, r, s′) is given, the actor
network calculates the policy π̂(s) in the state s. Then the
two Q-value Q1 and Q2 of (s, a) were obtained through the
two critic networks, respectively. The smaller Q-value is used
to update the actor-network by backward of the policy loss
function to prevent the overestimation phenomenon in the
reinforcement learning process.

The update process of critic networks is shown in Figure 4.
The two critic networks are used to get the Q-value of a
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Fig. 4: Update dialog of SAC’s critic network

specific state-action pair. Two target critic networks are used
to correct the Q-value calculated by the critical network
to assist in updating. The two critic-target networks get
Q′

next1 and Q′
next2 by the forward process. The smaller one

is chosen to calculate the MSE loss function and do the
backward process for the critic network updating to prevent
the overestimation. In addition, in every round, the target
network will be soft updated according to the critic network.

As for the reinforcement learning algorithm deployed on
the B-agent, no input is required. Due to the small state and
action space, we adopt a tabular RL algorithm, in which a
Q-table array is used to store the Q-value for every discrete
action. An ϵ-greedy algorithm is employed to determine the
action taken by the B-agent in each round. With probability
ϵ < 1, the action with the largest Q-value is selected. And
with the other probability, an action is randomly chosen from
the Q-table. The selected action will serve as the rate for
balancing the outputs of the T-agent and F-agent. When the
reward is returned, the B-agent updates its Q-table through
the Bellman Equation shown in Equation 13, in which at
is the action chosen by the agent in round t, Q(at) is the
Q-value of action at, rt is the reward in round t, and α, γ are
the learning parameters of RL algorithm.

Q(at)← Q(at) + α
[
rt + γmax

a
Q (a)−Q(at)

]
(13)

5 NUMERICAL EVALUATIONS

In this section, numerical simulations are conducted to
demonstrate the efficiency of our proposed algorithm on
AoI scheduling with various network sizes and mobility of
users. Firstly, the minimum/average/maximum AoI w.r.t.
all users at each round is observed, which directly reflects
the performance of our algorithm. Secondly, to minimize
the average AoI, three agents with different objectives
have been specifically designed in our distributed learning-
based algorithm. The T-agent is designed for efficiency of
information scheduling, i.e., to maximize the throughput
of BSs. The F-agent is adopted for fairness of users, i.e., to
let the users with larger AoI more likely to be scheduled.
The B-agent is used to fuse the policies from T- and F-
agents. To verify this idea in our algorithm design, the
minimum/average/maximum throughput of BSs are also
observed. Additionally, by comparing the gaps between the
minimum/average/maximum values of AoI and throughput,
the fairness can be verified. Besides, to further investigate
the execution of T-, F-, and B-agents, the loss functions of T-,

F-agents and weight parameters of B-agents are observed.
Finally, the comparisons with previous works are conducted
to show the advantage of our algorithm on AoI scheduling.
In our simulation, we have the number of base stations
increased from 2 to 100, and the static and dynamic modes
are designed for at most 800 users, which simulate the
various network sizes and mobility of users.

