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Abstract

Almost all Automatic Repeat reQuest (ARQ) protocols rely on checksums to let the receiver decide
about the presence of transmission errors. If the checksum is wrong aretransmission takes place. In
case of transmission errors often only a few bits are erroneous, but in aframe retransmissionall bits
are transmitted again, including the correct ones. This paper introduces the so-calledintermediate
checksum framing scheme, which attempts to rescue most of the correct bits and to restrict retrans-
missions only to those parts of a frame where bit errors actually occured. We specifically consider the
case where a deadline is associated to packets and the number of retransmissions is bounded.
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Chapter 1

Introduction

Almost all Automatic Repeat reQuest (ARQ) protocols [17, 10] rely onchecksumsto let the receiver
decide about the presence of transmission errors. If the checksum is wrong, the receiver provides
the transmitter with appropriate feedback, which triggers a frame retransmission. When the channel
bit error rate is not too high, often only a few bits are erroneous, but in aframe retransmissionall
bits are transmitted again, including the correct ones. In [26] the author has introduced the so-called
intermediate checksum framing scheme(ICF), which attempts to rescue most of the correct bits and
to restrict retransmissions only to those parts of a frame where bit errors actually occured; a similar
idea is briefly sketched in [16]. A distinguishing feature of the intermediate checksum approach is
that it does not rely on coding, but requires only the ability to compute checksums. Since this can
easily be done in software, the intermediate checksum scheme is readily implementable on top of
commercial transceivers, like for example the ChipCon CC2420 transceiver that is compliant to the
IEEE 802.15.4 standard [1].

This paper differs from [26] in the following ways:

• The comparison of transmission with the classical header-data-checksumscheme and the inter-
mediate checksum scheme for the case of an unbounded number of retransmissions is refined,
and in addition the average number of bits required until success is evaluated.

• The design of intermediate checksum schemes under a deadline constraintis investigated and
different design options are compared and evaluated.

In this paper we frequently assume binary symmetric channels (BSC), i.e. a channel model in which
bit errors occur independently and with the common bit error ratep ∈ (0, 1). Furthermore, we
make throughout the assumption thatp is known. In [26] a simple scheme for estimatingp from the
success or failure of packet and chunk transmissions is described. Therefore, in this paper this issue
is neglected.
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Chapter 2

The Intermediate Checksum Approach

The traditional packet format used in many protocol is shown in the upper part of Figure 2.1.
This traditional format consists of a packet header of sizeo bits, the user data of sizes bits and a

packet trailer of sizeh bits, which is usually the checksum. The overall packet size is thusl = o+s+h.
The checksum covers both the packet header and the data part. When the receiver detects a checksum
error, it drops the whole packet and sends a negative acknowledgement. Dropping a whole packet,
however, is a waste of information, since typically only a few bits in a packet are wrong.

Many schemes have been devised to make effective use of the information contained in the erro-
neous packet copy. Such schemes are called type-II or type-III hybrid-ARQ schemes [17, 12, 13]. A
simple example of a type-II ARQ scheme is bit-by-bit majority voting: Once the receiver has received
at least three erroneous versions of the same packet, it can guess what the received packet should be
by applying a majority voting procedure to all bits. Other schemes are discussed for example in
[25, 12].

The scheme we consider here is constructed in another way. The problemwith using a single
checksum for the whole packet (as in the classical scheme) is that we cannot infer any information
about positions of bit errors, so each bit is in suspect. By segmenting the packet into smaller chunks
such that each chunk is equipped with an own checksum, the error information can be localized
and the information in correct chunks does not need to be thrown away. Akey advantage of this
scheme is that it does not rely on coding but on (much easier) checksum computations. This allows
implementation on top of commercial transceivers like the ChipCon CC2420 transceiver [1], and fur-
thermore checksum computations on the receiver side are much more energy-efficient than decoding
algorithms.

To put this approach into a protocol, some additional rules are needed: in the intermediate check-
sum scheme thes user data bits are partitioned intoL chunks, each having a raw size ofc = s/L bits,

Header Data

ChkExt. Header Data Chk Data Chk Data Chk

Chk

Figure 2.1: Traditional packet format and intermediate checksum packet format
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to which a checksum ofh′ bits is appended (for simplicity we do not consider slack chunks). A frame
is formed by appending all the chunks to a frame header of sizeo′ ≥ o bits, and the overall frame has
sizeo′ + h + L · (c + h) > o + s + h bits. The increased header sizeo′ > o results from the fact
that the header needs an extra field for the intermediate checksum scheme.Specifically, the chunk
sizec needs to be stored. Furthermore, the MAC header and the extra field needto be protected by a
separate header checksum of sizeh bits. For simplicity in this paper we assume thath′ = h holds.

The transmitter transmits this initial frame. The receiver behaves as follows: ifit detects an error
in the frame header, the whole frame is discarded and the transmitter has to retransmit the full frame.
If the header is correct, the receiver checks each chunk separatelyand buffers the correct chunks. If
the receiver finds all chunks in its buffer, it delivers the frame to its upper layers and sends afinal
acknowledgement. In the other case, different schemes are investigated in this paper:

• Complete scheme: The receiver transmits an emptyincomplete acknowledgementand in re-
sponse the transmitter re-transmits the whole packet again. In this case the extended header
needs only to specify the chunk sizec, the receiver can infer the number of chunks and the size
of a slack chunk easily from knowledge ofc and the total received packet size.

• Reduced scheme: The receiver includes the identifications of the missing chunks into its
incomplete-acknowledgement packet. One method to accomplish this is to use a bitmap. In
its re-transmission the transmitter includes only the missing chunks. Again, it suffices for the
transmitter to include the chunk sizec into the extended header, since the receiver can at any
time infer the number and identity of the chunks present in a packet from the total packet size
and his own knowledge of missing chunks. The reduced scheme has the beneficial effect that
the retransmission frame is much smaller, consumes less energy, produces less interference, is
less likely hit by errors and reaches the receiver with smaller delay.

