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Chapter 1

Introduction

Sensor networks are not only useful to observe the environment, but also to control it
through actuators [1, 17], for example in building automation applications [21, 13]. In
this kind of applications there are both sensor nodes and the actuator nodes. For the
sensor nodes many of the considerations usually made for sensor networks [12] apply,
including the observation that the individual sensor data packet is not important (and
can be suppressed) as long as there are sufficient other sensor nodes which can observe
the same data [22]. In contrast, actuators must be individually addressable and often
the quality of a control algorithm depends crucially on the network ability to reliably
deliver sensor data to the actuator nodes. The focus of this paper is on scenarios where
packets should reliably reach selected and individually addressable nodes (henceforth
called destination nodes) in a sensor network.

In this paper we develop the concept of a repeater group. A repeater group is a
coordinated and connected group of sensor nodes placed close to the destination node.
The group is responsible for receiving incoming packets and the members jointly en-
sure that this packet is received by a destination node (for example the actuator) with
high probability. At the same time, the activities of the group members are arranged
so that an individual member has enough opportunity to sleep, i.e. can maintain a rea-
sonably low duty cycle. An important characteristic of a repeater group is that here is
sufficient geographical separation between members to take advantage of spatial diver-
sity in wireless channels [10]. On the one hand, this arrangement increases the chance
that at least a few group members receive and successfully decode an incoming packet.1

Once this happens, the packet can be communicated to other group members as well.
On the other hand, the group members possessing a copy of the incoming packets can
decide whether and when they re-transmits the packet. By making sure that these re-
transmissions are carried out in an orthogonal (for example in time) manner by many
different, geographically separated group members, we can make effective use of the
spatial diversity of the wireless channel and give the destination node the possibility
to receive the packet over multiple, independently faded wireless channels. Hence, the
group can be thought of as amplifying incoming packets – this is just what repeaters
typically do. The repeater group concept can be regarded as a practical cooperative
diversity / cooperative MIMO (single input / multiple output) scheme [14, 15, 9] with
additional consideration of node sleeping cycles and transmit/receive operations carried

1Due to the diversity gain achievable with multiple receivers, the source of incoming packets can reduce
its transmit power while keeping the throughput and target error rate. This argument is especially pronounced
in the case when incoming packets are transmitted over a long-haul link [9].
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out by the same group of nodes. By relying on a decode-and-forward approach [14, 15]
the schemes developed in this paper can be implemented without special support from
the physical layer.

Given this core concept of repeater groups, a number of design issues come up.
A first design issue concerns the cooperation of the members of the repeater group
(henceforth called repeater nodes or simply repeaters). It has to be ensured that re-
peaters have sufficient opportunity to spend time in sleep mode, but on the other hand
enough repeaters should be awake to pick up and re-transmit the incoming packet. In
this paper we consider schemes in which repeaters have some a-priori knowledge about
the repeater group (like group size, sleeping policy of nodes and the resulting proba-
bility distribution of the number of awake nodes) but do not exchange extra control
packets to coordinate their sleep activities or other operational aspects of the group.
In general, a repeater has to take all its decisions on the basis this a-priori knowledge
and on its observations of the behaviour of its peers. The results of this paper can be
regarded as baseline results for more elaborate schemes based on explicit coordination.

A second design issue is to make sure that a sufficient number of awake nodes really
do receive the incoming packet and are able to re-transmit it further. Because of channel
errors it might well happen that an awake node does not receive the incoming packet
– we call such a node a wave-one node, whereas the repeaters which have received
the incoming packet are wave-zero nodes. We present a scheme which allows wave-
one nodes to quickly pick up repeated packets from wave-zero nodes and to start their
repeating activities later. The scheme performs over a large range of error probabilities
almost as good as if there are no channel errors.

A third important issue is how the awake repeaters (wave-zero and wave-one) ar-
range their transmissions so that the largest possible number of non-overlapping packet
re-transmissions coming from different repeaters can potentially be heard at the desti-
nation node. To complicate matters, since we avoid explicit coordination in this paper,
the number of awake nodes is random, as are the number of wave-zero nodes and the
times when wave-one nodes pick up repeated packets and start their activities. In this
paper we use a slotted scheme in which each repeater node picks one out of a finite
number of slots according to a random distribution. The goal is to maximize the aver-
age number of slots in which exactly one repeater transmits. We derive such a scheme
and show that it achieves the optimal throughput for slotted ALOHA of 1/e ≈ 0.368
in the case without channel errors, i.e. on average 36% of all slots contain exactly one
repeated packet.

A fourth important design issue concerns the handling of immediate MAC-layer ac-
knowledgements for incoming packets. When acknowledgements are required, some
coordination is needed between the repeaters to decide who sends the ack. Without
MAC layer acknowledgements there is no need for coordination, and since we are in-
terested in coordination-free schemes, we make this assumption throughout the paper.