5.1 Simulation Setup
We simulate our edge computing system in a 2-dimensional
Euclidean space, with the number of edges and end devices
varying within [2, 100] and [16, 800], respectively. In general,
our simulated edge network is based on hexagonal cells,
each of which contains 1 base station and 8 mobile users.
As illustrated in Figure, the base station is in the central
point of the hexagonal cell, and 8 users are randomly and
uniformly deployed within the hexagonal area. Each side of
the hexagonal cell has a length of 3.5 km. According to the
numerical results observed in our simulation, implementing
8 users for each BS is enough to let the BS fully busy on AoI
scheduling and test the performance of our algorithm on AoI
scheduling, throughput and fairness. Even though in some
realistic scenarios, there are more than 8 user devices within
the communicaiton range of a BS. By clustering them into
groups, each of which contains 8 end devices, and adopting
a TDMA technique, those scenarios can be simplified to our
setting in this simulation. To simulate a multi-hop network
with multiple edge devices, more hexagonal cells are added
in our simulation according to the number of BSs, as is
illustrated in Figure 5 . When those hexagonal cells are
implemented, the base stations within a distance of 20 km
of each other are connected by wired links; each user will
connect with the nearest BS. As for the parameters α, β, c,
N in our SINR-NOMA model, we have α = 3.0, β = 1.5,
c = 1.5 and the noise N normalized as 1.0. Additionally,
the static and dynamic modes for users are considered in
our simulation. In the static mode, the location of users will
not change. While in the dynamic mode, the users randomly
move in an arbitrary direction in our 2-dimentional space.
The speed of a user in each round is a random variable from
the interval [0, 0.2] km/round. Once the nearest BS changes
due to is movement, it will connect to the new nearest BS.

Fig. 5: By increasing the number of cells, the edge network
with more BSs is simulated

After the implementation of network topology, our learn-
ing scheme on each edge automatically initializes. In each
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round, the learning agents in each BS will decide how many
users should send messages with what level of transmission
power in current round. After that, all users follow the
commands from their BSs to send messages with specific
transmission power levels. After one round execution, each
BS collects the parameters from its local environments, as the
input for its learning agents. After receiving the necessary
parameters, the learning agent updates its current state, and
returns the new actions back to the BS.

In the following, we further introduce the learning agents
implemented in each base station. For T-agents and F-agents,
we have two neural networks composed for each of them.
Each neural network consists of two fully connected hidden
layers. And rectified linear unit is used as the activation
function for hidden layers. A memory with 3000 kb is set
for each agent. For the learning part, a quadruple (current
state, action, reward, next state) is put into the memory after
the program is executed by one round. If the size of the
memory is exceeded, the earliest quadruple is discarded. In
the learning process, we use the mini-batch learning method,
and set the size of the batch to 32. When the number of
quadruples in memory exceeds the batch size, each training
session randomly selects a batch size of quadruples for the
training of the agent. In the action decision part, the agent
gets an estimate of the value of each action based on the
current state through the neural network. Then the ε-greedy
strategy is used to decide whether to return the action with
the highest estimate or to return a random action. The B-
agent maintains a Q-table that stores the expected reward
(i.e., Q-value) of each action. When the T-agent and the F-
agent output their actions, the B-agent selects the action
with the highest current Q-value or executes a random
action according to the ε-greedy algorithm. Then it updates
the Q-table according to the feedback from the BS and the
Equation 13. γ and α in Equation 13 are assigned with the
value of 0.95 and 0.1, respectively.

Without loss of generality, over 50 runs of the simu-
lation have been carried out for each reported result. All
experiments are conducted on a Linux machine with Intel
Xeon CPU E5-2670@2.60GHz, 128 GB main memory, and
GPU Nividia RTX 4090. The experiment is implemented in
python3 and compiled by a Python compiler.

5.2 Numerical Results

Our simulation results consist of three parts. In part one,
we show the performance of our own Deep RL schemes
on AoI of all users and throughput of all BSs in static and
dynamic modes in Figure 6 and Table 2. In part two, to
further investigate the execution of T-, F-, and B-agents, we
depict the loss functions of T- and F-agents by Figure 8 , and
show the weight parameter of B-agent in Figure 9. Finally,
in part three, we compare our solution with two baselines
[12, 13], as well as an optimal solution found by brute-force,
and the theoretical optimal bound in OMA (Orthogonal
Multiple Access) in static and dynamic modes in Figure 10
and 11. In particular, we consider

• Algo1 [12]: each user uses a reinforcement learning
approach to choose the most approximate base station
from its nearby base stations, to upload its messages
by a two-level NOMA technology.
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Fig. 6: AoI and throughput in the static and dynamic modes

• Algo2 [13]: each user uses a deep reinforcement-
learning approach to independently choose the most
approximate transmission power from a given power
pool, to upload messages to its base station.