• Redundant scheme: A possible drawback of the reduced scheme is that for increasing number
of trials it (hopefully) produces shorter and shorter packets, as more and more of the chunks are
successfully received. However, this also means that relatively more and more packet headers
are transmitted as time progresses – the time budget is hence not used optimally. When the
original packet consists ofL chunks, the re-transmission packets again consist ofL chunks,
but theseL chunks are used to repeat the yet unacknowledged chunks a number of times (the
receiver again indicates the identification of the missing chunks in his incompleteacknowl-
edgement). For example, when the initial packet consists ofL = 10 different chunks, out of
which the receiver receives all but chunks 4, 5 and 8, the retransmittedpacket consists of four
times a copy of chunk 4, and of three copies of chunks 5 and 8, respectively. In this scheme
the transmitter must specify the chunk sizec as well as the true number of different chunks in
the packet. In the initial packet the numberL = 10 would be transmitted, in the first retrans-
mission the number 3 would be transmitted. This information, together with the additional rule
that all outstanding chunks are replicated fairly until all chunks are exhausted, suffices to let
the receiver figure out all necessary information.

Either way, the retransmissions continue until the receiver has all chunksin its buffer or until the
deadline expires.

It will be shown that the intermediate checksum scheme provides significantbenefit for channels
with higher error rates. However, if the channel is extremely good, the larger header and all the extra
checksums are likely wasted.
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Chapter 3

Markov Model

In this section we develop a discrete-time Markov chain model [19, 23] that covers the complete
scheme and the reduced scheme. The purpose is to compare send-and-wait protocols using the clas-
sical packet formats and the intermediate-checksum scheme with respect tothe number of frames
needed to transmits user data bits, and with respect to the total number of bits needed to transmit the
s user data bits (goodput ratio) in the reduced scheme. To ease analysis, we assume the BSC channel
model with bit error probabilityp. We assume that the send-and-wait protocol is used. All used check-
sums are wide enough to provide a reasonable approximation to perfect checksums. Furthermore, for
simplicity we assume a perfect back channel, i.e. acknowledgements get never lost.1

A discrete-time Markov chain is adequate, when we associate one trial to transmit a frame with a
time slot of the Markov chain. The BSC assumption ensures that the memorylessproperty of Markov
chains indeed applies and that the Markov chain is time-homogeneous.

As a state variableXn, we take the number of yet unacknowledged chunks at the transmitter side
after then-th trial. When we foresee a maximum number ofL chunks per packet, the state space is
0, . . . , L. It is helpful to create a sketch of the possible state transitions (in the following figure with
L = 4):

0 1 2 3 4

We now determine the state transition probabilities. Because of the BSC assumption, a single
chunk is erroneous with probability

QC = 1 − (1 − p)c+h

and correct with probability
PC = 1 − QC = (1 − p)c+h

1Acknowledgements can easily be accommodated by increasing the header sizeo′ according to the size of acknowl-
edgement packets.
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The header (including its checksum) is erroneous with probability

QH = 1 − (1 − p)o′+h

and correct with probability
PH = 1 − QH = (1 − p)o′+h

The probability that the header is correct and thatk out ofM chunks in a frame are erroneous is given
by (binomial distribution):

r(k, M) = PH · b(k; M, QC) = (1 − p)o′+h ·

(
M

k

)
·
(
1 − (1 − p)c+h

)k
·
(
(1 − p)c+h

)M−k

(whereb(k; n, p) =
(
n
k

)
·pk ·qn−k for k ∈ {0, . . . , n} is the probability mass function of the binomial

distribution with parametersn andp).
For our example withL = 4 the transition matrix becomes

P =





1 0 0 0 0
r(0, 1) 1− 0 0 0
r(0, 2) r(1, 2) 1− 0 0
r(0, 3) r(1, 3) r(2, 3) 1− 0
r(0, 4) r(1, 4) r(2, 4) r(3, 4) 1−




(3.1)

where the first row corresponds to state 0, the second row to state 1, andthe last row to state 4.
Furthermore, the entries1− are chosen such that the respective row sums up to one. For thei-th row
(i ∈ {1, . . . , L + 1} since matrix elements are counted starting from one) of the matrixP (i ∈ N) the
diagonal elements are given by:

1 −
i−2∑

j=0

r(j, i − 1) = 1 − PH

i−2∑

j=0

b(j; i − 1, QC) = 1 − PH · (1 − b(i − 1; i − 1, QC))

= 1 − PH ·
(
1 − Qi−1

C

)

Please note that sinceP is a lower triangular matrix, the diagonal elements ofP correspond to its
Eigenvalues. Since all Eigenvalues are distinct,P is diagonalizable.

The protocol starts at initial stateλ = eL and terminates once the target stateA = {0} has been
reached.

Forp ∈ (0, 1) the state0 is an absorbing state, all other states are transient states. It can be easily
checked that state0 is reached with probability one from an arbitrary start state.2 And indeed, the
stochastic row vectorπ = (1, 0, 0, . . . , 0) is the unique stationary distribution ofP, i.e. it is the only
stochastic row vector satisfying

π = π · P

We finally compute an expression for the success probability when onlyn trials are allowed. This
success probability is then given by:

[[Pn]]L+1,1

2This follows from a straightforward application of a theorem on hitting probabilities [19, Theorem 1.3.2] for the state
setA = {0}.
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SinceP is diagonalizable, it is clear that the matrix powerPn can be written as follows:

Pn = U ·





1 0 0 0 . . . 0 0
0 λn

1 0 0 . . . 0 0
0 0 λn

2 0 . . . 0 0
. . . . . .
0 0 0 0 . . . λn

L−1 0
0 0 0 0 . . . 0 λn

L




· U−1

for some invertible matrixU which has the Eivenvectors as its columns, and by settingλi = 1 −
PH(1 − Qi

C). As a result, we can represent the success probability as follows:

[[Pn]]L+1,1 = a0 + a1 · λ
n
1 + a2 · λ

n
2 + . . . + aL · λn

L

for some uniquely determined coefficientsa0, . . . , aL that are still unknown. Since for eachi ∈
{1, . . . , L} we have0 < λi < 1 and since furthermore forn → ∞ the success probability becomes
one, we have that:

1 = lim
n→∞

[[Pn]]L+1,1 = a0

SinceP0 = I, we have that:

0 = [[P 0]]L+1,1 = a0 + a1 + . . . + aL

and considering thata0 = 1 we readily havea1 + a2 + . . . + aL = −1. Now we consider the case of
n = 1, for whichPn = P and correspondingly[[P ]]L+1,1 = r(0, L) = PH · (1 − QC)L. From this
we have:

PH · (1 − QC)L = a0 + a1 · λ1 + . . . + aL · λL (3.2)

= 1 + a1 · (1 − PH · (1 − QC))

+a2 · (1 − PH · (1 − Q2
C))

+ . . .

