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Abstract

In this paper we consider segment-based hard-decisiorepackibining schemes. The schemes
presented here are memory-efficient and easy to implemaohs@ne of them appproach the perfor-
mance of majority-voting schemes without having the sammang requirements. One particularly
interesting scheme combines segment-based transmisilohwhy-type erasure codes.
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0.1 Introduction

Packet combining schemes are an attractive ingredient RipAased error-control schemes (which
are then called type-Il or type-Ill hybrid-ARQ schemes [819]), especially over error-prone chan-
nels like wireless channels. In packet combining schemeseiver does not throw away erroneous
copies of a frame but keeps them and tries to use them for gecogon arrival of future frames.
In this paper we consider hard-decision packet-combingfemmes, i.e. schemes operating on de-
modulated data bits as they are delivered by a wirelessceames to the higher layers. The term
hard-decision refers to the lack of any reliability infortoa associated with the received bits or any
other channel side-information. This assumption is pcaditi relevant, since transceivers compliant
with standardized wireless technologies like IEEE 802 1f.the family of IEEE 802.11 standards
behave according to this assumption: they just deliverddetbits to the higher layers, no additional
per-bit reliability information.

One technique to perform packet combining under these renist is majority-voting. The re-
ceiver buffers all erroneous copies of a frame and for eachdsition (including the trailing CRC)
applies a majority-voting rule. The resulting packet isa{teal for correctness. A major drawback of
majority voting, however, are the significant buffer reguairents, since at least three copies of a frame
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are required for majority voting to be effective. This canabserious drawback in memory-limited
stations like for example the nodes of a wireless sensorarktw

In this paper we consider a class of alternative schemesmuiith more modest buffer require-
ments at the receiver. We call these schessggnent-based schemddhe receiver needs to provide
only the buffer space for one copy of the frame, plus some fixexihead. In classical framing- and
retransmission schemes a packet is equipped with onengy&lRC value for error detection — if the
CRC is wrong, the receiver discards the whole packet. Thsinéter then (re-)transmits the frame
until it receives an acknowledgement or the frame’s dead$iexhausted. In contrast, in the segment-
based schemes investigated in this paper the data partitsopad intosegmentand each segment
has its own CRC. The receiver does not throw away erroneansss, but buffers all correct segments
in order to combine them with segments arriving in lateregs$missions. We present three different
segment-based schemes. One of them is based on the olmsetlatithe segment-based schemes can
be combined with Luby-type erasure codes [12]. These cdttes 8 encodek user-data symbols
into n > k symbols such that for the receiver it suffices to receive faoyt of thesen symbols to
decode the: user-data symbols. It is possible to regard one of our seggnasnone symbol in these
codes. Since they also allow linear-time coding and degpdimey are suitable candidate schemes
in the context of wireless sensor networks. Segment-baseshwes can be implemented on top of
commercial transceivers for technologies like IEEE 802 Ehnd IEEE 802.11, they only require the
ability for quick in-memory computations of CRC values. & dedicated hardware is available for
this, CRC computations can be done in software with comjomalt overhead that is linear in the
amount of data (e.g. [14]).

We compare the performance achievable with the differegineat-based schemes against three
“baseline” schemes (the classical, single-CRC schemejaityasoting scheme and a fragmentation
scheme similar to IEEE 802.11) under a deadline constraimnany applications (like for example
in healthcare or process control) it is desirable to achimth reliable and timely transmission of
data in an efficient way. This is reflected by the major perfomoe parameters investigated in this
paper: the first major performance criterion is the proligbif successful message delivery within
the prescribed deadline (calledccess probabiliy and the second one is the number of transmitted
bits within this deadline (called tH®ounded cos)s These performance measures are mostly obtained
from stochastic models of the different schemes and unéatimbd and simplified conditions. Firstly,
as a channel model the binary symmetric channel (BSC) isechds which all bit errors occur
independently of each other and with the same probabilitys @llows to keep the models tractable.
Secondly, it is assumed that the transmitter has preciselidge of the current channel bit error
rate, so that for each scheme optimal parameters can benchdgerdly, it is assumed that the
feedback channel is perfect, i.e. is error-free and has lay.d€hese assumptions allow to compare
the optimum performance achievable with each of the schemeégurthermore the obtained results
are useful as upper bounds for the actual performance eltainder more realistic conditions. Our
results show that all segment-based schemes improve sagtlfi upon the classical scheme and
some actually come close to the performance of the majeatiyrg scheme without having its buffer
requirements. Under perfect feedback, one of the segnammdbschemes even outperforms majority
voting for a large range of bit error rates.

This paper extends previous work [19], [17], see also thirtieal report [18]: It is structured

A shortened version of this paper, giving only the models rasdilts for the success probability and not investigating
the issue of the choice of segment and fragment sizes habedsosubmitted to ICC 2009.
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as follows: in Section 0.2 we describe the system model amdifferent schemes considered in this
paper. For all of the described schemes we derive an aradiytiodel, and for most models we derive
expressions for the desired performance metrics in ternisese models. In Section 0.3 we present
numerical results for different performance measuresat@dlwork is discussed in Section 0.4 and
the conclusions are given in Section 0.5.

0.2 System model and considered schemes

After discussing the system model, we describe the seghss®d packet-combining schemes and
their associated analytical models. In addition, we dbscfand model) three baseline schemes
(classical scheme, fragment-scheme, majority-votingjreej which we compare the segment-based
schemes.

We give a brief summary of our notations. The sts= {0,1,2,...} andN = {1,2,3,...}
denote the sets of non-negative integers with and withaut #eor a sefB the notation B| refers to
the cardinality of the seB. For some real value the notation|z | denotes the largest integer that
is smaller than or equal te. For some matriXP the notation[[P]]; ; refers to thei, j-th component
of P, with ¢ andj from the state space on which the matrix is defined. Furthertbe function
14 (x) is the indicator function of the set, i.e.14 (z) = 1if x € Aand1 4 (z) = 0 otherwise. For
reference, we remind here three different discrete prdibadistributions:

e A binomial random variable with parameteise N andp € [0, 1] models the numbet of
successes seen iniid Bernoulli experiments with success probability It has probability
mass function

sthing) = () b =p (e 01

and expectatiomp.

e A geometric random variable with randgé models the number of iid Bernoulli experiments
with individual success probability that are required so that the first success shows up. Its
probability mass function is:

p(k) =p(1-p* ' (keN)
and its expectation is/p.

e A negative binomial random variable counts in a series oB&dnoulli experiments with indi-
vidual success probabilitythe numbef of failed trials that are required to achiewsuccesses.
The probability mass function of a negative binomial randa@mable is

kE4+r—1Y\ ,
f(k;r,p)=< . )p (1-p)* (k€N
and the expected number of failed trials until thtéh success is%.
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0.2.1 System model

We consider a system comprising of one transmitter, onévercand one channel in between. The
channel is a BSC with bit error raje € (0,1). We assume that the feedback channel is perfect,
i.e. acknowledgements are received error-free and wittlelay. During discussion of the schemes
we point out which schemes depend critically on the feedlsheinel. We furthermore ignore for
simplicity the time needed for switching the transceivenirreceive to transmit mode or vice versa.

