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Abstract

In this paper we consider segment-based hard-decision packet-combining schemes. The schemes
presented here are memory-efficient and easy to implement, and some of them appproach the perfor-
mance of majority-voting schemes without having the same memory requirements. One particularly
interesting scheme combines segment-based transmission with Luby-type erasure codes.
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0.1 Introduction

Packet combining schemes are an attractive ingredient for ARQ-based error-control schemes (which
are then called type-II or type-III hybrid-ARQ schemes [11,8, 9]), especially over error-prone chan-
nels like wireless channels. In packet combining schemes a receiver does not throw away erroneous
copies of a frame but keeps them and tries to use them for decoding upon arrival of future frames.
In this paper we consider hard-decision packet-combining schemes, i.e. schemes operating on de-
modulated data bits as they are delivered by a wireless transceiver to the higher layers. The term
hard-decision refers to the lack of any reliability information associated with the received bits or any
other channel side-information. This assumption is practically relevant, since transceivers compliant
with standardized wireless technologies like IEEE 802.15.4 or the family of IEEE 802.11 standards
behave according to this assumption: they just deliver decided bits to the higher layers, no additional
per-bit reliability information.

One technique to perform packet combining under these constraints is majority-voting. The re-
ceiver buffers all erroneous copies of a frame and for each bit position (including the trailing CRC)
applies a majority-voting rule. The resulting packet is checked for correctness. A major drawback of
majority voting, however, are the significant buffer requirements, since at least three copies of a frame
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are required for majority voting to be effective. This can bea serious drawback in memory-limited
stations like for example the nodes of a wireless sensor network.

In this paper we consider a class of alternative schemes withmuch more modest buffer require-
ments at the receiver. We call these schemessegment-based schemes. The receiver needs to provide
only the buffer space for one copy of the frame, plus some fixedoverhead. In classical framing- and
retransmission schemes a packet is equipped with one trailing CRC value for error detection – if the
CRC is wrong, the receiver discards the whole packet. The transmitter then (re-)transmits the frame
until it receives an acknowledgement or the frame’s deadline is exhausted. In contrast, in the segment-
based schemes investigated in this paper the data part is partitioned intosegmentsand each segment
has its own CRC. The receiver does not throw away erroneous frames, but buffers all correct segments
in order to combine them with segments arriving in later re-transmissions. We present three different
segment-based schemes. One of them is based on the observation that the segment-based schemes can
be combined with Luby-type erasure codes [12]. These codes allow to encodek user-data symbols
into n > k symbols such that for the receiver it suffices to receive anyk out of thesen symbols to
decode thek user-data symbols. It is possible to regard one of our segments as one symbol in these
codes. Since they also allow linear-time coding and decoding, they are suitable candidate schemes
in the context of wireless sensor networks. Segment-based schemes can be implemented on top of
commercial transceivers for technologies like IEEE 802.15.4 and IEEE 802.11, they only require the
ability for quick in-memory computations of CRC values. If no dedicated hardware is available for
this, CRC computations can be done in software with computational overhead that is linear in the
amount of data (e.g. [14]).

We compare the performance achievable with the different segment-based schemes against three
“baseline” schemes (the classical, single-CRC scheme, a majority voting scheme and a fragmentation
scheme similar to IEEE 802.11) under a deadline constraint.In many applications (like for example
in healthcare or process control) it is desirable to achieveboth reliable and timely transmission of
data in an efficient way. This is reflected by the major performance parameters investigated in this
paper: the first major performance criterion is the probability of successful message delivery within
the prescribed deadline (calledsuccess probability), and the second one is the number of transmitted
bits within this deadline (called thebounded costs). These performance measures are mostly obtained
from stochastic models of the different schemes and under idealized and simplified conditions. Firstly,
as a channel model the binary symmetric channel (BSC) is chosen, in which all bit errors occur
independently of each other and with the same probability. This allows to keep the models tractable.
Secondly, it is assumed that the transmitter has precise knowledge of the current channel bit error
rate, so that for each scheme optimal parameters can be chosen. Thirdly, it is assumed that the
feedback channel is perfect, i.e. is error-free and has no delay. These assumptions allow to compare
the optimum performance achievable with each of the schemesand furthermore the obtained results
are useful as upper bounds for the actual performance obtained under more realistic conditions. Our
results show that all segment-based schemes improve significantly upon the classical scheme and
some actually come close to the performance of the majority-voting scheme without having its buffer
requirements. Under perfect feedback, one of the segment-based schemes even outperforms majority
voting for a large range of bit error rates.

This paper extends previous work [19], [17], see also the technical report [18].1 It is structured

1A shortened version of this paper, giving only the models andresults for the success probability and not investigating
the issue of the choice of segment and fragment sizes has alsobeen submitted to ICC 2009.
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as follows: in Section 0.2 we describe the system model and the different schemes considered in this
paper. For all of the described schemes we derive an analytical model, and for most models we derive
expressions for the desired performance metrics in terms ofthese models. In Section 0.3 we present
numerical results for different performance measures. Related work is discussed in Section 0.4 and
the conclusions are given in Section 0.5.

0.2 System model and considered schemes

After discussing the system model, we describe the segment-based packet-combining schemes and
their associated analytical models. In addition, we describe (and model) three baseline schemes
(classical scheme, fragment-scheme, majority-voting) against which we compare the segment-based
schemes.

We give a brief summary of our notations. The setsN0 = {0, 1, 2, . . .} andN = {1, 2, 3, . . .}
denote the sets of non-negative integers with and without zero. For a setB the notation|B| refers to
the cardinality of the setB. For some real valuex the notation⌊x⌋ denotes the largest integer that
is smaller than or equal tox. For some matrixP the notation[[P]]i,j refers to thei, j-th component
of P, with i andj from the state space on which the matrix is defined. Furthermore, the function
1A (x) is the indicator function of the setA, i.e.1A (x) = 1 if x ∈ A and1A (x) = 0 otherwise. For
reference, we remind here three different discrete probability distributions:

• A binomial random variable with parametersn ∈ N andp ∈ [0, 1] models the numberk of
successes seen inn iid Bernoulli experiments with success probabilityp. It has probability
mass function

b(k;n, p) =

(

n

k

)

· pk · (1 − p)n−k (k ∈ {0, 1, . . . , n})

and expectationnp.

• A geometric random variable with rangeN models the number of iid Bernoulli experiments
with individual success probabilityp that are required so that the first success shows up. Its
probability mass function is:

p(k) = p(1 − p)k−1 (k ∈ N)

and its expectation is1/p.

• A negative binomial random variable counts in a series of iidBernoulli experiments with indi-
vidual success probabilityp the numberk of failed trials that are required to achiever successes.
The probability mass function of a negative binomial randomvariable is

f(k; r, p) =

(

k + r − 1

k

)

pr(1 − p)k (k ∈ N0)

and the expected number of failed trials until ther-th success isr 1−p
p

.
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0.2.1 System model

We consider a system comprising of one transmitter, one receiver and one channel in between. The
channel is a BSC with bit error ratep ∈ (0, 1). We assume that the feedback channel is perfect,
i.e. acknowledgements are received error-free and withoutdelay. During discussion of the schemes
we point out which schemes depend critically on the feedbackchannel. We furthermore ignore for
simplicity the time needed for switching the transceiver from receive to transmit mode or vice versa.

