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Abstract—Dynamicity is one of the most challenging, yet, central aspects of wireless networks. Dynamicity can come in many guises,
such as churn (node insertion/deletion) and node mobility. Although the study of dynamic networks has been popular in distributed
computing domains, previous works considered only partial factors causing dynamicity. In this work, we propose a comprehensive
dynamic model that includes crucial dynamic factors on nodes and links. Our model defines dynamicity in terms of localized topological
changes in the vicinity of each node, rather than for the whole network globally. Obviously, a localized dynamic model suits distributed
algorithm studies better than a global one. The proposed dynamic model uses the more realistic SINR model to describe wireless
interference, instead of the oversimplified graph-based models adopted in most existing works. Under the proposed dynamic model, we
provide an efficient distributed algorithm accomplishing local broadcast services in the abstract MAC layer that was first presented by
Kuhn et al. [24]. Our solution paves the road for many new fast algorithms for solving high-level problems in dynamic networks, such as
consensus, single-message broadcast, and multiple-message broadcast. Extensive simulations show that our algorithm exhibits good
performance in realistic environments with dynamic behaviors.
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1 INTRODUCTION

W IRELESS networks are ubiquitous and are getting in-
creasingly more so as Internet-of-Things is becoming

more and more a definite reality. Dynamicity, or variability
with time, is a natural phenomenon and property of wireless
networks. Dynamicity comes from many reasons, among
which the main ones include churn and node mobility.
Churn, i.e., nodes coming and leaving, can be caused by fail-
ures or intermittent participation in network tasks; mobility
is the predominant mode for wireless networks nowadays
(think of cell phones), which also changes the network
topology. An example about how churns and mobility of
nodes impact the network topology is given in Fig. 1. As a
network becomes large and has to be operated in a decen-
tralized fashion, which is typical in the context of Internet-
of-Things, the study of dynamic networks becomes an im-
portant one in the distributed computing domain. Notwith-
standing, existing works usually just pick on one particular
factor among multiple crucial ones causing dynamicity, such
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as churn [5], [16], [27], [35], [43], or link changes due to
node mobility [6], [23], [26]. However, as just mentioned,
the dynamicity of wireless networks comes in many guises,
and focusing just on one of multiple dynamic factors may
produce algorithms that perform dramatically differently
in real situations from theoretical analysis. Hence, it is
important that a comprehensive model that incorporates
crucial dynamic factors is used when designing the needed
efficient algorithms.

In this work, we provide efficient distributed algorithms
for implementing local broadcast primitives defined in the
abstract MAC (absMAC) layer under a comprehensive dy-
namic network model. The concept of abstract MAC layer
was first proposed by Kuhn et al. [24], which expresses
key guarantees of real MAC layers with respect to the local
broadcast operation. These guarantees include two message
delivery latency bounds: the acknowledgement bound fack,
which is the time for a sender’s message to be received by all
its neighbors, and the progress bound fprog , which is the time
for a receiver to receive one message when there is at least
one neighbor sending. The absMAC layer divides wireless
algorithm design and analysis into two independent and
manageable components, i.e., to implement the absMAC
layer over a physical network and to solve higher-level
problems based on the local broadcast services and time
guarantees provided by the absMAC layer. The approach
of abstract MAC layer can help solve the problems of algo-
rithm design and analysis, which are extremely complicated
when considering issues of message dissemination at high
levels together with contention management at the physical
level. Benefiting from the absMAC layer approach, many
new efficient algorithms have been developed for certain
fundamental problems, including consensus [33], single-
message broadcast, and multiple-message broadcast [15],



2

Fig. 1: Dynamicity in network. In this figure, the churns of nodes include nodes sleeping, waking up, joining, leaving,
breaking down, and recovering from breaking down. Together with the mobility, churn greatly impacts the connection of
links and the topology of the network in each round.

TABLE 1: CS is the task of consensus and D is the diameter;
SMB and MMB are the tasks of single and multiple message
broadcast, respectively, and k is the number of messages.

Task Time bound
CS O(D ∗ fack) [17]

SMB O((D + logn)fprog) [20]
MMB O(kfack + (D + k(logn+ log k))fprog) [20]

[17], [20], as shown in Table 1. Also, it is very likely for the
results in [2], [3], [4], [18], [29] to be renewed if applying
an efficient dynamic abstract MAC layer. Although there
have been many algorithms proposed to implement the
local broadcast primitives in the abstract MAC layer, it is
unknown whether they still work efficiently in dynamic
networks. For example, in [17], an efficient implementa-
tion algorithm for the abstract MAC layer was proposed.
However, this implementation relies heavily on the com-
putation of a special node set, which will be ruined by
the dynamicity of nodes. So, the implementation algorithm
may not perform well if we directly apply the protocol
of [17] in dynamic networks. The algorithm given in [31] can
tolerant unreliable links to some extent, but its performance
is unpredictable when facing other dynamic behaviors as
considered in this work.

Model and Our Results. The basis of a wireless net-
work model is its modeling of signal propagation and
reception. We construct our dynamic model based on the
Signal-to-Interference-plus-Noise (SINR) model. The SINR
model defines signal (as well as interference) fading with
distance which is moderated by a path-loss exponent, and
hence the message reception is not determined by nearby
nodes but by all simultaneously transmitting nodes in the

network. Comparing with graph-based models that simplify
interference to be a binary and local phenomenon, the
SINR model accurately reflects the most important features
of wireless interference, fading, and accumulation. Hence,
the SINR model is getting increasingly popular despite it
posing a great challenge for distributed algorithm design
and analysis because of its global definition of interference.

We present a localized dynamic model that incorporates
the dynamic factors in networks. In other words, the model
reflects the impact of dynamic factors within a locality sur-
rounding every node. Because the SINR model defines the
signal (as well as interference) that fades with the distance
to some path-loss exponent, when depicting local network
changes, the model not only needs to reflect the changes
in the neighborhood of each particular node, but also to
describe the distance changes between the node and its
neighbors. In addition, it should define the local network
topology changes of the nodes as independently as possible,
in order to make the analysis of the algorithm performance
more manageable.

The localized dynamic network model we propose obeys
all the above considerations. It treats the network area as
a grid (of cells), which ensures that any pair of nodes in
a cell are neighbors (within the transmission range of each
other). In each cell, the local topology of the nodes is defined
based on the distance of each node from its nearest neighbor
in the cell. The impact of churn (node insertion/deletion)
and mobility of nodes is then depicted by the magnitude of
change (called dynamic rate) on the local topology of each
cell due to these two factors.

Our main contribution is a randomized distributed al-
gorithm for implementing the abstract MAC layer, with the
acknowledgement time bound fack = |I|, where I is the
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interval from the beginning (round 0) to a round t such
that (∆g(I) + 1) ∗ TP ≤ t holds for all non-empty cells g
(∆g(I) is the number of active nodes in cell g during I ;
TP = O(log n + logRc) is the running time of each phase
in our algorithm, where Rc is the required local broadcast
range); and progress time bound fprog = O(log n+ logRc).
In static networks, our results imply an acknowledgement
time bound of fack = O(∆(log n + logRc)) (∆ is the max-
imum degree) and fprog = O(log n + logRc). By the lower
bounds Ω(∆) and Ω(log n) for fack and fprog respectively
given in [41], our algorithms attain an acknowledgement
bound inferior to the best solution by a logarithmic factor
and they attain an asymptotically optimal progress bound.

Our algorithm assumes a reasonable restriction of con-
stant dynamic rate (cf. Section 3). The performance is guar-
anteed with high probability, i.e., with probability 1 − n−c
for some constant c > 0. We also show that the constraint of
constant dynamic rate is necessary to get asymptotically op-
timal algorithms, if a leader election procedure is involved.

Roadmap The remaining part of the paper is organized
as follows. We present the related work in Section 2. The
network model and problem definitions are then given in
Section 3. In Section 4, we present a leader election algo-
rithm, which is used as a subroutine in the implementation
algorithm. In Section 5, the implementation algorithm is
proposed. The necessity of the restriction on the dynamic
rate is discussed in Section 6. Section 7 shows the simulation
and its results, and Section 8 concludes the paper.