We do not consider interactions with the medium access aldatyer. For simplicity, we assume
that the transmitter has uninterrupted channel accesstfrerstart of the packet transmission process
until the packets deadline. The link-layer entity of thensmitter receives from its upper layers a
user message of sizebits, to which a packet deadlingis associated (expressed in a technology-
independent fashion as number of bits that could be tratestithin the deadline). Within this
packet deadline, the transmitter performs a number of frairesmissions (initial transmission and
retransmissions) according to the stop-and-wait protodte refer to these transmissions also as
trials and the set of all trials carried out for the same packet & i@erred to as &ansaction The
transmitter performs further trials either until it recedva positive acknowledgement from the receiver
or the deadline is exhausted. From the BSC assumptionjeddl &ire stochastically independent.

We make the following assumptions regarding the framingrafine has different kinds of head-
ers: a physical-layer (PHY) header and a MAC header. The Peltiér contains a preamble of
lengthop p, bits and a start-frame delimiter (SFD) of length s»p bits. The preamble allows the
receiver to acquire symbol synchronization and the SFD t@snihe start of the useful part of the
frame. It may well happen that the receiver does not acqgbheepteamble properly or receives an
erroneous SFD field. In both cases the whole packet is loshatinihg of it is visible to the receiver.
To model packet losses induced by preamble/SFD misdeteatie use as a simple approximation
the rule that a preamble misdetection happens if more d¢hgnbits of the preamble are erroneous.
The probability of properly receiving the PHY header is tlggren by

op,0
Ppy = (Z b(k; OP,Prvp)> (1 =p)orsep 1)
k=0

The MAC header typically contains addressing informatiod eontrol information like sequence
numbers, which we assume to be the same for all schemes. ldgwiepending on the scheme, the
MAC header contains further fields. Specifically, in all stes performing packet combining the
MAC header also contains a separate header checksline MAC header consists ofis 4 bits of
common addressing and control information, and the paakebming schemes additionally uge
bits for a header checksum ang; » additional control bits for packet combining purposes.h# t
header checksum is wrong, the packet is fully discarded andction whatsoever is taken. The
probability of correctly receiving the MAC header whejy, p bits of additional bits for the packet
combining scheme are used is given by:

Py (oarp) = (1 — p)em.athtonp @)

2Rationale: the receiver must maintain a cache of erroneopies of a packet for combining purposes. When a new
packet transaction starts, the cache must be clearedyasgieethe erroneous frames belonging to the last transastoid
“poison” the frames for the new transaction. To detect a mawstaction, the receiver checks the addressing fields and th
sequence number field. Without a separate header checkese fields can be erroneous and the packet cache might be
cleared in the mid of an ongoing transaction. These “cachakaowns” would be harmful to the performance of packet
combining schemes and furthermore they would make the astictcmodels developed below significantly more complex.
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A final assumption concerns the CRC checksums used in thisr.p&jde allocateh = 16 bits for
a CRC checksum, and as a simplifying assumption these almaskare perfect, i.e. there are no
undetected errors.

We consider three major performance parameters:

e Thesuccess probabilitis defined as the probability that a packet can be succegsfalismit-
ted within its deadlinel. We measure the success at the receiver: it is requiredhina¢teiver
has received (or combined) a correct copy of the packet. fmsiitter is not necessarily
aware of this when acknowledgements can get lost.

e The unbounded costmeasure the average number of bits that the transmitteiresquntil
success when there is no deadline constraint. Again, weureasccess at the receiver. With
an imperfect feedback channel, the transmitter might naiviere of the success and performs
further trials. The costs for these further trials are notsidered.

e The bounded costseasure the average number of bits that the transmitteis seitlkin the
deadlined.

0.2.2 Classical and fragment-based schemes

In the classical scheme no packet combining is performed at the receiver. FHmt user message
is prepended with a physical layer header and a MAC layerdrezzhtaining no combining-related
fields (i.e.ons,p = 0) and no separate header checksum. A CRC checksum af §ite is appended
to the packet. The total packet lengthlig|gsds) = op,pr + opsFp + on,a + s + h bits. Not
counting the time required for acknowledgement transmisghe transmitter can transmit the frame

ti(d,s) = {@J 3)

times within the given deadliné. No packet combining is applied at the receiver. From the BSC
assumption, the success probability of the classical sehigigiven by:

tl(d,s)
Ielasds, d,p) =1 — (1 — Ppy- (1 - P)OM’”SHL> (4)

To determine the unbounded costs, we observe that eachéaridle considered as a Bernoulli exper-
iment with success probabiliti#py- (1 —p)om.atsth and the number of trials is a geometric random
variable X . Therefore, the average unbounded costs are:

Lelasds)

KU,cIasés’p) = PPH . (1 _ p)OM,AJrerh (5)

The bounded costs can be calculated as:

Kp clasds: @ p) (6)
tl(d,S) o0

= Lgasds) - | D p(i)-i+ti(ds) Y pli)
=1 i=t1(d,s)+1

tl(d,s)

= Lclasds) - Z p(i) - i +t1(d, s) <1 — Ppy- (1 _p)OM,A+s+h)
=1

tl(d,s)
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The fragment-based scheme is a modified (and simplified) version of the fragmentationd a
reassembly scheme used in the IEEE 802.11 standard. Tlsenitger splits thes user data bits into
fragments of siz¢ (plus one smaller slack fragment whéioes not evenly divide). Each fragment
is transmitted according to the classical scheme (i.e. avith header and trailing checksum) and with
no bound on the number of trials spent for this fragment, bititimthe deadlinel all of the fragments
must be transmitted successfulljwhen f is the size of a full fragment, then the size of the slack
fragmentisf; = s — HJ . Furthermore, leLr := Lfrag,full(f) =oppr+opsrp+onma+f+h
denote the frame size (in bits) of a full fragment, angd := Lfrag,slaclésa f)=oppr+opsrp+
om,.A + fs + h denote the frame size of the slack fragment (if any, otherwis assumé. g = 0).
Within deadlined and for fixed fragment siz¢ a number of

nd.f) = |
full fragments can be transmitted (at the end of the time wiays need some spare time to transmit
the slack segment, if any). When there is no slack fragmentf(i = 0), we can express the success
probability as the probability that ity (d, f) independent trials at least= EJ are successful-(is
just the required number of successful transmissions);lwtan be written as:
ta2(d, f)
Orag(s:dop, f) = Y blista(d, f), Pr) 8)

()

wherePp = Ppy-(1— p)°M.Aa+/+his the probability of successful transmission of one fudbiment.
When there is a slack fragment (i.&. > 0) then the success probability can be expressed as:

2]) d—i-L
—4i-Lp
afragsdpa Z f TaT,PF)<1_b<07 {TJ?PS>> (9)

where Py = Ppp - (1 — p)°Mat/sth is the probability of successful transmission of the slack
fragment. The sum extends over the numbers i < t5(d, f) of trials required to transmit ah

full fragments withi — r failed trials in between. For eachihe termf(-) gives (from the probability
mass function of the negative binomial distribution) thelability that exactlyi — r failed trials are
required, and the second tebif) gives the probability that in the remaining the remainihgi - Lp

bits the slack fragment can be transmitted successfullyaat lonce — the expressi%ﬁ%J gives
the number of trials available for the slack fragment.

