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Abstract

Almost all Automatic Repeat reQuest (ARQ) protocols rely on checksumg thdeeceiver decide
about the presence of transmission errors. If the checksum is wneiggasmission takes place. In
case of transmission errors often only a few bits are erroneous, bditdma retransmissioall bits

are transmitted again, including the correct ones. This paper introduees{balledntermediate
checksum framing schemghich attempts to rescue most of the correct bits and to restrict retrans-
missions only to those parts of a frame where bit errors actually occuredp®¢ifically consider the
case where a deadline is associated to packets and the number of retsaorshissbounded.
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Chapter 1

| ntroduction

Almost all Automatic Repeat reQuest (ARQ) protocols [17, 10] relxlbecksumso let the receiver
decide about the presence of transmission errors. If the checksunorigwhe receiver provides
the transmitter with appropriate feedback, which triggers a frame retrannemi$&¥hen the channel
bit error rate is not too high, often only a few bits are erroneous, butfiarae retransmissioall
bits are transmitted again, including the correct ones. In [26] the autlsdntraduced the so-called
intermediate checksum framing schefi@F), which attempts to rescue most of the correct bits and
to restrict retransmissions only to those parts of a frame where bit extuallst occured; a similar
idea is briefly sketched in [16]. A distinguishing feature of the intermediag¢eldum approach is
that it does not rely on coding, but requires only the ability to compute chuee&. Since this can
easily be done in software, the intermediate checksum scheme is readily imfablaern top of
commercial transceivers, like for example the ChipCon CC2420 tramsdbiat is compliant to the
IEEE 802.15.4 standard [1].

This paper differs from [26] in the following ways:

e The comparison of transmission with the classical header-data-cheskfigme and the inter-
mediate checksum scheme for the case of an unbounded number oémessions is refined,
and in addition the average number of bits required until success is evhluate

e The design of intermediate checksum schemes under a deadline constiramstigated and
different design options are compared and evaluated.

In this paper we frequently assume binary symmetric channels (BSC), hanael model in which
bit errors occur independently and with the common bit error pate (0,1). Furthermore, we
make throughout the assumption thds known. In [26] a simple scheme for estimatipndrom the
success or failure of packet and chunk transmissions is describedefdte, in this paper this issue
is neglected.
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Chapter 2

The Intermediate Checksum Approach

The traditional packet format used in many protocol is shown in the u@reppFigure 2.1.

This traditional format consists of a packet header of sibés, the user data of sizebits and a
packet trailer of sizé bits, which is usually the checksum. The overall packet size iSthus+s-+h.
The checksum covers both the packet header and the data part. Vélvendlver detects a checksum
error, it drops the whole packet and sends a negative acknowledgeBwpping a whole packet,
however, is a waste of information, since typically only a few bits in a paaieatveong.

Many schemes have been devised to make effective use of the informatitained in the erro-
neous packet copy. Such schemes are called type-Il or type-IHdapRQ schemes [17, 12, 13]. A
simple example of a type-ll ARQ scheme is bit-by-bit majority voting: Once theivechas received
at least three erroneous versions of the same packet, it can guaghevteceived packet should be
by applying a majority voting procedure to all bits. Other schemes are dextdiss example in
[25, 12].

The scheme we consider here is constructed in another way. The prulitflerasing a single
checksum for the whole packet (as in the classical scheme) is that wetdafer any information
about positions of bit errors, so each bit is in suspect. By segmentingtketinto smaller chunks
such that each chunk is equipped with an own checksum, the error iriffor@an be localized
and the information in correct chunks does not need to be thrown awdeyAdvantage of this
scheme is that it does not rely on coding but on (much easier) checksmputations. This allows
implementation on top of commercial transceivers like the ChipCon CC242@&iaas[1], and fur-
thermore checksum computations on the receiver side are much morg-effarignt than decoding
algorithms.

To put this approach into a protocol, some additional rules are neededa: iiméihmediate check-
sum scheme theuser data bits are partitioned intochunks each having a raw size of= s/ L bits,

‘ Header Data ‘ Chk‘

‘ Ext. Header ‘Chk Data Chk‘ Data ‘Chk‘ Data ‘Chk‘

Figure 2.1: Traditional packet format and intermediate checksum packet format
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to which a checksum df’ bits is appended (for simplicity we do not consider slack chunks). A frame
is formed by appending all the chunks to a frame header ofsizeo bits, and the overall frame has
sizeo' + h+ L - (c+ h) > o+ s+ h bits. The increased header siZze> o results from the fact
that the header needs an extra field for the intermediate checksum sc8pewfically, the chunk
sizec needs to be stored. Furthermore, the MAC header and the extra fieldonleegrotected by a
separate header checksum of sizgits. For simplicity in this paper we assume that= h holds.

The transmitter transmits this initial frame. The receiver behaves as followsteifects an error
in the frame header, the whole frame is discarded and the transmitter hasutsnatrthe full frame.
If the header is correct, the receiver checks each chunk sepazattlyuffers the correct chunks. If
the receiver finds all chunks in its buffer, it delivers the frame to its upgogers and sends faal
acknowledgementn the other case, different schemes are investigated in this paper:

e Complete scheme: The receiver transmits an emptycomplete acknowledgemeaud in re-
sponse the transmitter re-transmits the whole packet again. In this casddhdeskheader
needs only to specify the chunk sizethe receiver can infer the number of chunks and the size
of a slack chunk easily from knowledge o&nd the total received packet size.

e Reduced scheme: The receiver includes the identifications of the missing chunks into its
incomplete-acknowledgement packet. One method to accomplish this is to use p. bitma
its re-transmission the transmitter includes only the missing chunks. Againfidesufor the
transmitter to include the chunk sizeénto the extended header, since the receiver can at any
time infer the number and identity of the chunks present in a packet fromttdeptcket size
and his own knowledge of missing chunks. The reduced scheme hasificta effect that
the retransmission frame is much smaller, consumes less energy, prodisciesdderence, is
less likely hit by errors and reaches the receiver with smaller delay.