2 RELATED WORK

Dynamic Wireless Network. Distributed algorithm design
and analysis has been a hot topic in the field of wireless
computing, due to the increasing popularity of large-scale
mobile wireless networks. Many dynamic models have been
proposed to reflect the dynamicity in wireless networks. In
[27], Kuhn et al. proposed the unstructured model, to de-
scribe the nodes’ insertions under a unit disk setting. Later,
this model was extended to the SINR model and bounded
independence graphs in [16] and [35], respectively. The node
crash failures were considered in [5]. Other models mainly
focus on modeling the impact of unreliable links, and as-
sume the node set to be static. The dual graph model was
introduced in [6], [23]. It defines two graphs on the same
node set, one consisting of reliable links, and the other of un-
reliable links. This model extends the radio network model
to the dynamic case. The T -interval connectivity model
given in [26] models dynamic networks in an adversarial
manner, under the constraint that the network contains a
stable connected spanning subgraph in every interval of
T consecutive rounds. The pairing model, introduced in
[7], [12] assumes that the links in the network constitute a
matching in each round. Considering that the channel varies
with time because of random fading, shadowing and node
mobility, a simple ON-OFF channel model was introduced
in [37]. In this model, the network configuration follows
a stationary ergodic process with a stationary distribution,
and in each slot the network controller can only activate
a set of non-interfering links. More recently, Yu et al. [39]
proposed a dynamic model that admits both node and link
changes, under the SINR model. However, this model is not

a general one, so it cannot model various dynamic scenarios.
A survey on dynamic network models was given in [28].

Abstract MAC Layer. The absMAC layer was proposed
by Kuhn et al. in [24], [25]. Thereafter, several variants
of the basic absMAC layer model have been proposed
for different deployment scenarios, such as the conditional
absMAC layer [11], the enhanced absMAC layer [15] and the
probabilistic absMAC layer [20], [21]. Similar to PHY/MAC
approaches on the upper-layers operations in different sce-
nario [10], [13], [30], the abstract MAC layer can also sup-
port many higher-level operations. Specifically, based on
the abstraction of the absMAC layer, several fundamental
problems have been studied and efficient algorithms were
proposed, including Neighbor Discovery [8], [9], Single-
Message Broadcast, Multiple-Message Broadcast [15], [17],
[20], [21], leader election [32], and Consensus [33], [34].

For the implementation of absMAC layers, basic imple-
mentations of a probabilistic absMAC layer were given by
Khabbazian et al. [20] using the classical decay strategy and
[22] using Analog Network Coding. All these implementa-
tion algorithms are devised under the graph-based models,
where interference is oversimplified as a local and binary
phenomenon. Halldórsson et al. first studied the approx-
imate implementation of the probabilistic absMAC layer
under the SINR model in [17], and the exact implementation
was studied by Yu et al. in [41]. But these two results are
both for static networks. The only known implementation
algorithm under dynamic networks was proposed by Lynch
and Newport in [31], which is designed in a dual graph
model, based on a graph-based interference definition and
just considering unreliable links.

In summary, all of the implementations on abstract MAC
layer mentioned above except [31] are considered in a
network without any dynamicity, and the abstract MAC
layer in [31] is implemented in a very simple dynamic
model that just takes into account unreliable links. Thus,
the performance of the above protocols in a real dynamic
network is unknown, while our work here implements the
abstract MAC layer in a comprehensive model.

3 MODEL AND DEFINITION

We consider a network in 2-dimensional Euclidean space,
where n nodes are deployed arbitrarily. The time is divided
into rounds. A round may contain a constant number of
slots, and each slot can be the time unit for nodes to send a
message. Synchronous communications are assumed. Each
node is equipped with a half-duplex transceiver, i.e., in each
time slot, the node can transmit or listen but cannot do both.
We assume that the nodes use the same transmission power
P , which is known as the uniform power assignment. In
each round, the network topology may change due to nodes’
joining/leaving and mobility. Let n denote the upper bound
of nodes in any round. Each node has a unique identifier
IDv . For any two nodes u and v, let d(u, v) be the Euclidean
distance between them.

Communication Model. Nodes transmit on a shared
channel and the interference between simultaneous trans-
missions is depicted by the SINR model. For a transmitting
node u and a receiving node v, let Su,v be the strength of
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Fig. 2: Stable connection. For example, nodes B and C move around A in the interval from round t0 to round t0 + T . Since
node B always moves within A’s transmission range, node A always has a stable connection with cell g1, i.e., d(v, g1) ≤ Rc;
meanwhile, at round t0 + k, node C moves out of A’s transmission range. Thus, for this example, we say node A has a
T -stable connection with cell g1, and does not have a T -stable connection with cell g2.

the signal from u and received by v. We use the Rayleigh-
fading pattern to depict the uncertainty in signal reception.
Specifically, Su,v is a random variable that is exponentially
distributed with mean S̄uv = Pu/d

α
uv , where Pu is the

transmission power and α is the path-loss exponent whose
value is usually between 2 and 6. Let W be the set of nodes
transmitting simultaneously with u, but not including u
itself, IW (v) be the sum of the interference at v caused by
nodes in set W , SINR(v, u,W ) be the SINR rate at node v
for transmitting node u, then

IW (v) =
∑
w∈W

Sw,v, SINR(v, u, S) =
Su,v

N + IS(v) (1)

where N is the ambient noise. The SINR model defines that
v can receive the message of u if SINR(v, u, S) ≥ β, where
β > 1 is a hardware-determined constant parameter.

The transmission range RT of a node v is defined as the
maximum distance at which a node u can receive a clear
transmission from v (SINR(u, v, S) ≥ β) when there are
no other simultaneous transmissions on the same channel.
From the SINR condition (1), RT = (P/βN)1/α.

Since nodes very close to RT can only communicate
if other transmissions in the network are sufficiently far
away, the standard assumption is to assume that it suffices
to communicate using a smaller range, Rc = (1 − ε)RT
[1], [19], [38], [40], [42], [44], where ε ∈ (0, 1) is a fixed
model parameter, such that the communication can tolerate
some amount of interference. We call Rc the communication
range.1 For two nodes u and v, we say they areRc-neighbors
if d(u, v) ≤ Rc.

Abstract MAC Layer. Since we focus on randomized
solutions, the probabilistic absMAC layer model [17], [20]
is adopted here, which provides an interface to higher layer
with input bcast(m)i and outputs ack(m)i, rcv(m)i for any
node i ∈ V and message m ∈ M . When a node u ∈ V
broadcasts a message m, the model delivers the message to

1. Note that Rc may not be a constant anymore after we normalize
the minimum distance between nodes to 1. But because usually the rate
of the maximum distance and the minimum distance between nodes
cannot be exponentially large, Rc can be set to be bounded by poly(n),
and hence logRc ∈ O(logn).

all itsRc-neighbors. If u successfully performs a local broad-
cast, the abstract MAC layer returns an acknowledgement
ack(m)u to higher layer informing that the broadcasting of
u is completed. Similarly, it returns rcv(m)v to the higher
layer when v receives message m from a Rc-neighbor. The
model provides two time bounds, the acknowledgement bound
fack and the progress bound fprog . In particular, the acknowl-
edgement bound guarantees each node’s local broadcast can
be successfully performed within fack time. The progress
bound bounds the time for a node to receive a message
when there is at least one neighbor sending. For further
details about the absMAC layer and motivations for these
delay bounds, please refer to [15], [20], [24].

In the probabilistic absMAC layer, two parameters ξprog
and ξack are defined to indicate the error probabilities for
satisfying the delay bounds fprog and fack, respectively. In
this paper, we require that the progress and acknowledge-
ment primitives be accomplished with high probability, i.e.,
ξprog, ξack ∈ n−c for some constant c > 0.

Dynamicity. As mentioned above, we use a local view
to depict churns and mobility of nodes, by dividing the
network into a grid and describing the change of the lo-
cal network topology in each cell. Next, we describe the
dynamic model in more detail.

The 2-dimensional network area is modeled as a grid
G consisting of square cells each of size εRc√

2
× εRc√

2
for

some specified constant ε. Each cell includes its left side
without the top endpoint, and its bottom side without the
right endpoint, and does not include its right and top sides.
Assuming that point (0, 0) is the grid origin, a cell is given
coordinates (i, j) and denoted as g(i, j) when its bottom
left corner is located at ( εRc√

2
∗ i, εRc√

2
∗ j) for (i, j) ∈ Z2.

A node v with position (x, y) on the network is located
at cell g(i, j) only when i ∗ εRc√

2
≤ x < (i + 1) ∗ εRc√

2
and

j ∗ εRc√
2
≤ y < (j + 1) ∗ εRc√

2
.

Since in the SINR model, signal fades with distance, and
a nearby neighbor matters more than those further away,
we define the local network topology in a cell according to
the nodes’ distances from their nearest neighbors. Consider
the local network of cell g in a fixed slot, nodes in cell g
are divided into classes {V gi : i = 0, 1, . . . , log εRc}. More
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specifically, for a cell g and a node v ∈ g, let u be v’s nearest
neighbor in g if there are at least two nodes in g. v is in
class V gi for 0 ≤ i ≤ log εRc − 1 if d(u, v) ∈ [2i, 2i+1).
If v is the only node in cell g, v is in class V glog εRc

. Node
churns and mobility. We consider both node churns (node
arrivals/departures) and node mobility (movement inside
a cell or from one cell to another cell). It is assumed that
network change is round-based, i.e., the network changes at
the beginning of each round and remains unchanged during
the round.