To compute the unbounded costs, we observe the following: t@al to transmit a full fragment
corresponds to one Bernoulli experiment with success pibtitya P~ and the number of Bernoulli
trials required to achieve successes is a negative binomial random variable. Thegaerember of
trials required until all full fragments are successfulgeived is then

1-— Pp

r+rnr- Pr

3In realistic implementations, including the scheme of IEER.11, the number of trials spent for one fragment is
bounded. Furthermore, an efficient implementation woubg stny effort to transmit further trials once it becomes rclea
that the remaining trials cannot be transmitted fully witttie remaining time until deadline expiration. These ojztan
tions, however, do not improve the success probability efftagment-scheme, they just tend to decrease the number of
transmitted bits. In this paper for simplicity we do not cidies them.
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and the unbounded costs when choosing a fragmentf<size therefore

KU,frag(Sapa f)=Lp-r- <1 + L=l > +1(0,00) (fs) (10)
When there is a slack segment, then we additionally have dbts a:eqwred to transmit one slack
segment successfully. This can be modeled as a geometticrmavariable and the additional number
of bits iSLs/Ps.

To compute the bounded costs, we first consider the slacknfray Suppose that all full frag-
ments have been successfully transmitted at somettind so that there is time available fgr> 1
trials for the slack fragment. The average costs incurrethi® slack fragment can, using the proba-
bility mass function of the geometric distribution, be eegged as:

7j—1
Ka(j) = Ls- > k-Ps-(1—Ps) 14 ZPS (1 - Pg)*~
k=1 k=j
j—1
= Lg (Zk “Ps- (1= Ps)* ' 45 (1— Psf_l)
k=1

The total costs are then obtained by summing over all passiliicomes for the number of required
trials for the full fragments (which can be expressed withriegative binomial distribution):

KB,frag(S d,p, f) =
tg(d f

Z f (k;r, Pr) ((r+k)'LF+1(0,oo> (fo) - K Q%J))

+ to(d,f)-Le- > f(kir Pp) (11)

k=to(d,f)—r+1

In the first term we sum over all possibilities to haveuccessful trials withim + k& < t(d, f) total
trials, wherek denotes the number of failed trials. For edckve add the number of bits required
for the full fragments (given byr + k) - Lr) and the average number of bits required for the slack

fragment (if any) when there avtéi_(’"f#J trials available for it. The second term accounts for the

case where within the,(d, f) allowed trials less than successful trials occur, so that consequently
the transmission of the slack trial is not started. The itdisum on the right hand side can of course
be computed as — "¢ =277 (k. r, Pp).

Please note that the classical scheme is not criticallyraégo@ on the presence of feedback, but
the fragment-based scheme is. When the feedback is lostlassical scheme would simply repeat
the frame as often as possible within the deadline and tredviexcis able to decode it with a certain
probability. In the fragment-based scheme wjfitk: s and without feedback the receiver would never
get the second segment, thus having no chance to fully debedeame.

0.2.3 Majority voting scheme
Theclassical-mv schemeis similar to the classical scheme, but the receiver perddsitwise majority
voting on those (erroneous) frames it receives, followe@ IGRC check on the resulting frame. In
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contrast to the classical scheme the MAC header requiregaaate header checksum /obits (see
Footnote 2) but no further combining-related data,d»g.r = 0. The total packet length is therefore
Lmv(s) = op,pr +opsrp + on,a + h + s + h. Correspondingly, the transmitter has

d
tg(d, S) \‘Lmv(S)J (12)
trials at its disposal.

To compute the performance measures, we model the recgpticess as a time-homogeneous
discrete-time Markov chai(X,,),, -, [13]. The stateX,, of the Markov chain reflects the number of
received frames with proper PHY and MAC headers but erroneaita part that the receiver has in
its combining cache. The state space is giversby {0,1,...,t3(d,s) — 1} U {succ, fail} where
succ refers to the success state, in which the receiver eithenelsassed a fully correct packet (proper
PHY and MAC header, correct trailing checksum), or, afteeigng a packet with proper headers
and erroneous data part, was able to combine the correcefpfokn the majority-voting algorithm
applied to the new packet and all previously stored copibs. statef ail corresponds to the fail state,
in which the deadline has been exhausted without succegsstart state is{;, = 0. One time step
of the Markov chain corresponds to one transmission trigheftransmitter. To represent the state
transition probabilities, it is convenient to introduce flollowing abbreviations:

e 3= Ppy-Pyn(0) - (1 — p)**" represents the probability that the receiver receivesah tri
without any errors, and

e v(k,s,h) = <Zf=LEJ+1 b(is k,1 — p))s+h represents the probability that wikhindependent
erroneous copies 02f a frame the majority-voting procediwesga correct frame — to make this
happen, for each bit position in the data part and the traitilecksum more than half of the
received packets must have the correct value.

With these abbreviations one can write the state transfiobabilities as follows. The statescc

and fail are absorbing states, i.e. we h@¥€cc succ = 1 andpyqi e = 1. For all states €

{0,...,t3(d,s) — 1} the probability to remain in this state is given by the praligtthat one of the
PHY or MAC headers is corrupt, i.e.:

pii =1—Ppy- Pmn(0)

Fori € {0,...,t3(d,s) — 1} the probability to reach the success state is given by:

=

Po,suce

=)

P1,succ
Piswce = B+ Ppp- PH(0)- (1= (1—p)*™) - o(i+1,s,h) (i >2)

In state 0 only a proper frame reception can lead to a suctiestate 1, a success is also only possible
when a proper frame is received, since only two packets (shlfy received, one cached) are not
sufficient for majority voting. In staté> 2 a success is possible if either the received frame is proper,
or if the PHY and MAC headers are proper, the data part anckshatare not proper but the receiver
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is able to combine the packet together usingithel copies it now has (one newgcached). Finally,
fori € {0,...,t3(d,s) — 2} the probability to reach the successor statel is given by:

Pii+1 = 1 — Pi suce — Pii
and from the last state= t3(d, s) — 1 the only alternative to success is failure, i.e.

Pi,fail = 1- Pi,suce

The success probability can be computed from the stateitiansatrix P as follows:

aclass-m\ﬁ&da p) = [[Ptg(d’s)]]O,succ (13)

Please note that this majority-voting procedure requitdfebspace for up tes(d, s) frames at the
receiver. Three buffers are the minimum for majority vottoge effective.

