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Fast Identification and Clustering of
Multi-Path Components for Multi-band
Industrial Wireless Channels

MENGFAN WU1,2, MATE BOBAN1, FALKO DRESSLER2

Multi-path components are both the challenge and the resources to exploit in high-frequency wireless communication,
especially in environment with complex reflections. On one hand, late-arriving multi-path components cause inter-symbol
interferences in digital communication. On the other hand, techniques such as Multiple-Input, Multiple-Output and Rake
receivers have been widely applied to utilize the information carried in the math-path components. To this end, identifying
and clustering multi-path components is the foundation in tackling the challenges and boosting the utilization with reliable
and correct information. Past research focuses either on extracting the path information, or on clustering the extracted
components. In this paper, we propose a complete work flow that performs identification as well as clustering of multi-path
components. We extend our previous work in clustering algorithm to indoor propagation measurements of three different
frequency bands, as well as multiple transmitter-receiver locations. We verify that the fast attenuation of THz-band signals
results in clear separations of peaks in measurements, which in turn facilitates the identification and clustering solutions.
The ease of application highlights the wide-applying potential of high-frequency communication.
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I. INTRODUCTION

Wireless communication is a trending topic in transforming
and modernizing industrial applications, including automa-
tion, manufacturing, monitoring, and maintenance. With its
ease of deployment, together with mobility and flexibil-
ity, wireless communication is preferred over conventional
wired system to be deployed in complex and dynamic
environments like manufacturing floors with machinery.
Nevertheless, industrial settings also pose challenges to
wireless communication due to the presence of industrial
objects, often with metallic surfaces. The resulting complex
propagation phenomena, such as reflection, scattering, and
diffraction, can severely affect the quality and reliability of
signals. As a result, analyzing and understanding the prop-
agation environment in industrial settings is essential for
advancing wireless communication in industrial scenarios.

While the conventional frequency bands (sub-6 GHz)
are effective for numerous traditional applications, chal-
lenges exist for deploying them in industrial applications.
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Limited capacity and interference, considering the mul-
titude of devices to be equipped with communication
capability, can constrain the performance of wireless com-
munication in terms of throughput and latency. To over-
come these challenges, there is a pressing need to explore
and exploit new frequency bands, particularly in the tera-
hertz (THz) and millimeter-wave (mmWave) ranges. With
wider spectrum, THz and mmWave communication could
alleviate congestion in convential bands and could also
provide new propagation characteristics to be harnessed.
Moreover, the short communication range of mmWave and
THz bands is less serious a problem because the typi-
cal communication in industrial settings occurs over short
distances.

Regardless of frequency, the complex propagation
effects in industrial settings yield multi-path effect, where
signals arriving at the receiver due to different points of
reflection, etc., can lead to both constructive and destruc-
tive interference. Therefore, modeling wireless channels
that incorporate multi-path components becomes essential
for optimizing wireless communication systems in indus-
trial applications. To this end, wireless channel models are
often built upon modelling electromagnetic propagation
with a finite number of multi-path components (MPCs),
with each of the components characterized by its unique
amplitude, delay, and angles of arrival and departure. In
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practice, MPCs with similar characteristics are grouped
into clusters, so as to facilitate processing received sig-
nals in batches and reduce channel estimation complexity.
Moreover, distinguishing clusters of MPCs is beneficial for
system like rake receivers and MIMO to select useful and
dominant MPCs with less interferences. Clusters with dis-
tinct spatial directions can be exploited with beam forming
to enhance channel capacity.

In terms of the identification of MPCs, classic
approaches include using parameter estimators on mea-
surements, simulating the propagation ray tracing, and
manual inspection on the signals. MPCs are often rep-
resented as the peak points in the received signal with
angular information. For measurements with noise, param-
eter estimators for reconstructing MPC information could
yield unreliable results even with high complexity in imple-
mentation and computation. The availability of validation
with ray tracing platform is also not guaranteed, which is
dependent on the amount of information known about the
propagating environment. In the case of an unknown wire-
less environment, or when the number of MPCs reaches
certain multitude, identifying peaks and performing man-
ual clustering of MPCs becomes time-consuming and
erroneous.

In light of the challenges mentioned, there is a need for
efficient processing of measurements to extract the infor-
mation of MPC clusters. In this paper, we approach the task
from from a data processing and manipulation perspective,
without fitting parameter models. Leveraging well-known
clustering algorithm, we also investigate the effectiveness
of different distance metrics in distinguishing MPCs. Our
contributions are summarized as follows:

(i) we propose a complete work flow for processing
raw measurements, applying clustering algorithm, and
extracting cluster information.