¢ Redundant scheme: A possible drawback of the reduced scheme is that for increasing mumbe
of trials it (hopefully) produces shorter and shorter packets, as nmorenare of the chunks are
successfully received. However, this also means that relatively mdrenare packet headers
are transmitted as time progresses — the time budget is hence not used optintadiy. tive
original packet consists af chunks, the re-transmission packets again consigt ofiunks,
but thesell chunks are used to repeat the yet unacknowledged chunks a nutinee® (the
receiver again indicates the identification of the missing chunks in his incongui&tewl-
edgement). For example, when the initial packet consists ef 10 different chunks, out of
which the receiver receives all but chunks 4, 5 and 8, the retransméiget consists of four
times a copy of chunk 4, and of three copies of chunks 5 and 8, regggctin this scheme
the transmitter must specify the chunk sizas well as the true number of different chunks in
the packet. In the initial packet the numbler= 10 would be transmitted, in the first retrans-
mission the number 3 would be transmitted. This information, together with the additide
that all outstanding chunks are replicated fairly until all chunks areested, suffices to let
the receiver figure out all necessary information.

Either way, the retransmissions continue until the receiver has all chanitss buffer or until the
deadline expires.

It will be shown that the intermediate checksum scheme provides signifieasfit for channels
with higher error rates. However, if the channel is extremely good, tigeldreader and all the extra
checksums are likely wasted.
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Chapter 3

Markov M odel

In this section we develop a discrete-time Markov chain model [19, 23] thadrs the complete
scheme and the reduced scheme. The purpose is to compare sendigpiebiwcols using the clas-
sical packet formats and the intermediate-checksum scheme with respgbetriamber of frames
needed to transmituser data bits, and with respect to the total number of bits needed to transmit the
s user data bits (goodput ratio) in the reduced scheme. To ease analysissume the BSC channel
model with bit error probability. We assume that the send-and-wait protocol is used. All used check-
sums are wide enough to provide a reasonable approximation to peréegiscims. Furthermore, for
simplicity we assume a perfect back channel, i.e. acknowledgements gelosty

A discrete-time Markov chain is adequate, when we associate one trial sorfitaanframe with a
time slot of the Markov chain. The BSC assumption ensures that the memaydpssty of Markov
chains indeed applies and that the Markov chain is time-homogeneous.

As a state variabl&,,, we take the number of yet unacknowledged chunks at the transmitter side
after then-th trial. When we foresee a maximum numberlothunks per packet, the state space is
0,..., L. Itis helpful to create a sketch of the possible state transitions (in the foliofigare with

L = 4):
@

N—

We now determine the state transition probabilities. Because of the BSC assunaptimgle
chunk is erroneous with probability

QC —1— (1 _p)c+h

and correct with probability
Po=1-Qc=(1-p)*"

!Acknowledgements can easily be accommodated by increasing ther lisle! according to the size of acknowl-
edgement packets.
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The header (including its checksum) is erroneous with probability
Qp=1- (1 _p)o’Jrh

and correct with probability
Py=1-Qu=(1-p°*"

The probability that the header is correct and thatit of M chunks in a frame are erroneous is given
by (binomial distribution):

r(k,M) = Py -b(k; M,Qc) = (1 —p)ol"'h . (i‘j) . (1 -1 _p)c—&-h)k . ((1 _p)c—&-h)M_k

(whereb(k;n,p) = (Z) pk.gnFfork € {0,...,n} is the probability mass function of the binomial
distribution with parameters andp).
For our example witl, = 4 the transition matrix becomes

1 0 0 0
H 1- o0 0
9) r(1,2) 1- 0
,3) r(1,3) r(2,3) 1-—
4) r(1,4) r(2,4) r(3,4) 1-

(3.1)

o O o o

where the first row corresponds to state 0, the second row to state theaakt row to state 4.
Furthermore, the entrigls— are chosen such that the respective row sums up to one. Fothithrew
(e € {1,..., L+ 1} since matrix elements are counted starting from one) of the nRt(ixc N) the
diagonal elements are given by:

i—2 —2
1= "r(ji—1) = 1-Py Y bji—1,Qc)=1-Py-(1—-b(i—1i—1,Qc))
j=0 j=0

= 1-Py-(1-Q5")

Please note that sind® is a lower triangular matrix, the diagonal elementsPotorrespond to its
Eigenvalues. Since all Eigenvalues are distikcts diagonalizable.

The protocol starts at initial state= ey, and terminates once the target stdte- {0} has been
reached.

Forp € (0, 1) the state is an absorbing state, all other states are transient states. It can be easily
checked that state is reached with probability one from an arbitrary start staténd indeed, the
stochastic row vector = (1,0,0,...,0) is the unique stationary distribution ¥, i.e. it is the only
stochastic row vector satisfying

T=m-P

We finally compute an expression for the success probability whenotnigls are allowed. This
success probability is then given by:
([P™)]+1

2This follows from a straightforward application of a theorem on hitting philies [19, Theorem 1.3.2] for the state
setA = {0}.
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SinceP is diagonalizable, it is clear that the matrix povigt can be written as follows:

1 0 0 0 .. 0 0
0 A 0 0 ... 0 0
pr_y. |0 0 MO0 . 0 0|
00 0 0 0 ... A2, 0
0 0 0 0 ... 0 A

for some invertible matriXJ which has the Eivenvectors as its columns, and by sefting 1 —
Py (1 —QL). As aresult, we can represent the success probability as follows:

[P"lLy11=a0+a1- AT +az- A5 + ... +ap- A}

for some uniquely determined coefficients, ..., a;, that are still unknown. Since for eache
{1,..., L} we have0 < \; < 1 and since furthermore for — oo the success probability becomes
one, we have that:

1= lim [[Pn]]LJrLl = qag

n—oo

SinceP? = I, we have that:
0=[Pts11=ao+a+...+ag

and considering thaty = 1 we readily haver; + as + ...+ ar, = —1. Now we consider the case of
n = 1, for whichP" = P and correspondinglffP]]. 1,1 = 7(0, L) = Py - (1 — Q¢)*. From this
we have:
PH-(l—Qc>L = aytar-M+...+ap- AL (32)
= 1+a1-<1—PH-(1—Qc))

+az- (1 - Py - (1- Q7))

+...