To determine the bounded costs for the majority-voting sehewe partition the state space
into two setsD = {0,1,...,t3(d,s) — 1} anddD = {suce, fail}. From the construction of the
Markov chain, the states iy are transient and the statesd® are absorbing. The start statg is
in D. In this setup we define the stopping tifle= min {n > 0: X,, € 9D}, which is a random
variable. It can be readily verified (either by direct congigin or from the Chapman-Kolmogorov
equations) thaPr [T' = 1] = ZjeaD ‘Pao,j holds and furthermore that fdr > 1 we can compute
Pr [T = k] as:

PrT=k=> > [P i i (14)

jedDieD

Based on this, the bounded costs for the majority-votingshare obtained as

K5 class-mys: ;) = (15)
tg(d,s)fl tg(d,s)fl
Lmv(s)- | Y k-Pr[T=k+ts(ds)-[1— Y Pr[l =4k
k=1 k=1

In order to obtain the unbounded costs for both the majooting scheme, we use for this and most
of the other Markov models the framewaork of potential thefmrnyMarkov chains [13, Sec. 4.2]. This
is a generalization of the theory of hitting times and hgtprobabilities, the relevant definitions and
a relevant theorem are paraphrased in Appendix .1. In oodgtilize this theorem we have to assign
cost vectors, we have to specify the set of inner states aalistiates, and we have to ensure that the
final states are reached with probability one within finitedi We can use the following setup:

e Theinner states arB = {0, 1,...,t3(d, s) — 1}, the final states ar@D = {succ, fail}.

e The costs (bits per trial) are the same in all inner statesD and are given by; = Lmy(s).
In the final stateé)D = {0} no further transmissions are made fse 0.

e The final states are absorbing, all other states are transierindeed the final states will be
reached in finite time with probability one.
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The unbounded cost&7; ¢|555-myare then obtained from solving the linear equation systerangi
in Appendix .1 for the variabley, i.e. the average costs for the start st&ie = 0. However, for
the majority-voting model one twist must be applied: sindénan unbounded number of trials there
can be no failure, the failure state should theoreticallydimoped and the Markov chain turns into
one with infinite state space. In this case, however, thdisalof the linear equation system fop
is hard to obtain in closed form. Therefore, the unboundestiscare approximated with the bounded
costs using a very large deadlide

One cannot expect the majority-voting model to be entirelguaate. When the receiver has
already: > 2 copies in its cache and receives another erroneous copycaitect header, it tries
to combinei + 1 copies. From the Markov assumption, this combination tsidhdependent of the
previous trial to combine copies. In reality, the combining trials anet stochastically independent,
since: of thei -+ 1 copies are identical to the previous combining trial. We imilestigate this further
in Section 0.3.

The majority-voting scheme does not critically rely on feack.

0.24 Segment-based schemes

The problem with using a single checksum for the whole pa@ein the classical scheme) is that we
cannot infer any information about positions of bit err@s,each bit is in suspect. By splitting the
data part into smaller segments such that each segmensmgitchecksum, the errors are confined
to smaller parts and the information in correct segmentdedtept. A key advantage of the segment-
based schemes as compared to other packet combining schmths modest buffer requirements.
At the receiver side only one buffer is needed in which therfidssage can be assembled from the
correct segments.

In the segment-normal scheme the s user data bits are partitioned infosegmentseach having
a size ofc = |s/L] bits (slack segments are stuffed up). To each segment aasedrecksum of
h bits is appended, which is computed only over the data bitt@kegment. The initial frame is
formed by appending all the segments to a PHY header and a Ma@dn. The overall header size
iSop,pr + op,srp + om A + om,p + h, @as we require an additional header checksum and a number
om,p Of bits to encode the segment size. To keep the overbgael small, the most straightforward
approach is to fix a common codebook for a set of L7167 pre-defined segment sizes and to encode
the actual choice of segment size in the header. The tot&epaize is thenLseg-nornis,c) =
op.pr+opsrp+on,a+ou, p+h+L-(c+h). The transmitter transmits the initial frame. If the PHY
and MAC header are proper, the receiver checks each segemarately and buffers those correct
segments that it has not stored yet. If the receiver possedssegments of a message, it delivers
the frame to its upper layers and sendénal acknowledgementOtherwise, the receiver transmits
an emptyincomplete acknowledgemdname and in response the transmitter re-transmits theavhol
initial frame again. The transmitter performs re-transioiss until the deadlind is exhausted. The
number of available trials is given by

d
ta(d, ) = {Lseg—nornﬁé” C)J (4o

Please note that this scheme does not critically depend aoessful transmission of acknowledge-
ments.

Copyright at Technical University Berlin. All TKN-09-001 Page 10

Rights reserved.



TU BERLIN

The segment-normal scheme, however, does not make optméhe available time budget, since
it re-transmits segments that the receiver already has.h@fefore consider an alternative scheme.
In the segment-reduced scheme the receiver includes the identifications of the missingresgs into
its incomplete-acknowledgement packet. One method tonaglish this is to use a bitmap. In its re-
transmission the transmitter includes only the missingreeds, resulting in smaller packets and in
more available retransmission trials within the deadlinélowever, the available number of trials is
now random. Again, it suffices for the transmitter to encdaesegment sizeinto the MAC header.
When the feedback channel does not work, this scheme deges@nto the segment-normal scheme.
The segment-reduced scheme has the beneficial effect éhagttansmission frame is much smaller,
consumes less energy, produces less interference, iskelystit by errors and reaches the receiver
with smaller delay.

Both the segment-normal scheme and the segment-reducemiscian be modeled with the same
time-homogeneous discrete-time Markov chain mdd§gl),,,. As a state variablé(,, we choose
the number of missing segments at the receiver aftenttietrial. When the packet consists bf
segments, the state spacejs. ., L and the start state i¥, = L. A single segment is correctly
received with probabilityPs = (1 — p)“™. The probability that the PHY and MAC headers are
proper and that out of M segments in a frame are erroneous is given by (binomiallaligion):

r(k,M) = Ppy- PMH(OM,P) -b(k; M,1 — Pg)

With this, the state transition probabilities are as fobowrhe state 0 corresponds to a success, i.e.
there are no further segments outstanding. This state eslzibg and thereforg, o = 1. To go from

state: € {1,..., L} to alower stat® < j < i itis required that the next received packet has proper
PHY and MAC headers and that- j out ofi missing segments are received, pg; = r(j, %) for j <
i. Finally, the diagonal elements for states {1, ..., L} are simply given by, ; = 1 — Z};lo Dij-

After collecting the state transition probabilities intstate transition matri®, the success prob-
ability for the segment-normal scheme can be expressed as:

dseg-nornts, d, p) = [P™“9)]]g (17)

It is possible to derive an expressfoinat does not use matrix powers, but this is numerically much
more unstable (especially for small valuespdfthan the equivalent computation based on matrix
powers. For the segment-reduced scheme, however, thiagsae difficult since the number of trials
that can be made within the deadlidés itself random. It would theoretically be possible to ed
the simple Markov model presented here by an extended onehvetso tracks the accumulated
transmission costs (the final states would then be all statbsaccumulated costs d), but the state
space of such a model becomes very large. Therefore, wemealysomulation approach to assess the
success probabilityseq_rdcds, ¢, p) and the bounded costs; seq-rdeds: 4, p)-

In order to obtain the unbounded costs for both the segmamtal and the segment-reduced
scheme, we again use the framework of potential theory Weffdllowing setup:

e Theinner states arB = {1,2,..., L}, the final state i$D = {0}.

“It is shown in [18] that the success probability of the segrmemmal and the segment-reduced scheme afteials
can be expressed as:

1+ Z(_l)l . <f> . (1 — PPH . PMH (01\4}]:) . (1 _ (1 _ PS)L)>n
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¢ In the segment-normal scheme, the costs (bits per packetntiasion) are the same for all
inner stateg € D and are given by; = Lseg-norns, ¢). In the segment-reduced scheme, the
costs in staté € D are given as; = op,p, + op,srp + 0, A +om,p +h+i- (c+h). Inthe
final stated D = {0} no further transmissions are made fse 0.

e The final state is absorbing, all other states are trangenibdeed the final state will be reached
in finite time with probability one.