(ii) we compare two different metrics for distinguishing
MPCs and evaluate their performance with different
clustering algorithm.

(iii) we analyze the clustering results across different fre-
quency bands, demonstrating the strong performance of
our solution, particularly with high-frequency signals.

II. RELATED WORK

In [1], Czink et al. introduced KPowerMeans, a modi-
fied version of the widely used K-means algorithm [2],
which uses the power of multipath components as the scal-
ing factor of the original multipath component distance
(MCD). The newly-derived distance metric then substi-
tutes Euclidean distance in the K-means algorithm. This
algorithm was also utilized in [3] and [4] to identify mul-
tipath clusters at mmWave and THz frequencies. Li et al.
[5] collected channel measurements at THz frequencies
and employed the DBSCAN algorithm [6] to identify the
multipath clusters.

Chen et al. [7] utilized THz channel measurements and
ray tracing simulations to cluster and match multipath com-
ponents. Initially, the DBSCAN algorithm was employed
to cluster the multipath components observed in the actual
measurements. Subsequently, the identified clusters were
matched with those observed in a ray tracing simulator
using the multipath component distance (MCD) metric.

He et al. [8] introduced a clustering algorithm that iden-
tifies independent clusters by utilizing a kernel density
measure. Schneider et al. [9] presented a novel clustering
approach based on Fuzzy-c-means. Gentile [10] proposed
a new clustering algorithm that utilizes the region com-
petition algorithm [11], an optimization technique origi-
nally developed for image segmentation, and the kurtosis
measure. In [12], clustering is treated as a sparsity-based
optimization problem that takes advantage of the physical
property that the power of multipath components decreases
exponentially with respect to the delay.

As preprocessing step for raw measurements, for identi-
fying the components in the signals with super-positioned
MPCs, various parameter estimators can be applied. Clas-
sic solutions include the (MD-MUSIC) algorithm [13], the
space-alternating generalized expectation-maximization
(SAGE) [14] algorithm, the variational Bayesian version
of SAGE [15], and the RiMAX algorithm [16]. Parameter
estimators generalize the received signals into parametric
representations, which are prone to errors with the presence
of noise. Furthermore, the computational demand of such
algorithms is usually high, making the scalability an issue
when dealing with a large number of MPCs to be extracted.

Considering the challenges of implementing channel
parameter estimator, we treat the raw measurements as
matrices of data and apply simple preprocessing, by fil-
tering out points with base receiving power, appending
angular information, etc., without iterative optimization
involved in preprocessing. MPCs and their corresponding
clusters are automatically formed by applying clustering
algorithm on the data consisting of power information from
various angles.

An earlier version of this paper, in which the measure-
ment is collected at only one transmitter(TX)-receiver(RX)
location pair and only on THz frequency, was presented at
EuCAP 2024 and was published in its proceedings [17]. In
this paper, we apply the clustering workflow on measure-
ments from various TX-RX locations and on three different
frequency bands. Moreover, we propose a new implemen-
tation of the distance metrics in the clustering algorithm,
plus a novel post-processing function for extracting MPC
cluster information. In the end, we evaluate the clustering
results not only by time range separation, but also by peak
separation when more than one MPCs arrive at the same
time.

III. MEASUREMENT SETUP

To study the feasibility of high-frequency wireless com-
munication in industrial settings, a measurement campaign
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Table 1. Caption

Parameter Sub-6 GHz mmWave THz

Frequency (GHz) 6.75 74.25 305.27
Calibrated
Bandwidth (GHz) 5
Azi. Scanning
Angles (αTA,RA) {−180◦, −165◦, . . . , 165◦ }
Ele. Scanning
Angle (αTE,RE) 0◦

Table 2. Variables, parameters and acronyms used in algorithms and
experiments

T Measured time steps
P Number of polarization pairs of transmitter

and receiver
I, J
M,N

Number of the scanning angles of trans-
mitter azimuth/elevation and receiver
azimuth/elevation

x Identified cluster of MPCs
H Measurement data
α∗ ∗ ∈ {TA, TE,RA,RE}, the correspond-

ing angles of signals in ray-tracing experi-
ments

[18] was conducted in a small factory scenario. The mea-
surement environment is a realistic replica of manufactur-
ing sites, and therefore consists of strong reflective surfaces
of metal and glass, creating a complex propagating envi-
ronment for wireless communication with non-negligible
MPCs.