The paper is structured as follows: In the next Chapter 2 we describe the system
model under consideration. In Chapter 3 we develop a baseline scheme for the case
without channel errors of incoming packets. Following this, we investigate the impact
of channel errors on the baseline scheme in Chapter 4. In Chapter 5 we discuss so-
called quick amplification schemes, which improve the baseline scheme in case of high
error rates. A brief overview on related work is given in Chapter 6 and the paper is
concluded in Chapter 7.
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Chapter 2

System model

A sketch of the assumed system model is shown in Figure 2.1. The destination node D
is shown in the right part of the figure. The overall goal is to transmit at least one valid
copy of incoming packets reliably to the target node. The target node as such is not
of interest to us, it is assumed to have plenty of energy (this assumption is reasonable
for actuators) and other resources, and is awake all the time.1 The destination node
can operate in different modes: it either needs one error-free copy of the incoming
packet from any repeater node, or it could be able to combine several erroneous copies
[23, 16] coming from different repeater nodes. The schemes in this paper do not take
any advantage of packet combining methods, but in general this can be an important
design aspect.

We assume a slotted-time model and perfect time synchronization of all the in-
volved nodes. Specifically, we assume that incoming packets arrive periodically at the
beginning of so-called macro slots. All activities of the repeater group belonging to an
incoming packet at the beginning of a macro slot have to end before the beginning of
the next macro slot. The incoming packets have all the same size.

The repeater group consists of N nodes. In the figure all the nodes within the grey
shape are repeater nodes. Each repeater i decides independently of other nodes at the
beginning of a macro slot (before an incoming packet arrives) whether it will sleep dur-

1It should be noted that there is nothing in the schemes discussed in this paper which prevents having
more than one destination node.

incoming packets

D

awake node

sleeping node

Figure 2.1: System model
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ing the macro slot. We assume that this decision is made randomly, and we assume that
the numbers K1,K2,K3, . . . ,Kj , . . . denoting the number of awake nodes in macro
slot j forms a sequence of independent and identically distributed random variables.
The generic random variable is called K. The common distribution function FK(·) of
K1,K2, . . . is known to all the members of the repeater group, but the realizations of
these random variables are not known nor are they tracked by the repeaters. In the spe-
cific case where each node decides on the basis of an independent Bernoulli experiment
with success (awake-) probability s, the random variables Ki have a binomial distri-
bution with parameters N and s. We call such a repeater group a binomial repeater
group. It is assumed additionally that the repeaters also know a unique identifier for
the repeater group.

The group is assumed to be connected and the members have a reasonably high
neighborhood degree. Group members can receive packets of neighbored members
with high probability. From a physical perspective, the group members should have a
mutual distance of at least half a wavelength. At this distance, the fading observed on
different wireless links starts to become independent [19, Chap. 5].

Assume that the incoming packet is received at the beginning of a macro slot (there
are no immediate MAC layer acknowledgements). The following time is subdivided
into a number M of time slots, numbered from 1 to M . The parameter M is known to
all repeaters. The slot size is large enough to accommodate a repeated packet. A re-
peated packet is generated by a repeater node from adding a small flag and the repeater
group identifier to the incoming packet. The flag simply identifies the repeated packet
as such. The repeater nodes receiving the incoming packet (which we call wave-zero
repeaters) pick one of the M slots randomly for transmission or decide to keep quiet. A
wave-zero repeater picks time slot t ∈ {1, . . . ,M} with probability p0

t or remains quiet
with probability p0

M+1. For simplicity we assume that whenever two or more repeaters
pick the same slot for transmission a collision arises, rendering the repeated packets
useless. Such a slot is called a collided slot. When none of the repeaters transmits
in a slot, we refer to it as an empty slot, whereas when exactly one repeater transmits
in a slot we call it a successful slot. Now assume that slot t∗ is a succesful slot, and
repeater Ra is the one transmitting in this slot. It might happen that another repeater
Rb which has not received the original incoming packet picks up the repeated packet.
Such a repeater Rb is called a wave-one repeater. It either picks randomly one of the
slots t ∈ {t∗ + 1, . . . ,M} (each with probability p1

t ) or remains quiet with probability
p1

M+1. In general, p1
t and p1

M+1 might also depend on the slot number t∗, but we drop
this since we make no further use of this in this paper.

Our goal is to maximize the number of successful slots. However, since the number
of awake nodes and their transmission decisions are random variables, in general we
want to optimize the expected number of successful slots.
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Chapter 3

The case without channel errors

We first look at a system where all incoming packets are reliably received by the awake
nodes. Stated differently: all of the K nodes are wave-zero nodes and can operate
in a very energy-efficient manner: a wave-zero node either decides to remain quiet
(and thus can sleep for the remaining macro cycle) or transmits in a single slot without
listening to other slots.

The protocol design knobs are the probabilities p0
t for t ∈ {1, . . . ,M} and p0

M+1.
We abbreviate these probabilities as pt with t ∈ {1, . . . ,M + 1}, where pM+1 is the
probability that the repeater node remains quiet. We abbreviate the vector of probabil-
ities as π = (p1, p2, . . . , pM , pM+1) and note that π is a probability distribution. The
goal is to choose these probabilities such that the expected number of successful slots
is maximized. We now formulate this problem more concisely.