+ag - (1- Py - (1-QF))

L
= Py- <1+Zai'QiC>
i=1

Expanding the left-hand-side of this equation and performing a compaoisooefficients ofQ ¢
gives the solutions:

ai:(—1)i-<L,> ie{0,...,L}

(3
Since the coefficients; are uniquely determined and since the proposed choice af;tiseéndeed a
solution to Equation 3.2, we have found the right solution. Summarizing, tleessiprobability for
n allowed trials is given by:

L
o(c, L,p,n) = Pr[Success= [[P"]]p 11 =1+ Y (~1)"- (f) (1-Pp(1-Q%)" (3.3
=1

It should be noted, however, that this explicit expression is numericalljhrmare unstable (espe-
cially for small values of) than the equivalent computatigi"]|;+1,1 based on matrix powers /
iterations on the initial state distribution vector.
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Chapter 4

The case of an unbounded number of
retransmissions

4.1 Expected number of frames

We now attack the question of how many frames the intermediate checksumes¢mere specifi-
cally: the complete and the reduced scheme) needs on average to kesBiucce. to reach the final
state0 (assuming an unlimited number of retransmissions). Referring to [19, &medr3.5t and
using the abbreviatiok; = k. to denote the average number of steps that is needed for the Markov
chain to reach the final statewhen the chain starts in statewe can set up the following linear
equations:

ko = 0
ki = 1+4+pig-ki

= 14 (1-7r(0,1)) k
ko = 1+po1-ki+poo-ko

= 1 +T(1,2) k1 + (1 — 7”(0,2) —7“(1,2)) - ko

n
kn = 1+an,iki
=1

n—1 n—1
= l—i—Zr(i,n)-k‘i + (1 —Zr(i,n)) - kn
i=1 ;

1=

!Be 7 the (finite or countably infinite) state set of a Markov chéu?cin)nEN0 and beA C Z with A # (. The
hitting time H* is a random variable associated(t§,),,, that has rang®, U {co} and which is defined al* =
inf {n > 0: X, € A}. For starting staté(, = i the average hitting time is defined &8 = E [H*|X, = i]. Then [19,
Theorem 1.3.5] asserts that th# are the minimal non-negative solution of the following system of equations:

k-—{ 0 : ieA
' L4+ igapigk + i¢ A

where thep; ; are the transition probabilities from statto statej contained in the state transition matix
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Figure4.1: Average number of frames for the traditional scheme and the intermediat&scine
scheme for varying bit error raje

n—1
= 14+ r@i,n) ki+(1—Pg-(1-Qp) kn

i=1
The complexity of direct expressions by, would quickly become infeasible. We therefore provide
an iterative solution. We readily hakvg = 0 andk; = ﬁ For generah we can solve fok,, as
follows:
1+ r(in) -k

iy r(inn)
This last equation allows to compute thefrom the previously computed valugs_1, . . ., k.
We discuss a numerical example. We compare the scheme with traditional farckat and

the intermediate checksum scheme (complete and reduced scheme) fardgeawmber of frames
required until success. We fix= 100 bits as the overhead of the traditional packet format, whereas
o' = 116 bits is the overhead of the intermediate checksum scheme. Checksulns-adi&bits long
in both cases. We want to transmit= 1000 bits of user data, which in the intermediate checksum
case is split oved. = 4 chunks ofc = 250 bits size each. The expected number of trials for the
intermediate checksum scheme is jlist whereas for the Send-And-Wait protocol the number of
trials for the traditional scheme is a geometric random variable with expectation:

e (4.1)

1
W
Copyright at Technical University Berlin. All _na.
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P traditional scheme | intermediate checksum
1.0E-5| 1.0112392 1.0119644

1.0E-4| 1.1180886 1.1184505

5.0E-4| 1.747466 1.5832658

0.001 | 3.054252 2.1931293

0.003 | 28.590128 5.9287066

0.005 | 268.81122 14.1644535

0.006 | 825.63873 21.569471

0.007 | 2538.9705 32.673874

0.01 74321.445 111.66118

Table 4.1: Average number of frames for the traditional scheme and the intermediat&scine
scheme for varying bit error rage

These two schemes are compared under the given parameters andiiog ét error ratep in
Figure 4.1 (please note the logarithmic scale on both axes), and some nlinestitts are displayed
in Table 4.1. Looking at these numbers shows that using intermediate anexk&s no advantage
for bit error rates belowt0~#, since the expected number of trials are almost identical, but interme-
diate checksum requires more overhead. However, for higher bit ertes the advantage becomes
obvious.