• BF: we use a brute force approach to enumerate all
the possible actions of BSs in 10 rounds, and choose
the one with the minimum average AoI as the optimal
action. Then, the optimal action in 10 rounds will be
executed repeatedly in comparison. We do not directly
choose the optimal actions in a large interval since
the running time of our brute force exponentially
increases when the number of rounds gets larger.

• OMA: Different from NOMA technology, each base
station can receive at most one message in each round
with OMA. Thus, there is a natural optimal bound in
which each BS only lets the user with the maximal AoI
transmit. Such an assumption gives the theoretical
upper bound for the throughput and lower bound for
AoI minimization in OMA case.

Performance of Our Deep RL Algorithm. Figure 6 and
Table 2 show the performance of our own Deep RL scheme
on AoI w.r.t. all users and throughput of all BSs in the static
and dynamic modes when our learning agents are trained
with 4000 rounds. Specifically, in Figure 6(a)-6(b), the x- and
y-axes represent the number of BSs and the AoI information,
respectively. The minimum/average/maximum AoI in the
static and dynamic modes are observed as the number of
BSs increasing from 2 to 100. With the same experimental
settings, the minimum/average/maximum throughput of
BSs are illustrated in Figure 6(c)-6(d), and a detailed data is
given in Table 2. According to our observations on the AoI
of users and the throughput of BSs, the following results on
AoI and throughput can be obtained:

• With respect to the AoI in Figure 6(a)-6(b), when
the number of BSs increases from 2 to 100 in
both the static and the dynamic mode, the mini-
mum/maximum AoI of users are always 1 and 2
round, respectively. Besides, the average AoI slightly
increases but is always smaller than 1.4 round when
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BS
Ratio(%) TP

≤ 3 4 5 6 7 ≥ 8

[2, 10) 0 0.00 1.31 27.97 70.72 0
[10, 20) 0 0.01 1.66 30.48 67.85 0
[20, 30) 0 0.01 1.93 33.09 64.97 0
[30, 40) 0 0.01 2.57 36.84 60.58 0

Static [40, 50) 0 0.02 3.03 38.44 58.51 0
mode [50, 60) 0 0.03 4.01 42.54 53.42 0

[60, 70) 0 0.04 4.37 44.12 51.47 0
[70, 80) 0 0.05 4.75 45.20 50.00 0
[80, 90) 0 0.07 6.24 49.09 44.60 0
[90, 100] 0 0.09 7.08 51.02 41.81 0

[2, 10) 0 0.03 4.44 44.59 50.94 0
[10, 20) 0 0.06 5.32 46.60 48.02 0
[20, 30) 0 0.07 6.38 49.08 44.47 0
[30, 40) 0 0.08 7.66 51.82 40.44 0

Dynamic [40, 50) 0 0.08 7.37 51.61 40.94 0
mode [50, 60) 0 0.13 9.13 54.63 36.11 0

[60, 70) 0 0.14 9.73 54.75 35.38 0
[70, 80) 0 0.25 10.97 56.18 32.60 0
[80, 90) 0 0.39 15.40 58.82 25.39 0
[90, 100] 0 0.35 14.59 58.88 26.18 0

TABLE 2: Distribution of BSs in terms of the throughput in
the static and dynamic modes

there are more BSs implemented in the static and
dynamic modes. Additionally, by fixing the number of
BSs, the average AoI in the dynamic mode is about 1.1
times larger than that in the static mode. According
to our definition on AoI, the inherent lower bound
is 1. From the above observations, it can be seen
that (1) our proposed algorithm has a high efficiency
on minimizing AoI and (2) the performance of our
algorithm is not sensitive to the size of the network
and mobility of users.