A dynamic rate is defined to quantify the change of
network topology. In a round t, a cell g is called a non-empty
one, if it contains active nodes (those that are participating
in the algorithm execution). Considering a period of round
I , for i ∈ {0, 1, . . . , log εRc} and t ∈ I , let V gi (t) and V̂ gi (t)
denote the set of active nodes in class V gi at the beginning
and the end of a round t respectively, and ngi (t) = |V gi (t)|,
n̂gi (t) = |V̂ gi (t)|.

Then the dynamic rate λ is defined as

λ = max
t∈I,g∈G,0≤i<log εRc

{|ngi (t+ 1)− n̂gi (t)|/n̂
g
i (t)}.

It can be seen that as the dynamic rate changes, our dynamic
model can model different extents of dynamicity caused by
churns and node mobility.

For an interval I from round t to t′, define ∆g(I) =
| ∪t′r=t ∪

log εRc
i=0 V gi (r)|, i.e. ∆g(I) is the number of active

nodes in cell g during I . We will use this parameter to
bound the acknowledgement time in our abstract MAC
layer implementation algorithm.

Stable connection. To gurantee a node can receive mes-
sages from neighbors, we have to give some constraints on
the connection between it and the active nodes (that are
excuting the algorithm and have messages to disseminate).
We restrict the stable connection between a node and a non-
empty cell. Specifically, the distance between a cell g and a
node v is defined as the minimum distance between nodes
in g and v, i.e., d(v, g) = minw∈g d(w, v). v is connected
to cell g if d(v, g) ≤ Rc. Then we say a node v is T ′-
stablely connected to non-empty cells if in T ′ consecutive
rounds, there is always a cell connected with v. Obviously,
if v does not connect to non-empty cells for a long enough
time, it is hard to ensure successful message reception at
v. Based on the dynamic model, we only need to consider
the case of T ′ ∈ Ω(log n), as Ω(log n) is the minimum
time needed for two nodes to communicate successfully
with high probability [36], even if without interference and
dynamicity. An example about the stable connection is given
in Fig. 2.

Knowledge and Capability of Node Each node has the
values of n,Rc,N , and the SINR parameters α, β. The nodes
can acquire location information by some services, such as
GPS. But physical carrier sensing is not needed, i.e., nodes
know nothing about the transmissions on the channel when
it receives no message.

4 LEADER ELECTION ALGORITHM

In this section, we present a leader election algorithm to
elect a leader for each non-empty cell, which will be used
as a subroutine in our abstract MAC layer implementation

TABLE 2: Acronyms in model and algorithms

Acronym Explanation Acronym Explanation
ack. acknowledgement prog. progress

w.h.p. with high probability absMAC abstract MAC
LE Leader election LB Leader broadcast

TDMA Time division multiple access

0 1

c c+1

... c-1

... 2c-1

... ...

(c-1)c ...

... ...

... c*c-1

0 1

c c+1

...

...

... ...

(c-1)c ...

...

...

0 1

c c+1

... c-1

... 2c-1

... ... ... ...

0 1

c c+1

...

...

... ... ...

Fig. 3: Coloring of cells

algorithm. Even though the proposed leader election algo-
rithm looks simple, its theoretical analysis is not. It will be
shown that the algorithm can accomplish leader election in
O(log n + logRc) rounds in the dynamic setting. Noting
that Ω(log n) is the lower bound for successful a message
transmission with a high probability guarantee, our leader
election algorithm is nearly optimal.

4.1 Algorithm Description

The leader election algorithm is given in Algorithm 1. The
algorithm is very simple, but the analysis is non-trivial.

Before the algorithm execution, the cells are colored as
follows: the cell g(i, j) gets the color c ∗ (i mod c) + (j

mod c), where constant c = d(( β(32α−1
α−2 +4)

(1+ε)−α−(1−ε)α )
1
α + 1 + ε) ∗

√
2
ε + 1e. It is easy to see that this coloring uses c ∗ c colors,

as demonstrated in Fig. 3. For each node v, it has the same
color as the cell it is in. The coloring generates a TDMA
scheme for the algorithm’s execution in each round and
will be introduced later. The whole algorithm consists of
Θ(log n + logRc) rounds, each of which has c ∗ c slots. In
particular, the active nodes of color j for 0 ≤ j ≤ c2 − 1
execute the algorithm in the j-th slot in each round. This
TDMA scheme can help avoid interference from nodes in
nearby cells. We next focus on the algorithm execution for
nodes of a particular color.

In the algorithm, nodes can be in three states: state A
means that the node is active for leader election; state S
means that the node gives up becoming a leader and will
remain silent in subsequent rounds; state L means that the
node has become a leader. At the beginning, all nodes are
in state A. For parameters in Algorithm 1, TLE = k(log n+
logRc) and p = (1 − (1 − ε)α)(1 − 21−α/2)/(3 ∗ 2α+7β),
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Algorithm 1: LE(n,Rc)

1 Initialization: statev = A;

2 Each node v in color j does:
3 for TLE rounds do
4 slot = 0;
5 for slot < c ∗ c do
6 if statev = A and slot = j then
7 transmit with probability p;
8 if receive a message from nodes in same cell

then
9 statev = S;

10 slot+ +;

11 if statev = A then
12 statev = L

TABLE 3: Parameters in algorithms and analysis

Parameter Value Parameter Value
ε constant ∈ (0, 1) c1

1−(1−ε)α
2α+1β

ε
1−(21−α/2)

2
cmax

48
1−21−α/2

γ
p(1−p)(e−1)

8∗(2s+5)2e2
γ1 1− γ

τ γ2/γ1 > 1

p
1−(1−ε)α
3∗2α+7β

(1− 21−
α
2 )

λ
γ1+ρ/(1−ρ)

1−ρ
− 1

4ς − 1 > 0

c d((
β(32α−1

α−2
+4)

(1+ε)−α−(1−ε)α )
1
α + 1 + ε) ∗

√
2
ε

+ 1e

s [
(1−21−α/2)(1−(1−ε)α)

3·2α+5·β ]
1

1−α/2

γ2 (γ1 + ρ/(1− ρ))(1 + λ)2ς < 1
ς dmax{(4τ)/(a1(1− γ2)), 4τ}e
n unknown but sufficiently large
k sufficiently large constant
ρ sufficiently small constant

a1
the constant hidden behind the Ω notation
in the probability guarantee in Lemma 1

where the constant k is set to be sufficiently large for the
convenience of analysis.

In the corresponding slot of each round: active nodes
transmit with probability p to compete for leadership or lis-
ten otherwise; When an active node receives a message from
nodes in the same cell, it gives up the leader competition
and joins state S. After TLE rounds, the nodes that are still
active become the leaders of corresponding cells and join
state L.

Notice that a similar algorithmic idea is used in [14]
to solve the leader election problem in a static single-hop
network. But the analysis of our algorithm is different from
that in [14], as we have to handle two factors that heavily
affect transmissions and do not exist in static single-hop
networks, including multi-hop interference, and dynamicity
due to node churns and mobility.

We next show that under our dynamic setting and for

any dynamic rate λ < γ1+ρ/(1−ρ)
1−ρ

− 1
4ς − 1, where γ1, ρ, and

ς are constants given in Table 3. Algorithm 1 can correctly
elect exactly one leader for each non-empty cell in O(log n+
logRc) rounds w.h.p.

4.2 Algorithm Analysis

In the algorithm, the TDMA scheme makes active nodes of
the same color execute the algorithm together. Hence, we
next focus on the algorithm execution of nodes in cells of
a fixed color j ∈ [0, c ∗ c − 1]. Here, let color(g) be the
color of cell g and Vi(t) = ∪g∈G,color(g)=jV gi (t), V̂i(t) =

∪g∈G,color(g)=j V̂ gi (t) and ni(t) = |Vi(t)|, n̂i(t) = |V̂i(t)|.
Obviously, a leader will be elected in each non-empty cell

g when all V̂i for i ∈ {0, 1, . . . , log εRc − 1} are reduced to
empty, since when this happens, there is exactly one active
node left in each non-empty cell g that belongs to class
Vlog εRc .