However, the comparison given here is not entirely fair: protocols likeHB02.11 give users
the opportunity to fragment the user data into a number of smaller packet®HcH one having its
own header. However, it is shown in [26] that even when IEEE 802.&llag/ed to pick the optimal
fragment size given knowledge pf the intermediate checksum scheme is still significantly better,
i.e. requires much fewer frames. The optimal number of user bits in suegaént is for knowmn
given by:

—(o+h) 1

2 "~ 2log(1—p)
whereo < o' is the frame overhead (which without intermediate checksums can be smales).
solution results from an optimization of the goodput of the classical framingmse, which is given
by

Sopt () -/ (0+h)log(1 —p) (0 + h)log(1 —p) — 4) (4.2)

1 — p)(ots+h)
E[Tuprr]-(0+s+h) o+s+h
whereTyprr is a geometric random variable describing the number of trials that are dhéede
successfully transmit the frame. We could similarly for the intermediate chetksheme use the

chunk size that optimizes the per-chunk-goodput. This optimal chunk sigeeis by:

_h h(hlog(l —p) —4)
Copt(p) ) + \/ 410g(1 — p) (4.4)

For the sake of completeness we repeat the comparison already pdasg@®] for the average
number of frames required by the intermediate checksum scheme with optinwnk sizes and the
classical scheme with fragmentation and reassembly using the optimal fragizesit The average
number of frames required until success versus the bit error ratevsishd-igure 4.2.
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Figure 4.2: Expected number of frames needed to transmit 1000 bits of payload vé ¢éneobratep
for the ICF and the classical scheme with fragmentation and reassembtyopsimum

frame / chunk sizes
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4.2 Expected number of bits

Next we turn our attention to another question: how mabitg does the intermediate checksum
scheme (specifically: the reduced scheme) require on average tessudlyetransmits user data
bits? Stated differently: what is the overhead of the intermediate checlchems?

We approach this question by resting on first-step analysis [24, Sec. B4 nutshell, one
conditions (by the law of total probability) on the state of the chain after ome atel from now on,
by the Markov property, we can look at the chdin, X>, X3, ... as being a new Markov chain with
known start state. In the present case the approach goes as foIIe\/Sr,s.:Bbg4 the average number
of bits needed to reach state = {0} when starting in staté Suppose we start in state For the
first transmission we need a number(of+ h) + i(c + h) bits. After this transmission we go with
probabilityp; ; back into the same statgand from here on we need (by the Markov property) another
b; bits on average. With probability; ;_; we go into staté — 1 and from there on we need another
b;_1 bits on average. By continuing this, we arrive at the following set of tojust

bp = 0
by (o' +h)+(c+h)+pi1-b
(o +h)+(c+h)+(1—-7r(0,1)) b
by (' + h)+2(c+h)+p21-bi +p22-bo
= (0+h)+2(c+h)+7r(1,2) by + (1 —7(0,2) —r(1,2)) - bo

. .
bn = (o +h)+n(c+h)+> r(i,n) b+ (1—27“(2’,71)) by

i=1 =0

From this set of equations, we can similar to the expected hitting times reptgsenterms of
previous valuesy, . . ., b,_1 and thus obtain a recursive scheme:

(o + 1) +n(c+h)+ 3 r(i,n) b
Z:’L:O (Z’n)

For L. = 4 andc¢ = 250 the numben, is shown for different bit error ratesin Table 4.2. With
respect to the average packet size it can be seen that significargsavithe number of transmitted
bits can be achieved as compared to the complete scheme.

Finally, we fix s = 1000 and compare the average number of required bits for different vafues o
L such thatl.- ¢ = 1000. The resulting curves fakt € {1, 2,4, 8, 10,20} are shown in Figure 4.3. As
could be expected, smaller chunk sizes are less efficient for smallerdnitrates but more efficient
for higher bit error rates.

b, = (4.5)

Copyright at Technical University Berlin. All TKN-08-002 Page 12
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P avg. number of packets | avg. number of bits | avg. packet size
1.0E-5| 1.0119644 1201.8287 1187.6195
1.0E-4| 1.1184505 1254.8448 1121.9493
5.0E-4| 1.5832658 1507.342 952.04614
0.001 | 2.1931293 1873.9254 854.45276
0.003 | 5.9287066 4300.4053 725.353

0.005 | 14.1644535 9692.421 684.2778
0.006 | 21.569471 14519.536 673.15216
0.007 | 32.673874 21736.934 665.26953
0.01 | 111.66118 72833.24 652.27

Table 4.2: Average number of frames and average number of total transmitted bitefmténmedi-

ate checksum scheme versus bit error pate

100000

10000

Expected number of bits

1000
le

L L
e-04 0.001

Figure 4.3: Average number of required bits fer= 1000 user data bits and different numbé&rof
chunks for varying bit error rate
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Chapter 5

The casewith a deadline

In real-time systems packets are usually equipped with a deadline and if thignéeaxpires without
success, the packet is dropped. Suppose that the user data hasfa sizé bits and the time budget
amounts tab bits, whereb is expressed as = ng - (o' + h + s + h) with ny € N and the term
in brackets being the size of the packet when only one single chunk @#)sizould be used. For
simplicity, the time required for the acknowledgement packets is not explicitlikecadt could for
example be included into the header size

The prime performance measure adopted isstieress probabilityi.e. the probability that the
transmitter receives a final acknowledgement before the packet deadjires.

5.1 Thecomplete scheme

Given knowledge of the bit error rage one important goal is to find good values fbrand ¢ that
maximize the probability that a packet can be successfully transmitted within dmeeaOne possi-
ble approach is to re-formulate this goal, where for the time being integetraonts are disregarded.
Specifically, when chunk sizeis chosen:

e The total number of frames that in the complete scheme can be sent befdeathime is given

by:
F(o) o+h+s+h my
c)=mng - =Ny ——5
O thtstih Y mats-h
where the numerator corresponds to the size of the packet when thie sikans chosen as
and the denominator corresponds to the result packet size for a clzerd{ s.

(5.1)

e For one single packet, the average number of bits that are successtidlyed by the receiver

is given by the product of the probabilifyy; of correctly receiving the header, times the average

number of correctly received chunks times the size of a chunk:

Py-c- 2 -Po = (1—p)0/+h-c~ -(1—p)c+h

c

o l®

= (1-p)7 s )+

—~

1—p

Copyright at Technical University Berlin. All TKN-08-002 Page 14

Rights reserved.