+aL · (1 − PH · (1 − QL
C))

= PH ·

(
1 +

L∑

i=1

ai · Q
i
C

)

Expanding the left-hand-side of this equation and performing a comparisonof coefficients ofQC

gives the solutions:

ai = (−1)i ·

(
L

i

)
i ∈ {0, . . . , L}

Since the coefficientsai are uniquely determined and since the proposed choice of theai is indeed a
solution to Equation 3.2, we have found the right solution. Summarizing, the success probability for
n allowed trials is given by:

σ(c, L, p, n) = Pr [Success] = [[Pn]]L+1,1 = 1 +
L∑

i=1

(−1)i ·

(
L

i

)
·
(
1 − PH(1 − Qi

C)
)n

(3.3)

It should be noted, however, that this explicit expression is numerically much more unstable (espe-
cially for small values ofp) than the equivalent computation[[Pn]]L+1,1 based on matrix powers /
iterations on the initial state distribution vector.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-08-002 Page 7



TU BERLIN

Chapter 4

The case of an unbounded number of
retransmissions

4.1 Expected number of frames

We now attack the question of how many frames the intermediate checksum scheme (more specifi-
cally: the complete and the reduced scheme) needs on average to be successful, i.e. to reach the final
state0 (assuming an unlimited number of retransmissions). Referring to [19, Theorem 1.3.5]1 and
using the abbreviationki = k′

i to denote the average number of steps that is needed for the Markov
chain to reach the final state0 when the chain starts in statei, we can set up the following linear
equations:

k0 = 0

k1 = 1 + p1,1 · k1

= 1 + (1 − r(0, 1)) · k1

k2 = 1 + p2,1 · k1 + p2,2 · k2

= 1 + r(1, 2) · k1 + (1 − r(0, 2) − r(1, 2)) · k2

kn = 1 +
n∑

i=1

pn,iki

= 1 +

n−1∑

i=1

r(i, n) · ki +

(
1 −

n−1∑

i=0

r(i, n)

)
· kn

1Be I the (finite or countably infinite) state set of a Markov chain(Xn)n∈N0
and beA ⊂ I with A 6= ∅. The

hitting timeHA is a random variable associated to(Xn)n∈N0
that has rangeN0 ∪ {∞} and which is defined asHA =

inf {n ≥ 0 : Xn ∈ A}. For starting stateX0 = i the average hitting time is defined askA
i = E

ˆ

HA|X0 = i
˜

. Then [19,
Theorem 1.3.5] asserts that thekA

i are the minimal non-negative solution of the following system of equations:

ki =



0 : i ∈ A
1 +

P

j /∈A
pi,jkj : i /∈ A

where thepi,j are the transition probabilities from statei to statej contained in the state transition matrixP.
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Figure 4.1: Average number of frames for the traditional scheme and the intermediate checksum
scheme for varying bit error ratep

= 1 +
n−1∑

i=1

r(i, n) · ki + (1 − PH · (1 − Qn
C)) · kn

The complexity of direct expressions forkn would quickly become infeasible. We therefore provide
an iterative solution. We readily havek0 = 0 andk1 = 1

r(0,1) . For generaln we can solve forkn as
follows:

kn =
1 +

∑n−1
i=1 r(i, n) · ki∑n−1
i=0 r(i, n)

(4.1)

This last equation allows to compute thekn from the previously computed valueskn−1, . . . , k1.
We discuss a numerical example. We compare the scheme with traditional packetformat and

the intermediate checksum scheme (complete and reduced scheme) for the average number of frames
required until success. We fixo = 100 bits as the overhead of the traditional packet format, whereas
o′ = 116 bits is the overhead of the intermediate checksum scheme. Checksums areh = 16 bits long
in both cases. We want to transmits = 1000 bits of user data, which in the intermediate checksum
case is split overL = 4 chunks ofc = 250 bits size each. The expected number of trials for the
intermediate checksum scheme is justk4, whereas for the Send-And-Wait protocol the number of
trials for the traditional scheme is a geometric random variable with expectation:

1

(1 − p)o+s+h

Copyright at Technical University Berlin. All
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p traditional scheme intermediate checksum
1.0E-5 1.0112392 1.0119644
1.0E-4 1.1180886 1.1184505
5.0E-4 1.747466 1.5832658
0.001 3.054252 2.1931293
0.003 28.590128 5.9287066
0.005 268.81122 14.1644535
0.006 825.63873 21.569471
0.007 2538.9705 32.673874
0.01 74321.445 111.66118

Table 4.1: Average number of frames for the traditional scheme and the intermediate checksum
scheme for varying bit error ratep

These two schemes are compared under the given parameters and for varying bit error ratep in
Figure 4.1 (please note the logarithmic scale on both axes), and some numerical results are displayed
in Table 4.1. Looking at these numbers shows that using intermediate checksums has no advantage
for bit error rates below10−4, since the expected number of trials are almost identical, but interme-
diate checksum requires more overhead. However, for higher bit error rates the advantage becomes
obvious.