Our analysis consists of two steps: we first prove that
in each round r, a constant fraction of active nodes in
network will become inactive with some probability; We
then bound the time needed for the event that only one
active node is left in each non-empty cell g to happen. For
i ∈ {0, 1, . . . , log εRc}, we use V<i(r) and V̂<i(r) to denote
the sets of active nodes in in classes Vjs for j < i at the
beginning and the end of a round r. n<i(r) and n̂<i(r)
are defined correspondingly. Table 3 is used to detailedly
present the values of notations in algorithm and analy-
sis. The result for the first step is given in the following
Lemma 1.
Lemma 1. For any round r, i ∈ {0, 1, . . . , log εRc − 1}, if

n<i(r) ≤ εni(r), then γ fraction of nodes in Vi will
become inactive with probability 1−eΩ(|Vi|) at the end of
round r, where ε = 1−(21−α/2)

2 , γ = p(1−p)∗e−1∗(1−e−1)
8∗(2s+5)2 ,

s = [ (1−21−α/2)(1−(1−ε)α)
3·2α+5·β ]

1
1−α/2 .

Proof: We define a set Sgi as following: for an ac-
tive node u in cell g, exponential annulus Eit(u) =
A(u, 2t+12i)\A(u, 2t2i), where A(u, d) is the set of ac-
tive nodes within distance d from u. If for every t ∈
{0, 1, ..., logR1 − 1}, Eit(u) ≤ 48 ∗ 2t(α/2+1), where R1

is the maximum distance for any pair of nodes in the
network, then u is called a sparse node. Sgi ⊆ V gi is the
largest subset of sparse nodes in V gi that guarantees for
any pair of nodes u, v ∈ Sgi , d(u, v) ≥ (s + 2)2i, where
s = [ (1−21−α/2)(1−(1−ε)α)

3·2α+5·β ]
1

1−α/2 . Si = ∪g∈G,color(g)=jSgi .
We prove this lemma in two steps: In the first step, with

the assumption that i ∈ {0, 1, ..., log εRc−1} and n<i ≤ εni,
a constant fraction of nodes in Vi is shown to be in Si; The
second step proves that a constant fraction of nodes in Si
become inactive with probability 1− e−Ω(|Si|).

For any fixed i ∈ {0, 1, ..., log εRc − 1}, the first step is
proved by the following Claim 1 and Claim 2. To maintain
clarity in the whole analysis here, the proofs of claims in
Section 4 are put in the appendix.

Claim 1. If n<i ≤ εni with ε = 1−(21−α/2)
2 , a constant

fraction of nodes in Vi are sparse nodes.

Claim 2. At least 1
(2s+5)2 fraction of sparse nodes in Vi are

in set Si.

From claim 1 and 2, we get the result that at least 1
2(2s+5)

nodes in Vi are spares nodes in Si for step one.
Then, we start to prove the second step by subsequent

Claim 3 and Claim 4. For any fixed non-empty set Si, i ∈
{0, 1, ..., log εRc − 1}, let Ti be the set of nearest neighbors
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for all nodes in Si. For a node u ∈ Si who listens and with
node v as the nearest neighbor, we divide the interference at
u into two parts: interference from nodes in Si ∪ Ti \ {u, v}
and that from nodes outside Si∪Ti. For a node v1 /∈ Si∪Ti,
define Î(v1) to be the sum of interference at nodes in Si
that is generated by node v1, and Î(v1) is also recorded
as the sum of interference on nodes in Eit(v1) ∩ Si over
all annulus. Noting that the strength of all received signals
follows an exponential distribution as is mentioned in the
model section, we have M(Î(v1)) being the mean of the
variable Î(v1). Also with an area argument, we get |Eit(v1)∩
Si| ≤ 24 ∗ 22t. So

M(Î(v1)) =

logR1−1∑
t=0

|Eit(v1) ∩ Si|
P

(2i2t)α

=
P

2iα

logR1−1∑
t=0

|Eit(v1) ∩ Si|
2tα

≤ P

2iα

∞∑
t=0

24 ∗ 22t

2tα
<

24 ∗ P
2iα

(
1

1− 22−α )

M(Î(v1)) < cmaxP/2
iα by setting cmax = 48

1−21−α/2 .

Claim 3. For any constant c1 with p = c1/(4cmax), with

probability 1− e−
c21

24c2max
|Si|, at least half of the nodes in

Si have M(Î(v1)) no larger than c1P/2iα.

Claim 4. For any fixed round, a constant fraction of nodes
in Si become inactive with probability 1− e−Ω(|Si|).

By now, we have completed the two-step proof.
With the above two steps, we get results that for i ∈
{0, 1, 2, ... log εRc−1}, (1) when n<i ≤ εni, 1

2(2s+5)2 fraction
of nodes in set Vi are in set Si; (2) in each round, with
probability at least 1− eΩ(|Vi|), more than p(1− p) ∗ e−1(1−
e−1) ∗ |Si|/4 nodes become inactive. These results complete
the proof of Lemma 1.

Lemma 1 depicts the reduction process of Vi in each
round. We still need to consider the change of Vi between
rounds. There are three factors which may change Vi be-
tween rounds: first, churns of nodes with some active nodes
joining or ending the algorithm execution; second, nodes
move from cell to cell; third, some active nodes in V<i
may join Vi because their nearest neighbors have become
inactive; We need to prove that even with these factors, each
Vi for i ∈ {0, 1, 2, . . . log εRc − 1} will finally become an
empty set, which means that for each non-empty cell, there
is exactly one active node left and elected as the leader.

Let γ1 = 1 − γ and γ2 = (γ1 + ρ/(1 − ρ))(1 + λ)2ς < 1
where ρ and ς are constants given in Table 3. Our require-

ment on dynamic rate λ < γ1+ρ/(1−ρ)
1−ρ

− 1
4ς − 1 ensures

(1 + λ)2ς < 1−ρ
γ2

.
In the subsequent analysis, we next try to upper bound

the number of active nodes in each class Vi by a series of
vectors mt(i), m̂t(i) for t ≥ 0 and 0 ≤ i ≤ log εRc − 1 as
follows.

∀t ≥ 0 : mi(t) =

{
n/γ1 t ≤ Ti
bmi(t− 1) ∗ γ2c t > Ti

∀t ≥ 0 : m̂i(t) =

{
n t ≤ Ti
bmi(t− 1) ∗ γ1c t > Ti

Here Ti = i ∗ h and h = dlogγ2 ρe, ρ is a constant which is
set to be sufficiently small for the convenience of subsequent
analysis.

The subsequent analysis consists of two parts. We first
give a time bound T̂ when all m̂i(T̂ ) become 0. By the defi-
nition of m̂i(t), it is easy to check that T̂ ∈ O(log n+logRc).

We divide the time into consecutive intervals Ii
for i = 0, 1, . . ., and each interval consists of ς =
dmax{(4τ)/(a1(1−γ2)), 4τ}e rounds, where τ = γ2/γ1 > 1
and a1 is the constant hidden behind the Ω notation in the
probability guarantee in Lemma 1.

We define some notations to facilitate our analysis.

• Define random events E(j) and F(j) for j ≥ 0: E(j)
occurs in a round r if in round r, n̂i(r) ≤ mi(j) for
all i ∈ {0, 1, . . . , log εRc − 1}. Similarly, F(j) occurs
in round r if in round r, n̂i(r) ≤ m̂i(j) for all i ∈
{0, 1, . . . , log εRc − 1};

• If in all rounds during interval Ii, E(j) always occurs,
we say E(j) always occurs in interval Ii. If E(j)
occurs in at least one round during Ii, we say E(j)
occurs once in Ii. F(j) has the similar definitions.

We next give three lemmas on E(j) and F(j). Lemma 2 and
Lemma 3 can be easily obtained and we omit the proofs.

Lemma 2. Events E(0) and F(0) occur in every round.

Lemma 3. When F(T̂ ) occurs, all classes of Vi for i ∈
{0, 1, . . . , log εRc − 1} are reduced to empty, i.e., exactly
one active node is left in each non-empty cell g and
finally elected as the leader.

Lemma 4. In any round, if F(j) occurs, then E(j) occurs.

Proof: Since m̂i(t) = mi(t) ∗ γ1γ2 and γ2 > γ1, when
F(j) occurs at any round r1, for all i ∈ {0, 1, . . . , log εRc −
1}, n̂i(r1) ≤ m̂i(j) ≤ mi(j). Thus, the Lemma holds.

We next analyze the progress of F(j).