We do not consider interactions with the medium access control layer. For simplicity, we assume
that the transmitter has uninterrupted channel access fromthe start of the packet transmission process
until the packets deadline. The link-layer entity of the transmitter receives from its upper layers a
user message of sizes bits, to which a packet deadlined is associated (expressed in a technology-
independent fashion as number of bits that could be transmitted within the deadline). Within this
packet deadline, the transmitter performs a number of frametransmissions (initial transmission and
retransmissions) according to the stop-and-wait protocol. We refer to these transmissions also as
trials and the set of all trials carried out for the same packet is also referred to as atransaction. The
transmitter performs further trials either until it receives a positive acknowledgement from the receiver
or the deadline is exhausted. From the BSC assumption, all trials are stochastically independent.

We make the following assumptions regarding the framing. A frame has different kinds of head-
ers: a physical-layer (PHY) header and a MAC header. The PHY header contains a preamble of
lengthoP,Pr bits and a start-frame delimiter (SFD) of lengthoP,SFD bits. The preamble allows the
receiver to acquire symbol synchronization and the SFD denotes the start of the useful part of the
frame. It may well happen that the receiver does not acquire the preamble properly or receives an
erroneous SFD field. In both cases the whole packet is lost andnothing of it is visible to the receiver.
To model packet losses induced by preamble/SFD misdetection, we use as a simple approximation
the rule that a preamble misdetection happens if more thanoP,0 bits of the preamble are erroneous.
The probability of properly receiving the PHY header is thengiven by

PPH =

(oP,0
∑

k=0

b(k; oP,Pr, p)

)

· (1 − p)oP,SF D (1)

The MAC header typically contains addressing information and control information like sequence
numbers, which we assume to be the same for all schemes. However, depending on the scheme, the
MAC header contains further fields. Specifically, in all schemes performing packet combining the
MAC header also contains a separate header checksum.2 The MAC header consists ofoM,A bits of
common addressing and control information, and the packet combining schemes additionally useh
bits for a header checksum andoM,P additional control bits for packet combining purposes. If the
header checksum is wrong, the packet is fully discarded and no action whatsoever is taken. The
probability of correctly receiving the MAC header whenoM,P bits of additional bits for the packet
combining scheme are used is given by:

PMH(oM,P ) = (1 − p)oM,A+h+oM,P (2)

2Rationale: the receiver must maintain a cache of erroneous copies of a packet for combining purposes. When a new
packet transaction starts, the cache must be cleared, otherwise the erroneous frames belonging to the last transactionwould
“poison” the frames for the new transaction. To detect a new transaction, the receiver checks the addressing fields and the
sequence number field. Without a separate header checksum these fields can be erroneous and the packet cache might be
cleared in the mid of an ongoing transaction. These “cache breakdowns” would be harmful to the performance of packet
combining schemes and furthermore they would make the stochastic models developed below significantly more complex.
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A final assumption concerns the CRC checksums used in this paper. We allocateh = 16 bits for
a CRC checksum, and as a simplifying assumption these checksums are perfect, i.e. there are no
undetected errors.

We consider three major performance parameters:

• Thesuccess probabilityis defined as the probability that a packet can be successfully transmit-
ted within its deadlined. We measure the success at the receiver: it is required that the receiver
has received (or combined) a correct copy of the packet. The transmitter is not necessarily
aware of this when acknowledgements can get lost.

• The unbounded costsmeasure the average number of bits that the transmitter requires until
success when there is no deadline constraint. Again, we measure success at the receiver. With
an imperfect feedback channel, the transmitter might not beaware of the success and performs
further trials. The costs for these further trials are not considered.

• The bounded costsmeasure the average number of bits that the transmitter sends within the
deadlined.

0.2.2 Classical and fragment-based schemes

In the classical scheme no packet combining is performed at the receiver. Thes-bit user message
is prepended with a physical layer header and a MAC layer header containing no combining-related
fields (i.e.oM,P = 0) and no separate header checksum. A CRC checksum of sizeh bits is appended
to the packet. The total packet length isLclass(s) = oP,Pr + oP,SFD + oM,A + s + h bits. Not
counting the time required for acknowledgement transmission, the transmitter can transmit the frame

t1(d, s) =

⌊

d

Lclass(s)

⌋

(3)

times within the given deadlined. No packet combining is applied at the receiver. From the BSC
assumption, the success probability of the classical scheme is given by:

∂class(s, d, p) = 1 −
(

1 − PPH · (1 − p)oM,A+s+h
)t1(d,s)

(4)

To determine the unbounded costs, we observe that each trialcan be considered as a Bernoulli exper-
iment with success probabilityPPH· (1−p)oM,A+s+h and the number of trials is a geometric random
variableX. Therefore, the average unbounded costs are:

K
U,class(s, p) =

Lclass(s)

PPH · (1 − p)oM,A+s+h
(5)

The bounded costs can be calculated as:

K
B,class(s, d, p) (6)

= Lclass(s) ·





t1(d,s)
∑

i=1

p(i) · i + t1(d, s)
∞
∑

i=t1(d,s)+1

p(i)





= Lclass(s) ·





t1(d,s)
∑

i=1

p(i) · i + t1(d, s)
(

1 − PPH · (1 − p)oM,A+s+h
)t1(d,s)
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The fragment-based scheme is a modified (and simplified) version of the fragmentation- and
reassembly scheme used in the IEEE 802.11 standard. The transmitter splits thes user data bits into
fragments of sizef (plus one smaller slack fragment whenf does not evenly divides). Each fragment
is transmitted according to the classical scheme (i.e. withown header and trailing checksum) and with
no bound on the number of trials spent for this fragment, but within the deadlined all of the fragments
must be transmitted successfully.3 Whenf is the size of a full fragment, then the size of the slack

fragment isfs = s−
⌊

s
f

⌋

. Furthermore, letLF := Lfrag,full(f) = oP,Pr + oP,SFD + oM,A + f + h

denote the frame size (in bits) of a full fragment, andLS := Lfrag,slack(s, f) = oP,Pr + oP,SFD +

oM,A + fs + h denote the frame size of the slack fragment (if any, otherwise we assumeLS = 0).
Within deadlined and for fixed fragment sizef a number of

t2(d, f) =

⌊

d − LS

LF

⌋

(7)

full fragments can be transmitted (at the end of the time we always need some spare time to transmit
the slack segment, if any). When there is no slack fragment (i.e.fs = 0), we can express the success

probability as the probability that int2(d, f) independent trials at leastr =
⌊

s
f

⌋

are successful (r is

just the required number of successful transmissions), which can be written as:

∂frag(s, d, p, f) =

t2(d,f)
∑

i=r

b(i; t2(d, f), PF ) (8)

wherePF = PPH·(1−p)oM,A+f+h is the probability of successful transmission of one full fragment.
When there is a slack fragment (i.e.fs > 0) then the success probability can be expressed as:

∂frag(s, d, p, f) =

t2(d,f)
∑

i=r

f(i − r; r, PF ) ·

(

1 − b

(

0;

⌊

d − i · LF

LS

⌋

, PS

))

(9)

wherePS = PPH · (1 − p)oM,A+fs+h is the probability of successful transmission of the slack
fragment. The sum extends over the numbersr ≤ i ≤ t2(d, f) of trials required to transmit allr
full fragments withi− r failed trials in between. For eachi the termf(·) gives (from the probability
mass function of the negative binomial distribution) the probability that exactlyi − r failed trials are
required, and the second termb(·) gives the probability that in the remaining the remainingd− i ·LF

bits the slack fragment can be transmitted successfully at least once – the expression
⌊

d−i·LF

LS

⌋

gives

the number of trials available for the slack fragment.
To compute the unbounded costs, we observe the following: One trial to transmit a full fragment

corresponds to one Bernoulli experiment with success probability PF and the number of Bernoulli
trials required to achiever successes is a negative binomial random variable. The average number of
trials required until all full fragments are successfully received is then

r + r ·
1 − PF

PF

3In realistic implementations, including the scheme of IEEE802.11, the number of trials spent for one fragment is
bounded. Furthermore, an efficient implementation would stop any effort to transmit further trials once it becomes clear
that the remaining trials cannot be transmitted fully within the remaining time until deadline expiration. These optimiza-
tions, however, do not improve the success probability of the fragment-scheme, they just tend to decrease the number of
transmitted bits. In this paper for simplicity we do not consider them.
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and the unbounded costs when choosing a fragment sizef are therefore

KU,frag(s, p, f) = LF · r ·

(

1 +
1 − PF

PF

)

+ 1(0,∞) (fs) ·
LS

PS
(10)

When there is a slack segment, then we additionally have the costs required to transmit one slack
segment successfully. This can be modeled as a geometric random variable and the additional number
of bits isLS/PS .