The unbounded costsy seg-normand K, seg-rdcg@re then obtained from solving the linear equa-
tion system given in Appendix .1 for the variale, i.e. the average costs for the start stéte= L.

Similar to the case of majority-voting, the bounded costdtie segment-normal scheme can be
expressed as:

Kpseg-nornis, d,p) = (18)
ta(d,s)—1 ta(d,s)—1
Lseg-nomis,c)- | > k-PriT =k +ty(d,s)- [1— > Pr(T =4
=1 k=1

The bounded costs for the segment-reduced scheme areaablsirsimulation.

It will be shown that the intermediate checksum scheme gesvsignificant benefit for channels
with higher bit error rates. However, if the channel is extedy good, the larger header and all the
extra checksums are likely wasted.

0.25 Segment-based schemeswith L uby-type erasure codes

In [12], Luby et al have introduced a class of systematiclgmsodes has been introduced in which
symbols are encoded into> k symbols so that reception ahy k-element subset of the symbols
suffices to successfully decode thesymbols with high probability. Erasure-codes are not desig
for the correction of erroneous symbols but of missing sylmb®ne symbol, once received, is as-
sumed to be correct. Two key feature of Luby-type codes aethieir coding and decoding time
is linear in the number of symbols, and furthermore that tmee only very loose assumptions on
the nature of symbols. In particular, it is possible to usemtire segment including its checksum as
a symbol and the computation of redundant symbols out of irengnes is easy to achief@w]®
When the checksum appended to a segment has good erratiatetapabilities, bit errors are trans-
lated into segment erasures and can then be corrected bpdlee Therefore, Luby-type codes are
a very interesting extension for the segment-based schdessibed so far. To support this, the
transmitter and the receiver must be able to run the codidglanoding algorithm, respectively.

We use these codes in teegment-erasure scheme. The transmitter first splits thebit message
into & segments of size = | s/k]| bits (a slack segment is stuffed up). To théssegments then the
coding algorithm is applied, resulting im > k£ segments. The code rate = k/n is assumed to
be fixed. For each trial the transmitter seleetgwith 1 < m < n) of thesen segments and puts
them in the frame. The parameteris fixed and known to both transmitter and receiver, its psepo
is to give additional control (besides the code rate) on ihe af packets. The transmitter indicates
in the MAC header whichn segments have been included. For facilitate stochasticelmgg we
assume in this paper that the segments are chosen randomly and independently, in whiehtha

5Give details?
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transmitter would need to include a bitmaprobits into the MAC header, instructing the receiver
which segments are includé€dThe receiver, when the PHY and MAC header are proper, chdkks a
segments and keeps all segments which are proper and whichdtnot have already stored until it
hask different segments. Then it can successfully decode thkepad herefore, the receiver must
be able to buffek distinct segments plus the additional space required foodiag the message and
storing the result. The number of available trials is givgn b

d
ts(d;s) = {OP,PT» +opsrp +oma+oup+h+m-(c+ h)J (19)
Please note that this scheme does not critically dependeofegaback channel.

Again we model the transmission process using a time-honemges discrete-time Markov chain
(Xn),,>0- We define as the state the numbeddferentsegments that the receiver possesses. One
time slot corresponds to one packet transmission by thertrder. The initial state of the receiver is
Xy = 0 and the common range of a\l,, is {0, 1, ..., k}, since after having different segments we
can decode.

We start by computing the probability

Tis=Pr[X,=i+6Xo=1i (i>0,m>8>0,i+06<n)

that a receiver having alreadydifferent segments receives with the next trial (with PHYd &AnAC
header being proper) exacthdifferent segments that differ from allsegments it already has. Sup-
pose that the receiver currently has the segméhts= {b; 1,b12,...,b1,;} and receives the seg-
ment setBs,. For simplicity, we denote the segments simply by the imgge2, ..., n, so that
By c{l,...,n}andBy C {1,...,n}. Then, from the law of total probability:

T;s= Y Pr[Byreceived-Pr[|B,\ By| = d| By received (20)
BoC{l,...,n}
6<|Bg|<its
where the sum extends over &b C {1,...,n} which have at least segments and at most ¢
segments.
We first considerPr [B; received. It is possible to receivd3y = {b21,b22,...,b2,} (with

0 <r <6+ i) when the transmitter has picked anelement sef3; for transmission for which the
following conditions hold: (i)B2 C Bj (i) Exactly the segments i3, are received successfully and
the segments ii3 \ B, are received in error. Therefore:

Pr [B; received =
> mycii..my  Pr[Bj transmitted

| Bj|=m,ByCBj

-Pr [ B, received B; transmittedl (21)
From our assumptions, each of tlﬁg) m-element subsets dfl,...,n} is equiprobable, which
implies thatPr [B; transmitted = (7’;;)_1. Suppose now thabB; with B, C B; has been sent and

® For practical implementations the additional header amadhofrn. might be too much. As an alternative, one could
pre-define a fixed numbe¥/ of different m-element subsets of all segments and in each trial transmit one of file
corresponding packets in a round-robin fashion. In the @lo&ader then only the index in thé-set would be given.
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received with proper headers. Whély = (1 — p)°t" is the probability of correctly receiving a
segment over a BSC channel aRd = 1 — Ps is the probability of a reception failure (an erroneous
segment is detected from the segment checksum and thennttaway, which translates into an

erasure) then the probability of receividity = {b2 1,022, ..., b2, } WwhenBj is transmitted is given
by Pr [ B, received B; transmitted = Pg - Q¢ ". Furthermore, the number af-element subsets
By C {1,2,...,n} that containBy = {bz1,b22,...,b2,} as a subset can be obtained as follows:

r out of them places are fixed, for the remaining — r places a number of — » segments can
be chosen, and the numberaf — r-sized subsets af — r elements is given b)(;i::) Putting
everything together and simplifying we obtain:

Pr [BQ = {bg’l, b272, R ,bg’r} receive(]i

N L (22)

(m—r)l-n!

To computeT; s from Equation 20 one can observe that the conditional pribtyab'r [ | B; \ B1| = ¢| B> received
is either zero or one and the computation boils down to detengn the number of such sef;.

Assume thatBy = {b21,b22,...,b2,} is received withé < r < § + i. The number ofr-
element sets with elements frofa, ..., n} which contain exactly elements that are not iB; =
{b11,b12,...,b1,;} is given by:
e the number of subsets @b 1,b19,...,b1,;} with » — & elements, which is given b{/rj'é),
times
e the number of subsets §1,....,n} \ {b11,b12,...,b1,:} havingd elements, which ii”gi).