Suppose first that the number of awake nodes K is fixed and known and that all
awake nodes receive the incoming packet. Define the random variables Xi,j as follows:

Xi,j =

{

1 : node i ∈ {1, . . . ,K} transmits in slot j ∈ {1, . . . ,M + 1}
0 : otherwise

Since we assume that the nodes make their choice independently and all nodes use
the same probability distribution π, for each fixed j the Xi,j are iid random variables.
Furthermore, for fixed i we have

M+1
∑

j=1

Xi,j = 1

The number Yj of nodes transmitting in slot j, defined as:

Yj =

K
∑

i=1

Xi,j

is a sum of iid random variables and hence has a binomial distribution Yj ∼ Binomial (K, pj).
The indicator variable Zj is defined as:

Zj =

{

1 : Yj = 1
0 : Yj 6= 1
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and indicates the (desired) event that in slot j exactly one repeater node transmits.
Clearly, we have:

Pr [Zj = 1] = Pr [Yj = 1] = b(1;K, pj) = K · pj · (1 − pj)
K−1

where b(k;n, p) =
(

n
k

)

pk(1 − p)n−k is the probability mass function of the binomial
distribution. The average number of slots in which exactly one repeater node transmits
under distribution π is given by:

f(π) = f(p1, . . . , pM+1) = E [Z1 + . . . + ZM ] =

M
∑

j=1

E [Zj ] =

M
∑

j=1

K·pj ·(1−pj)
K−1

To find the optimal distribution π, we have to solve the following nonlinear constrained
optimization problem:

maximize f(p1, . . . , pM+1)

subject to h(p1, . . . , pM+1) = 1 −

M+1
∑

i=1

pi = 0

g(p1, . . . , pM+1) =









g1(p1, . . . , pM+1)
g2(p1, . . . , pM+1)

. . .
gM+1(p1, . . . , pM+1)









=









p1

p2

. . .
pM+1









≥ 0

We show in Appendix A that we can simplify this problem: the optimal probability
distribution assigns to all slots 1, . . . ,M the same probability, i.e. p1 = p2 = . . . =
pM =: p, with a true definition on the right hand side. Let further denote q = pM+1.
Hence, the problem can be reformulated as:

maximize f(p, q) = M · K · p · (1 − p)K−1

subject to h(p, q) = 1 − M · p − q = 0

p ≥ 0, q ≥ 0

The parameter p is restricted to the interval
[

0, 1
M

]

. Obviously, f(0) = 0 and

f

(

1

M

)

= K ·

(

M − 1

M

)K−1

It is shown in Appendix A that the value popt which maximizes f(·) is given by:

popt =

{

1
K

: K > M
1
M

: K ≤ M
(3.1)

If we fix M , then for K → ∞ the expected fraction of slots in which exactly one node
repeats a packet is given by:

lim
K→∞

f
(

1
K

)

M
= lim

K→∞

(

1 −
1

K

)K−1

=
1

e
≈ 0.368

which confirms that the proposed choice of popt gives indeed the theoretical maximal
throughput of slotted ALOHA for a large population of stations [4, Sec. 4.2].
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However, a repeater node does not know K, it knows only M and the distribution
of K, but it still has to make a choice of its parameter p. So, instead of maximizing
f(·) for known value of K, we choose to maximize:

F (p, q) = E
[

M · K · p · (1 − p)K−1
]

= M ·
p

1 − p
· E
[

K(1 − p)K
]

(3.2)

subject to 0 < p < 1 (the expectation is taken with respect to K). It is shown in
Appendix B that E

[

K(1 − p)K
]

can be represented in two different ways:

E
[

K(1 − p)K
]

=
∞
∑

n=1

E [Kn]

(n − 1)!
· (log(1 − p))

n−1 (3.3)

provided that all moments E [Kn] of the distribution of K exist, which, however, is
guaranteed for all discrete distributions with finite range. The second representation is:

E
[

KaK
]

= a
d

da
ΦK(log(a)) (3.4)

evaluated at a = 1 − p, where ΦK(x) = E
[

exK
]

is the moment-generating function
of the random variable K.

A number of strategies can now be used to choose the parameter p optimizing
Equation 3.2:

• Motivated by Equation 3.1 one choice could be:

p∗ =
1

M
· Pr [K ≤ M ] +

∞
∑

k=M+1

1

k
· Pr [K = k]

which does not depend on K but only on the (known) distribution of K.

• One can determine the optimal p taking Equation 3.4 into account, i.e. from
optimizing:

F (p, q) = M ·
p

1 − p
·(1−p)

d

da
ΦK(log(a))

∣

∣

∣

∣

a=1−p

= M ·p·
d

da
ΦK(log(a))

∣

∣

∣

∣

a=1−p

We will call the value that maximizes the previous expression pmgf.