However, the comparison given here is not entirely fair: protocols like IEEE 802.11 give users
the opportunity to fragment the user data into a number of smaller packets [14], each one having its
own header. However, it is shown in [26] that even when IEEE 802.11 isallowed to pick the optimal
fragment size given knowledge ofp, the intermediate checksum scheme is still significantly better,
i.e. requires much fewer frames. The optimal number of user bits in such a fragment is for knownp
given by:

sopt(p) =
−(o + h)

2
−

1

2 log(1 − p)
·
√

(o + h) log(1 − p) ((o + h) log(1 − p) − 4) (4.2)

whereo ≤ o′ is the frame overhead (which without intermediate checksums can be smaller).This
solution results from an optimization of the goodput of the classical framing scheme, which is given
by

G(s) =
s

E [THDTF ] · (o + s + h)
=

s(1 − p)(o+s+h)

o + s + h
(4.3)

whereTHDTF is a geometric random variable describing the number of trials that are needed to
successfully transmit the frame. We could similarly for the intermediate checksum scheme use the
chunk size that optimizes the per-chunk-goodput. This optimal chunk size isgiven by:

copt(p) = −
h

2
+

√
h(h log(1 − p) − 4)

4 log(1 − p)
(4.4)

For the sake of completeness we repeat the comparison already presented in [26] for the average
number of frames required by the intermediate checksum scheme with optimum chunk sizes and the
classical scheme with fragmentation and reassembly using the optimal fragmentsizes. The average
number of frames required until success versus the bit error rate is shown in Figure 4.2.
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4.2 Expected number of bits

Next we turn our attention to another question: how manybits does the intermediate checksum
scheme (specifically: the reduced scheme) require on average to successfully transmits user data
bits? Stated differently: what is the overhead of the intermediate checksum scheme?

We approach this question by resting on first-step analysis [24, Sec. 3.4]. In a nutshell, one
conditions (by the law of total probability) on the state of the chain after one step, and from now on,
by the Markov property, we can look at the chainX1, X2, X3, . . . as being a new Markov chain with
known start state. In the present case the approach goes as follows. Be bi = bAi the average number
of bits needed to reach stateA = {0} when starting in statei. Suppose we start in statei. For the
first transmission we need a number of(o′ + h) + i(c + h) bits. After this transmission we go with
probabilitypi,i back into the same statei, and from here on we need (by the Markov property) another
bi bits on average. With probabilitypi,i−1 we go into statei − 1 and from there on we need another
bi−1 bits on average. By continuing this, we arrive at the following set of equations:

b0 = 0

b1 = (o′ + h) + (c + h) + p1,1 · b1

= (o′ + h) + (c + h) + (1 − r(0, 1)) · b1

b2 = (o′ + h) + 2(c + h) + p2,1 · b1 + p2,2 · b2

= (o′ + h) + 2(c + h) + r(1, 2) · b1 + (1 − r(0, 2) − r(1, 2)) · b2

. . .

bn = (o′ + h) + n(c + h) +
n−1∑

i=1

r(i, n) · bi +

(
1 −

n−1∑

i=0

r(i, n)

)
· bn

From this set of equations, we can similar to the expected hitting times representbn in terms of
previous valuesb0, . . . , bn−1 and thus obtain a recursive scheme:

bn =
(o′ + h) + n(c + h) +

∑n−1
i=1 r(i, n) · bi∑n−1

i=0 r(i, n)
(4.5)

For L = 4 andc = 250 the numberb4 is shown for different bit error ratesp in Table 4.2. With
respect to the average packet size it can be seen that significant savings in the number of transmitted
bits can be achieved as compared to the complete scheme.

Finally, we fixs = 1000 and compare the average number of required bits for different values of
L such thatL ·c = 1000. The resulting curves forL ∈ {1, 2, 4, 8, 10, 20} are shown in Figure 4.3. As
could be expected, smaller chunk sizes are less efficient for smaller bit error rates but more efficient
for higher bit error rates.
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p avg. number of packets avg. number of bits avg. packet size
1.0E-5 1.0119644 1201.8287 1187.6195
1.0E-4 1.1184505 1254.8448 1121.9493
5.0E-4 1.5832658 1507.342 952.04614
0.001 2.1931293 1873.9254 854.45276
0.003 5.9287066 4300.4053 725.353
0.005 14.1644535 9692.421 684.2778
0.006 21.569471 14519.536 673.15216
0.007 32.673874 21736.934 665.26953
0.01 111.66118 72833.24 652.27

Table 4.2: Average number of frames and average number of total transmitted bits for the intermedi-
ate checksum scheme versus bit error ratep
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Figure 4.3: Average number of required bits fors = 1000 user data bits and different numbersL of
chunks for varying bit error rate
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Chapter 5

The case with a deadline

In real-time systems packets are usually equipped with a deadline and if this deadline expires without
success, the packet is dropped. Suppose that the user data has a sizeof s > 0 bits and the time budget
amounts tob bits, whereb is expressed asb = n0 · (o′ + h + s + h) with n0 ∈ N and the term
in brackets being the size of the packet when only one single chunk (of size s) would be used. For
simplicity, the time required for the acknowledgement packets is not explicitly tracked, it could for
example be included into the header sizeo′.

The prime performance measure adopted is thesuccess probability, i.e. the probability that the
transmitter receives a final acknowledgement before the packet deadline expires.

5.1 The complete scheme

Given knowledge of the bit error ratep, one important goal is to find good values forL andc that
maximize the probability that a packet can be successfully transmitted within its deadline. One possi-
ble approach is to re-formulate this goal, where for the time being integer constraints are disregarded.
Specifically, when chunk sizec is chosen:

• The total number of frames that in the complete scheme can be sent before thedeadline is given
by:

F (c) = n0 ·
o′ + h + s + h

o′ + h + s + s
c · h

=: n0 ·
m1

m2 + s
c · h

(5.1)

where the numerator corresponds to the size of the packet when the chunk size is chosen ass
and the denominator corresponds to the result packet size for a chunk size of c.