To mimic the potential wireless communication equipped
on various devices in the room, and also to study the
propagating environment on line-of-sight (LOS) and non-
line-of-sight (NLOS) conditions, 3 transmitter locations
and 12 receiver locations are selected and 20 measure-
ments on 20 pairs of transmitter-receiver settings are con-
ducted. The directions of transmitting and receiving are
fixed on the horizontal plane, and rotate with a 15 degree
separation, aiming to capture the full range of propaga-
tion scenarios, including line-of-sight and non-line-of-sight
cases. The measurements cover the terahertz frequency
(300 GHz), mmWave frequency (74.25 GHz), as well as
Sub-6 GHz frequency (6.75 GHz), providing a compre-
hensive understanding of the channel characteristics at
different bands. For each frequency band, the measurement
is conducted with two pairs of antenna polarization direc-
tions (horizontal-horizontal and vertical-vertical). Detailed
of measurement configuration are documented in Table 1.

For each transmitter and receiver location, we obtained
measurement data of the following format:

H ⊂ RK×P×I×J×M×N
≥0

Details of the variables related to dimension of the data are
listed in Table 2. In our case, the elevation scanning angle
is 0◦ only, therefore J = 1 and N = 1.

TX3
TX1

TX2

Fig. 1.: Transmitter and receiver locations, marked by
blue and silver spheres respectively. Measurement is con-
ducted in a room simulating manufacturing environment.
Materials are plotted transparent for visibility of the trans-
mitter/receiver locations.

IV. CLUSTERING ALGORITHM

To perform direct identification and clustering of the mea-
surement signal, we need to convert the signal matrix into
data points that fit the corresponding clustering algorithm.
With the clustered output, another procedure of post-
processing the results is needed to extract characteristic
information of the MPC clusters. We divide this section
into three parts that describe the three procedures.

A) Pre-processing of Measurement Signals
We describe the pre-processing of signal matrix in
Algorithm 1, separated in terms of two different metrics
of evaluating the distance between signals.

For classic Euclidean distance, the power of the received
signal at the specific time step, as well as the power
difference between the current time step and the pre-
vious/following steps, are included in the feature. The
angular difference between signals are represented by the
sinusoidal values (cosine and sine) of the transmitter and
receiver angles, which aims to differentiate symmetrical
angles and keep the physical continuity of angles at numeri-
cal jumps (e.g. 359◦ to 0◦). The complete process of getting
the sinusoidal features is described in Algorithm 2. The
number of sinusoidal features are reduced by using only
cosine/sine values when all of the angular values are in the
monotonic range of cosine/sine functions.

For power distance [1], the angle information (depar-
ture/arrival) of a signal is fed to compute the multipath
component distance, as later shown in Equation (4).

The conditions to exclude points with p∗ = 0,∀∗ ∈
{f, b, t} in Algorithm 1 are to filter out points in the mea-
surement where there is no signal received, thus to reduce
the size of data later fed into clustering algorithm and speed
up the process.
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Algorithm 1 Preprocessing on Measurement Matrix

Input: H , pid, TA,TE,RA,RE Measurement data
of the required format, selected polarization index,
lists of transmitter’s azimuth and elevation angles and
receiver’s azimuth and elevation angles

Output: l

Preprocessing before using Euclidean distance
1: l← ∅
2: for i, j, m, n ∈ [I]× [J ]× [M ]× [N ] do
3: h← H[:][pid][i][j][m][n]
4: for t ∈ K do
5: pt ← h[t]
6: pf ← pt − h[t− 1], pb ← pt − h[t+ 1]
7: θ ← GetAngles(TA,TE,RA,RE, i, j,m, n)
8: if not (pf = 0 and pb = 0 and pt = 0) then
9: l← l ∪ {(t,θ, pf , pb, pt)}

10: end if
11: end for
12: end for

Preprocessing before using power distance
1: l← ∅
2: for i, j, m, n ∈ [I]× [J ]× [M ]× [N ] do
3: h← H[:][pid][i][j][m][n]
4: for t ∈ K do
5: pt ← h[t]
6: pf ← pt − h[t− 1], pb ← pt − h[t+ 1]
7: if not (pf = 0 and pb = 0 and pt = 0) then
8: l← l ∪ {(pt, t,TA[i],TE[j],RA[m],RE[n])}
9: end if

10: end for
11: end for

B) Clustering Algorithm
We compare two clustering algorithms: K-means [2] and
DBSCAN [6]. Both algorithms have been elaborated in the
past; therefore, we refer to the corresponding papers for the
details of the algorithm, whereas below we elaborate on our
implementation aspects for both algorithms. Terminology
of related terms are detailed in Table 3.