To compute the bounded costs, we first consider the slack fragment. Suppose that all full frag-
ments have been successfully transmitted at some timet < d so that there is time available forj ≥ 1
trials for the slack fragment. The average costs incurred for the slack fragment can, using the proba-
bility mass function of the geometric distribution, be expressed as:

Ksl(j) = LS ·





j−1
∑

k=1

k · PS · (1 − PS)k−1 + j ·

∞
∑

k=j

PS · (1 − PS)k−1





= LS

(

j−1
∑

k=1

k · PS · (1 − PS)k−1 + j · (1 − PS)j−1

)

The total costs are then obtained by summing over all possible outcomes for the number of required
trials for the full fragments (which can be expressed with the negative binomial distribution):

KB,frag(s, d, p, f) =

t2(d,f)−r
∑

k=0

f(k; r, PF )

(

(r + k) · LF + 1(0,∞) (fs) · Ksl

(⌊

d − (r + k)LF

LS

⌋))

+ t2(d, f) · LF ·

∞
∑

k=t2(d,f)−r+1

f(k; r, PF ) (11)

In the first term we sum over all possibilities to haver successful trials withinr + k ≤ t2(d, f) total
trials, wherek denotes the number of failed trials. For eachk we add the number of bits required
for the full fragments (given by(r + k) · LF ) and the average number of bits required for the slack

fragment (if any) when there are
⌊

d−(r+k)LF

LS

⌋

trials available for it. The second term accounts for the

case where within thet2(d, f) allowed trials less thanr successful trials occur, so that consequently
the transmission of the slack trial is not started. The infinite sum on the right hand side can of course
be computed as1 −

∑k=t2(d,f)−r

k=0 f(k; r, PF ).
Please note that the classical scheme is not critically dependent on the presence of feedback, but

the fragment-based scheme is. When the feedback is lost, theclassical scheme would simply repeat
the frame as often as possible within the deadline and the receiver is able to decode it with a certain
probability. In the fragment-based scheme withf < s and without feedback the receiver would never
get the second segment, thus having no chance to fully decodethe frame.

0.2.3 Majority voting scheme

Theclassical-mv scheme is similar to the classical scheme, but the receiver performs bitwise majority
voting on those (erroneous) frames it receives, followed bya CRC check on the resulting frame. In
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contrast to the classical scheme the MAC header requires a separate header checksum ofh bits (see
Footnote 2) but no further combining-related data, i.e.oM,P = 0. The total packet length is therefore
Lmv(s) = oP,Pr + oP,SFD + oM,A + h + s + h. Correspondingly, the transmitter has

t3(d, s) =

⌊

d

Lmv(s)

⌋

(12)

trials at its disposal.
To compute the performance measures, we model the receptionprocess as a time-homogeneous

discrete-time Markov chain(Xn)n≥0 [13]. The stateXn of the Markov chain reflects the number of
received frames with proper PHY and MAC headers but erroneous data part that the receiver has in
its combining cache. The state space is given byS = {0, 1, . . . , t3(d, s) − 1} ∪ {succ, fail} where
succ refers to the success state, in which the receiver either hasreceived a fully correct packet (proper
PHY and MAC header, correct trailing checksum), or, after receiving a packet with proper headers
and erroneous data part, was able to combine the correct packet from the majority-voting algorithm
applied to the new packet and all previously stored copies. The statefail corresponds to the fail state,
in which the deadline has been exhausted without success. The start state isX0 = 0. One time step
of the Markov chain corresponds to one transmission trial ofthe transmitter. To represent the state
transition probabilities, it is convenient to introduce the following abbreviations:

• β = PPH · PMH(0) · (1 − p)s+h represents the probability that the receiver receives a trial
without any errors, and

• v(k, s, h) =
(

∑k
i=⌊ k

2⌋+1
b(i; k, 1 − p)

)s+h

represents the probability that withk independent

erroneous copies of a frame the majority-voting procedure gives a correct frame – to make this
happen, for each bit position in the data part and the trailing checksum more than half of the
received packets must have the correct value.

With these abbreviations one can write the state transitionprobabilities as follows. The statessucc
and fail are absorbing states, i.e. we havepsucc,succ = 1 and pfail,fail = 1. For all statesi ∈
{0, . . . , t3(d, s) − 1} the probability to remain in this state is given by the probability that one of the
PHY or MAC headers is corrupt, i.e.:

pi,i = 1 − PPH · PMH(0)

For i ∈ {0, . . . , t3(d, s) − 1} the probability to reach the success state is given by:

p0,succ = β

p1,succ = β

pi,succ = β + PPH · PMH(0) · (1 − (1 − p)s+h) · v(i + 1, s, h) , (i ≥ 2)

In state 0 only a proper frame reception can lead to a success.In state 1, a success is also only possible
when a proper frame is received, since only two packets (one freshly received, one cached) are not
sufficient for majority voting. In statei ≥ 2 a success is possible if either the received frame is proper,
or if the PHY and MAC headers are proper, the data part and checksum are not proper but the receiver
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is able to combine the packet together using thei + 1 copies it now has (one new,i cached). Finally,
for i ∈ {0, . . . , t3(d, s) − 2} the probability to reach the successor statei + 1 is given by:

pi,i+1 = 1 − pi,succ − pi,i

and from the last statei = t3(d, s) − 1 the only alternative to success is failure, i.e.

pi,fail = 1 − pi,succ

The success probability can be computed from the state transition matrixP as follows:

∂class-mv(s, d, p) = [[Pt3(d,s)]]0,succ (13)

Please note that this majority-voting procedure requires buffer space for up tot3(d, s) frames at the
receiver. Three buffers are the minimum for majority votingto be effective.