• For one single packet, the average number of bits that are successfully received by the receiver
is given by the product of the probabilityPH of correctly receiving the header, times the average
number of correctly received chunks times the size of a chunk:

PH · c ·
s

c
· PC = (1 − p)o′+h · c ·

s

c
· (1 − p)c+h

= (1 − p)o′+h · s · (1 − p)c+h
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Putting everything together, the worst-case average number of successful bits that can be transmitted
within the given deadline is given by the product of these terms, i.e. by:

η(c, p) =
n0 · m1 · s

m2 + s
c · h

· (1 − p)o′+h · (1 − p)c+h (5.2)

The unique valuec∗ > 0 which maximizes Equation 5.3 for knownp is given by:

c∗(p) =
−s · h +

√
s2 · h2 − 4 · m2 ·

s·h
log(1−p)

2 · m2
(5.3)

Please note that Equation 5.3 gives different values for the optimal chunksize than Equation 4.4.
Furthermore, this optimal value is independent ofn0 but not independent ofs. For later evaluations
(compare Chapter 6) we will also use the following modification of the functionη(·, ·):

η∗(c, p) =

⌊
n0 · m1 · s

m2 + s
c · h

⌋
· (1 − p)o′+h · (1 − p)c+h (5.4)

which considers the integer constraint on the number of available packets.
For the remainder of this paper we choose a more practical approach. Weassume that the

transmitter can choose one among a discrete number of chunk sizes. Specifically, we assume that
c ∈ C = {32, 64, 128, 256, 512, 1024}. For givenp the transmitter choosesc∗(p) as

c∗(p) = arg max
c∈C

η(c, p) (5.5)

and the maximum number of allowed trials is then given byn = ⌊F (c∗(p))⌋. After computing the
state transition matrixP for the chosenc∗(p) andp (compare Equation 3.1), the success probability
is given by the probability that aftern steps the Markov chain has reached the final state0, i.e. it is
given by:

Pr [Success|Complete] = [(0 0 . . . 0 1) · Pn]1

In Figure 5.1 we present numerical results fors = 1024 bits andn0 = 10 allowed trials. Specif-
ically, we compare the success probability for the optimalc∗(p) (Equation 5.5) with the success
probabilities that can be obtained for each individualc ∈ C. The chunk size of 1024 bits amounts to a
raw send-and-wait version without using intermediate checksums. As canbe expected, the complete
scheme withc∗(p) indeed provides the best delivery probabilities (together withc = 32), but there is
a general trend that delivery probabilities improve with decreasing the chunk size. As opposed to the
success probability, however, there is a difference between the completescheme usingc∗(p) and the
fixed one usingc = 32. This difference is in the average number of bits that would be required until
success (in case of an unbounded number of retransmissions, computedaskL [compare Equation 4.1]
times the resulting packet size for chunk sizec, whereL = s/c is the number of chunks), shown for
this example in Figure 5.2.

A limiting factor for the performance of all schemes is clearly the header sizeo′, since this is
common for all schemes and a header must be successfully received before the intermediate checksum
scheme becomes effective.
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Figure 5.1: Success probabilities of different intermediate checksum schemes (fourwith fixed chunk
sizes, plus the one with nearly optimal chunk size) versus bit error rate for s = 1000 user
data bits andn0 = 10 allowed trials
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Figure 5.2: Success probabilities of different intermediate checksum schemes (fourwith fixed chunk
sizes, plus the one with nearly optimal chunk size) versus bit error rate for s = 1000 user
data bits andn0 = 10 allowed trials
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Figure 5.3: Success probabilities of different intermediate checksum schemes (complete, reduced
and redundant) versus bit error rate fors = 1024 user data bits andn0 = 10 allowed
trials

5.2 The reduced and the redundant schemes

We now want to compare the reduced and the redundant scheme against the complete scheme. In
all these three schemes we assume that for given bit error ratep always the optimal chunk sizec∗(p)
according to Equation 5.5 is chosen.

The reduced scheme is not easily analyzed numerically, since the number of trials that can be
made before the deadline expires is essentially random. The redundant scheme uses a fixed num-
ber of packets, but the probability that an outstanding chunk is correctly received also depends in
a random fashion on time, since the redundancy grows randomly with subsequent numbers of tri-
als. These schemes are therefore evaluated by simulation. More specifically, a custom simulator has
been developed in the Common Lisp language [9, 7]. This simulator contains allthree schemes (the
complete scheme, the reduced and redundant scheme) such that much functionality is shared among
these different schemes. The author has compared the simulation results for the complete scheme and
the numerical results obtained in the previous Section 5.1 and they match very well. In the simula-
tion results reported in the following, for each protocol scheme and each investigated bit error rate
p a number of five million packet transactions has been simulated, leading to verytight confidence
intervals that are not shown in the Figures.

In Figure 5.3 we compare the simulation results for the complete, the reduced and the redundant
scheme for varying bit error ratep. The results show that both the reduced and the redundant scheme
improve upon the complete scheme, but there is no clear winner among them: forvalues ofp > 0.015
the redundant scheme is the best one, for smaller values the reduced scheme performs best. A possible
explanation for this is that for very high bit error ratesp the number of additional frames that the
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Figure 5.4: Success probabilities of different intermediate checksum schemes (reduced, redundant
and reduced-redundant) versus bit error rate fors = 1024 user data bits andn0 = 10
allowed trials

reduced scheme can transmit shrinks and becomes similar to the number of frames available to the
redundant scheme. But in this case the redundant scheme has more potential to be successful since
individual outstanding chunks have a higher probability to be successfully received.

Motivated by these findings, we consider a combined scheme, calledreduced-redundant in which
the number of replications of outstanding chunks is limited to two. In Figure 5.4 wecompare the re-
duced scheme, the redundant scheme and the reduced-redundant scheme for their success probability.
The results show that the reduced-redundant scheme is indeed a good mixture of the reduced and the
redundant scheme, always very closely resembling the actual optimum of these two.

It is also instructive to compare the average bits that each of the four schemes (complete, reduced,
redundant, reduced-redundant) spents per packet transaction, whether successful or not. The fewer
bits spent on average, the earlier a packet’s fate is known, and more bandwidth and time is available
for other packets. In Figure 5.5 the corresponding simulation results are shown. Over a wide range of
bit error rates the reduced scheme has the lowest average number of bits, while the complete scheme
has always the highest average number of bits. The redundant scheme, while always using maximum
sized frames, improves upon the complete scheme due to its higher success probability (and therefore
its smaller average number of required frames). The reduced-redundant scheme is very close to the
reduced scheme, it requires significantly fewer bits than the redundant scheme.