In the original versions of the two algorithms, n-
dimensional points are input and the Euclidean distance
based on all dimensions is used as the metric to determine
the proximity of two points:

deuc(m,n) =

(
n∑

i=1

(mi − ni)
2

)1/2

(1)

In [1], power distance is introduced to evaluate the
proximity of a MPC component to its cluster center:

dpow(m,n) = Pm ·MCDmn, (2)

Algorithm 2 GetAngles
Input: TA,TE,RA,RE, i, j,m, n lists of transmitter’s

azimuth and elevation angles and receiver’s azimuth
and elevation angles, index of the corresponding sam-
pled angle

Initialization
1: for L ∈ {TA,TE,RA,RE} do
2: Shift all values in L to be in [0, 2π]
3: if x ∈ [0, π],∀x ∈ L or x ∈ [π, 2π],∀x ∈ L then
4: cos_only← True

5: end if
6: Shift all values in L to be in [−π/2, 3π/2]
7: if x ∈ [−π/2, π/2],∀x ∈ L or

x ∈ [π/2, 3π/2],∀x ∈ L then
8: sin_only← True

9: end if
10: end for

Per-point processing
11: for L ∈ {TA,TE,RA,RE} do
12: θ ← ∅
13: k ← the corresponding index for the list
14: if cos_only then
15: θ ← θ ∪ {cosL[k]}
16: else if sin_only then
17: θ ← θ ∪ {sinL[k]}
18: else
19: θ ← θ ∪ {cosL[k], sinL[k]}
20: end if
21: end for
22: return θ

Table 3. Notations in equations

d(m,n) Distance between point m and n

deuc Euclidean distance

dpow Originally defined power distance

d′pow Newly defined power distance

Pm Power of point m

MCDmn Multipath component distance between m
and n

MCDAoA Angle of arrival component of MCD

MCDAoD Angle of departure component of MCD

MCDτ Time difference component of MCD

n is the cluster centroid in the K-means algorithm and m is
the input points to be clustered.

MCDmn =√
∥MCDAoA,mn∥2 + ∥MCDAoD,mn∥2 + ∥MCDτ,mn∥2

(3)
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For components in computing MCDmn:

∥MCDAoA/AoD,mn∥ =

1

2

∣∣∣∣∣∣
 sin(θm) cos(ϕm)

sin(θm) sin(ϕm)
cos(θm)

−
 sin(θn) cos(ϕn)

sin(θn) sin(ϕn)
cos(θn)

∣∣∣∣∣∣
(4)

MCDτ,mn = ζ · |τm − τn|
∆τmax

· τstd
∆τmax

(5)

DBSCAN [6] does not define a centroid for each cluster,
but finds neighbors for each input point. Therefore, when
calculating the distance, the power of both signal points
should be considered, rather than just one as in Equation (2)
which results in d(m,n) ̸= d(n,m). To this end, we derive:

d′pow(m,n) = (|Pm − Pn|+ Pbase) ·MCDmn (6)

for computing the power distance when applying DBSCAN
algorithm. The computation of absolute difference ensures
symmetry when swapping the input sequence of the two
points. The addition of Pbase serves as the base scalar when
two points have similar power level but differ in angles.

For algorithms using both distance metrics, it is nec-
essary to adapt clustering parameters and further scale
the inputs before feeding data points. The process flow is
shown in Algorithm 3 and the scaling factor for each of the
feature is shown in Table 4. Line 5-8 in Algorithm 3 shift
the power values of all points when using decibel values to
be≥ 0, thus guaranteeing that computed power distance by
Equation (2) to be ≥ 0.

Algorithm 3 Clustering
1: get l from measurement preprocessing
2: if Euclidean distance then
3: l← Scaling(l)
4: else if Power distance then
5: if Use decibel values for power then
6: PdB ← {10 · log v[0],∀v ∈ l}
7: pmin ← minPdB

8: v[0]← log v[0]− pmin,∀v ∈ l
9: end if

10: choose time scaling factor ζ
11: end if
12: choose centroid model (k-means) or density model

(DBSCAN)
13: perform clustering, get cx∀x ∈ l

C) Post-processing
We propose Algorithm 4 to process the clustered points or
the original matrix of the raw signal. For simplicity, the
dimension of the matrix processed is T × I ×M , which
suits our measurement data with only one measuring angle
of transmitting and receiving elevations. The algorithm can

be further extended to be compatible with data of higher
dimensions where the elevation angles are also included.