• When the moment-generating function ΦK(·) of K is not available or not easily
manipulable, the moment-represenation of Equation 3.3 can be exploited. One
way is to obtain an approximation by truncating the moment representation after
a number n of terms,1 i.e. to optimize

F1(p, q) = M ·
p

1 − p
·

(

E [K] +

n
∑

i=2

E
[

Ki
] (log(1 − p))i−1

(i − 1)!

)

as target function. This requires knowledge of up to n moments of K, and the
optimization of p is best done numerically.

1At least two terms are required, since for only one term the resulting expression

M ·

p

1 − p
· E [K]

has no local maximum in (0, 1), instead, this expression diverges for p → 1.
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We compare these different choices for the special case of a binomial repeater group.
Assume that we have N sensor nodes in total, and each of these N nodes makes
an independent and time-homogeneous decision whether to sleep (probability 1 −
s) or whether to stay awake (probability s) in the next macro slot. Hence, K ∼
Binomial (N, s). The moment-generating function for the random variable K is:

ΦK(a) = E
[

eaK
]

= (1 + s (ea − 1))
N

and we have:

ΨK(a) =
d

da
ΦK(log(a))

=
d

da

(

1 + s
(

elog(a) − 1
))N

=
d

da
(1 + s (a − 1))

N
= s · N · (1 + s · a − s)N−1

and
ΨK(1 − p) = N · s · (1 − sp)N−1

Therefore we have:

F (p, q) = M · p · N · s · (1 − sp)N−1

which for 0 < s < 1 achieves its maximal value in (0, 1) for

pmgf =
1

N · s
=

1

E [K]

However, to satisfy the constraint that M · pmgf ≤ 1 we choose:

pmgf = min

{

1

M
,

1

E [K]

}

To test the quality of approximations based on the moment representation, we have
used representations where the series is truncated after the second, third, fourth or
fifth moment. For each of these representations the optimal p for a given binomial
distribution is obtained numerically.

The results of a numerical study with a group of N = 100 repeater nodes and
M = 20 slots per macro slot are presented in Figure 3.1. We have varied the probability
s that a group member stays awake during a macro slot. For each value of s the values
for p∗, pmgf and the optimal p-values for the truncated moment representations have
been computed and used subsequently to determine the expected number of successful
slots under the respective probability parameter. The results show that:

• As expected, pmgf provides indeed the optimal performance, but the differences
between p∗ and pmgf are quite small. When pmgf is used, the optimal expected
number of successful slots converges to ≈ 7.394593 (which is very close to
20/e ≈ 7.36).

• The truncated moment representations do not perform well. Those which are
truncated after an even number of moments converge to a constant value for in-
creasing s, but stay below the performance achievable with p∗ and pmgf. Trun-
cating after the fourth moment gives better performance than truncating after
the second moment. The curves for truncating after the third and after the fifth
moment are identical, and they decay for increasing s.
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Figure 3.1: Expected number of slots with exactly one repeated packet vs. probability
s of an individual node to stay awake in a repeater group of N = 100 nodes, M = 20.

• Heuristically, all reasonable, i.e close-to-optimal policies have achieved their
best throughput consistently for E [K] ≥ M . This makes sense intuitively, since
for E [K] < M on average some slots remain unused.
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Chapter 4

The case with channel errors

Next we include channel errors into our considerations. It might happen that a repeater
node misses either the incoming packet or even the repeated packets. If a repeater node
picks up a repeated packet in the m-th (m ≥ 1) slot, it might decide to repeat it in
the remaining M − m slots, picking each slot with probability p (we assume that p is
either p∗ or pmgf), or it remains quiet with probability 1− (M −m)p. We refer to this
scheme as the baseline scheme.

We assume that in general the packet error rate for incoming packets is not known to
the repeaters.1 This implies that, although the distribution for the number K of awake
repeaters is known to the repeaters, they do not know the distribution of the number
W0 of wave-zero nodes, and of course they do not know the number W1 ≤ K − W0

of wave-one nodes. With respect to energy consumption, the wave-zero nodes receive
the incoming packet and transmit their packet in the chosen slot (or remain quiet) and
have no disadvantage against the case without channel errors. The wave-one nodes,
however, wait until they pick up a repeated packet and then either repeat it in one of the
remaining slots or remain quiet. It takes in general a random number of slots before a
wave-one node picks up a packet.

We investigate the influence of channel errors on the achievable expected number
of successful slots by simulation. Specifically, we assume a binomial repeater group of
N = 100 nodes with a probability of s = 0.4 to be awake during a macro slot, hence
there are 40 awake nodes on average. The number of slots is M = 20 and each node
picks one of each slots available to him with probability p = pmgf = 1/40 as derived
for the binomial distribution. It is assumed for simplicity that all repeaters have the
same probability PI to receive an incoming packet and that the different repeaters are
independent. The parameter PI is varied. Furthermore, a repeater node successfully
receives a packet from another repeater node with fixed probability PR = 0.9.

For each value of PI a number of 20.000 macro slots is simulated. The confidence
intervals for the average number of successful slots and a confidence level of 99% are
quite tight and not shown in the figures. In Figure 4.1 the average number of successful
slots is shown versus PI . It can be seen that the larger PI becomes, the higher the
average number of successful slots, converging to the optimal value ≈ 7.39 as obtained
in Chapter 3.