Lemma 5. If F(j) occurs once in Ia, then, in Ia+1:
(a) F(j) or F(j − 1) always occurs;
(b) E(j) always occurs;
(c) With probability at least 3

4 , F(j + 1) occurs once;

Proof: We prove (a) and (b) first. If j = 0, F(0) and
E(0) always occur in Ia+1; When j > 0, let r1, r2 be a round
in Ia and Ia+1 respectively. Since F(j) occurs in r1, i.e., for
any i ∈ {0, 1, . . . , log εRc − 1}, n̂i(r1) ≤ m̂i(j), we have

n̂i(r2) ≤ n̂i(r1) ∗ (1 + λ)r2−r1 +
i−1∑
s′=0

ns′(r1) ∗ (1 + λ)r2−r1

≤ n̂i(r1) ∗ (1 + λ)2ς +
i−1∑
s′=0

ns′(r1) ∗ (1 + λ)2ς

≤ m̂i(j) ∗ (1 + λ)2ς +
i−1∑
s′=0

m̂s′(j)(1 + λ)2ς

≤ m̂i(j) ∗ (1 + λ)2ς + (1 + λ)2ςγ1

i−1∑
s′=0

ms′(j − 1)

(2)
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In order to bound the value of
∑i−1
s′=0ms′(j − 1), we

consider two cases that mi−1 < n/γ1 and mi−1 = n/γ1.
Notice that it is impossible that mi−1 > n/γ1.

If mi−1(j − 1) < n/γ1, we have the following claim.
Claim 5. If mi−1 < n/γ1,

∑i−1
s′=0ms′(j − 1) ≤ ρ

(1−ρ)mi(j −
1).

Applying Claim 5 in Eqt. 2, we get that

n̂i(r2) ≤ m̂i(j) ∗ (1 + λ)2ς + (1 + λ)2ςγ1

i−1∑
s′=0

ms′(j − 1)

≤ m̂i(j) ∗ (1 + λ)2ς + (1 + λ)2ςγ1mi(j − 1)ρ/(1− ρ)

=
(1 + λ)2ς

1− ρ
m̂i(j) =

(1 + λ)2ςγ2

1− ρ
m̂i(j − 1)

=
(1 + λ)2ςγ1

(1− ρ)γ2
mi(j)

Since (1+λ)2ςγ2
1−ρ ≤ 1 and (1+λ)2ςγ1

(1−ρ)γ2 ≤ 1, F(j − 1) and E(j)
occur in any round r2 during Ia+1.

If mi−1(j − 1) = n/γ1, we can see that mi(j − 1) =
mi(j) = n/γ1, m̂i(j) = n, then ngi (r2) ≤ m̂i(j) < mi(j).
F(j) and E(j) always occur in Ia+1.

Combined all above together, we can get that F(j) or
F(j − 1) always occur in Ia+1, and E(j) always occurs in
Ia+1, i.e., (a) and (b) are proved.

Then, we consider (c), which can be proved by the
subsequent Claim 6 and Claim 7. Let r and r + 1 be rounds
in Ia+1.
Claim 6. For any i ∈ {0, 1, . . . , log εRc−1}, with probability

at least 1− e−Ω(ngi (r)), n̂i(r + 1) ≤ m̂i(j + 1).

Claim 7. With probability at least 3/4, F(j + 1) occurs once
in interval Ia+1.

Lemma 6. F(T̂ ) occurs by the time TLE = Θ(log n+ logRc)
with high probability.

Proof: By Lemma 2 and Lemma 5, we know that: 1)
F(0) always occurs in all intervals; 2) when F(j) occurs
once in Ia, F(j− 1) or F(j) always occurs in Ia+1 and with
probability at least 3/4, F(j + 1) occurs once in Ia+1. Thus,
using the Chernoff bound, F(T̂ ) occurs w.h.p. within time
complexity of O(log n + logRc) and the Lemma is proved.

Based on all above analysis, we can get the final result.
Theorem 1. With high probability, the leader election al-

gorithm can elect a leader in each non-empty cell in
O(log n + logRc) rounds, if the dynamic rate λ <
γ1+ρ/(1−ρ)

1−ρ
− 1

4ς − 1.2

5 IMPLEMENTATION OF ABSTRACT MAC LAYER

In this section, we present the implementation algorithm of
the abstract MAC layer, as shown in Algorithm 2, also called
algorithm AML. The algorithm can efficiently implement
both acknowledgement and progress primitives under the
same constant constraints on the dynamic rate as that in

Section 4, i.e., λ < (γ1+ρ/(1−ρ)
1−ρ

− 1
4ς − 1).

2. The detail value of γ1, ρ, and ς is given in Table 3

Fig. 4: Two periods in one phase

The algorithm execution is divided into successive
phases, each of which consists of TP = TLE + TLB rounds,
where TLE and TLB are the time complexity of leader
election period and leader broadcast period respectively,
TLE = k(log n + logRc) and TLB = k log n. Basically, in
each phase, the algorithm first invokes the leader election
algorithm to elect a leader in each non-empty cell, and then
makes the leaders successfully disseminate their messages
using a TDMA scheduling generated by the cell coloring.
Hence, in each phase, there are two periods: Leader Elec-
tion (LE) Period and Leader Broadcast (LB) Period, as is
illustrated in Fig. 4

Compared with the states in Algorithms 1 and 2 has
one more state S1, which means that nodes do not have
a message to disseminate and always keep listening. The
other states of nodes in Algorithm AML are the same as
those in Algorithm 1.

In the first period, for any node v with message mv

to transmit, it is in state A at the beginning. Otherwise,
statev = S1, which means v has no message to transmit and
always keeps listening. Then, all nodes in state A will run
LE(n,Rc) to elect a leader in each non-empty cell. Notice
that the nodes are allowed to move among cells during the
election process. At the end of this period, for any cell g,
which is non-empty at the beginning of this phase, there
will be exactly one leader in g elected with high probability.
By the constraint on dynamic rate, when an active node is
elected as a leader in g, it will not leave g until the end
of the current phase. Otherwise, V glog εRc

will change from
1 to 0, which violates the constraint on dynamic rate. This
constraint is necessary, as otherwise, all leaders in current
phase can move to a small area, where leaders are close
to each other such that the interference is large enough to
disturb all transmissions.

In the second period, the elected leaders will disseminate
their messages in k log n rounds by executing the TDMA
scheduling generated according to their colors. The TDMA
scheduling ensures that each leader can disseminate its
message to all neighbors within distance (1 + ε)Rc in one
period. After this period, leaders join state S1. Those nodes
that still have messages to transmit but failed to become
leader in previous phases, i.e. in state S, will join state A
again, to compete for becoming a leader in the subsequent
phase.

Analysis. Basically, we first show some curical lemmas
for the correctness of leader election and leader broadcast-
ing, and then we will give time bounds for accomplishing
the acknowledgement and progress primitives.

We consider a phase L of the algorithm execution, and
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Algorithm 2: AML(n,Rc)

In each phase, for each node v in color j:

Leader election period:
1 if v has message ms to transmit then
2 statev = A;

3 else
statev = S1;

4 if statev = A then
5 LE(n,Rc);

Leader broadcast period:
6 if statev = L then
7 for TLB rounds do
8 slot = 0;
9 for slot < c ∗ c do

10 if slot = j then
11 transmit mv ;

12 slot+ +;

13 statev = S1;

14 if statev = S then
15 statev = A;

have the following results.
Lemma 7. At the end of the leader election period in L,

there is exactly one leader elected in each non-empty cell
g with high probability.

Proof: The lemma is a direct corollary of Theorem 1.

We next analyze the message disseminations of leaders.
Consider a non-empty cell g. Let v be the leader elected
in g during the leader election period of phase L. As
discussed before, the dynamic rate constraint guarantees
that the leader in each non-empty cell will not leave the cell
during the leader broadcast period. The following lemma
shows how leaders successfully disseminate their messages
to their neighbors
Lemma 8. After a leader broadcast period, all nodes within

distance Rc from the cell of v can successfully receive the
message of v at least with high probability.

Proof: Let g′ be the cell of v and u be a node within
distance Rc from g′ in round r1, and r1 be a round in
the leader broadcast period of phase L.. By the triangle
inquality, we get that d(v, u) ≤ εRc + d(g′, u) ≤ (1 + ε)Rc.
Claim 8. If d(u, v) ≤ (1+ε)Rc, when v transmits in r1, u can

receive the message of v with probability e−1 ∗ (1−e−1).

Proof: Assume that v transmits in slot s of round r1.
We divide the whole space into annuluses {Cb : b ≥ 1},
where Cb denotes the annulus with distance from u between
(b − 1)(c − 1) ∗ (

√
2ε
2 Rc) and b ∗ (c − 1) ∗ (

√
2ε
2 Rc). Let Lb

be the set of leaders that also transmit in slot s and locate
in Cb for b ≥ 2. The TDMA scheduling ensures that any
two leaders transmitting simultaneously are seperated by a
distance at least (c− 1) ∗ (

√
2ε
2 Rc). Hence, disks centered at

leaders in Lb with radius (c− 1) ∗ (
√

2ε
4 Rc) are disjoint, and

these disks are in the annulus with distance from u between
(b− 3

2 )(c−1)∗ (
√

2ε
2 Rc) and (b+ 1

2 )∗ (c−1)∗ (
√

2ε
2 Rc). Then

the number of leaders transmitting simultaneously with v is
upper bounded as follows.