• As for the throughout of BSs illustrated in Figure 6(c)-
6(d) and Table 2, its minimum and maximum values
are kept at 4 and 7 in most of the times in both
of the static and the dynamic modes. Even though
the average throughput slightly decreases when the
network scope gets larger, due to a heavier global
interference, its value is always larger than 6. Note
that in OMA technique, the base station can at most
receive 1 message in each round, and at most receive
2 messages in the previous works adopting NOMA.
The curves on average throughput show that by well-
tuning the transmission power levels, each of the BSs
in our algorithm can at least receive 6 messages from
its users in one round. In other words, the T-agent
in our deep DL algorithm works well on improving
the throughput of the BSs. Besides, by comparing
the minimum/average/maximum throughput in Fig-
ure 6, we can see that the gaps between those curves
are not large. Thus, it is believed that fairness between
BSs has been obtained in our simulation with the help
of F-agent. Table 2 gives the distribution of BSs in
terms of the throughput in the static and dynamic
modes, which further verify the fact that the efficiency
and fairness in our AoI scheduling are obtained by
T-agent and F-agent, respectively.

Investigation on Training Process. To further prove that
our learning agents finally reach some stable states, the loss
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Fig. 7: Loss functions of T-/F-agents in the static mode
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Fig. 8: Loss functions of T-/F-agents in the dynamic mode

functions of T- and F-agents are illustrated in Figure 7 and
Figure 8, in which there are 10 or 100 BSs deployed in
the static and dynamic modes. In detail, the x- and y-axes
in Figure 7 and Figure 8 represent the number of rounds
and the value of loss function, respectively. In each of the
subfigures, the minimum, average, and maximum values of
loss functions for T-agent and F-agent are observed. From all
the curves in Figure 7 and Figure 8, we can see that

• in the static mode when there are 10 or 100 BSs
deployed, with the execution of T- and F-agents,
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Fig. 9: The weights in B-agent in the static and dynamic
modes
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Fig. 10: Comparisons on average AoI in the static and
dynamic modes

the average values of their loss functions gradually
reduce and approach to 0 in the training process. The
maximum values of these loss functions keep stable
at a low level while the minimum values get very
close to 0.

• in the dynamic mode with the same deployment of
BSs, the average and maximum values of the loss
functions from T- and F-agents are also stable, but are
relative larger than those in the static mode, which
means the mobility of users has the limited impact on
the convergence of our algorithm.

From the above results, we can have the conclusion that our
T-/F-agents keep stable in their learning process with the
mobility of users and various network sizes.

Also, we investigate the weight of T-/F- agents in B-agent
when the number of BSs varies in Figure 9, in which the x-
axes and y-axes represent the number of BSs and the weight
of T-/F-agents in B-agent. From Figure 9, we can see that
the weight of T-agent decreases and that of F-agent increases
respectively when the number of BSs gets larger in both
the static and the dynamic modes. Note that the T-agent
on a BS prefers to choose larger power levels for its users,
to make sure it has more transmissions succeeded and its
local average AoI reduced. The F-agent will choose larger
power levels if its local average AoI is larger than that of
neighboring BSs, and vice versa. The B-agent balances the
actions from T-agent and F-agent to make sure the AoI of
all users is as small and also as fair as possible. The curves
in Figure 9(a) and 9(b) indicate that when the number of
BSs in our simulation is small, the action from T-agent has a
heavier weight in B-agent because the interference between
users from different BSs is small. Also, when the number of
BSs is large, the action from F-agent has a heavier weight
in B-agent because too many uplinks ended at different BSs
interfere with each other, and the action from F-agent is more
important to control and balance the heavy interference.