Therefore we can expre§s; as:

T: :f( ‘ >.<n_i>_PrlQm—r_(n_T)!'m! (23)
b0 r—29 ) S %8 (m—r)l-n!

r=0

We next turn our attention to the computation of the statesiten probabilitieg; ; = Pr [ X; = j| X = 1]
of the Markov chain. Itis clear that; ; = 0 for j < i, since the receivers number of different seg-
ments cannot decrease. Furthermore, it is also cleapfhat= 1, since state: is the (absorbing)
success state in which the receiver katifferent segments and can decode the message. Let us first
suppose that, > k, i.e. the source node always transmits at least as manymayndbosen segments
as are required for decoding. Then the state transitionghitities can be obtained as follows. When
the receiver is in statk — 1, it is required to receive the PHY and MAC headers succdgsdnid to
receive at least one additional segment it does not have.sbtarefore:

Pr-1,k = PpH - PmH (om,p)
(To—10 + Tom12+ -« + Tt min{mon—k})
which holds since the events that the receiver recelyex ..., min {m,n — k} segments that it

does not yet have are mutually disjoint. For the diagonaheld of statek — 1 we simply have
Pk—1,k—1 = 1 — pr—1,%. For all states € {0, ...,k — 2} we can distinguish three cases:
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e For target stateg € {i + 1,...,k — 1} we must receive the PHY and MAC headers properly
and exactlyj — i new segments, which happens with probability

pij = PpH " PMH (om,p) - Tij—i

e Forthe target statg= k£ we must receive the headers successfully and reéeiieor k—i+1,
or...,orminm,n — k new segments, therefore:

Pik = Ppy - P\MH (0ar,p)
ATip—i + Tipmivr + - - + Ti mminfmn—k})

e The diagonal element; ; is one minus the sum of all other transition probabilities.

For the other casen < k the state transition probabilities can be obtained in alamfashion.
After collecting the state transition probabilities in artsition matrixP, we can express the success
probability as:

Oseg-erase, d, p) = [[P*)]]o 1 (24)

To compute the unbounded costs, we can apply the framewgrktehtial theory (Appendix .1) in a
fashion similar to the segment-normal scheme:

e Theinner states arB = {0, 1, ...,k — 1}, the final state i9®D = {k}.

e The costs (in bits per packet) are for all inner states D given byc; = op p, + opsrp +
om,A+on,p+ h+m-(c+ h),inthe final state no costs are incurred.

e Allinner states are transient, the final state is absorbing.

The unbounded cost&y seg-eras@re then obtained from solving the linear equation system@ngi
in Appendix .1 for the variabley, i.e. the average costs for the start st&te= 0. For the bounded
costs, after again introducing the hitting tidie= min{n > 0: X,, € 9D} we can apply the same
approach as for the segment-normal and majority-votingereeh(see Equations 14 and 15) with
t5(d, s) instead oft4(d, s) and cost terme; = op pr + 0psFp + Ona + oarp +h+m - (c+ h).

0.26 Implementation considerations

An important comment on the segment-based schemes cortbeingmplementation. In general,
segment-based schemes can be useful as part of the linkdeype-control strategy and should be
implementable so as to be transparent to the higher layers.

On the transmitter side the following tasks need to be hanfdiethe segment-based schemes:

e Selection of the segment size set.

e For each new transaction an actual segment size must benchose
e Partitioning of user data into segments and checksum catipui

e On-the-fly assembly of actually transmitted frames.
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The segment size set must be determined at network configutahe and the mapping of actual
segment sizes to codewords must be pre-configured in batbntitter and receiver. At runtime, in
order to select a good segment size for the current channdit@mns, the transmitter needs an esti-
mate of the bit error rate. To simplify implementation, tleéested segment size is maintained for the
whole packet transaction, i.e. the initial transmissiong all retransmissions use the same segment
size. Hence, the partitioning of user data into segmentstadomputation of segment checksums
needs to be done only once, when the packet is prepared foatisaction. It is of course preferrable
to perform checksum computation in hardware, but there lapeedficient software implementations
available’ For example, an algorithm developed in [14] for CRC compaitatequires only four shift
operations and four exclusive-OR’s to process one hyteafdata in software.

For the segment-reduced and the segment-erasure scheenéigilyt no two trials for the same
packet are identical — in the segment-reduced scheme thberurh contained segments can shrink
over time, in the segment-erasure scheme segments arangnclmsen. Therefore, for each trial a
new frame must be assembled. The runtime costs of this agsdap®nd on the transceiver interface.
Transceivers like the IEEE 802.15.4-compliant ChipCon €XiPhave a packet-based interface, i.e.
a buffer with the full packet must be ready before transmisstarts, and during transmission this
buffer must not be modified. For the next trial the frame mesagsembled anew (at least in parts, the
header does not change). This re-assembly involves copyithg prepared segments into the packet
buffer. Other transceivers offer an interface in which thecpssor feeds the bits sequentially into the
transceiver. In this case copying segments is not necessattye processor can simply determine the
memory locations from which to read the next data bit on the fly

In contrast, the implementation complexity of the segm@rtnal scheme is lower: since in all
trials the same packet is transmitted, the packet needsgepared only once and placed in a buffer.

0.3 Resaults

In this section we show performance results for the diffesmhmemes. These results have been ob-
tained either by evaluating the analytical models desdribethe previous section or by stochastic
simulation. For the segment-reduced scheme only simulagisults are available. In the simulations,
for each bit error rat@ a number of 50,000 transactions has been simufatedtther simulation re-
sults have been produced to validate the analytical modetké classical, fragment, segment-normal
and segment-erasure schemes. For all these schemes thatisimeesults and the analytical results
are almost identical, so we do not show the simulation regaitvalidation purposes. The case of the
majority-voting scheme is discussed separately.

The major parameters have been chosen as follows: the ussageesize is = 1024 bits,
the preamble size isp p, = 64 bits, the size of the SFD field isp srp = 8 bits, the number
of allowable bit errors in the preamble a$, = 2 bits, the size of the common parts of the MAC
header i®y; 4 = 24 bits, and the size of the checksumshis= 16 bits. The sizev, p for the MAC
extension header (without header checksum) for the mgjeoting scheme isy; p = 0, and for all

"Many commercially available transceivers for wireleséitetogies like IEEE 802.11 or IEEE 802.15.4 have the ability
to compute a CRC checksum, but they typically do not more #moending it to an outgoing packet and do not provide
mechanisms to compute multiple-checksums at user-defiviatspn a frame.

8This leads to very tight confidence intervals. More spedificthe 99% confidence interval for the success probability
is at most 0.0058 (compare [p. 417][1]). The confidence Vaterare not shown in the figures.
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the segment-based schemes itjgp = 4 bits encoding the segment sizéhe bit-error ratey has
been varied betweel®)—* and10~!. More specifically, the range of BER exponents has been saimpl
with 800 equally spaced points. In order to compare all s&@seumder ideal conditions, we assume
that p is known precisely to the transmitter and that the fragnsehtme and all segment-based
schemes can choose optimal fragment / segment sizes awlgrdi he code rate for the segment-
erasure scheme has been fixed to 2/3, and the numbmrsegments included in a transmission is
always set tdk + n)/2 where agairk is the number of segments required for the user data (which
depends on the segment size) ang (3/2) - k is the number of coded segments. The deadlihas
been chosen as= 11400 bits, which is sufficient for the classical scheme to perfoemtrials. The
segment-based schemes with fixed-size packets (segmen&incegment-erasure) have in general
less than ten trials at their disposal, depending on theifigaration.