TU BERLIN

Putting everything together, the worst-case average number of sfiddstssthat can be transmitted
within the given deadline is given by the product of these terms, i.e. by:

ng-mip-S

et h (1=p)*"- (1 —pt" (5.2)

n(c,p) =

The unique value* > 0 which maximizes Equation 5.3 for knownis given by:

—S‘h+\/52‘h2—4‘m2'%

2-m2

Please note that Equation 5.3 gives different values for the optimal ckinakthan Equation 4.4.
Furthermore, this optimal value is independentgtbut not independent of For later evaluations
(compare Chapter 6) we will also use the following modification of the funeiien):

no-mj-s

n*(c,p) = L’W

J S(L=p) (1= p)th (5.4)
which considers the integer constraint on the number of available packets.

For the remainder of this paper we choose a more practical approachas$uee that the
transmitter can choose one among a discrete number of chunk sizes. caflgcifie assume that
c € C=1{32,64,128,256,512,1024}. For givenp the transmitter chooses(p) as

c¢*(p) = argmaxn(c, p) (5.5)
ceC
and the maximum number of allowed trials is then givemby | F'(¢*(p))|. After computing the
state transition matri® for the choser*(p) andp (compare Equation 3.1), the success probability
is given by the probability that after steps the Markov chain has reached the final $iaie. it is
given by:
Pr[SuccessComplet¢=[(00 ... 01)-P"];

In Figure 5.1 we present numerical results §oe 1024 bits andny = 10 allowed trials. Specif-
ically, we compare the success probability for the optirfdp) (Equation 5.5) with the success
probabilities that can be obtained for each individual C. The chunk size of 1024 bits amounts to a
raw send-and-wait version without using intermediate checksums. Asecarpected, the complete
scheme with* (p) indeed provides the best delivery probabilities (together with32), but there is
a general trend that delivery probabilities improve with decreasing thekctime. As opposed to the
success probability, however, there is a difference between the corapletme using*(p) and the
fixed one using: = 32. This difference is in the average number of bits that would be requirgld un
success (in case of an unbounded number of retransmissions, corapktddompare Equation 4.1]
times the resulting packet size for chunk sizevhereL = s/c is the number of chunks), shown for
this example in Figure 5.2.

A limiting factor for the performance of all schemes is clearly the headerdjzgnce this is
common for all schemes and a header must be successfully receioed thefintermediate checksum
scheme becomes effective.
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Figure5.1: Success probabilities of different intermediate checksum schemes(thuixed chunk
sizes, plus the one with nearly optimal chunk size) versus bit error nate<ol 000 user
data bits andchy = 10 allowed trials
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Figure 5.2: Success probabilities of different intermediate checksum schemes(fbuixed chunk
sizes, plus the one with nearly optimal chunk size) versus bit error nate<fol 000 user
data bits anchy = 10 allowed trials
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Figure5.3: Success probabilities of different intermediate checksum schemes (tcem@eéuced
and redundant) versus bit error rate foe= 1024 user data bits andy, = 10 allowed
trials

5.2 Thereduced and the redundant schemes

We now want to compare the reduced and the redundant scheme againetrtplete scheme. In
all these three schemes we assume that for given bit errop edveays the optimal chunk sizé(p)
according to Equation 5.5 is chosen.

The reduced scheme is not easily analyzed numerically, since the numbiithat can be
made before the deadline expires is essentially random. The reduntiemescises a fixed num-
ber of packets, but the probability that an outstanding chunk is correstiived also depends in
a random fashion on time, since the redundancy grows randomly with caudrstenumbers of tri-
als. These schemes are therefore evaluated by simulation. More splgcdicastom simulator has
been developed in the Common Lisp language [9, 7]. This simulator contaithses#l schemes (the
complete scheme, the reduced and redundant scheme) such that natinality is shared among
these different schemes. The author has compared the simulation restiitséomplete scheme and
the numerical results obtained in the previous Section 5.1 and they match ekrymthe simula-
tion results reported in the following, for each protocol scheme and eaehktigated bit error rate
p a number of five million packet transactions has been simulated, leading ttigletzonfidence
intervals that are not shown in the Figures.

In Figure 5.3 we compare the simulation results for the complete, the redude¢bdearedundant
scheme for varying bit error raje The results show that both the reduced and the redundant scheme
improve upon the complete scheme, but there is no clear winner among theratuies ofp > 0.015
the redundant scheme is the best one, for smaller values the redueetegodrforms best. A possible
explanation for this is that for very high bit error rateshe number of additional frames that the
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Figure 5.4: Success probabilities of different intermediate checksum schemesédedundant
and reduced-redundant) versus bit error ratesfer 1024 user data bits andy = 10
allowed trials

reduced scheme can transmit shrinks and becomes similar to the numbenes fasailable to the
redundant scheme. But in this case the redundant scheme has moté@ptudre successful since
individual outstanding chunks have a higher probability to be sucdbssfaeived.

Motivated by these findings, we consider a combined scheme, catleded-redundant in which
the number of replications of outstanding chunks is limited to two. In Figure 5.donwgare the re-
duced scheme, the redundant scheme and the reduced-redurngané $or their success probability.
The results show that the reduced-redundant scheme is indeed a gdockroixhe reduced and the
redundant scheme, always very closely resembling the actual optimurmasef tivo.

Itis also instructive to compare the average bits that each of the foumsshigomplete, reduced,
redundant, reduced-redundant) spents per packet transactiethenisuccessful or not. The fewer
bits spent on average, the earlier a packet’s fate is known, and madeviokim and time is available
for other packets. In Figure 5.5 the corresponding simulation resulthianens Over a wide range of
bit error rates the reduced scheme has the lowest average numbery whidgsthe complete scheme
has always the highest average number of bits. The redundant schbilesalways using maximum
sized frames, improves upon the complete scheme due to its higher suatesslgy (and therefore
its smaller average number of required frames). The reduced-regiuscieeme is very close to the
reduced scheme, it requires significantly fewer bits than the redundzeme.