To determine the bounded costs for the majority-voting scheme, we partition the state spaceS
into two setsD = {0, 1, . . . , t3(d, s) − 1} and∂D = {succ, fail}. From the construction of the
Markov chain, the states inD are transient and the states in∂D are absorbing. The start statex0 is
in D. In this setup we define the stopping timeT = min {n ≥ 0 : Xn ∈ ∂D}, which is a random
variable. It can be readily verified (either by direct computation or from the Chapman-Kolmogorov
equations) thatPr [T = 1] =

∑

j∈∂D ·px0,j holds and furthermore that fork > 1 we can compute
Pr [T = k] as:

Pr [T = k] =
∑

j∈∂D

∑

i∈D

[[Pk−1]]x0,i · pi,j (14)

Based on this, the bounded costs for the majority-voting scheme are obtained as

K
B,class-mv(s, d, p) = (15)

Lmv(s) ·





t3(d,s)−1
∑

k=1

k · Pr [T = k] + t3(d, s) ·



1 −

t3(d,s)−1
∑

k=1

Pr [T = k]









In order to obtain the unbounded costs for both the majority voting scheme, we use for this and most
of the other Markov models the framework of potential theoryfor Markov chains [13, Sec. 4.2]. This
is a generalization of the theory of hitting times and hitting probabilities, the relevant definitions and
a relevant theorem are paraphrased in Appendix .1. In order to utilize this theorem we have to assign
cost vectors, we have to specify the set of inner states and final states, and we have to ensure that the
final states are reached with probability one within finite time. We can use the following setup:

• The inner states areD = {0, 1, . . . , t3(d, s) − 1}, the final states are∂D = {succ, fail}.

• The costs (bits per trial) are the same in all inner statesi ∈ D and are given byci = Lmv(s).
In the final state∂D = {0} no further transmissions are made, sof = 0.

• The final states are absorbing, all other states are transient, so indeed the final states will be
reached in finite time with probability one.
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The unbounded costsKU,class-mvare then obtained from solving the linear equation system given
in Appendix .1 for the variableφ0, i.e. the average costs for the start stateX0 = 0. However, for
the majority-voting model one twist must be applied: since with an unbounded number of trials there
can be no failure, the failure state should theoretically bedropped and the Markov chain turns into
one with infinite state space. In this case, however, the solution of the linear equation system forφ0

is hard to obtain in closed form. Therefore, the unbounded costs are approximated with the bounded
costs using a very large deadlined.

One cannot expect the majority-voting model to be entirely accurate. When the receiver has
alreadyi > 2 copies in its cache and receives another erroneous copy withcorrect header, it tries
to combinei + 1 copies. From the Markov assumption, this combination trialis independent of the
previous trial to combinei copies. In reality, the combining trials arenot stochastically independent,
sincei of thei+1 copies are identical to the previous combining trial. We will investigate this further
in Section 0.3.

The majority-voting scheme does not critically rely on feedback.

0.2.4 Segment-based schemes

The problem with using a single checksum for the whole packet(as in the classical scheme) is that we
cannot infer any information about positions of bit errors,so each bit is in suspect. By splitting the
data part into smaller segments such that each segment has its own checksum, the errors are confined
to smaller parts and the information in correct segments canbe kept. A key advantage of the segment-
based schemes as compared to other packet combining schemesare the modest buffer requirements.
At the receiver side only one buffer is needed in which the full message can be assembled from the
correct segments.

In the segment-normal scheme thes user data bits are partitioned intoL segments, each having
a size ofc = ⌊s/L⌋ bits (slack segments are stuffed up). To each segment a separate checksum of
h bits is appended, which is computed only over the data bits ofthe segment. The initial frame is
formed by appending all the segments to a PHY header and a MAC header. The overall header size
is oP,Pr + oP,SFD + oM,A + oM,P + h, as we require an additional header checksum and a number
oM,P of bits to encode the segment size. To keep the overheadoM,P small, the most straightforward
approach is to fix a common codebook for a set of up to2oM.P pre-defined segment sizes and to encode
the actual choice of segment size in the header. The total packet size is thenLseg-norm(s, c) =
oP,Pr+oP,SFD+oM,A+oM,P +h+L·(c+h). The transmitter transmits the initial frame. If the PHY
and MAC header are proper, the receiver checks each segment separately and buffers those correct
segments that it has not stored yet. If the receiver possesses all segments of a message, it delivers
the frame to its upper layers and sends afinal acknowledgement. Otherwise, the receiver transmits
an emptyincomplete acknowledgementframe and in response the transmitter re-transmits the whole
initial frame again. The transmitter performs re-transmissions until the deadlined is exhausted. The
number of available trials is given by

t4(d, s) =

⌊

d

Lseg-norm(s, c)

⌋

(16)

Please note that this scheme does not critically depend on successful transmission of acknowledge-
ments.
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The segment-normal scheme, however, does not make optimal use the available time budget, since
it re-transmits segments that the receiver already has. We therefore consider an alternative scheme.
In thesegment-reduced scheme the receiver includes the identifications of the missing segments into
its incomplete-acknowledgement packet. One method to accomplish this is to use a bitmap. In its re-
transmission the transmitter includes only the missing segments, resulting in smaller packets and in
more available retransmission trials within the deadlined. However, the available number of trials is
now random. Again, it suffices for the transmitter to encode the segment sizec into the MAC header.
When the feedback channel does not work, this scheme degenerates into the segment-normal scheme.
The segment-reduced scheme has the beneficial effect that the retransmission frame is much smaller,
consumes less energy, produces less interference, is less likely hit by errors and reaches the receiver
with smaller delay.

Both the segment-normal scheme and the segment-reduced scheme can be modeled with the same
time-homogeneous discrete-time Markov chain model(Xn)n≥0. As a state variableXn we choose
the number of missing segments at the receiver after then-th trial. When the packet consists ofL
segments, the state space is0, . . . , L and the start state isX0 = L. A single segment is correctly
received with probabilityPS = (1 − p)c+h. The probability that the PHY and MAC headers are
proper and thatk out ofM segments in a frame are erroneous is given by (binomial distribution):

r(k,M) = PPH · PMH(oM,P ) · b(k;M, 1 − PS)

With this, the state transition probabilities are as follows. The state 0 corresponds to a success, i.e.
there are no further segments outstanding. This state is absorbing and thereforep0,0 = 1. To go from
statei ∈ {1, . . . , L} to a lower state0 ≤ j < i it is required that the next received packet has proper
PHY and MAC headers and thati−j out of i missing segments are received, i.e.pi,j = r(j, i) for j <
i. Finally, the diagonal elements for statesi ∈ {1, . . . , L} are simply given bypi,i = 1 −

∑i−1
j=0 pi,j.

After collecting the state transition probabilities into astate transition matrixP, the success prob-
ability for the segment-normal scheme can be expressed as:

∂seg-norm(s, d, p) = [[Pt4(d,s)]]0,L (17)

It is possible to derive an expression4 that does not use matrix powers, but this is numerically much
more unstable (especially for small values ofp) than the equivalent computation based on matrix
powers. For the segment-reduced scheme, however, things are more difficult since the number of trials
that can be made within the deadlined is itself random. It would theoretically be possible to replace
the simple Markov model presented here by an extended one which also tracks the accumulated
transmission costs (the final states would then be all stateswith accumulated costs≥ d), but the state
space of such a model becomes very large. Therefore, we rely on a simulation approach to assess the
success probability∂seg-rdcd(s, d, p) and the bounded costsKB,seg-rdcd(s, d, p).

In order to obtain the unbounded costs for both the segment-normal and the segment-reduced
scheme, we again use the framework of potential theory with the following setup:

• The inner states areD = {1, 2, . . . , L}, the final state is∂D = {0}.

4It is shown in [18] that the success probability of the segment-normal and the segment-reduced scheme aftern trials
can be expressed as:

1 +

L
X

i=1

(−1)i
·

 

L

i

!

·

“

1 − PPH · PMH(oM,P ) · (1 − (1 − PS)i)
”n
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• In the segment-normal scheme, the costs (bits per packet transmission) are the same for all
inner statesi ∈ D and are given byci = Lseg-norm(s, c). In the segment-reduced scheme, the
costs in statei ∈ D are given asci = oP,Pr + oP,SFD + oM,A + oM,P + h + i · (c + h). In the
final state∂D = {0} no further transmissions are made, sof = 0.