π(
√

2ε
2 Rc)

2(c− 1)2((b+ 1
2 )2 − (b− 3

2 )2)

π((c− 1) ∗ (
√

2ε
4 Rc))2

≤ 16 ∗ b

Furthermore, it is easy to get that the number of broad-
casters in C1 that simultaneously transmit with v is at most
4, and the mean of interference on u caused by these broad-
casters is at most M(IC1) = 4P ∗(((

√
2ε(c−1)

2 −1−ε)Rc))−α.
Then the mean of interference I at node u from other nodes
that simultaneously transmit with v in slot s is bounded by:

∞∑
b=2

16b ∗ P ∗ ((b− 1)(c− 1) ∗
√

2ε

2
Rc))

−α +M(IC1
)

≤ (32 ∗ α− 1

α− 2
+ 4) ∗ P ∗ (

√
2ε(c− 1)

2
− 1− ε)−α ∗R−αc

= (32 ∗ α− 1

α− 2
+ 4) ∗ βN

(1− ε)α
∗ (

√
2ε(c− 1)

2
− 1− ε)−α.

Setting c = d(( β(32α−1
α−2 +4)

(1+ε)−α−(1−ε)α )
1
α + 1 + ε) ∗

√
2
ε + 1e, we get

Pr(Sv,u ≥ P/((1 + ε)Rc)
α) = exp(−P/((1 + ε)Rc)

α

S̄v,u
) ≥ e−1,

P r(I ≤ ((1− ε)−α(1 + ε)−α − 1) ∗ βN)

= 1− exp(− ((1− ε)−α(1 + ε)−α − 1) ∗ βN)

S̄v,u
) ≥ 1− e−1.

Thus, at least with probability e−1 ∗ (1 − e−1) at round r1,
when v transmits, u can receive the message of v by the
SINR condition

SINR(u, v, S) ≥ P ∗ ((1 + ε)Rc)
−α

N + I
≥ β

By applying a Chernoff bound on the above Claim, it can be
proved that the message dissemination from leaders to their
neighbors succeed with high probability after TLB rounds.

Theorem 2. With high probability, the AML algorithm can
implement the abstarct MAC layer with time bounds
(i) fack = |I|, where I is the interval from the beginning
(round 0) to a round t such that (∆g(I) + 1) ∗ TP ≤ t
holds for all non-empty cells g;
(ii) fprog = TP = O(log n+ logRc).

Proof: (i) Consider a node v in a cell g. By Lemma 7
and Lemma 8, if cell g is non-empty, after each phase, there
is an active node in g elected as leader and disseminate
its message to all neighbors with high probability. Hence,
during the interval I , after at most ∆g(I) phases, either v
has been elected as a leader in a phase and disseminated
its message, or all active nodes except v appearing in cell
g during the interval I have disseminated their messages.
Hence, in the subsequent phase, there are no other active
nodes in g competing with v, and v will accomplish local
broadcast in this phase as analyzed above. By tuning the
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constant parameters carefully, it is easy to check that the
result holds for all nodes.

(ii) Consider a node v. By the assumption, v stably
connects to non-empty cells in at least one entire phase.
Assume the phase as L, L1 as the leader broadcasting period
in L, v connects to cell g at period L1, and let u be the
leader elected in g during phase L. Then by the definition
of stable connection, d(v, u) ≤ (1 + ε)Rc at period L1. Then
by Lemma 8, v can receive a message from u in L with high
probability. This completes the proof.

6 NECESSITY OF DYNAMIC RATE RESTRICTION

We next discuss whether a significantly larger dynamic rate
can be handled by an efficient or asymptotically optimal
AbsMAC layer implementation algorithm. However, if the
algorithm involves a leader election procedure, the result is
negative. Specifically, we have the following result.
Theorem 3. If the dynamic rate λ ∈ ω(1), there is no

algorithm that can solve the leader election in O(log n)
time.

Proof: The result is proved by contradiction. Assume
that there is an algorithm A that can accomplish leader
election in O(log n) rounds, which means that

∑log εRc−1
i=0 ni

can be reduced to empty within O(log n) rounds. We claim
that during the algorithm execution, at least λ

1+λ fraction of
active nodes in A become inactive, i.e. n(t)−n̂(t)

n(t) ≥ λ
1+λ .

Otherwise, note that ni(t + 1) can be recorded as (1 +

λ)n̂i(t) for i ∈ {0, 1, ..., log εRc}, if n(t)−n̂(t)
n(t) < λ

1+λ , we get

n̂(t) > n(t)
1+λ . Hence

n(t+ 1) = (1 + λ)n̂(t) > (1 + λ) · n(t)

1 + λ
= n(t)

This means that the set of active nodes will never be reduced
to empty, i.e., the leader cannot be elected.

Then if implementing algorithm A in a static network
with n active nodes, the above result implies that the leader
election procedure can be completed in O(log λ

1+λ
n) rounds,

which is o(log n) if λ ∈ ω(1). But in [36], it has been
proved that Ω(log n) is the minimum time needed for leader
election, even if without interference. This contradiction
completes the proof.

7 SIMULATION RESULTS

In this section, we investigate the empirical performances of
our abstract MAC layer implementation algorithm. Specif-
ically, we investigate (i) the performance of the algorithm
under different dynamic rates and the largest dynamic
rate that our algorithm can handle in reality; (ii) the ac-
knowledgement bound fack and the progress bound fprog
our algorithm can attain when the dynamic rate changes;
and (iii) the impact of SINR parameters on the algorithm
performance. Because our algorithm is the first one for
implementing abstract MAC layer in dynamic networks,
there are no comparisons with previous work.

Structure and Parameter setting in simulation. Our en-
tire simulation is developed as a C++ program with multiple
functions, some of which are from standard libraries while
the others are written by ourselves. Fig. 5 illustrates the flow

TABLE 4: Parameters in simulation

Notation Definition Value
n0 Number of nodes [1000, 10000]
R Transmission range 30m
ε Parameter in model 0.3
c Parameter in coloring 9
p Transmission probability 0.2
α Parameter in SINR {3, 4}
β Parameter in SINR {1.5, 2}
λ Dynamic rate [0, 0.3]

Fig. 5: Flow chart of our simulation

chart of our simulation. For the simulation, n0 nodes are
randomly and uniformly distributed in a network with size
300m× 300m. Each node has a uniform transmission range
of 30m. The values of other parameters are given in Table 4.
At least 20 runs of the simulation were carried out for each
reported result. All experiments are conducted on a Linux
machine with Intel Xeon CPU E5-2670@2.60GHz and 64 GB
main memory, implemented in C++ and compiled by the
g++ compiler.

7.1 Algorithm Performance

In the simulation, n0 active nodes, which have a mes-
sage to broadcast, are randomly and uniformly distributed
in the network initially. As the algorithm executes, we
count the number of incomplete nodes (those that have
not completed the acknowledgement or progress primitive).
If a dynamic rate cannot be handled by our algorithm,
the incomplete nodes will increase constantly, as there
are new nodes joining the network. Then, for each fixed
n0 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ∗ 103, we get the largest
dynamic rate that can be handled by our algorithm, which
is shown in Table 5. From the table, we can see that except
the very sparse case of n0 = 1000, the dynamic rate that can
be handled is roughly the same in different cases.

Figure 6 shows the total number of nodes, the number
of incomplete nodes in network, and the ratio of nodes
that have completed the acknowledgement and progress



11

TABLE 5: Largest dynamic rate that can be handled

n0 Dynamic upper bound n0 Dynamic upper bound
1000 0.14 2000 0.035
3000 0.029 4000 0.029
5000 0.028 6000 0.028
7000 0.028 8000 0.027
9000 0.027 10000 0.026

operation, for the case of n0 = 5000 under different
dynamic rates as the algorithm executes. If a node com-
pletes the acknowledgement/progress operation, we say it
is ack.ed/prog.ed for short. In Fig. 6, the x-axes represent
the number of rounds, and the y-axes represent the total
number of nodes, the number of incomplete nodes, and ratio
of ack.ed/prog.ed nodes, respectively. Also, the dynamic
parameter is set as λ ∈ {0, 0.026, 0.027, 0.028, 0.029}.