In Figure 4.2 we show for different values of the reception probability PI and for

1Since there can be many sources of incoming packets it is not even meaningful to think about “the”
packet error rate, let alone the fact that wireless channel error rates are often time-varying anyway [25].
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Figure 4.1: Expected number of successful slots vs. probability PI that an awake re-
peater node receives the incoming packet (N = 100, s = 0.4, M = 20).

each of the M = 20 slots the average number of repeaters sending a packet in the
respective slot. The following points are remarkable:

• For small values of PI the curves display a significantly asymmetric distribution
of repeater accesses over the slots, and the optimal value of one repeater on
average transmitting in a slot is not reached. The first few of the M slots are
rarely occupied. This can be explained as follows: for small PI the number W0

of wave-zero nodes is small. Out of these W0 nodes some decide to keep quiet,
others select a random slot out of the M slots. If the first successful slot appears
late, all the wave-one nodes can only use the remaining slots, leading to a higher
utilization of the late slots.

• When PI increases towards one, the average number of repeaters in a slot tends
towards a uniform distribution over all slots and to an average number of one,
just as desired.

Finally, in Figure 4.3 we display the probability that a slot is successful for different
reception probabilities PI . Similar to Figure 4.2, the distribution is asymmetric for
small values of PI and converges towards the uniform distribution as PI increases.
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Figure 4.2: Average number of repeaters transmitting in a slot versus slot number for
different values of the reception probability PI to receive an incoming packet (N =
100, s = 0.4, M = 20).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12  14  16  18  20

incoming rx-prob = 0.05
incoming rx-prob = 0.20
incoming rx-prob = 0.40
incoming rx-prob = 0.60
incoming rx-prob = 0.8
incoming rx-prob = 0.9

PSfrag replacements

Slot number

Pr
ob

ab
ili

ty
th

at
sl

ot
is

su
cc

es
sf

ul

Figure 4.3: Probability that a given slot is successful versus slot number for different
values of the reception probability PI to receive an incoming packet (N = 100, s =
0.4, M = 20).

Copyright at Technical University Berlin. All Rights re-
served.

TKN-06-004 Page 14



TU BERLIN

Chapter 5

Quick Amplification Schemes

In the previous chapter we have applied the baseline scheme to a setup where repeater
nodes might fail to receive incoming packets. We have observed that especially for
small packet reception probabilities PI the average number of successful slots is not
optimal. This can be attributed to the following reasons:

• Depending on the packet error rate and K, the number W0 of wave-zero nodes
might be quite small. If E [K] is larger than M , then a wave-zero node might
decide to remain quiet (with probability 1−M ·p), again reducing the number of
repeated packets. If in addition the first successful slot occurs late, the number
of repeated packets reaching the destination will be small.

• When a wave-one node receives the packet in slot m, it then has M − m slots
remaining in which it can repeat the packet. If it uses probability p in each of
these slots, then the wave-one node remains quiet with probability 1−(M−m)p,
and hence remains quiet with higher probability than the wave-zero nodes.

Therefore, we aim to design what we call quick-amplification schemes, satisfying the
following goals:

• For small packet reception probabilities PI the wave-zero nodes should operate
in a manner that creates a successful slot as quickly as possible. This way, the
wave-one nodes have many remaining slots at their disposal and repeat the packet
with almost the optimal probability M · p.

• For large packet reception probabilities PI the operation of the wave-zero nodes
should allow to get as close to the theoretical optimum as possible.

• We are interested in schemes that avoid the transfer of separate coordination mes-
sages, in order to keep the extra overhead in terms of processing and bandwidth
small.

• We are interested in schemes that avoid usage of historical knowledge like es-
timates of K or W0 from previous cycles. This is motivated by the fact that
wireless channels in general are time-variable [25] and by the consideration that
the source of incoming packets might change over time, too.

Any such scheme should work aggressively when W0 is small in order to activate the
wave-one nodes as quickly as possible, but on the other hand, when W0 is large, its
operation should not be so aggressive that too many slots are wasted with collisions.
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5.1 Truncated geometric scheme
The first class of schemes, called truncated geometric scheme, lets a wave-zero node
A observe the channel for a certain number m of slots (m is a design parameter to be
determined) and then A makes a decision whether it behaves according to the baseline
scheme or in a more aggressive way. Specifically, the scheme is as follows:

• Immediately after receiving the incoming packet a wave-zero node A picks each
of the M slots with probability p or remains quiet with probability 1 − M · p.

• If node A itself chooses one of the first m slots for repeating the packet, then
it transmits the packet in this slot and performs no further action, i.e. it behaves
according to the baseline scheme.

• If node A has chosen a slot beyond the m-th slot or has chosen to remain quiet,
it observes the first m slots. If one of the first m slots is non-empty, node A
proceeds according to the baseline scheme. On the other hand, if all m slots
are empty, then node A revises its decision to transmit in later slot or to keep
quiet and behaves in the following way: node A is guaranteed to transmit and it
chooses one of the remaining slots m + 1,m + 2, . . . ,M according to a proba-
bility distribution r = rm+1, rm+1, . . . , rM with rm+1 + . . . + rM = 1.