In summary, the reduced-redundant scheme behaves always very close-to-optimal both in terms
of success probability and in terms of the average number of required bits.

Before closing, we want discuss a negative result concerning the reduced scheme. Specifically,
there is a straightforward numerical approximation whichs actual quality we want to explore. The
approximation works as follows:
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user data bits andn0 = 10 allowed trials

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 1e-04  0.001  0.01  0.1

su
cc

es
s 

pr
ob

ab
ili

ty

BER

Reduced scheme (Simulation)
Reduced scheme (Approximation)

Figure 5.6: Reduced scheme: comparison of simulation and approximation versus bit error rate for
s = 1024 user data bits andn0 = 10 allowed trials

Copyright at Technical University Berlin. All
Rights reserved.

TKN-08-002 Page 19



TU BERLIN

• Beλ(0) = (0 0 . . . 0 1) be the initial state probability vector of the underlying Markov chain,
and letλ(n) = λ(0) · Pn the state probability vector aftern steps, and be

ĉn = λ(n) ·





0
1
2

. . .
L − 1

L





the average number of outstanding chunks aftern steps, whereL = ⌈ s
c∗(p)⌉ is the initial total

number of chunks. Let furthermore be

l̂n = o′ + h + ⌈ĉn⌉ · (c
∗(p) + h)

be the average packet size after then-th trial.

• Compute:

n∗ = max
n∈N0

{
n∑

i=0

l̂n ≤ b

}

• To obtain the success probability, then the expression

Pr [Success|Complete] =
[
(0 0 . . . 0 1) · Pn∗

]

1

is computed.

In Figure 5.6 we compare the quality of this approximation for varying bit error rate. It can be
concluded that the approximation is too coarse to be useful.
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Chapter 6

Selection of Chunk Sizes

In this part we look at the problem of determining a finite set of chunk sizes from which the protocol
can choose. In the previous Chapter 5 we have used the setC = {32, 64, 128, 256, 512, 1024} as
our chunk-size set(CSS) without considering the question whether this is a good such set, i.e. the set
giving the highest success probabilities or the lowest average numbers of required bits.

To address this question, we make a number of (simplifying) assumptions:

• The allowed chunk sizes are larger or equal to a certain minimum chunk sizecmin and smaller
than or equal to a certain maximum chunk sizecmax.

• The bit error rate that the channel assumes is a random variableB with range(0, 1) and distri-
bution functionFB(·) with FB(0) = 0 andFB(1) = 1.

• The transmitter must encode the actual chunk size in this frame. If we allow this specification
to consist ofm bits, the CSS consists of2m distinct chunk sizes. Both transmitter and receiver
possess a common codebook that maps the2m distinct values to actual chunk size values.

• We consider only the complete scheme since for this scheme we have a method to perform
numerical calculations. For the time being we assume that a CSS that is good or even op-
timal for the complete scheme is also good or even optimal for the reduced, redundant or
reduced-redundant schemes. It is a possible subject of future workto confirm or disprove this
assumption.

• Instead of maximizing the average success probability (which in general depends on the bit
error ratep in very complicated ways) we want to maximize the worst case average number
of successful bits within the given deadline, i.e. we considerη(c, p) instead ofPr [Success].
It is reasonable to assume that maximizingη(c, p) is also beneficial for the success probabil-
ity.[FIX!]1

We can cast the identification of a good CSS in the framework of quantization and rate-distortion
theory [8], [2, Chap. 10]. Roughly, the problem is to represent realizations of a continuous scalar
random variable by one of a finite number of values. This finite set of values (sometimes called
reproduction points) should be chosen such that an average distortion measure is minimized. Such

1[AW]:In fact, i believe that the success probability is a monotonic function ofη(c, p).
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a distortion measure accounts for the difference between a realization of the random variable (a real
number) and its associated representation. We want to minimize the average distortion measure for a
fixed number of reproduction points (i.e. a fixed rate representation). Bycasting the problem in this
framework it is possible to utilize known algorithms for finding reproduction points like for example
Lloyd’s Algorithm. Unfortunately, all these algorithms require that the probability distribution of the
underlying random variables (bit error rate or chunk size) is known.

WhenB is the random variable for the current bit error rate, then the random variable giving the
current optimal chunk size is given by a random variableC = c∗(B) (compare Equation 5.3). From
Equation 5.3, for the distribution functionFC(c) = Pr [C ≤ c] we have:

FC(c) = 1 − FB

(
1 − exp

(
−s · h

c · s · h + m2 · c2

))

In practical realizations the chunk sizes cannot be arbitrary, but they have lower and upper bounds
cmin and smaller than or equal to a certain maximum chunk sizecmax. Because of this we use the
following modified distribution function:

GC(c) =






0 : c < cmin
FC(c) : cmin ≤ c ≤ cmax

1 : c > cmax

Now define bŷc(p) the function that associates one of the2m chunk sizes to a given bit error ratep.
We consider two different distortion criteria:

• Squared-error in the chunk size: the distortion is measured by:

d2 (c∗(p), ĉ(p)) = (c∗(p) − ĉ(p))2

This distortion measure, however, has the problem that it is not sensitive tothe achieved success
probability: for very small bit error ratep a larger deviation in the actual chunk sizeĉ(p) from
the optimal chunk sizec∗(p) is less critical than for larger values ofp. This motivates the
second distortion measure.

• A distortion measure that includes the success probability (compare Equation3.3 can be defined
as:

ds (c∗(p), ĉ(p)) =

[
σ

(
c∗(p),

⌈
s

c∗(p)

⌉
, p, ⌊F (c∗(p))⌋

)
− σ

(
ĉ(p),

⌊
s

ĉ(p)

⌋
, p, ⌊F (ĉ(p))⌋

)]2

In the remainder of this chapter we perform a numerical study to assess thedifference between these
two distortion measures. Specifically, we assume that the bit error rate is chosen asB = 10U where
the exponentU is a random variable drawn uniformly from[−6,−1]. This means that:

FB(p) = Pr [B ≤ p] = Pr
[
10U ≤ p

]
= Pr

[
U ≤

log p

log 10

]
= FU

(
log p

log 10

)

For the case of thed2(·, ·) distortion measure Lloyd’s algorithm [20][FIX!]2 can be applied to find
the CSS that minimizes the average distortion. Lloyd’s algorithm is an iterative descent algorithm.