• The final state is absorbing, all other states are transient,so indeed the final state will be reached
in finite time with probability one.

The unbounded costsKU,seg-normandK
U,seg-rdcdare then obtained from solving the linear equa-

tion system given in Appendix .1 for the variableφL, i.e. the average costs for the start stateX0 = L.
Similar to the case of majority-voting, the bounded costs for the segment-normal scheme can be

expressed as:

KB,seg-norm(s, d, p) = (18)

Lseg-norm(s, c) ·





t4(d,s)−1
∑

k=1

k · Pr [T = k] + t4(d, s) ·



1 −

t4(d,s)−1
∑

k=1

Pr [T = k]









The bounded costs for the segment-reduced scheme are obtained by simulation.
It will be shown that the intermediate checksum scheme provides significant benefit for channels

with higher bit error rates. However, if the channel is extremely good, the larger header and all the
extra checksums are likely wasted.

0.2.5 Segment-based schemes with Luby-type erasure codes

In [12], Luby et al have introduced a class of systematic erasure codes has been introduced in whichk
symbols are encoded inton > k symbols so that reception ofanyk-element subset of then symbols
suffices to successfully decode thek symbols with high probability. Erasure-codes are not designed
for the correction of erroneous symbols but of missing symbols. One symbol, once received, is as-
sumed to be correct. Two key feature of Luby-type codes are that their coding and decoding time
is linear in the number of symbols, and furthermore that theymake only very loose assumptions on
the nature of symbols. In particular, it is possible to use anentire segment including its checksum as
a symbol and the computation of redundant symbols out of the given ones is easy to achieve.[AW]5

When the checksum appended to a segment has good error-detection capabilities, bit errors are trans-
lated into segment erasures and can then be corrected by the code. Therefore, Luby-type codes are
a very interesting extension for the segment-based schemesdescribed so far. To support this, the
transmitter and the receiver must be able to run the coding and decoding algorithm, respectively.

We use these codes in thesegment-erasure scheme. The transmitter first splits thes-bit message
into k segments of sizec = ⌊s/k⌋ bits (a slack segment is stuffed up). To thesek segments then the
coding algorithm is applied, resulting inn > k segments. The code rateR = k/n is assumed to
be fixed. For each trial the transmitter selectsm (with 1 ≤ m ≤ n) of thesen segments and puts
them in the frame. The parameterm is fixed and known to both transmitter and receiver, its purpose
is to give additional control (besides the code rate) on the size of packets. The transmitter indicates
in the MAC header whichm segments have been included. For facilitate stochastic modeling, we
assume in this paper that them segments are chosen randomly and independently, in which case the

5Give details?
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transmitter would need to include a bitmap ofn bits into the MAC header, instructing the receiver
which segments are included.6 The receiver, when the PHY and MAC header are proper, checks all
segments and keeps all segments which are proper and which itdoes not have already stored until it
hask different segments. Then it can successfully decode the packet. Therefore, the receiver must
be able to bufferk distinct segments plus the additional space required for decoding the message and
storing the result. The number of available trials is given by

t5(d, s) =

⌊

d

oP,Pr + oP,SFD + oM,A + oM,P + h + m · (c + h)

⌋

(19)

Please note that this scheme does not critically depend on the feedback channel.
Again we model the transmission process using a time-homogeneous discrete-time Markov chain

(Xn)n≥0. We define as the state the number ofdifferentsegments that the receiver possesses. One
time slot corresponds to one packet transmission by the transmitter. The initial state of the receiver is
X0 = 0 and the common range of allXn is {0, 1, . . . , k}, since after havingk different segments we
can decode.

We start by computing the probability

Ti,δ = Pr [X1 = i + δ|X0 = i] (i ≥ 0,m ≥ δ ≥ 0, i + δ ≤ n)

that a receiver having alreadyi different segments receives with the next trial (with PHY and MAC
header being proper) exactlyδ different segments that differ from alli segments it already has. Sup-
pose that the receiver currently has the segmentsB1 = {b1,1, b1,2, . . . , b1,i} and receives the seg-
ment setB2. For simplicity, we denote the segments simply by the integers 1, 2, . . . , n, so that
B1 ⊂ {1, . . . , n} andB2 ⊂ {1, . . . , n}. Then, from the law of total probability:

Ti,δ =
∑

B2⊂{1,...,n}
δ≤|B2|≤i+δ

Pr [B2 received] · Pr [ |B2 \ B1| = δ|B2 received] (20)

where the sum extends over allB2 ⊂ {1, . . . , n} which have at leastδ segments and at mosti + δ
segments.

We first considerPr [B2 received]. It is possible to receiveB2 = {b2,1, b2,2, . . . , b2,r} (with
δ ≤ r ≤ δ + i) when the transmitter has picked anm-element setB∗

2 for transmission for which the
following conditions hold: (i)B2 ⊂ B∗

2 (ii) Exactly the segments inB2 are received successfully and
the segments inB∗

2 \ B2 are received in error. Therefore:

Pr [B2 received] =
∑

B∗
2
⊂{1,...,n}

|B∗
2
|=m,B2⊂B∗

2

Pr [B∗
2 transmitted]

·Pr [B2 received|B∗
2 transmitted] (21)

From our assumptions, each of the
(

n
m

)

m-element subsets of{1, . . . , n} is equiprobable, which

implies thatPr [B∗
2 transmitted] =

(

n
m

)−1
. Suppose now thatB∗

2 with B2 ⊂ B∗
2 has been sent and

6 For practical implementations the additional header overhead ofn might be too much. As an alternative, one could
pre-define a fixed numberM of different m-element subsets of alln segments and in each trial transmit one of theM

corresponding packets in a round-robin fashion. In the packet header then only the index in theM -set would be given.
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received with proper headers. WhenPS = (1 − p)c+h is the probability of correctly receiving a
segment over a BSC channel andQS = 1− PS is the probability of a reception failure (an erroneous
segment is detected from the segment checksum and then thrown away, which translates into an
erasure) then the probability of receivingB2 = {b2,1, b2,2, . . . , b2,r} whenB∗

2 is transmitted is given
by Pr [B2 received|B∗

2 transmitted] = P r
S · Qm−r

S . Furthermore, the number ofm-element subsets
B∗

2 ⊂ {1, 2, . . . , n} that containB2 = {b2,1, b2,2, . . . , b2,r} as a subset can be obtained as follows:
r out of them places are fixed, for the remainingm − r places a number ofn − r segments can
be chosen, and the number ofm − r-sized subsets ofn − r elements is given by

(

n−r
m−r

)

. Putting
everything together and simplifying we obtain:

Pr [B2 = {b2,1, b2,2, . . . , b2,r} received]

= P r
S · Qm−r

S ·
(n − r)! · m!

(m − r)! · n!
(22)

To computeTi,δ from Equation 20 one can observe that the conditional probability Pr [ |B2 \ B1| = δ|B2 received]
is either zero or one and the computation boils down to determining the number of such setsB2.
Assume thatB2 = {b2,1, b2,2, . . . , b2,r} is received withδ ≤ r ≤ δ + i. The number ofr-
element sets with elements from{1, . . . , n} which contain exactlyδ elements that are not inB1 =
{b1,1, b1,2, . . . , b1,i} is given by:

• the number of subsets of{b1,1, b1,2, . . . , b1,i} with r − δ elements, which is given by
(

i
r−δ

)

,
times

• the number of subsets of{1, . . . , n} \ {b1,1, b1,2, . . . , b1,i} havingδ elements, which is
(

n−i
δ

)

.