Algorithm 4 tracks the peak (with power greater than
its neighboring angles) of the arriving signals in each time
frame and consistently log the location of peaks, with con-
siderations that the peak might shift in angular domains.
It is worth noting that Algorithm 4 can also be used as a
pre-processing step to extract the peaks in the raw signals.
The advantages of using Algorithm 4 on clustered results
lie in the shorter processing time, where it is easier to find
local maxima in a frame (in Line 6) when processing sparse
matrix yielded by clustered data.

The information of peaks identified by Algorithm 4
in each cluster, e.g. angular values and duration, is then
valuable for further microwave applications.

Algorithm 4 Track Local Maxima Over Time

1: Input: data points (pt, t, TxAzt, RxAzt) in the same
cluster

2: Get Frames (T × I ×M ) from signals of the same
cluster

3: Pfound ← ∅, Plive ← ∅
4: for Frm ∈ Frames do
5: get time stamp t and local maxima in Frm

6: Pnew ← ∅
7: for each detected peak (i, j) in maxima do
8: matched← False

9: for p ∈ Plive do
10: if (i, j) is within 1-pixel shift of p then
11: Update p with new (i, j)
12: Add updated p to Pnew

13: matched← True

14: break
15: end if
16: end for
17: if not matched then
18: Create pnew with p.tstart = t and information

(i, j)
19: Pnew ← Pnew ∪ pnew, Plive ← Plive ∪ pnew
20: end if
21: end for
22: for p ∈ Plive do
23: if p is not in Pnew then
24: p.tend ← t, Pfound ← Pfound ∪ p
25: end if
26: end for
27: Pnew ← Plive

28: end for
29: Get the ending time step of signal cluster: tend
30: for p ∈ Plive do
31: p.tend ← tend, Pfound ← Pfound ∪ p
32: end for
33: Return Pfound



6 VERSO RUNNING HEAD

Table 4. Scaling Factors in Clustering with Euclidian Distance

Name Value

pt, pf , pb in dB 0.2
t 7.788 · 108
θ 8.0

Table 5. Searching Range of Hyper-Parameter in Clustering

DBSCAN e for Eucl. dist. {2.0, 2.5, 3.0}

e for power dist. {0.001, 0.003, 0.006}

Pbase { 0.005, 0.01, 0.02}

ζ {0.1, 0.2, 0.4, 0.8}

K(Power)-
Means k {3, 4, . . . , 10}
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(a) Single MPC
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(b) Two MPCs in
same cluster
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(c) Two MPCs in
separate clusters

Fig. 2.: Heatmaps of multi-path components arriving in
three different ways

V. EXPERIMENTS

A) Parameter Settings
The scaling factors for each feature used to compute
Euclidean distance and power distance are listed in Table 4.
For algorithm of K(Power)-Means, the number of clusters
k is the hyper-parameter. For DBSCAN, the neighbor-
threshold distance e is the parameter to determine if a clus-
ter should expand to include another point. The searching
range of k and e are listed in Table 5.

B) Ground Truth
For any time step in the measurements with signals
received from any angle, we inspect the heatmap and
evaluate if the signal belongs to a certain cluster.

For the transmitter-receiver location pairs where there
is always only one MPC arriving at a time, as shown in
Figure 2a, or more than one MPCs close to each other as
shown in Figure 2b, we manually identify the time range of
the corresponding MPC cluster and then cluster the MPCs
based on their time-wise and angular proximity. If there
are more than one MPCs arriving at a time, which are
also distant in arriving angle and thus do not belong to the
same cluster (shown in Figure 2c), we inspect the clustered
results and check if the MPCs are separated correctly.

C) Accuracy of Time Range Separation
We only evaluate accuracy of time range separation for
measurements where there are no MPCs belonging to sep-
arate clusters arriving at the same time. With algorithm
Algorithm 5, each time step is assigned with a cluster
number that is the majority of clusters for points in the
corresponding frame.