The curves with λ = 0 correspond to the situation of
static network. From the curves with λ = 0 in Fig. 6 (a)–
(d), we can see that (i) the total number of nodes in the
network is always unchanged because the network is static;
(ii) the number of active nodes decreases to 0 sharply within
150 rounds; (iii) the ratio of ack.ed/prog.ed nodes increases
from 0 to 1 rapidly. From the curves with λ = 0.029,
we can see that the dynamic scenario of λ = 0.029 can-
not be handled by our algorithm. When λ = 0.029, the
dynamicity in network is too strong, which results in the
total number of nodes and the number of incomplete nodes
always increasing (as shown Fig. 6 (a) and (b)), and the ratio
of ack.ed/prog.ed nodes (as shown in Fig. 6 (c) and (d))
becomes very small. To have a direct understanding of the
dynamic level with λ = 0.029, we can see that the network
size at round 120 is already twice as large as the network
size at the beginning in Fig. 6 (a). In other cases with
λ ∈ {0.026, 0.027, 0.028}, it can be seen that the number
of incomplete nodes keeps stable at a very low value after
the algorithm has executed for a period; and the ratio of
ack.ed/prog.ed nodes gradually gets close to 1. This means
that although there are new nodes joining the network due
to the dynamic setting, the nodes can complete the local
broadcast primitives as required in time, such that the total
number of incomplete nodes stays at a low level.

Figure 7 shows how the acknowledgement bound fack
and the progress bound fprog change as the algorithm
execution when initially n0 = 5000 and λ varies from
0.026 to 0.029. In Figure 7, the x-axes represent the number
of rounds in the algorithm execution, while the left y-
axes represent the number of rounds for the bounds fack
and fprog , and the right y-axes represent the number of
incomplete nodes. There are three curves in these figures,
which represent the bounds fack and fprog for the nodes
finishing the local broadcast primitives in corresponding
rounds and the number of incomplete nodes in correspond-
ing rounds, respectively. From the figures, it can be seen
that for λ = 0.029, the number of incomplete nodes and
the bound fack keep increasing, which means that our
algorithm cannot handle this dynamic scenario. But for the
progress bound fprog , it keeps decreasing in this situation.
So our algorithm can handle a larger dynamic rate in terms
of the progress primitive. For λ ≤ 0.028, it can be found
that the acknowledgement bound fack first increase due to
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Fig. 6: Total number of nodes and the number of incomplete
nodes as algorithm execution

the newly joining nodes and then keep decreasing or stable
subsequently. Furthermore, we can see that our algorithm is
very efficient, with fack and fprog smaller than 280 and 60
in cases of λ ≤ 0.028.

To show the efficiency of our algorithm in dynamic
networks, we compare our dynamic abstract MAC layer
algorithm (written as D-absMAC for short) with two state-
of-the-art abstract MAC layer protocols [17], [41] (written
as S-LBL and S-absMAC for short) that are proposed for
static networks under the SINR model. Fig. 8 illustrates the
comparison results in networks with various dynamic lev-
els, i.e. λ = 0.01, 0.02. It can be seen that the ack. and prog.
bound of our algorithm is significantly smaller than those
of the algorithms in [17], [41]. And, the performance of S-
absMAC is better than that of S-LBL. This is because with S-
LBL, nodes decide to transmit or not by computing a special
node set, which is heavily influenced by the dynamic nodes.
Whereas, the adaptive technique used in [41] can inherently
tolerate some slight dynamic behaviors. In conclusion, the
comparison results indicate that our algorithm is much more
efficient when facing dynamic behaviors in networks.

7.2 Impact of SINR parameters
We illustrate the impact of SINR parameters α and β in
Figure 9, where it sets that n0 = 5000 and λ = 0.028.
In the figure, the curves represents the bounds fack and
fprog under different setting of α and β as the algorithm
execution, respectively. From the figures, it can be seen that
acknowledgement/progress bounds for different α and β
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(b). λ = 0.027
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(c). λ = 0.028
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Fig. 7: Changes of fack, fprog and the number of incomplete
nodes as algorithm execution
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(c). Ack. bound with λ = 0.02
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Fig. 8: Comparison of our algorithm with others
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Fig. 9: Ack. and prog. bounds under different α and β

are similar on values and tendency. Hence, our algorithm is
insensitive to SINR parameters.

7.3 Summary

The simulation results show that our algorithm can handle
a constant dynamic rate. Because the dynamic rate is with
respect to the dynamicity in every round, although the
dynamic rate is not very large, the dynamicity can be signif-
icant after only a few rounds. In the dynamic environment,
our algorithm can efficiently accomplish the functions of
local broadcast primitives in the abstract MAC layer, and
it has been shown that the algorithm is insensitive to the
SINR parameters.

8 CONCLUSION

In this paper, we studied the problem of implementing
local broadcast primitives in the abstract MAC layer in
dynamic networks. We proposed a dynamic network model
based on SINR interference, which incorporates both churns
and node mobility. Under this comprehensive model, we
proposed an efficient implementation algorithm the perfor-
mance of which is guaranteed with high probability, under
the reasonable constraint of constant dynamic rate. The
obtained acknowledgement bound is inferior to the optimal
solution by at most a logarithmic factor and the progress
bound is asymptotically optimal. Furthermore, we show
that the constraint of constant dynamic rate is necessary
for getting efficient or asymptotically optimal solutions. Our
algorithm provides a base for designing new efficient algo-
rithms for high-level communication problems. Extensive
simulations indicate the good performance of our algorithm
in realistic settings.

It should be noted that our algorithm relies on reliable
communication channels. It is unknown whether our algo-
rithm is resilient to channel jamming for instance, which
could be an interesting future research direction.
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APPENDIX

Proof for Claim 1
Proof: We use a stronger condition to determine

sparse nodes: for a node u ∈ Vi, for every t ∈
{0, 1, ..., log εRc − 1}, it satisfies that |Eit(u) ∩ V≥i| ≤ 24 ∗
2t(α/2+1) and |Eit(u) ∩ V<i| ≤ 24 ∗ 2t(α/2+1). Let Ji be the
set of nodes which satisfy the above condition. Then, we try
to figure out the ratio of |Ji||Vi| .

We first show the condition that |Eit(u) ∩ V≥i| ≤ 24 ∗
2t(α/2+1). Since nodes in V≥i keep distance at least 2i with
each other, the disks centered at nodes in V≥i and with
radius 2i−1 are disjoint. Considering any given annulus
Eit(u), an area argument in the following Eqt. 3 shows that
for each node u ∈ Vi, |Eit(u)∩V≥i| ≤ 24∗22t ≤ 24∗2t(α/2+1).

π(2t+12i + 2i−1)2 − π(2t2i − 2i−1)2

π22(i−1)
= 3 ∗ 2t+2 ∗ (2t + 1)

≤ 3 ∗ 22t+3

< 24 ∗ 2t(α/2+1)

(3)
Under the condition that |Eit(u) ∩ V<i| ≤ 24 ∗ 2t(α/2+1),

for a fixed class Vi, i, t, let Γit be the sum of nodes in Eit(u)∩
V<i for all nodes u in Vi. Then we have

Γit =
∑
u∈Vi

|Eit(u) ∩ V<i| =
∑

u′∈V<i

|Eit(u
′
) ∩ Vi|

≤ n<i ∗ 24 ∗ 22t ≤ ε ∗ ni ∗ 24 ∗ 22t

i.e. at most ε∗2t(1−α/2)∗ni nodes do not satisfy the condition
that |Eit(u)∩V<i| ≤ 24∗2t(α/2+1). Thus for a fixed t, at most
ε∗2t(1−α/2) ∗ni nodes are not sparse ones in Eit(u) for each
node u ∈ Vi. Summing up the number of non-sparse nodes
for all t ∈ {0, 1, ..., logR1 − 1}, we get an upper bound on
the number of non-sparse nodes in Vi:

logR1−1∑
t=0

ni ∗ ε ∗ 2t(1−α/2) = ni ∗ ε ∗
logR1−1∑
t=0

(21−α/2)t

≤ ni ∗ ε ∗
1

1− (21−α/2)

=
1

2
ni.

So, |Ji||vi| ≥
1
2 and we get the claim that when n<i ≤ εni,

more than half of nodes in Vi are sparse nodes.
Proof for Claim 2

Proof: Since Si is defined to be the largest subset of
good nodes that have distance at least (s + 2)2i pairwise,
all spares nodes in Vi are covered by the disks centered at
nodes in Si and with radii (s + 2)2i. To get |Si|/|Vi|, we
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bound the maximal number of spares nodes which could be
covered by a disk centered at nodes in Si and with radius
of (s+ 2)2i via the following area argument.