In summary, the reduced-redundant scheme behaves always veeytotoptimal both in terms
of success probability and in terms of the average number of required bits.

Before closing, we want discuss a negative result concerning thieeddscheme. Specifically,
there is a straightforward numerical approximation whichs actual quality &g % explore. The
approximation works as follows:
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Figure5.5: Average number of bits per transaction for different intermediate chetkshemes
(complete, reduced, redundant and reduced-redundant) vérsubrate fors = 1024
user data bits and, = 10 allowed trials
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Figure5.6: Reduced scheme: comparison of simulation and approximation versusdoitae for
s = 1024 user data bits and, = 10 allowed trials
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e BeA® = (00 ... 01) be the initial state probability vector of the underlying Markov chain,
and letA(™ = X\(O) . P" the state probability vector aftersteps, and be

0
1

& —am. | 2

L—-1
L

the average number of outstanding chunks aftsteps, wherd. = [C*%m} is the initial total
number of chunks. Let furthermore be

In=0 +h+[&](c*(p) + 1)
be the average packet size after thth trial.

e Compute:
n* = gé?w); {;ZZ < b}
e To obtain the success probability, then the expression
Pr [SuccessCompleté = [(O 0...01) -P”*} 1

is computed.

In Figure 5.6 we compare the quality of this approximation for varying bitrerate. It can be
concluded that the approximation is too coarse to be useful.
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Chapter 6

Selection of Chunk Sizes

In this part we look at the problem of determining a finite set of chunk sioes Which the protocol
can choose. In the previous Chapter 5 we have used thé set{32, 64, 128,256,512,1024} as
our chunk-size sdiCSS) without considering the question whether this is a good such seteisetth
giving the highest success probabilities or the lowest average nunitreuared bits.

To address this question, we make a number of (simplifying) assumptions:

e The allowed chunk sizes are larger or equal to a certain minimum chunkgjgeand smaller
than or equal to a certain maximum chunk siggax.

e The bit error rate that the channel assumes is a random vafawi¢h range(0, 1) and distri-
bution functionF'z(-) with F5(0) = 0 andFp(1) = 1.

e The transmitter must encode the actual chunk size in this frame. If we allowpnigfisation
to consist ofin bits, the CSS consists af* distinct chunk sizes. Both transmitter and receiver
possess a common codebook that map2thdistinct values to actual chunk size values.

e We consider only the complete scheme since for this scheme we have a metrerfbtanp
numerical calculations. For the time being we assume that a CSS that is goeenoope
timal for the complete scheme is also good or even optimal for the reducadhdaat or
reduced-redundant schemes. It is a possible subject of futureteadafirm or disprove this
assumption.

¢ Instead of maximizing the average success probability (which in gengpahde on the bit
error ratep in very complicated ways) we want to maximize the worst case average number
of successful bits within the given deadline, i.e. we consiglerp) instead ofPr [Success
It is reasonable to assume that maximizif(g, p) is also beneficial for the success probabil-
ity. [FI1X!]*

We can cast the identification of a good CSS in the framework of quantizatidmage-distortion
theory [8], [2, Chap. 10]. Roughly, the problem is to represent ratidims of a continuous scalar
random variable by one of a finite number of values. This finite set of salsemetimes called
reproduction pointsshould be chosen such that an average distortion measure is minimizéd. Suc

Y AW]:In fact, i believe that the success probability is a monotonic functiof{afp).
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a distortion measure accounts for the difference between a realizatioa krtdom variable (a real
number) and its associated representation. We want to minimize the averaggéatisneasure for a
fixed number of reproduction points (i.e. a fixed rate representationgaBiyng the problem in this
framework it is possible to utilize known algorithms for finding reproductiomsdike for example
Lloyd’s Algorithm. Unfortunately, all these algorithms require that the phbdtg distribution of the
underlying random variables (bit error rate or chunk size) is known.

When B is the random variable for the current bit error rate, then the randoiab¥a giving the
current optimal chunk size is given by a random variaBle- ¢*(B) (compare Equation 5.3). From
Equation 5.3, for the distribution functiaf-(c) = Pr [C < ¢] we have:

—s5-h
EF =1—-Fp|(1—-
c(c) B< exp <c-s-h+m2~02>>

In practical realizations the chunk sizes cannot be arbitrary, but they lower and upper bounds
cmin @nd smaller than or equal to a certain maximum chunk gizgx. Because of this we use the
following modified distribution function:

0 : c < len
Golc) =< Fole) : cmin < ¢ < cmax
1 : ¢>cmax

Now define by¢(p) the function that associates one of @i chunk sizes to a given bit error rate
We consider two different distortion criteria:

e Squared-error in the chunk size: the distortion is measured by:

da (¢*(p), &(p)) = (¢*(p) — é(p))?

This distortion measure, however, has the problem that it is not sensitive &zhieved success
probability: for very small bit error ratg a larger deviation in the actual chunk siZg) from
the optimal chunk size*(p) is less critical than for larger values pf This motivates the
second distortion measure.

¢ Adistortion measure that includes the success probability (compare EqBa&ican be defined
as:

S

a0 = |o (0| 255 [ Lre@on) o (e | 75 | o Lreon )| 2

In the remainder of this chapter we perform a numerical study to assegd#fénience between these
two distortion measures. Specifically, we assume that the bit error rateserchaB = 10V where
the exponent/ is a random variable drawn uniformly fropa6, —1]. This means that:

log p logp
Fp(p) =Pr[B <p]=Pr[10Y <p] =Pr |U < = I
B(P) r[B < p r[O _p] 1A[U_loglo] U<10g10

For the case of thé, (-, -) distortion measure Lloyd’s algorithm [28]I X!]? can be applied to find
the CSS that minimizes the average distortion. Lloyd’s algorithm is an iterataseedealgorithm.