Unfortunately, the optimal choice of m and r depends on the distribution of W0, which
in general is not known and hard to estimate in a time-varying environment. Regarding
the choice of m, it should be small on the one hand to avoid wasting too much slots
for detecting a small value of W0, but on the other hand it should be large enough so
that the probability of false positives (i.e. of large values of W0 despite the first m slots
being empty) is reasonably small. Otherwise, the large number of wave-zero nodes
would put too much pressure on the remaining M − m slots (because they transmit
with probability one in one of those slots).

Regarding the choice of r our first intuition is that earlier slots should carry more
probability mass to produce the first successful slots quickly. Hence, rm+1 ≥ rm+2 ≥
. . . ≥ rM should hold. Following this intuition, we have specifically looked into trun-
cated geometric distributions, i.e. for rm+k we choose:

rm+k =
qk

∑M−m

i=1 qi

for some parameter 0 < q < 1. Smaller values of q shift most probability mass into the
first few slots rm+1 and rm+2, whereas values close to one let the distribution appear
almost uniform.

We have investigated this scheme by simulation for m = 2, m = 3 and m = 4,
for different values of q (q ∈ {0.6, 0.7, 0.8, 0.9, 0.99}) and for varying probability PI

to receive an incoming packet. The simulation setup was the same as in Chapter 4
(M = 20, N = 100, s = 0.4, simulation for 20000 macro slots, varying PI ). The
results for m = 2 are shown in Figure 5.1, the results for m = 3 are shown in Figure
5.2 and the results for m = 4 are shown in Figure 5.3. In each of these figures we have
included the results for the baseline scheme (see also Figure 4.1) for easy comparison.
The following points are remarkable:

• In all cases, the baseline scheme is the best one for PI ≥ 0.4, but the difference
between the baseline scheme and the best truncated geometric scheme (attained
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Figure 5.1: Average number of successful slots for the unmodified scheme and the
truncated geometric scheme for m = 2 and different values of q versus reception
probability PI to receive an incoming packet (N = 100, s = 0.4, M = 20).

for q = 0.99 for m = 2, m = 3 and m = 4) becomes smaller as m increases.
This can be explained as follows: for m = 4 the probability of a false positive
is smallest, so that comparatively few wrong decisions are made. In case of
a wrong decision the number W0 of wave-zero nodes is comparably high, and
these transmit with probability one in one of the remaining M −m slots, leading
to a situation where the (conditional) average number of repeaters transmitting
in those slots exceeds the optimal value of one, resulting in an increased number
of collisions. The finding that for PI ≥ 0.4 always the value q = 0.99 is optimal
can be explained as follows: in case of a wrong decision about the magnitude
of W0 it is best to distribute the wave-zero nodes uniformly over the remaining
slots. For smaller values of q the first few of the M − m slots tend to be wasted
in collisions. Consistently, in the range between PI = 0.4 and PI = 0.95 the
scheme with q = 0.9 is the second-best one.

• In all cases it is true that for PI ≤ 0.2 all truncated geometric schemes are better
than the baseline scheme. In this regime, for all m ∈ {2, 3, 4}, for the smallest
values of PI the schemes with q = 0.8, q = 0.7 and q = 0.8 perform very
similar, with varying ranking, in the range between PI = 0.15 and PI = 0.2 the
scheme with q = 0.9 performs best.

To reduce complexity, we focus the following discussion on the truncated geometric
schemes with q = 0.9. These are consistently the second-best one, and for intermediate
values of PI they are even the best ones among the truncated geometric schemes. The
curves for q = 0.9 and m = 2, m = 3 and m = 4 are displayed together with the
curve for the baseline scheme in Figure 5.4. This figure highlights another finding:
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Figure 5.2: Average number of successful slots for the unmodified scheme and the
truncated geometric scheme for m = 3 and different values of q versus reception
probability PI to receive an incoming packet (N = 100, s = 0.4, M = 20).
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Figure 5.3: Average number of successful slots for the unmodified scheme and the
truncated geometric scheme for m = 2 and different values of q versus reception
probability PI to receive an incoming packet (N = 100, s = 0.4, M = 20).
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Figure 5.4: Average number of successful slots for the unmodified scheme and the
truncated geometric scheme for q = 0.9 and different values of m ∈ {2, 3, 4} versus
reception probability PI to receive an incoming packet (N = 100, s = 0.4, M = 20).

for values of PI ≤ 0.35, the scheme with m = 2 is the best, while it is the worst
one for PI > 0.35. Conversely, the scheme with m = 4 is the worst one among
the truncated geometric schemes for PI ≤ 0.35 and the best one for PI > 0.35.
The relative advantage of the schemes with smaller m for small values of PI can be
explained as follows: for m = 2 and small PI the absolute rate of false positives is a
priori small (since PI is small and W0 is hence on average small, too!) and for m = 2
simply the number of remaining slots is the largest. In addition, since W0 is small on
average, there is only a minor distortion from the always-transmitting wave-zero nodes
to the wave-one nodes.