Comparisons on AoI and Throughput. In Figure 10
and 11, we compare the performance of our scheme with two
previous works [12, 13], the optimal solution with NOMA by
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Fig. 11: Comparisons on average throughput in the static and
dynamic modes

brute forcing, and the theoretical upper/lower bounds with
OMA in the static and the dynamic modes. The algorithms
in [12, 13], brute force method, OMA case and our algorithm
are termed as Algo1, Algo2, BF, OMA, and DeepRL for short
in comparison. Because the running time of BF and Algo1
exponentially increase when the number of BSs and users
increases, we test the performance of BF, Algo1, and Algo2
with the number of BSs in the range of [2, 10], [2, 30] and
[2, 100], respectively.

In Figure 10(a), we compare the average AoI of all users
in our algorithm with that in BF, OMA, Algo1 and Algo2
when the number of BSs varies from 2 to 30. Firstly, the
average AoI of uses in our algorithm is close to that in
optimal solution by brute force method, which shows the
efficiency of our algorithm. Secondly, the average AoI in
our algorithm is about 2, 3, and 4 times smaller than those
in Algo1, Algo2, and OMA, respectively. This is because
the NOMA technology in Algo1 only supports 2-messages
synchronously decoded by the BS in each time, Algo2 is
considered in a single hop network with one BS without
considering the interference from neighboring BSs, and OMA
cannot support multiple messages decoded synchronously.
While our algorithm is considered for multi-hop networks
with numerous BSs and by the well-tuned transmission
power levels from deep reinforcement learning, there are
6-7 messages successfully decoded by each BS in one round.
In Figure 10(b), we also compare the performance of our
algorithm with that in Algo2 and OMA when the number of
BSs varies from 30 to 100, which shows that our algorithm
has a better performance than Algo2 and OMA in the large
scale networks. Figure 10(c) and Figure 10(d) show similar
comparisons with Algo1, Algo2 and OMA in the dynamic
mode. The curves in Figure 10(c) and Figure 10(d) show
that our scheme has a better performance than Algo1, Algo2
and OMA in the dynamic mode when the number of BSs
vary from 30 to 100. Note that it is nearly impossible to
find the optimal solution by brute force method when users
randomly move in each round, the comparison with BF is
not considered in the dynamic mode.
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Figure 11 shows the comparison results between our work
with BF, OMA, Algo1, and Algo2 in terms of throughput
when the number of BSs varies from 2 to 100. From Figure 11,
we can see that the throughput of our scheme is close to the
optimal solution in BF and at least 6/4/3 times faster than
that of OMA, Algo1, and Algo2, in both the static and the
dynamic mode.

Summary of Simulation. In general, in the first part of
our numerical results, Figure 6 and Table 2 show that our
algorithm performs stably and achieve good performance
on minimizing the average AoI by reaching a balance
on optimizing the efficiency and fairness in the uplink
scheduling process. In the second part, we extract the key
parameters of the T-/F-/B- agents in Figure 7-9, to verify
the convergence of our training process and strengthen the
explanation of our learning schemes. Finally, we compare our
algorithm with some optimal results and previous works in
Figure 10 and Figure 11, which shows that the performance of
our algorithm is close to the optimal result, and outperform
to some previous works, especially in some large-scale edge
computing networks.

6 CONCLUSION AND FUTURE WORK

We consider distributed optimization of multi-user long-term
average Age-of-Information objectives in edge computing
networks with NOMA transmission. To solve this challeng-
ing non-convex online optimization problem, a distributed
deep reinforcement learning-based framework that adopts
a novel hierarchical decomposition of decision making is
proposed in this paper. We design three different types of dis-
tributed agents to learn with respect to the efficiency (T-agent)
and fairness (F-agent) of Age-of-Information scheduling, as
well as a high-level policy balancing these potentially con-
flicting design objectives (B-agent). The decomposition in our
framework not only leads to improved learning performance,
but also provides interpretability. The effectiveness of our
solution is demonstrated through extensive evaluations on an
edge network simulator with 100 edge devices and 800 end
devices. It is shown that our algorithm outperforms previous
AoI scheduling with NOMA by 200%−300% and the optimal
solution without NOMA by 400%, and indeed comes very
close to an optimal solution with NOMA obtained from
brute-force. For future work, we plan to consider other multi-
agent RL algorithms, as well as explainable RL algorithms,
to solve the AoI minimization problem in edge computing.
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APPENDIX