2[AW]:Give a precise citation
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Listing 6.1: Lloyd’s Algorithm for CSS determination based @s1-, )

paraneters: initial CSS of 2™ reproduction points from [cyn,cmax]

// initializations
set Qp to initial CSS
set ¢ t0 ¢nin

/1 main | oop
r epeat

for ¢ =1to 2m—-1
/1 determ ne upper end of current Voronoi region
GC([QU}VL)+GC([QU]i+1) )

set ¢, to Ggl( 5
/1 centroid of this region is new reproduction point
set [Qi], to Gg! (Gc(cl)';Gc(Cu))
set ¢ to ¢,
endf or

/1 consider final Voronoi region
set [Qil,n to G (M)

until [Qo—Qul1 <1
return Q;
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Point | Mean/ StdDev (m = 2) | Mean / StdDev (m = 3) | Mean / StdDev (m = 4)
1 14.8/0.01 10.0/0.01 8.2/0.02

2 57.3/0.09 21.6/0.03 12.6/0.07
3 188.5/0.29 42.4410.07 18.8/0.16
4 585.4/0.36 79.24/0.12 27.2/0.29
5 143.38/0.17 38.4/0.48
6 254.45/0.20 53.5/0.74
7 446.17/0.18 73.3/1.07
8 776.72/0.09 99.4/1.48
9 133.5/1.96
10 178.0/2.48
11 235.6/3.00
12 310.1/3.43
13 406.4/ 3.68
14 530.6/3.55
15 690.8/2.84
16 897.9/1.25

Table6.1: Averages (rounded) and standard deviations of results generat&@0bsounds of the
Lloyd algorithm for 4, 8, and 16 reproduction points and 4hg, -) distortion measure

Adapted to our setting the algorithm can be described as in Listing 6.1. Sinadghighm is only
guaranteed to converge to a local optimum, we have run it five hundred tiittesawdomly chosen
initial CSS sets (specifically: al™ initial points are drawn uniformly fronfc iy, cmax))- In Table
6.1 we show the results. It can be seen that the difference betweeraridhreproduction points
increases, the most reproduction points are small.

The d,(-,-) distortion measure is more complicated to handle, since the mappingo(-) is
not monotone and the distribution function of the success probabilities isdammpute explicitly.
Instead of applying Lloyd’s algorithm we have applied a genetic algorithneterchine good CSS.
Genetic algorithms are a well-known approach to find local extrema in laggetsspaces [6]. Our
approach for identifying good CSS works as follows:

e The algorithm works on populationof individual CSS (each of length € {4, 8, 16}), having
a fixedpopulation sizeThe initial population includes the solution given in Table 6.1, a number
of mutations of this solution, while the remaining members are random vectossrtiimm

[¢min: cmax"-

e Each CSSinthe population is judged for its quality, measured as the avaagss probability
over the given range of bit error rati$)—% 10~!] (see below). Judging all the members of a
population is referred to as jadging round The algorithm performs a limited number of
judging rounds.

e At the end of a judging round a new population is created using the resaltalse for the
current population. Ther - 100% of the best members of the current population are carried
over into the new population. These are cabedvivors The nexts - 100% of the members of
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Algorithm m = 2 (4 points) | m = 3 (8 points) | m = 4 (16 points)
plain ARQ 0.6721 0.6721 0.6721
IC with Lloyd | 0.7584 0.7553 0.7567
IC with GA 0.7598 0.7594 0.7594

Table 6.2: Comparison of average success probabilities for 4, 8, and 16 regirapoints of a plain
ARQ scheme without intermediate checksums, and of the intermediate ches&same
configured with the results of Lloyd’s algorithmiy -, -) measure) and of the genetic al-
gorithm (-, -) measure). Average is taken over 5000 equidistant BER exponents from
[-6,-1].

Algorithm
IC with Lloyd
IC with GA

m = 2 (4 points)
{15,57,188,585}
{32,54, 883,892}

m = 3 (8 points)
{10,22, 42,79, 143,254,446, 777}
{20, 32, 57,70,839,908, 936, 948}

Table 6.3: Optimal CSS for 4 and 8 reproduction points of the intermediate checkswemsatonfig-
ured with the results of Lloyd’s algorithmi{(-, -) measure) and of the genetic algorithm
(ds(-,-) measure).

the new population are created from mutations of randomly chosen membkbescof 100%
survivors. Specifically, to create a mutated member one survivor (€SS. ., ¢,,) is picked
randomly and each of its component is set with a certain probability to a new dafwn
uniformly from [cqin, cmax. The nexty - 100% of the members of the new population are
created from crossovers of the survivors. Specifically, two sarvbhains(cy, ..., ¢,) and
(-, cy,) are picked randomly and a new chain is create(cas . . , ¢, /2, c;/QH, cey ).
The remaining1—a—3—+)-100% of the members are randomly chosen friegni,y, cmax|”-

By including into the initial population the results from Table 6.1 (with each chairnd given there
rounded to the next integer value), which are only based @nd not on the success probability, we
ensure that the results found by the genetic algorithm are not worse indéawsrage success prob-
ability. The average success probability has been obtained by samplirantef +6, —1] of BER
exponents with 5000 equidistant points. For each resulting B judging function determines
for the given CSScy, ca, . . ., ¢,,) the actual chunk siz€ as (compare Equation 5.4)

d(p)= argmax n*(c,p)

ce{c1,c2,. v}

The population size has been chosen as 40 members, the number of hagrusen chosen as 30,
and the further parameters have been chosen-a$.3, 3 = 0.2, andy = 0.2.