Does the truncated geometric scheme give the optimal average number of success-
ful slots for small values of PI? The following small calculation shows that the trun-
cated geometric schemes investigated here are not optimal. Consider as an example the
case of PI = 0.05, m = 2 and q = 0.9. The simulations showed 3110 out of 20000
rounds with no successful slot. Out of those, only 2692 rounds showed no transmission
at all, i.e. in 2692 rounds out of 20000 we have W0 = 0. If everything else is optimal,
then there should be ≈ 7.39 · 20000−2692

20000 ≈ 6.39 good slots per round on average.
The best that any of the truncated geometric schemes has achieved is ≈ 5.49 average
successful slots per round (attained by m = 2 and q = 0.7). Even if we take the m = 2
“wasted” slots into account, the optimally achievable average number of successful
slots would be 7.39 · 20000−2692

20000 · 20−2
20 ≈ 5.75. One explanation is revealed by further

analysis of the data: looking at all rounds where the truncated geometric scheme is
triggered (i.e. where the first m = 2 slots have been empty), the first successful slot is
observed on average later (slot 5.8) than on the total average (slot 5.25). This means
that on average almost six slots have gone before the wave-one nodes come into action.
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Hence, there is room for improvement.

5.2 Contention scheme
The truncated geometric scheme does not directly estimate the number W0 of wave-
zero nodes, but from passively observing the first m slots a wave-zero node makes
an inference about the number V0 ≤ W0 of wave-zero nodes which actually have de-
cided to transmit. However, V0 can be smaller than W0 (on average we have E [V0] =
M · p · E [W0]). If W0 (and therefore V0) are indeed small, the first m slots of the
truncated geometric scheme are likely empty. Therefore, we are interested in schemes,
in which the wave-zero nodes do not leave the first m slots empty but try to produce the
first successful slot as quickly as possible and in which all wave-zero nodes participate
in this effort. Hence, the wave-zero nodes should avoid any early decision to remain
quiet. However, to avoid excessive collisions when W0 is large, the majority of the par-
ticipating nodes (henceforth called contenders) should be removed quickly. We have
designed a scheme based on these considerations, it is called the contention scheme.
This scheme aims to eliminate most contenders quickly, somewhat similar in spirit to
distributed tree-based contention-resolution schemes [5]. Its operation is as follows:

• Be node A a wave-zero node. Immediately after receiving the incoming packet
it starts in the so-called contention mode.

• In each slot i out of the first m slots, a contender node A either transmits with
probability ri or decides to listen with probability 1 − ri (all these decisions
for subsequent rounds are drawn independently). If A has decided to listen, the
following outcomes are possible:

– If slot i is empty, then node A remains in the contention mode and chooses
transmit probability ri+1 for the next slot.

– If node A perceives activity in slot i (it is not necessary that A receives a
correct packet), it leaves the contention mode and picks one of the M −m
last slots (i.e. it avoids the m slots allocated for the contention phase), each
with probability p or decides to remain quiet.

• After the first m slots all remaining contenders leave the contention mode and
pick one of the M − m last slots, each with probability p, or it remains quiet.

Of course, the efficiency of this scheme in eliminating contenders and in producing a
successful slot quickly depends on the choice of m, r1, r2, . . . , rm. In Appendix C
we present a Markov chain model for the contention scheme. It is shown that under
a few simplifying assumptions (W0 is fixed and known, m is large) that the average
value of the number T of slots needed until the first successful slot has shown up can
be represented as:

E [T ] = 1 +

W0−1
∑

x=2

kx · b(x;W0, r1) + kW0
·
(

rW0

1 + (1 − r1)
W0

)

(5.1)

where b(k;n, p) =
(

n
k

)

pk(1 − p)n−k is the probability mass function of the binomial
distribution with parameters n and p, and ki (1 ≤ i ≤ W0) is uniquely determined by
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Figure 5.5: Optimal values for transmit probabilities r1 and r2 of the contention scheme
versus the number W0 of wave-zero nodes

the following recursive equations:

k1 = 0

ki =
1 +

∑i−1
j=2 b(j; i, r2) · kj

1 − (1 − r2)i − ri
2

This model has been validated by comparing numerical results for E [T ] with the result
of simulations. The results show an excellent correspondence between theoretical and
simulated results.

Please note that Equation 5.1 depends on the three parameters W0, r1 and r2. In
fact, E [T ] is a rational function of the parameters r1 and r2 and can theoretically be
minimized for those parameters. The minimum is guaranteed to exist, since E [T ] is
continuous and r1, r2 are taken from compact intervals. However, for larger values of
W0 only numerical optimization is feasible.