0.3.1 Selection of segment and fragment size

It is intuitively clear that a single fixed segment siz&ill not give the optimal results for all bit error
ratesp. At the same time, when only a few bits in the header are usedcaslebook for a set of
pre-defined segment sizes, it becomes important to chooeptamnal (w.r.t. success probability) or
at least a good segment size set. Conceptually, this proislesimilar to the problem of finding an
optimal fixed-size set of reproduction points for a givend@m variable in quantization theory [4],
[6]. However, to exploit this similarity and to apply welkkwn algorithms like for example Lloyd’s
Algorithm, an explicit characterization of the optimal seent sizec for a given bit error rate is
required, which is hard to obtain.

We have therefore adopted a more pragmatic approach. Weeusetf = {8, 16, 32, 64, 128, 256, 512}
as the set of allowable segment sizes. This choice has tlealbat it uses integer multiples of octets
(which is important in practical implementations) and asoids any slack segments for our chosen
user data size = 1024 bits. In Figure 1 we show for the segment-normal and the saegerasure
scheme for varying bit error ragethe segment size* which optimizes the success probability fgr
i.e. we show for each BER value the values

arg max {aseg-nomﬁs, d,p;c) :c € C}

and
arg max {3seg-erasé9, d,p;c) :c € C}

respectively. It can be observed that these optimal segsieed differ for the segment-normal and
segment-erasure scheme. From these results we extractfiosdhemes a mapping from the bit error
rate to the optimal segment size fréhand use this for the following evaluations of the segmeseta
schemes. For reference, the mappings are reported in Thbled 2.

It can be seen that precise knowledgepa$ required to make the optimal selection. To inves-
tigate this further, we compare in Figure 2 for the segmenmtral scheme the achievable success
probabilities with optimal segment sizes and fixed segmieesf 32 and 64 bits, respectively, in

®This includes the segment-erasure scheme as well, seesthesslion in footnote 6 on how to keep the extension header
size small by exchanging the random selection of segmentzrdpyaring a few pre-defined selections. We follow the
hypothesis that the random selection underlying the Markodel provides a good approximation to the results that evoul
be obtained with the pre-defined-selection approach. Withiits for encoding the segment size (see Section 0.3.1¢ the
are two bits available for specifying a pre-defined selectio
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Figure 1. Optimal segment size frod = {8, 16, 32,64, 128, 256,512} for varying bit error ratep
and the segment-normal and segment-erasure scheme

| BERrange | Optimal segment size |
p < 0.01024 64
0.01025 < p <0.014 | 32
0.015 < p 16

Table 1: Optimal segment sizes (w.rd.= {8, 16, 32,64, 128, 256, 512}) versus bit error ratg and
the segment-normal scheme

| BERrange | Optimal segment size |
p < 0.00315 128
0.00316 < p < 0.00763 | 64
0.00764 < p <0.0137 | 32
0.0138 < p 16

Table 2: Optimal segment sizes (w.rd.= {8, 16, 32,64, 128, 256, 512}) versus bit error ratg and
the segment-erasure scheme

Copyright at Technical University Berlin. All TKN-09-001 Page 18

Rights reserved.



TU BERLIN

0.8

0.6

04

Success probability
o
al
T

0.2

T L

Optimal segment size
Fixed segment size 64 bits
Fixed segment size 32 bits

0.001
BER

Figure 2: Success probability of the segment-normal scheme for wadyit error ratep and for three
different choices of the segment size: optimal, fixed wittbéid and fixed with 32 bits.
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Figure 3: Success probability of the segment-erasure scheme fangabit error ratep and for three
different choices of the segment size: optimal, fixed withbéid and fixed with 32 bits.
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Figure 4. Success probability of the segment-reduced scheme fainggloit error ratep and for three
different choices of the segment size: optimal for the segmermal scheme, fixed with
32 bits and fixed with 16 bits.

the “interesting” range of bit error rates. It can be seen iahis range of BERS it is these two
fixed segment sizes that the optimal scheme would selecty OonBERsp > 0.015 the optimal
scheme would select a segment size of 16 bits, but the differbetween the results for 32 bits and
the optimal scheme (with 16 bits) in this range is hardlyhl&si Therefore, it practically suffices to
restrict the segment-normal scheme to the two segmentaifigsand 32 bits and to switch between
these. The segment size could then be encoded with one bit.

For comparison we show in Figure 3 the same plots for the segarasure scheme. It can be
observed that it does not suffice to restrict to segment si#Z82 and 64 bits, but the segment size
of 16 bits (not shown in the figure) is needed as well. Theegftire segment-erasure scheme poses
higher requirements on the accuracy of any bit error ratsmatibn scheme, but two bits are sufficient
to cover the interesting range.

The case of the segment-reduced scheme is harder to ansilyze,no analytical formulas are
available for the success probability and the simulatidorefequired to check all allowed segment
sizes fromC for all 800 investigated BER values is prohibitive. We showFigure 4 the success
probability when using the segment-reduced scheme witll feement sizes of 32 and 16 bits,
respectively, and additionally when using for a given Bifke segment size that would be optimal
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BER range | Optimal segment size
» <0.0153 | 32
0.0154 <p | 16

Table 3: Approximately optimal segment sizes versus bit error patand the segment-reduced
scheme

for the segment-normal scheme. There is a range of bit emtes where the optimal segment sizes
for the segment-normal scheme are not appropriate for thaeet-reduced scheme. From the data
underlying Figure 4 we extract for the segment-reducedraehhe segment-size selection policy
given in Table 3.

Another issue is the choice of the fragment size in the fragraeheme. From Equations 8 or 9
(considering the cases without and with slack fragments)iard to obtain the optimal fragment size
for a given valuep of the bit error rate — for fixed value gfa curve showing the success probability
versus the fragment size would show a sawtooth pattern. efdrer, we have evaluated for each
BER valuep the success probability achievable with each fragment gize {8,9,10,...,512}
and determined the optimum fragment size. In Figure 5 we eoenthe optimal success probability
with the success probability achievable with two fixed valoé the fragment size (57 and 61 bits),
which both are optimal for a wide range of BERs. It can be olekithat the curves are hardly
distinguishable, so in practice it suffices to either resto one of these values or to switch between
these two at a certain BER (fpr< 0.0147 the optimal value is 57, above that 61).

0.3.2 Major results

We first compare the success probability of all schemes uddafized conditions. This means that
the bit error rate is known, the fragment scheme is allowed to choose the opfragment size and
the segment-based schemes choose their optimal segmeefibsizthe sef = {8, 16, 32, 64, 128, 256, 512}
according to the results obtained in the previous section.