2[AW]:Give a precise citation
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Listing 6.1: Lloyd’s Algorithm for CSS determination based ond2(·, ·)

parameters: initial CSS of 2m reproduction points from [cmin, cmax]

// initializations
set Q0 to initial CSS
set cl to cmin

// main loop
repeat

for i = 1 to 2m − 1
// determine upper end of current Voronoi region

set cu to G−1
C

(
GC([Q0]i)+GC([Q0]i+1

)

2

)

// centroid of this region is new reproduction point

set [Q1]i to G−1
C

(
GC(cl)+GC(cu)

2

)

set cl to cu

endfor

// consider final Voronoi region

set [Q1]2m to G−1
C

(
GC(cl)+GC(cmax)

2

)

until ‖Q0 − Q1‖1 ≤ 1

return Q1
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Point Mean / StdDev (m = 2) Mean / StdDev (m = 3) Mean / StdDev (m = 4)
1 14.8 / 0.01 10.0 / 0.01 8.2 / 0.02
2 57.3 / 0.09 21.6 / 0.03 12.6 / 0.07
3 188.5 / 0.29 42.44 / 0.07 18.8 / 0.16
4 585.4 / 0.36 79.24 / 0.12 27.2 / 0.29
5 143.38 / 0.17 38.4 / 0.48
6 254.45 / 0.20 53.5 / 0.74
7 446.17 / 0.18 73.3 / 1.07
8 776.72 / 0.09 99.4 / 1.48
9 133.5 / 1.96
10 178.0 / 2.48
11 235.6 / 3.00
12 310.1 / 3.43
13 406.4 / 3.68
14 530.6 / 3.55
15 690.8 / 2.84
16 897.9 / 1.25

Table 6.1: Averages (rounded) and standard deviations of results generated by500 rounds of the
Lloyd algorithm for 4, 8, and 16 reproduction points and thed2(·, ·) distortion measure

Adapted to our setting the algorithm can be described as in Listing 6.1. Since thisalgorithm is only
guaranteed to converge to a local optimum, we have run it five hundred times with randomly chosen
initial CSS sets (specifically: all2m initial points are drawn uniformly from[cmin, cmax]). In Table
6.1 we show the results. It can be seen that the difference between neighbored reproduction points
increases, the most reproduction points are small.

The ds(·, ·) distortion measure is more complicated to handle, since the mappingp 7→ σ(·) is
not monotone and the distribution function of the success probabilities is hardto compute explicitly.
Instead of applying Lloyd’s algorithm we have applied a genetic algorithm to determine good CSS.
Genetic algorithms are a well-known approach to find local extrema in large search spaces [6]. Our
approach for identifying good CSS works as follows:

• The algorithm works on apopulationof individual CSS (each of lengthn ∈ {4, 8, 16}), having
a fixedpopulation size. The initial population includes the solution given in Table 6.1, a number
of mutations of this solution, while the remaining members are random vectors chosen from
[cmin, cmax]n.

• Each CSS in the population is judged for its quality, measured as the average success probability
over the given range of bit error rates[10−6, 10−1] (see below). Judging all the members of a
population is referred to as ajudging round. The algorithm performs a limited number of
judging rounds.

• At the end of a judging round a new population is created using the results available for the
current population. Theα · 100% of the best members of the current population are carried
over into the new population. These are calledsurvivors. The nextβ · 100% of the members of
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Algorithm m = 2 (4 points) m = 3 (8 points) m = 4 (16 points)
plain ARQ 0.6721 0.6721 0.6721
IC with Lloyd 0.7584 0.7553 0.7567
IC with GA 0.7598 0.7594 0.7594

Table 6.2: Comparison of average success probabilities for 4, 8, and 16 reproduction points of a plain
ARQ scheme without intermediate checksums, and of the intermediate checksumscheme
configured with the results of Lloyd’s algorithm (d2(·, ·) measure) and of the genetic al-
gorithm (ds(·, ·) measure). Average is taken over 5000 equidistant BER exponents from
[-6,-1].

Algorithm m = 2 (4 points) m = 3 (8 points)
IC with Lloyd {15, 57, 188, 585} {10, 22, 42, 79, 143, 254, 446, 777}

IC with GA {32, 54, 883, 892} {20, 32, 57, 70, 839, 908, 936, 948}

Table 6.3: Optimal CSS for 4 and 8 reproduction points of the intermediate checksum scheme config-
ured with the results of Lloyd’s algorithm (d2(·, ·) measure) and of the genetic algorithm
(ds(·, ·) measure).

the new population are created from mutations of randomly chosen members oftheα · 100%
survivors. Specifically, to create a mutated member one survivor CSS(c1, . . . , cn) is picked
randomly and each of its component is set with a certain probability to a new value drawn
uniformly from [cmin, cmax]. The nextγ · 100% of the members of the new population are
created from crossovers of the survivors. Specifically, two survivor chains(c1, . . . , cn) and
(c′1, . . . , c

′
n) are picked randomly and a new chain is created as(c1, . . . , cn/2, c

′
n/2+1, . . . , c

′
n).

The remaining(1−α−β−γ)·100% of the members are randomly chosen from[cmin, cmax]n.

By including into the initial population the results from Table 6.1 (with each chunksize given there
rounded to the next integer value), which are only based onc∗ and not on the success probability, we
ensure that the results found by the genetic algorithm are not worse in termsof average success prob-
ability. The average success probability has been obtained by sampling the range[−6,−1] of BER
exponents with 5000 equidistant points. For each resulting BERp the judging function determines
for the given CSS(c1, c2, . . . , cn) the actual chunk sizec′ as (compare Equation 5.4)

c′(p) = arg max
c∈{c1,c2,...,cn}

η∗(c, p)

The population size has been chosen as 40 members, the number of roundshas been chosen as 30,
and the further parameters have been chosen asα = 0.3, β = 0.2, andγ = 0.2.