(1) The RL technique is powerful to solve the network
optimization problem. However, the MLA-AoI cannot be
directly used as the final objective of the RL. In the revised
version, we have explained the motivation of adopting the
distributed RL technique to optimize the MLA-AoI problem
in mobile network. Whereas, the MLA-AoI cannot be directly
used as the final objective of the RL, for the following two
reasons. Reason 1: as defined in the equation (2) of model
section, the MLA-AoI is the average AoI of multi-users in
an interval I , which is a time accumulative metric. Since
the states, rewards, and actions in RL are mainly roundly
based, setting the MLA-AoI as the final reward may reduce
the accuracy of learning. For example, when the MLA-AoI
in the previous rounds are very large, even though the RL
technique chooses an optimal action in current round, the
new MLA-AoI may decrease a little. In this case if the MLA-
AoI is set as the reward of RL, the learning process will be
misled since the optimal action only gains a little reward.
Thus, a new metric that is roundly-independent should be
used as the reward of RL to evaluate the actions in each
round. Reason 2: the MLA-AoI is the averaged long term
AoI of multi-users, which is a global metric. If the MLA-AoI
is adopted as the final reward of RL, it is time and resource
consuming to aggregate the average long term AoI from all
the users in a multihop wireless network. In other words,
the efficiency of RL will be heavily delayed. Because of these
two reasons, the MLA-AoI is not an appropriate option as
the reward of RL.

(2) In a single hop wireless network, maximizing
the throughput of BS in each round is equivalent to
minimizing the MLA-AoI. We consider a single hop wireless
network that consises of 1 BS and n users. As defined in the
model section, Av(t) is the AoI of the user v at round t with
Av(0) = 1 initially. We consider an action that guarantees k
communications succeeded with power levels {k, k−1, ..., 1}
in each round.3 Let V be the set of n users, and Vk(t) be the
set of k users that have the largest AoI at the beginning of
round t. By letting the k users in set Vk(t) transmit with
power levels {k, k − 1, ..., 1} respectively and other nodes
listen, we know that the AoI of uses in set Vk(t) reduces to 1
and the AoI of uses outside the set Vk(t) increases by 1. Let

3. For a brief analyze, we assume that n/k is an integer. Otherwise,
the integers ⌊n/k⌋ and ⌈n/k⌉ will be used in analyze.
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Ã(t) be the averaged AoI of multi-users at round t. We have
Ã(t) = 1 when t = 0, and

Ã(t) =

∑
v∈V Av(t)

n
=

∑
v∈V \Vk(t)

Av(t) +
∑

v∈Vk(t)
1

n

=

∑
v∈V (Av(t− 1) + 1)−

∑
v∈Vk(t)

Av(t− 1)

n

= Ã(t− 1) + 1−
∑

v∈Vk(t)
Av(t− 1)

n
when t > 0

Additionally, for each node v ∈ Vk(t), we have

Av(t) =

{
t+ 1 0 ≤ t ≤ n/k

n/k t > n/k

Thus, when 0 ≤ t ≤ n/k we further have

Ã(t) = Ã(t− 1) + (1− tk

n
)

= Ã(t− 2) + (1− (t− 1)k

n
) + (1− tk

n
)

= ...

= A(0) + (1− k

n
) + (1− 2k

n
) + ...+ (1− tk

n
)

= A(0) +
t∑

i=1

(1− ik

n
) = 1 + t− kt(1 + t)

2n

and when t > n/k,

Ã(t) = Ã(t− 1) + 1−
∑

v∈Vk(t)
Av(t− 1)

n
= Ã(t− 1)

According to the equation (2) in model section, for an
interval I starting from round 0 and ending at round x0, we
have when 0 ≤ x0 ≤ n/k

Ã(I) =
1

x0

x0∑
t=0

(
1 + t− kt(1 + t)

2n

)
(14)

, and when x0 > n/k

Ã(I) =
1

x0

n/k∑
t=0

(
1 + t− kt(1 + t)

2n

)
+

x0∑
t=n/k

(
1

2
+

n

2k

) .