The results are shown in Figure 6. The following points areworthy:

e The first, not very surprising, result is that all schemedbatéer than the classical scheme.

e There are three schemes which do not critically rely on faekbthe segment-normal scheme,
the segment-erasure scheme and the majority-voting sclwith®ut feedback the segment-
reduced scheme would degenerate into the segment-norhgahsg. Between these three there
is a clear ordering: segment-normal is clearly inferior égreent-erasure, which in turn is
inferior to majority-voting, but comes close to it withouaving its buffer requirements.

e The segment-reduced scheme is the best one over a wide rAbigemor rates, only for high
bit error rates the segment-erasure and the majority vatigmes are better. Furthermore,
the segment-reduced scheme is always better than the fnagicteeme (whichs performance
declines very quickly). Stated differently: the segmegdtrced scheme makes much better use
of the ideal feedback channel than the fragment scheme ahd aame time does not depend
critically on feedback. Therefore, it can even be used on asymmetmétass links where the
feedback channel is much worse than the forward channel.
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Figure 5: Success probability of the fragment scheme for varyingrpitreatep and for three differ-
ent choices of the fragment size: optimal, fixed with 57 bitd fixed with 61 bits.
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Figure 7: Unbounded costs of all schemes under idealized conditmmgafying BERp

e The performance difference between segment-normal amdesggreduced gives an idea about
the value of feedback.

It should also be kept in mind that we have made no attemptllpdptimize the segment sizes for
the segment-based schemes, we have restricted our atténtaptimization over a small sét of
selections.

We next compare the unbounded costs, which for all schengeshamwn in Figure #° The
range of bit error rates shown in the graph has been restritethat the differences for low bit
error rates are still visible. For very low bit error ratee ttlassical scheme and the majority voting
schemes are the best (since they have no or very little frarmidhead), for all the other schemes their
respective overhead becomes visible — at low bit error thtesdditional error handling capabilities
of the other schemes are not needed and the overhead is wds$tedragment-based scheme has
the largest overhead, followed by the segment-reducedrsh&he larger overhead of the segment-
reduced scheme over the segment-normal and segmenteesafigmes is caused by the fact that the
segment-reduced scheme chooses smaller segment sizékdtwher schemes for the low bit error
rates. The additional overhead of segment-reduced paysadleé bit error rate increases — this is also

10please keep in mind that the choice of segment sizes and draigsizes had the goal to optimize for the success
probability, not for the transmission costs.
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Figure 8. Bounded costs of all schemes under idealized conditiongafigting BERp

true for the other segment-based schemes and the fragniemhec The observable “nonlinearities”
in the curve for the segment-erasure scheme and the fragraeatl schemes are due to the change
of segment/fragment sizes avaries.

We finally show in Figure 8 the bounded costs for all the sclenir the low bit error rates
the results are similar to those for the unbounded costs.viElitde differences at the high bit error
rates reflect how many bits each scheme can transmit witkigitlen deadline of 1,400 bits. This
deadline is chosen so that for the classical scheme tes #iielavailable, the overhead of the other
schemes reduces their number of trials to at most nine fasdhemes with the lowest overhead (not
considering the segment-reduced scheme with its variaakap lengths). If the deadline would be
slightly increased to accommodate the overheads, therpiatauld change.

0.3.3 Majority voting

As we have discussed in Section 0.2.3, we do not expect taatrtalytical model for the majority-
voting scheme makes very accurate predictions of succebsalpiities, since in practice subsequent
combining trials areotindependent as it is assumed in the model: If a receiver Wittetcopies has
for one bit position two wrong votes, a fourth packet can asnegualize the votes for this position
but it does not enable correct decoding. Under the indepmedassumption, all four observations
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Figure 9: Success probabilities for the majority-voting schemesmparison of Simulation and An-
alytical model
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for this bit are drawn freshly and not taken from the cacheFigure 9 we compare the analytical
results for the success probability with simulation resulthe simulation models the transmission of
individual bits and the real caching behaviour of the reeeiAs expected, the analytical results are
more optimistic than the simulation results.

0.4 Reated work

In general, the segment-based schemes considered heracket pombining schemes [15, 2, 9].
Many packet combining schemes have been proposed andgatesdt several of them, e.g. [7], [16],
are designed for particular classes of coding schemes: (kefedecoding Viterbi decoders). The
segment-based schemes have been introduced under the mameetiate checksum schemes in
[17]. To the best of the authors knowledge, this was the fapep discussing this class of schemes,
except from [10], where the approach is briefly sketched lotitfollowed anymore. In [5] a very
similar approach has been designed, implemented and &@lirathe context of wireless sensor
networks. They consider that the allowed frame size is iregdrsmaller than the message size.
The message is fragmented into small blocks, several ofhwtan fit into a frame. The focus of
the protocol is on efficiently streaming the blocks such tra frame can at the same time contain
retransmissions of earlier failed blocks and new blockmftbe same or the next message. They also
suggest a cooperative version of the intermediate checlssimame, something, which has also in
other contexts been considered a very rewarding additidinkdayer schemes [3]. However, none
of these works consider deadlines, and furthermore thisrdapo the best of the authors knowledge
the first paper combining segment-based schemes with (ty®)-erasure codes.

0.5 Conclusions

The segment-based schemes presented in this paper havddeenstrated to achieve significant
gains in terms of success probability and number of transchibits for more error-prone chan-
nels, while having only moderate buffer requirements atréweiver. Therefore, these schemes
are a very attractive approach for memory-constrainedostatike sensor network nodes. The
segmentation-based approach is useful for not too smakagessizes which occur for example
in re-programming operations in sensor networks.

Among the investigated schemes the segment-normal schesrikdnworst performance, but does
not critically rely on the feedback channel and furtherm@mguires only one frame construction at
the transmitter side. On the other hand, the segment-rddiateme shows the best performance over
a wide range of bit error rates but its performance dependlsequality of the feedback channel and
furthermore the transmitter must assemble a new frame fdr g@ml. The segment-erasure scheme,
which achieves better performance than the segment-n@chaime, does not depend on feedback
and it can be configured (by choosing= n) so that one frame assembly suffices.

Therefore, one of the natural next steps would be a syntloddise segment-erasure and the
segment-reduced scheme, in which the selection of segrattits transmitter is controlled by feed-
back obtained from the receiver. There are many further ppities for future research, for example
a more comprehensive exploitation of the design space afament-erasure codes (choices of code
rate,m, etc.), incorporation of schemes for bit error rate estiomtadaptation of chosen segment
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sizes based on the re-transmission history of previousdidions, an experimental evaluation, and
many others.

.1 Potentialsof Markov chains

Be (X,),~( & time-homogeneous Markov chain with discrete (i.e. finiteauntably infinite) state
spaceS and state-transition matriR. The state space is partitioned ifmer statesD andboundary

statesor final statesoD so thatS = D U dD. Suppose that = (c;);cp andf = (f;);c5p are

non-negative vectors representing the costghen the chain is in the inner state D and the costs
fi when the chain is in the boundary state 0D. Let the random variabl&' be the hitting time for
the boundaryT = inf {n > 0: X,, € 9D}. Set

¢ = E; Z c(Xn) + f(X7)11r<o

n<T

Theng; is the expected total costs when the chain starts in Sfgte- « and operates in the inner
statesD, each time incurring a cost, until it reaches a final state iflD, incurring a final cost
corresponding to the final state. The final costs are incuwrdg when the hitting timel” is finite.
Then the following holds [13, Theorem 4.2.3]:

e The potentialp = (¢;),.s satisfies:

6=P-d+c : inD
{qb:f : inoD (25)

e If Pr; [T < oo] = 1 (i.e. the probability to hit the final states when the starstate isX, = i)
for all i then Equation 25 has at most one bounded solution.

In other words, we are looking for a solution of the systemredadr equations given in 25.
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