Therefore we can expressTi,δ as:

Ti,δ =

i+δ
∑

r=δ

(

i

r − δ

)

·

(

n − i

δ

)

· P r
S · Qm−r

S ·
(n − r)! · m!

(m − r)! · n!
(23)

We next turn our attention to the computation of the state transition probabilitiespi,j = Pr [X1 = j|X0 = i]
of the Markov chain. It is clear thatpi,j = 0 for j < i, since the receivers number of different seg-
ments cannot decrease. Furthermore, it is also clear thatpk,k = 1, since statek is the (absorbing)
success state in which the receiver hask different segments and can decode the message. Let us first
suppose thatm ≥ k, i.e. the source node always transmits at least as many randomly chosen segments
as are required for decoding. Then the state transition probabilities can be obtained as follows. When
the receiver is in statek − 1, it is required to receive the PHY and MAC headers successfully and to
receive at least one additional segment it does not have so far. Therefore:

pk−1,k = PPH · PMH(oM,P )

·
(

Tk−1,1 + Tk−1,2 + . . . + Tk−1,min{m,n−k}

)

which holds since the events that the receiver receives1, 2, . . . , min {m,n − k} segments that it
does not yet have are mutually disjoint. For the diagonal element of statek − 1 we simply have
pk−1,k−1 = 1 − pk−1,k. For all statesi ∈ {0, . . . , k − 2} we can distinguish three cases:
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• For target statesj ∈ {i + 1, . . . , k − 1} we must receive the PHY and MAC headers properly
and exactlyj − i new segments, which happens with probability

pi,j = PPH · PMH(oM,P ) · Ti,j−i

• For the target statej = k we must receive the headers successfully and receivek−i, ork−i+1,
or . . . , orminm,n − k new segments, therefore:

pi,k = PPH · PMH(oM,P )

·
(

Ti,k−i + Ti,k−i+1 + . . . + Ti,min{m,n−k}

)

• The diagonal elementpi,i is one minus the sum of all other transition probabilities.

For the other casem < k the state transition probabilities can be obtained in a similar fashion.
After collecting the state transition probabilities in a transition matrixP, we can express the success
probability as:

∂seg-erase(s, d, p) = [[Pt5(d,s)]]0,k (24)

To compute the unbounded costs, we can apply the framework ofpotential theory (Appendix .1) in a
fashion similar to the segment-normal scheme:

• The inner states areD = {0, 1, . . . , k − 1}, the final state is∂D = {k}.

• The costs (in bits per packet) are for all inner statesi ∈ D given byci = oP,Pr + oP,SFD +
oM,A + oM,P + h + m · (c + h), in the final state no costs are incurred.

• All inner states are transient, the final state is absorbing.

The unbounded costsKU,seg-eraseare then obtained from solving the linear equation system given
in Appendix .1 for the variableφ0, i.e. the average costs for the start stateX0 = 0. For the bounded
costs, after again introducing the hitting timeT = min {n ≥ 0 : Xn ∈ ∂D} we can apply the same
approach as for the segment-normal and majority-voting scheme (see Equations 14 and 15) with
t5(d, s) instead oft4(d, s) and cost termci = oP,Pr + oP,SFD + oM,A + oM,P + h + m · (c + h).

0.2.6 Implementation considerations

An important comment on the segment-based schemes concernstheir implementation. In general,
segment-based schemes can be useful as part of the link-layer error-control strategy and should be
implementable so as to be transparent to the higher layers.

On the transmitter side the following tasks need to be handled for the segment-based schemes:

• Selection of the segment size set.

• For each new transaction an actual segment size must be chosen.

• Partitioning of user data into segments and checksum computation.

• On-the-fly assembly of actually transmitted frames.
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The segment size set must be determined at network configuration time and the mapping of actual
segment sizes to codewords must be pre-configured in both transmitter and receiver. At runtime, in
order to select a good segment size for the current channel conditions, the transmitter needs an esti-
mate of the bit error rate. To simplify implementation, the selected segment size is maintained for the
whole packet transaction, i.e. the initial transmissions and all retransmissions use the same segment
size. Hence, the partitioning of user data into segments andthe computation of segment checksums
needs to be done only once, when the packet is prepared for thetransaction. It is of course preferrable
to perform checksum computation in hardware, but there are also efficient software implementations
available.7 For example, an algorithm developed in [14] for CRC computation requires only four shift
operations and four exclusive-OR’s to process one byte of user data in software.

For the segment-reduced and the segment-erasure scheme potentially no two trials for the same
packet are identical – in the segment-reduced scheme the number of contained segments can shrink
over time, in the segment-erasure scheme segments are randomly chosen. Therefore, for each trial a
new frame must be assembled. The runtime costs of this assembly depend on the transceiver interface.
Transceivers like the IEEE 802.15.4-compliant ChipCon CC2420 have a packet-based interface, i.e.
a buffer with the full packet must be ready before transmission starts, and during transmission this
buffer must not be modified. For the next trial the frame must be assembled anew (at least in parts, the
header does not change). This re-assembly involves copyingof the prepared segments into the packet
buffer. Other transceivers offer an interface in which the processor feeds the bits sequentially into the
transceiver. In this case copying segments is not necessary, as the processor can simply determine the
memory locations from which to read the next data bit on the fly.

In contrast, the implementation complexity of the segment-normal scheme is lower: since in all
trials the same packet is transmitted, the packet needs to beprepared only once and placed in a buffer.

0.3 Results

In this section we show performance results for the different schemes. These results have been ob-
tained either by evaluating the analytical models described in the previous section or by stochastic
simulation. For the segment-reduced scheme only simulation results are available. In the simulations,
for each bit error ratep a number of 50,000 transactions has been simulated.8 Further simulation re-
sults have been produced to validate the analytical models for the classical, fragment, segment-normal
and segment-erasure schemes. For all these schemes the simulation results and the analytical results
are almost identical, so we do not show the simulation results for validation purposes. The case of the
majority-voting scheme is discussed separately.

The major parameters have been chosen as follows: the user message size iss = 1024 bits,
the preamble size isoP,Pr = 64 bits, the size of the SFD field isoP,SFD = 8 bits, the number
of allowable bit errors in the preamble isoP,0 = 2 bits, the size of the common parts of the MAC
header isoM,A = 24 bits, and the size of the checksums ish = 16 bits. The sizeoM,P for the MAC
extension header (without header checksum) for the majority voting scheme isoM,P = 0, and for all

7Many commercially available transceivers for wireless technologies like IEEE 802.11 or IEEE 802.15.4 have the ability
to compute a CRC checksum, but they typically do not more thanappending it to an outgoing packet and do not provide
mechanisms to compute multiple-checksums at user-defined points in a frame.

8This leads to very tight confidence intervals. More specifically, the 99% confidence interval for the success probability
is at most 0.0058 (compare [p. 417][1]). The confidence intervals are not shown in the figures.
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the segment-based schemes it isoM,P = 4 bits encoding the segment size.9 The bit-error ratep has
been varied between10−4 and10−1. More specifically, the range of BER exponents has been sampled
with 800 equally spaced points. In order to compare all schemes under ideal conditions, we assume
that p is known precisely to the transmitter and that the fragment-scheme and all segment-based
schemes can choose optimal fragment / segment sizes accordingly. The code rate for the segment-
erasure scheme has been fixed to 2/3, and the numberm of segments included in a transmission is
always set to(k + n)/2 where againk is the number of segments required for the user data (which
depends on the segment size) andn = (3/2) · k is the number of coded segments. The deadlined has
been chosen asd = 11400 bits, which is sufficient for the classical scheme to performten trials. The
segment-based schemes with fixed-size packets (segment-normal, segment-erasure) have in general
less than ten trials at their disposal, depending on their configuration.