Algorithm 5 Identifying MPCs’ Time Range

1: for t ∈ K do
2: xt ← {x′},∀x′ with xtime = t
3: if |xt ≥ 1| then
4: ct ← mode({cx, x ∈ xt})
5: else
6: ct ← −1
7: end if
8: end for
9: return c = ⟨ct⟩, ∀t ∈ K

Ground truth labelling is performed for selected pairs of
Tx-Rx locations and on all of the three frequency bands.
Cases of TX1-RX1 and TX1-RX8 are in LOS condition.
Cases of TX2-RX3 and TX2-RX6 are in NLOS conditions.
The accuracy is then computed with Adjusted Rand Index
(ARI) [19] and shown in Table 6. Higher values (close to
1) in ARI indicates better match between the experiment
result and the ground truth. We see that using DBSCAN
with power distance outperforms the other three methods in
7 out of 12 cases with the highest average accuracy. Specif-
ically, DBSCAN with power distance performs the best in
3 out of 4 cases on THz frequency, and in 3 out of 4 cases
in mmWave frequency as well.

We also observe that there is a general trend that the
clustering accuracy is higher, for any method, when the fre-
quencies of the signals are higher. The underlying reason
is that faster attenuation of high-frequency signals results
in clear separation of arriving MPCs, thus formulating a
simpler task for the clustering algorithm.

D) Accuracy of Simultaneous Peak
Separation
We plot the clustering results of the four methods for the
MPC components shown in Figure 2b and Figure 2c.

In Figure 3, where the two arriving MPCs are also close
on the angular domain and thus belong to the same clus-
ter, all clustering methods achieve the correct clustering
results, except for K-means with power distance. Even
though it is also practically viable to separate the MPCs,
K-means with power distance also fail to correctly cluster
the signals detected at the edge angles of MPCs (as seen in
pixels marked in red in Figure 3).

In the case where two arriving MPCs are far away from
each other in angular domain (as in Figure 4) and fall into
different clusters, none of the four methods gives perfect
solutions. We notice that DBSCAN algorithm (in Figure 4b
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Table 6. Evaluation Accuracy for Selected Tx-Rx Locations

k-means DBSCAN

TX RX Freq. eucl. p-dist. eucl. p-dist.

1 1
THz 0.787 0.835 0.951 0.951

mmW. 0.928 0.727 0.797 0.967

Sub-6G 0.694 0.395 0.755 0.650

1 8
THz 0.712 0.978 0.862 0.780

mmW. 0.657 0.769 0.832 0.995

Sub-6G 0.514 0.453 0.494 0.801

2 3
THz 0.990 0.985 1.000 1.000

mmW. 0.733 0.656 0.686 0.921

Sub-6G 0.740 0.352 0.650 0.638

2 6
THz 0.806 0.750 0.998 0.999

mmW. 1.000 0.651 0.899 0.899

Sub-6G 0.775 0.425 0.353 0.651

Average 0.778 0.665 0.773 0.854
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(a) K-means with Eucl. Dist.
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(d) DBSCAN with Power Dist.

Fig. 3.: Clustering results for two MPCs in the same cluster
arriving at the same time

and Figure 4d) determines all arriving signals at the same
time step to be in the same cluster, irrespective of the
distance metrics, while k-means algorithm separates the
signals that are almost 180◦ apart in transmission azimuth.
However, k-means with Euclidean distance (in Figure 4a)
does not separate the two noise signals at 15◦ receiving
azimuth, while k-means with power distance (in Figure 4c)
fails to determine the signals of transmitter azimuth 30◦

(shown in yellow color) to be in the same cluster as other
neighboring signals marked in red.
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Fig. 4.: Clustering results for two MPCs in the same cluster
arriving at the same time

VI. CONCLUSIONS

In this paper, we applied two classic clustering algorithms
to the multi-band industrial wireless measurements. Differ-
ent from previous solutions where multi-path component
is firstly identified from measurements, we propose a new
process flow of pre-processing measurements, perform-
ing clustering, and post-processing the clustered results to
facilitate extracting MPC cluster information. Inspired by
the prior literature, we experimented with the metric of
power distance together with traditional Euclidean distance
in the two clustering algorithms. By evaluating the cluster-
ing results from time range identification as well as peak
separation, we conclude that DBSCAN algorithms are per-
forming well in identifying MPC clusters’ delay when there
is only one MPC arriving at a time. For multiple MPCs
arriving at the same time, k-means performs better when
separating the MPCs. We observe that our algorithm is
especially suitable for clustering high-frequency signals,
e.g. in THz range, thanks to the clear separation of arriving
MPCs due to stronger attenuation. Future work includes
automated parameter tuning of the clustering algorithms,
as well as detailed comparison of the clustering results in
LOS and NLOS scenarios.
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