The results for the average success probabilities for the CSS genbyaltéalyds algorithm for
theds(-, ) distortion measure and by the genetic algorithm fordh(e, -) are compared in Table 6.2,
and the resulting optimal CSS sets for CSS sizes of 4, 8 and 16 reprodpetits are given in Tables
6.3 and 6.4. It can be noted that in terms of the average success prolsmtiiitienprovements of
the CSS generated by the GA algorithm is only minor: from 75.84% averagessi probability to
75.98 for the case of four reproduction points, from 75.53% to 75.94%idit reproduction points
and from 75.67% to 75.94% for sixteen reproduction points. It is also stiageto note that for the
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Algorithm m = 4 (16 points)
IC with Lloyd | {8,13,19,27,38,53,73,99, 134, 178, 236, 310, 406, 531, 691, 898}
IC with GA {33,137, 54,304, 392, 432,590, 601, 405, 432, 531, 539, 590, 680, 691, 984}

Table 6.4: Optimal CSS for 16 reproduction points of the intermediate checksum schenfig-c
ured with the results of Lloyd’s algorithmi{(-, -) measure) and of the genetic algorithm
(ds(-,-) measure).
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Figure 6.1: Success probability versus bit error rate for the CSS generated bgd_bdgorithm and
by the genetic algorithm for a CSS size of four reproducation points.

GA the differences in performance between four, eight and sixteeadegtion points are negligible,
while for the Lloyd algorithm they are (slightly) larger. However, in bothesahe achieved success
probability is significantly larger than in the case without using an intermediaekshhm scheme.
Looking at the chosen chunk sizes one can note the following:

e The minimum chunk sizes generated by the GA are at least twice the onathiey Lloyds
algorithm, the smallest chunk sizes are not adopted.

e For four and eight reproduction points the chunk sizes generated I3Ateppear to cluster at
the lower end and at the higher end, the chunk sizes from Lloyd’s algo&te clustered only
at the lower end.

Finally, we provide also a visual comparison of the achieved succelalglity over the range of
bit error rates from 0~ to 10~!. In Figures 6.1, 6.2 and 6.3 it is confirmed that indeed the difference
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Figure 6.2: Success probability versus bit error rate for the CSS generated bgd &dgorithm and
by the genetic algorithm for a CSS size of eight reproduction points.
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Figure 6.3: Success probability versus bit error rate for the CSS generated bgd bdgorithm and

by the genetic algorithm for a CSS size of sixteen reproduction points.
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in success probability between the CSS generated by the Lloyd algoriththeugeénetic algorithm
are minor.
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Chapter 7

Related wor k

In general, the intermediate checksum scheme considered here belapggket combining scheme
[22, 3] or type-1Il hybrid ARQ schemes [13].

At the time of writing the first publication [26] the intermediate checksum schease o the best
of the authors knowledge, not yet discussed in the literature, exeept[fk6], where the approach
is briefly sketched but not followed anymore. In [5] an approach amjlar to our intermediate
checksums has been designed, implemented and evaluated in the contiegtssfssensor networks.
They consider that the allowed frame size is in general smaller than the raestgagThe message is
fragmented into small blocks, several of which can fit into a frame. Theldize can be adapted ac-
cording to channel feedback. The focus of the protocol is on effigistreaming the blocks of a mes-
sage such that one frame can at the same time contain retransmissions ofaéladiélocks and new
blocks. They also suggest a cooperative version of the intermediat&sthe scheme, something,
which has also in other contexts been considered a very rewarding adiditimk layer schemes
[4, 18]. However, the work presented in [5] does not consider ldezand protocol schemes (like
the reduced and redundant schemes) that are actually designed vdlinea mind, and this paper
is to the best of the authors knowledge the first paper doing that.

The related issue of chosing optimal packet sizes has been considenetbar of times in the
literature, For example [21] and [11] consider the problem of determirmogl grame sizes on fading
channels. The combination of adaptive frame length control and FEC ligregpn [15].
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Chapter 8

Conclusions

In this paper we adapted the intermediate checksum scheme to the caseadietedeadlines are
present. It is shown that the intermediate checksum scheme gives signifigaovements in terms
of the success probability as well as a significant reduction in the numheansmitted bits (in the
reduced scheme) as compared to the traditional scheme using only a siechksuin. We therefore
consider the intermediate checksum scheme as being a very attractive aegigach for applica-
tions in which larger packets must be transmitted subject to a deadline.

There is significant potential for future work. A first one considersitilermediate checksums
themselves. In this paper we have assumed that they are perfect, bhieteeabis they should be of
a certain minimum size, for example 16 bit. It is attractive to use smaller checKsutte chunks
in addition to a perfect checksum over the whole user data. In this caseyér, the intermediate
checksum scheme might accept frames that the perfect checksurns destecroneous and as a result
all chunks must be transmitted again because it is not clear which of them ig.wron

Secondly, one could consider a variation of the redundant scheme i whecoutstanding
scheme are not simply repeated multiple times but broken down into (redusdaadter chunks.

Thirdly, both intuition as well as the formula given in Equation 3.3 point to the tlaat the
header error probability’; should be made as small as possible, which can be done by reduction of
the header size (possibly adopting some header compression techmidpyeg)rotecting the header
with an error-correcting code.

Finally, throughout this paper we have assumed that the bit errop iiatknown. In practice, it
has to be estimated somehow, and without requiring additional functionali@stifre physical layer
the only data available for this is the previous history of the intermediate amecksheme. It has
been discussed in [26] how the BER can be estimated, but the influenaeesdttmation error needs
to be assessed in future work. A fundamental problem here is that thmad&te checksum scheme
tries to minimize the number of packets / chunks required, and this tends werdduamount of data
that can be used in a BER estimation, and this in turn makes the estimation monerener
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