The results for the average success probabilities for the CSS generatedby Lloyds algorithm for
thed2(·, ·) distortion measure and by the genetic algorithm for theds(·, ·) are compared in Table 6.2,
and the resulting optimal CSS sets for CSS sizes of 4, 8 and 16 reproductionpoints are given in Tables
6.3 and 6.4. It can be noted that in terms of the average success probabilities the improvements of
the CSS generated by the GA algorithm is only minor: from 75.84% average success probability to
75.98 for the case of four reproduction points, from 75.53% to 75.94% for eight reproduction points
and from 75.67% to 75.94% for sixteen reproduction points. It is also interesting to note that for the
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Algorithm m = 4 (16 points)
IC with Lloyd {8, 13, 19, 27, 38, 53, 73, 99, 134, 178, 236, 310, 406, 531, 691, 898}

IC with GA {33, 37, 54, 304, 392, 432, 590, 601, 405, 432, 531, 539, 590, 680, 691, 984}

Table 6.4: Optimal CSS for 16 reproduction points of the intermediate checksum scheme config-
ured with the results of Lloyd’s algorithm (d2(·, ·) measure) and of the genetic algorithm
(ds(·, ·) measure).
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Figure 6.1: Success probability versus bit error rate for the CSS generated by Lloyds algorithm and
by the genetic algorithm for a CSS size of four reproducation points.

GA the differences in performance between four, eight and sixteen reproduction points are negligible,
while for the Lloyd algorithm they are (slightly) larger. However, in both cases the achieved success
probability is significantly larger than in the case without using an intermediate checksum scheme.
Looking at the chosen chunk sizes one can note the following:

• The minimum chunk sizes generated by the GA are at least twice the one generated by Lloyds
algorithm, the smallest chunk sizes are not adopted.

• For four and eight reproduction points the chunk sizes generated by theGA appear to cluster at
the lower end and at the higher end, the chunk sizes from Lloyd’s algorithm are clustered only
at the lower end.

Finally, we provide also a visual comparison of the achieved success probability over the range of
bit error rates from10−6 to 10−1. In Figures 6.1, 6.2 and 6.3 it is confirmed that indeed the difference

Copyright at Technical University Berlin. All
Rights reserved.

TKN-08-002 Page 26



TU BERLIN

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1e-06  1e-05  1e-04  0.001  0.01

su
cc

es
s 

pr
ob

ab
ili

ty

BER

IC with Lloyd Algorithm
IC with GA

Figure 6.2: Success probability versus bit error rate for the CSS generated by Lloyds algorithm and
by the genetic algorithm for a CSS size of eight reproduction points.
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Figure 6.3: Success probability versus bit error rate for the CSS generated by Lloyds algorithm and
by the genetic algorithm for a CSS size of sixteen reproduction points.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-08-002 Page 27



TU BERLIN

in success probability between the CSS generated by the Lloyd algorithm andthe genetic algorithm
are minor.
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Chapter 7

Related work

In general, the intermediate checksum scheme considered here belongs isa packet combining scheme
[22, 3] or type-III hybrid ARQ schemes [13].

At the time of writing the first publication [26] the intermediate checksum scheme was, to the best
of the authors knowledge, not yet discussed in the literature, except from [16], where the approach
is briefly sketched but not followed anymore. In [5] an approach verysimilar to our intermediate
checksums has been designed, implemented and evaluated in the context of wireless sensor networks.
They consider that the allowed frame size is in general smaller than the message size. The message is
fragmented into small blocks, several of which can fit into a frame. The block size can be adapted ac-
cording to channel feedback. The focus of the protocol is on efficiently streaming the blocks of a mes-
sage such that one frame can at the same time contain retransmissions of earlier failed blocks and new
blocks. They also suggest a cooperative version of the intermediate checksum scheme, something,
which has also in other contexts been considered a very rewarding addition to link layer schemes
[4, 18]. However, the work presented in [5] does not consider deadlines and protocol schemes (like
the reduced and redundant schemes) that are actually designed with deadlines in mind, and this paper
is to the best of the authors knowledge the first paper doing that.

The related issue of chosing optimal packet sizes has been considered anumber of times in the
literature, For example [21] and [11] consider the problem of determining good frame sizes on fading
channels. The combination of adaptive frame length control and FEC is explored in [15].
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Chapter 8

Conclusions

In this paper we adapted the intermediate checksum scheme to the case wherepacket deadlines are
present. It is shown that the intermediate checksum scheme gives significant improvements in terms
of the success probability as well as a significant reduction in the number oftransmitted bits (in the
reduced scheme) as compared to the traditional scheme using only a single checksum. We therefore
consider the intermediate checksum scheme as being a very attractive design approach for applica-
tions in which larger packets must be transmitted subject to a deadline.

There is significant potential for future work. A first one considers theintermediate checksums
themselves. In this paper we have assumed that they are perfect, but to achieve this they should be of
a certain minimum size, for example 16 bit. It is attractive to use smaller checksumsfor the chunks
in addition to a perfect checksum over the whole user data. In this case, however, the intermediate
checksum scheme might accept frames that the perfect checksum detects as erroneous and as a result
all chunks must be transmitted again because it is not clear which of them is wrong.

Secondly, one could consider a variation of the redundant scheme in which the outstanding
scheme are not simply repeated multiple times but broken down into (redundant)smaller chunks.

Thirdly, both intuition as well as the formula given in Equation 3.3 point to the fact that the
header error probabilityPH should be made as small as possible, which can be done by reduction of
the header size (possibly adopting some header compression technique) or by protecting the header
with an error-correcting code.

Finally, throughout this paper we have assumed that the bit error ratep is known. In practice, it
has to be estimated somehow, and without requiring additional functionalities from the physical layer
the only data available for this is the previous history of the intermediate checksum scheme. It has
been discussed in [26] how the BER can be estimated, but the influence of the estimation error needs
to be assessed in future work. A fundamental problem here is that the intermediate checksum scheme
tries to minimize the number of packets / chunks required, and this tends to reduce the amount of data
that can be used in a BER estimation, and this in turn makes the estimation more error-prone.
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