0.3.1 Selection of segment and fragment size

It is intuitively clear that a single fixed segment sizec will not give the optimal results for all bit error
ratesp. At the same time, when only a few bits in the header are used asa codebook for a set of
pre-defined segment sizes, it becomes important to choose anoptimal (w.r.t. success probability) or
at least a good segment size set. Conceptually, this problemis similar to the problem of finding an
optimal fixed-size set of reproduction points for a given random variable in quantization theory [4],
[6]. However, to exploit this similarity and to apply well-known algorithms like for example Lloyd’s
Algorithm, an explicit characterization of the optimal segment sizec for a given bit error ratep is
required, which is hard to obtain.

We have therefore adopted a more pragmatic approach. We use the setC = {8, 16, 32, 64, 128, 256, 512}
as the set of allowable segment sizes. This choice has the appeal that it uses integer multiples of octets
(which is important in practical implementations) and alsoavoids any slack segments for our chosen
user data sizes = 1024 bits. In Figure 1 we show for the segment-normal and the segment-erasure
scheme for varying bit error ratep the segment sizec∗ which optimizes the success probability forp,
i.e. we show for each BER value the values

arg max
{

∂seg-norm(s, d, p; c) : c ∈ C
}

and
arg max

{

∂seg-erase(s, d, p; c) : c ∈ C
}

respectively. It can be observed that these optimal segmentsizes differ for the segment-normal and
segment-erasure scheme. From these results we extract for both schemes a mapping from the bit error
rate to the optimal segment size fromC and use this for the following evaluations of the segment-based
schemes. For reference, the mappings are reported in Tables1 and 2.

It can be seen that precise knowledge ofp is required to make the optimal selection. To inves-
tigate this further, we compare in Figure 2 for the segment-normal scheme the achievable success
probabilities with optimal segment sizes and fixed segment sizes of 32 and 64 bits, respectively, in

9This includes the segment-erasure scheme as well, see the discussion in footnote 6 on how to keep the extension header
size small by exchanging the random selection of segments bypreparing a few pre-defined selections. We follow the
hypothesis that the random selection underlying the Markovmodel provides a good approximation to the results that would
be obtained with the pre-defined-selection approach. With two bits for encoding the segment size (see Section 0.3.1) there
are two bits available for specifying a pre-defined selection.
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Figure 1: Optimal segment size fromC = {8, 16, 32, 64, 128, 256, 512} for varying bit error ratep
and the segment-normal and segment-erasure scheme

BER range Optimal segment size

p ≤ 0.01024 64
0.01025 ≤ p ≤ 0.014 32
0.015 ≤ p 16

Table 1: Optimal segment sizes (w.r.t.C = {8, 16, 32, 64, 128, 256, 512}) versus bit error ratep and
the segment-normal scheme

BER range Optimal segment size

p ≤ 0.00315 128
0.00316 ≤ p ≤ 0.00763 64
0.00764 ≤ p ≤ 0.0137 32
0.0138 ≤ p 16

Table 2: Optimal segment sizes (w.r.t.C = {8, 16, 32, 64, 128, 256, 512}) versus bit error ratep and
the segment-erasure scheme
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Figure 2: Success probability of the segment-normal scheme for varying bit error ratep and for three
different choices of the segment size: optimal, fixed with 64bits and fixed with 32 bits.
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Figure 3: Success probability of the segment-erasure scheme for varying bit error ratep and for three
different choices of the segment size: optimal, fixed with 64bits and fixed with 32 bits.
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Figure 4: Success probability of the segment-reduced scheme for varying bit error ratep and for three
different choices of the segment size: optimal for the segment-normal scheme, fixed with
32 bits and fixed with 16 bits.

the “interesting” range of bit error rates. It can be seen that in this range of BERs it is these two
fixed segment sizes that the optimal scheme would select. Only for BERsp ≥ 0.015 the optimal
scheme would select a segment size of 16 bits, but the difference between the results for 32 bits and
the optimal scheme (with 16 bits) in this range is hardly visible. Therefore, it practically suffices to
restrict the segment-normal scheme to the two segment sizesof 64 and 32 bits and to switch between
these. The segment size could then be encoded with one bit.

For comparison we show in Figure 3 the same plots for the segment-erasure scheme. It can be
observed that it does not suffice to restrict to segment sizesof 32 and 64 bits, but the segment size
of 16 bits (not shown in the figure) is needed as well. Therefore, the segment-erasure scheme poses
higher requirements on the accuracy of any bit error rate estimation scheme, but two bits are sufficient
to cover the interesting range.

The case of the segment-reduced scheme is harder to analyze,since no analytical formulas are
available for the success probability and the simulation effort required to check all allowed segment
sizes fromC for all 800 investigated BER values is prohibitive. We show in Figure 4 the success
probability when using the segment-reduced scheme with fixed segment sizes of 32 and 16 bits,
respectively, and additionally when using for a given BERp the segment size that would be optimal

Copyright at Technical University Berlin. All
Rights reserved.

TKN-09-001 Page 21



TU BERLIN

BER range Optimal segment size

p ≤ 0.0153 32
0.0154 ≤ p 16

Table 3: Approximately optimal segment sizes versus bit error ratep and the segment-reduced
scheme

for the segment-normal scheme. There is a range of bit error rates where the optimal segment sizes
for the segment-normal scheme are not appropriate for the segment-reduced scheme. From the data
underlying Figure 4 we extract for the segment-reduced scheme the segment-size selection policy
given in Table 3.

Another issue is the choice of the fragment size in the fragment scheme. From Equations 8 or 9
(considering the cases without and with slack fragments) itis hard to obtain the optimal fragment size
for a given valuep of the bit error rate – for fixed value ofp a curve showing the success probability
versus the fragment size would show a sawtooth pattern. Therefore, we have evaluated for each
BER valuep the success probability achievable with each fragment sizef ∈ {8, 9, 10, . . . , 512}
and determined the optimum fragment size. In Figure 5 we compare the optimal success probability
with the success probability achievable with two fixed values of the fragment size (57 and 61 bits),
which both are optimal for a wide range of BERs. It can be observed that the curves are hardly
distinguishable, so in practice it suffices to either restrict to one of these values or to switch between
these two at a certain BER (forp ≤ 0.0147 the optimal value is 57, above that 61).

0.3.2 Major results

We first compare the success probability of all schemes underidealized conditions. This means that
the bit error ratep is known, the fragment scheme is allowed to choose the optimal fragment size and
the segment-based schemes choose their optimal segment size from the setC = {8, 16, 32, 64, 128, 256, 512}
according to the results obtained in the previous section.

The results are shown in Figure 6. The following points are noteworthy:

• The first, not very surprising, result is that all schemes arebetter than the classical scheme.

• There are three schemes which do not critically rely on feedback: the segment-normal scheme,
the segment-erasure scheme and the majority-voting scheme(without feedback the segment-
reduced scheme would degenerate into the segment-normal scheme). Between these three there
is a clear ordering: segment-normal is clearly inferior to segment-erasure, which in turn is
inferior to majority-voting, but comes close to it without having its buffer requirements.