(15)
From the above equation, we can see that when the

throughput k is larger, the MLA-AoI Ã(I) is smaller.
(3) In a multi-hop wireless network, each BS maximiz-

ing its throughput may result in a Prisoner Dilemma, which
can be solved by considering the fairness. The multi-hop
scenario can be divided into multiple single-hop wireless
networks. As what we have proved in the single hop scenario,
each BS can maximize its throughput to reduce its MLA-
AoI. Whereas, for a BS A, no matter which power levels its
neighboring BSs adopted, adopting the largest power levels is
always A’s (local) optimal solution. For example, we consider
two BS A and B with parameters d(A,B) = 2, α = 3, N = 1
five layers power level with Pi = 2.1i−1 × d(A,B)α × N
for i = 0, 1, 2, 3, 4. Each BS has 5 users. The action of BS A
is denoted by a variable x. x = 2 means the power levels
{1, 2} will be used by the BS A. Similarly, y denotes the
action of BS B. For any given x and y, we can figure out
the throughput (ka, kb) of BS A and B, as is listed in the
Table 3. From the Table 3, we can see that no matter which

x

(ka, kb) y
1 2 3 4 5

1 (1,1) (1,2) (1,3) (0,4) (0,5)
2 (2,1) (2,2) (2,3) (0,4) (0,5)
3 (3,1) (3,2) (3,3) (2,4) (0,5)
4 (4,0) (4,0) (4,2) (2,2) (1,4)
5 (5,0) (5,0) (5,0) (4,1) (2,2)

TABLE 3: Example of throughput of two base stations with
different number of NOMA layers

action BS B taken, x = 5 is always the local optimal action
for BS A. Similar result can be concluded for the BS B with
the optimal action y = 5. Whereas, when both of BS A and B
take 5 levels transmission power, their local throughput and
the global throughput are not the optimal. 4 To avoid such
a Prisoner Dilemma, the fairness issue is considered in our
RL algorithm design, which requires that the average AoI
of BS A and B should not differ too much. Such a fairness
scheme helps the BS A and B to move out from the action
pair x = 5 and y = 5. Specifially, when BS A and B choose
the action pair x = 5 and y = 5, their throughputs are ka = 2
and kb = 2. When BS A choose x = 3 as the exploration in
RL, their throughputs are ka = 0 and kb = 5. Consider the
throughput and fairness simultaneously, the BS B will also
choose y = 3, which is a new Nash equilibrium in terms of
throughput and fairness.

In this paper, optimizing the throughput and fairness
simultaneously can be a heuristic solution to minimize
the MLA-AoI. In conclusion, MLA-AoI cannot be directly
used as the final objective in our distributed RL framework.
Maximizing the throughput of BS in each round is equa-
valent to minimizing the MLA-AoI in single hop wireless
network. Whereas, in a multihop wireless network, each BS
maximizing its throughput results in a Prisoner Dilemma.
Thus, the fairness is considered as one of the objectives, to
avoid the Prisoner Dilemma. With the above consideration,
we design T -agent on each BS to optimize its throughput,
F -agent for the fairness, and B-agent to reach a balance on
the actions from T and F -agents. Even though our approach
is a heuristic solution to minimize the MLA-AoI, a clear
and reasonable algorithm designing is presented. Besides,
the numerical results show that the performance of our
algorithm is not far away from the optimal solution.

4. Local throughput means the throughpt of BS A or B, the global
throughput indicates the sum of the throughputs from BS A and B.