Considering any node v ∈ Si and all the spares nodes
in Vi within distance (s + 2)2i from v. Let Dv and D′v be
the disk centered at v, with radius (s + 2)2i and (s + 5

2 )2i

respectively. Since the spares nodes in Dv have distance at
least 2i with each other, the disks D′′v s centered at those
spares nodes with radii 2i−1 are disjoint, and all D′′v s are
covered by D′v . Then we can get the number of spares nodes
in Dv is at most

π ∗ ((s+ 2)2i + 2i−1)2

π ∗ (2i−1)2
= (2s+ 5)2

The claim then proved with the result that at least 1
(2s+5)2

fraction of spares nodes are in Si
Proof for Claim 3

Proof: We prove the claim in two cases.
Case 1. c1 ≥ cmax.
For any node u ∈ Si, I(u) is used to record the inter-

ference at u that is caused by nodes outside Si ∪ Ti. Let
M(I(u)) be the mean of variable I(u), then

M(I(u)) ≤
logR1−1∑
t=0

|Eit(u)| P

(2t2i)α

=
P

2iα

logR1−1∑
t=0

|Eit(u)|/2tα

≤ P

2iα

logR1−1∑
t=0

48 ∗ 2t(α/2+1)

2tα

=
48P

2iα

logR1−1∑
t=0

1

2t(α/2−1)

<
48P

2iα
(

1

1− 21−α/2 )

≤ cmaxP/2iα

≤ c1P/2iα

Case 2. c1 < cmax.
We define a random variable xv1 for a node v1 /∈ Sgi ∪T

g
i

as

xv1 =

{
M(Î(v1))2iα/(cmaxP ) when node v1 transmits
0 when node v1 listens

Then we can get

E

[ ∑
v1 /∈Si∪Ti

xv1

]
=

∑
v1 /∈Si∪Ti

p ∗M(Î(v1))2iα/(cmaxP )

= p
∑

v1 /∈Si∪Ti

M(Î(v1))2iα/(cmaxP )

Because |Si|2 ∗ c1 ∗ P/2
iα ≤

∑
v1 /∈Si∪TiM(Î(v1)) ≤ |Si| ∗

cmax∗P/2iα, we get (c21/8c
2
max)|Si| ≤ E

[∑
v1 /∈Si∪T gi

xv1

]
≤

c1|Si|/(4cmax). Notice that xv1 ∈ [0, 1). Then using stan-
dard Chernoff bound for the set of independent random

variable {xv1 : v1 /∈ Si ∪ Ti} with µ = E[
∑
v1 /∈Si∪Ti(xv1)],

we get

Pr
( ∑
v1 /∈Si∪Ti

xv1 ≥ 2 ∗ (c1|Si|/(4cmax))
)

≤ Pr
( ∑
v1 /∈Si∪Ti

xv1 ≥ 2µ
)
≤ e−µ/3 ≤ e−

c21
24c2max

|Si|

Then, with probability at least 1− e−
c21

24c2max
|Si|,∑

v1 /∈Si∪Ti

M(Î(v1)) =
∑

v1 /∈Si∪Ti

xv ∗ cmaxP/2iα

≤ (2c1|Si|/(4cmax)) ∗ cmaxP/2iα

= c1|Si|P/2iα+1

Since c1|Si|P/2iα+1

c1P/2iα
= |Si|

2 , it is impossible for more than half
of nodes in Si having the mean of interference from nodes
outside Si ∪ Ti larger than c1P/2iα.

Proof for Claim 4
Proof: We consider the case that u ∈ Si receives a

message from its nearest neighbor v in the same cell. Let E
be the event that u listens and v transmits, then Pr(E) =
p(1 − p). Under the assumption that E occurs, we consider
the probability that u can receive message from v. According
to the SINR model, we still need to bound the interference
at u ∈ Si, and the strength of signal from v to u. We first
bound the interference from nodes in Si ∪Ti \ {u, v}. By the
definition of Si, each pair of nodes in Si have distance at
least (s+ 2)2i from each other. And each node in Si has the
nearest neighbor within the range of [2i, 2i+1), since Si ⊆
Vi. Then the distance between u and nodes in (Si ∪ Ti) \
{u, v} is at least s ∗ 2i. Let I1 denote the interference at
u caused by nodes in (Si ∪ Ti) \ {u, v}. Then, I1 is also
a random variable which is exponentially distributed with
mean M(I1), which can be bounded as follows.

M(I1) =
∑

t=log s

|Eit(u)|P
(2i2t)α

≤ 48P

2iα
· 1

sα/2−1
· 1

1− 21−α/2 . (4)

Noting that s = [ (1−21−α/2)(1−(1−ε)α)
3·2α+5·β ]

1
1−α/2 and setting

c1 = 1−(1−ε)α
2α+1β , we get M(I1), i.e. the mean of interference

at u caused by nodes in (Si∪Ti)\{u, v}, is at most c1P/2iα.
Combining Claim 3 with the above result for interference

from nodes in Si ∪ Ti \ {u, v}, with probability at least

1 − e−
c21

24c2max
|Si|, at least half of nodes in Si experience an

interference the mean of which is at most 2c1P/2
iα. Then, let

E1 be the event that Su,v ≥ P/2α(i+1) and E2 be the event
that interference experienced by u smaller than 2c1P/2

iα.
Then, we get

Pr(E1) = exp(−P/2
α(i+1)

S̄uv
) ≥ e−1,

P r(E2) = 1− exp(− 2c1P/2
iα

M(I1) +M(Î(v1))
)

≥ 1− exp(−2c1P/2
iα

2c1P/2iα
) = 1− e−1

Under the assumption that E1 and E2 occur, by the SINR
condition, we can show that if u experiences an interference
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that is at most 2c1P/2
iα, it can receive a message from its

nearest neighbor v as follows.

SINR(v, u) >
P/2α(i+1)

2c1P/2iα +N
≥ β

Combining the successful transmission result with the
assumption that E , E1 and E2 occur, which occurs with
probability p(1 − p) ∗ e−1 ∗ (1 − e−1), we get that in
expectation, there are p(1 − p) ∗ e−1 ∗ (1 − e−1) ∗ |Si|/2
nodes become inactive. Claim 4 is then proved by applying
Chernoff bound.

Proof for Claim 5
Proof: By the definition of mi(t), if mi−1(j − 1) <

n/γ1, then for ∀s′ ∈ {0, 1, . . . , i − 1}, ms′(j − 1) =
ρms′+1(j − 1), and

∑i−1
s′=0ms′(j − 1) ≤ mi(j − 1)ρ/(1− ρ)

Proof for Claim 6
Proof: The prove can be divided into three cases.

Case 1. mi−1(j − 1) = n/γ1. In this case, mi(j − 1) =
mi(j) = n/γ1, then m̂i(j+1) = n and n̂i(r+1) ≤ m̂i(j+1)

Case 2. ni(r + 1) ≤ m̂i(j + 1). In this case, n̂i(r + 1) ≤
ni(r + 1) ≤ m̂i(j + 1).

Case 3. mi−1(j − 1) < n/γ1 and ni(r + 1) ≥ m̂i(j + 1).
Because E(j) always occurs in Ia+1, n̂<i(r) ≤ m<i(j). By
mi−1(j−1) < n/γ1 and Claim 5, m<i(j) ≤ mi(j)ρ/(1−ρ).
By the definition of dynamic rate, n<i(r+1) ≤ (1+λ)n̂<i(r).
Combining all above together, we have

n<i(r + 1) ≤ (1 + λ)n̂<i(r) ≤ (1 + λ)mi(j)ρ/(1− ρ)

≤ m̂i(j + 1) ∗ (1 + λ)ρ

γ1(1− ρ)

≤ ni(r + 1)
(1 + λ)ρ

γ1(1− ρ)

By setting ρ to be small enough to make sure ρ/(1 − ρ) <
εγ1

(1+λ) , we obtain n<i(r+ 1) < εni(r+ 1) from the above in-
equation. Then, in round r+1, by Lemma 1, with probability
1− e−Ω(ni),

n̂i(r + 1) ≤ γ1ni(r + 1) ≤ γ1mi(j) = m̂i(j + 1).

Proof for Claim 7
Proof: We prove the Claim by contradiction. Assume

that F(j + 1) does not occur in any round of Ii+1. By
Claim 6, for any i ∈ {0, 1, . . . , log εRc − 1}, the error
probability, i,e, the probability that n̂i is larger than m̂i(j+1)
when interval Ia+1 ends is

e−4τn̂i/(1−γ2) ≤ (1− γ2)/(4τ n̂i)

≤ (1− γ2)/(4τm̂i(j + 1))

= (1− γ2)/(4mi(j + 1)).

By applying an union bound on the error probabilities for all
is, the probability that at least one n̂i is larger than m̂i(j+1)
at the end of Ia+1 is at most

log εRc−1∑
i=0

(1− γ2)/(4mi(j + 1)) ≤ 1− γ2

4

+∞∑
i=0

γi2 ≤
1

4

Hence, with probability at least 3/4, F(j+ 1) occurs once in
Ia+1.