• The segment-reduced scheme is the best one over a wide range of bit error rates, only for high
bit error rates the segment-erasure and the majority votingschemes are better. Furthermore,
the segment-reduced scheme is always better than the fragment scheme (whichs performance
declines very quickly). Stated differently: the segment-reduced scheme makes much better use
of the ideal feedback channel than the fragment scheme and atthe same time does not depend
critically on feedback. Therefore, it can even be used on asymmetric wireless links where the
feedback channel is much worse than the forward channel.
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Figure 5: Success probability of the fragment scheme for varying bit error ratep and for three differ-
ent choices of the fragment size: optimal, fixed with 57 bits and fixed with 61 bits.
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Figure 6: Success probabilities of all schemes under idealized conditions for varying BERp
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Figure 7: Unbounded costs of all schemes under idealized conditions for varying BERp

• The performance difference between segment-normal and segment-reduced gives an idea about
the value of feedback.

It should also be kept in mind that we have made no attempt to fully optimize the segment sizes for
the segment-based schemes, we have restricted our attention to optimization over a small setC of
selections.

We next compare the unbounded costs, which for all schemes are shown in Figure 7.10 The
range of bit error rates shown in the graph has been restricted so that the differences for low bit
error rates are still visible. For very low bit error rates the classical scheme and the majority voting
schemes are the best (since they have no or very little frame overhead), for all the other schemes their
respective overhead becomes visible – at low bit error ratesthe additional error handling capabilities
of the other schemes are not needed and the overhead is wasted. The fragment-based scheme has
the largest overhead, followed by the segment-reduced scheme. The larger overhead of the segment-
reduced scheme over the segment-normal and segment-erasure schemes is caused by the fact that the
segment-reduced scheme chooses smaller segment sizes thanthe other schemes for the low bit error
rates. The additional overhead of segment-reduced pays outas the bit error rate increases – this is also

10Please keep in mind that the choice of segment sizes and fragment sizes had the goal to optimize for the success
probability, not for the transmission costs.
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Figure 8: Bounded costs of all schemes under idealized conditions forvarying BERp

true for the other segment-based schemes and the fragment scheme. The observable “nonlinearities”
in the curve for the segment-erasure scheme and the fragment-based schemes are due to the change
of segment/fragment sizes asp varies.

We finally show in Figure 8 the bounded costs for all the schemes. For the low bit error rates
the results are similar to those for the unbounded costs. Thevisible differences at the high bit error
rates reflect how many bits each scheme can transmit within the given deadline of11, 400 bits. This
deadline is chosen so that for the classical scheme ten trials are available, the overhead of the other
schemes reduces their number of trials to at most nine for theschemes with the lowest overhead (not
considering the segment-reduced scheme with its variable packet lengths). If the deadline would be
slightly increased to accommodate the overheads, the picture would change.

0.3.3 Majority voting

As we have discussed in Section 0.2.3, we do not expect that the analytical model for the majority-
voting scheme makes very accurate predictions of success probabilities, since in practice subsequent
combining trials arenot independent as it is assumed in the model: If a receiver with three copies has
for one bit position two wrong votes, a fourth packet can at most equalize the votes for this position
but it does not enable correct decoding. Under the independence assumption, all four observations
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for this bit are drawn freshly and not taken from the cache. InFigure 9 we compare the analytical
results for the success probability with simulation results. The simulation models the transmission of
individual bits and the real caching behaviour of the receiver. As expected, the analytical results are
more optimistic than the simulation results.

0.4 Related work

In general, the segment-based schemes considered here are packet combining schemes [15, 2, 9].
Many packet combining schemes have been proposed and investigated, several of them, e.g. [7], [16],
are designed for particular classes of coding schemes (here: soft-decoding Viterbi decoders). The
segment-based schemes have been introduced under the name intermediate checksum schemes in
[17]. To the best of the authors knowledge, this was the first paper discussing this class of schemes,
except from [10], where the approach is briefly sketched but not followed anymore. In [5] a very
similar approach has been designed, implemented and evaluated in the context of wireless sensor
networks. They consider that the allowed frame size is in general smaller than the message size.
The message is fragmented into small blocks, several of which can fit into a frame. The focus of
the protocol is on efficiently streaming the blocks such thatone frame can at the same time contain
retransmissions of earlier failed blocks and new blocks from the same or the next message. They also
suggest a cooperative version of the intermediate checksumscheme, something, which has also in
other contexts been considered a very rewarding addition tolink layer schemes [3]. However, none
of these works consider deadlines, and furthermore this paper is to the best of the authors knowledge
the first paper combining segment-based schemes with (Luby-type) erasure codes.

0.5 Conclusions

The segment-based schemes presented in this paper have beendemonstrated to achieve significant
gains in terms of success probability and number of transmitted bits for more error-prone chan-
nels, while having only moderate buffer requirements at thereceiver. Therefore, these schemes
are a very attractive approach for memory-constrained stations like sensor network nodes. The
segmentation-based approach is useful for not too small message sizess which occur for example
in re-programming operations in sensor networks.

Among the investigated schemes the segment-normal scheme has the worst performance, but does
not critically rely on the feedback channel and furthermorerequires only one frame construction at
the transmitter side. On the other hand, the segment-reduced scheme shows the best performance over
a wide range of bit error rates but its performance depends onthe quality of the feedback channel and
furthermore the transmitter must assemble a new frame for each trial. The segment-erasure scheme,
which achieves better performance than the segment-normalscheme, does not depend on feedback
and it can be configured (by choosingm = n) so that one frame assembly suffices.

Therefore, one of the natural next steps would be a synthesisof the segment-erasure and the
segment-reduced scheme, in which the selection of segmentsat the transmitter is controlled by feed-
back obtained from the receiver. There are many further opportunities for future research, for example
a more comprehensive exploitation of the design space of thesegment-erasure codes (choices of code
rate,m, etc.), incorporation of schemes for bit error rate estimation, adaptation of chosen segment

Copyright at Technical University Berlin. All
Rights reserved.

TKN-09-001 Page 28



TU BERLIN

sizes based on the re-transmission history of previous transactions, an experimental evaluation, and
many others.

.1 Potentials of Markov chains

Be (Xn)n≥0 a time-homogeneous Markov chain with discrete (i.e. finite or countably infinite) state
spaceS and state-transition matrixP. The state space is partitioned intoinner statesD andboundary
statesor final states∂D so thatS = D ∪ ∂D. Suppose thatc = (ci)i∈D and f = (fi)i∈∂D are
non-negative vectors representing the costsci when the chain is in the inner statei ∈ D and the costs
fi when the chain is in the boundary statei ∈ ∂D. Let the random variableT be the hitting time for
the boundary:T = inf {n ≥ 0 : Xn ∈ ∂D}. Set

φi = Ei

[

∑

n<T

c(Xn) + f(XT )1T<∞

]

Thenφi is the expected total costs when the chain starts in stateX0 = i and operates in the inner
statesD, each time incurring a costci, until it reaches a final state in∂D, incurring a final cost
corresponding to the final state. The final costs are incurredonly when the hitting timeT is finite.
Then the following holds [13, Theorem 4.2.3]:

• The potentialφ = (φi)i∈S satisfies:

{

φ = P · φ + c : in D
φ = f : in ∂D

(25)

• If Pri [T < ∞] = 1 (i.e. the probability to hit the final states when the starting state isX0 = i)
for all i then Equation 25 has at most one bounded solution.

In other words, we are looking for a solution of the system of linear equations given in 25.
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