In Figure 5.5 we show for varying number W0 of wave-zero nodes the values r1 and

r2 minimizing E [T ] (with r1, r2 sampled as (r1, r2) ∈
{

k
η

: k = 1, . . . , η − 1
}2

and
the number of samples η chosen as η = 500). In Figure 5.6 we show E [T ] versus W0

both for the optimal case (individually determined for each W0) and for the parameter
setting used above, i.e. r1 = 1/5 and r2 = 1/2. Some remarks about these results are
in order:

• For increasing W0 the optimal value for r1 tends to zero. This makes sense:
by this choice most of the contenders enter receive mode in the first slot, but
with high probability at least one contender transmits. This way, most of the
contenders are eliminated already in the first step, reducing the pressure for the
subsequent steps.
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Figure 5.6: Optimal average times E [T ] to see the first successful slot in the contention
scheme versus the number W0 of wave-zero nodes

• It is not clear in the moment whether the optimal E [T ] remains bounded for
W0 → ∞. We suspect that this is not the case.

Inspired from the numerical results we made the following choices:

m = 5

r1 =
1

7

r2 = r3 = . . . = rm =
35

100

We have investigated this scheme by simulation, using the same setup as for the trun-
cated geometric schemes. The results for the baseline scheme, two truncated geometric
schemes (m = 2 and m = 4, both for q = 0.9) and the contention scheme are shown
in Figure 5.7. In Figure 5.8 we restrict to a comparison of the baseline scheme and the
contention scheme. It can be seen that the contention scheme is a major improvement
over the baseline scheme and all the truncated geometric schemes for small values of
PI , whereas for large values of PI the loss against the baseline scheme is comparably
small.
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Figure 5.7: Average number of successful slots for the unmodified scheme, the trun-
cated geometric scheme for q = 0.9 and different values of m ∈ {2, 4} and for the
contention scheme with r1 = 1/7, r2 = 35/100 and m = 5 versus reception probabil-
ity PI to receive an incoming packet (N = 100, s = 0.4, M = 20).
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Figure 5.8: Average number of successful slots for the unmodified scheme and the
contention scheme with r1 = 1/7 r2 = 35/100 and m = 5 versus reception probability
PI to receive an incoming packet (N = 100, s = 0.4, M = 20).
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Chapter 6

Related Work

The motivation behind this research comes from the idea of using sensor networks
not only to observe the environment, but to also control it through actuators [1, 17],
for example in building automation applications [13]. In this kind of applications we
have different types of nodes: we have the sensor nodes and the actuator nodes. For
the sensor nodes many of the considerations usually made for sensor networks [12]
apply, including the observation that the individual (sensor) node is not important as
long as there are sufficient other sensor nodes which can observe the right data [20].
However, this consideration does not apply to scenarios where actuators are present,
since these must be individually addressable. Furthermore, the quality of an open-loop
or closed-loop control algorithm depends crucially on the network ability to reliably
deliver sensor data to the actuator nodes. In our previous terminology, the actuator is a
target node, to which the repeater group should deliver the sensor packets successfully.
Hence, a repeater group can be placed close to the actuator and by exploiting spatial
diversity coming from the transmissions of different nodes in the repeater group, it is
possible to adjust the delivery rate of packets at the actuator by proper choice of the
number of slots and the size and sleeping discipline of the repeater group.

The repeater group concept presented in this paper can be viewed as a practical
incarnation of a decode-and-forward cooperative diversity scheme (compare [14, 15]),
which in turn are based on the concept of relaying (see [8] for an information-theoretic
treatment, and [24] for practical relaying schemes). In cooperative diversity or coop-
erative MIMO (multiple input / multiple output) schemes [9] many spatially separated
nodes collaborate in transmitting a common signal or in receiving a signal by com-
bining their observations. In general, such multi-antenna techniques can be used to
increase capacity or to reduce the error probability for bits / packets [10]. In the realm
of sensor networks capacity is typically not much of an issue, but error rates are of
importance, especially when actuators are involved. In so-called amplify-and-forward
cooperative diversity schemes, a relaying node samples incoming waveforms and re-
transmits them without trying to decode the packet. In decode-and-forward schemes
a relayer must decode a packet successfully, before it is forwarded. For cooperative
diversity / cooperative MIMO schemes information-theoretic bounds for capacity and
outage probabilities have been considered[14, 15], but there is yet not so much work
on practical schemes and their achievable performance. In [9] the energy consumption
of cooperative MIMO systems are compared against single-transmitter/single-receiver
systems, balancing the possible reduction of transmit energy needed to satisfy a given
target error rate / throughput versus the extra energy needed to run multiple transmit
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and receive circuits. When it comes to multi-node cooperation, they consider cooper-
ation at the transmitter side (where the packet is communicated to all Mt transmitter
nodes by a TDMA scheme, followed by a parallel transmission of all nodes using a
modified Alamouti diversity code [2]), and cooperation at the receiver side (where all
Mr receivers sample the incoming signal and forward it to the final destination which
combines the receivers observations). Between transmitter and receiver groups a long-
haul wireless link with Rayleigh fading is used, within the groups the links are of
higher quality and AWGN noise are used. It turns out that MISO (many transmitters,
one receiver) and SIMO (single transmitter, many receivers) systems are more energy-
efficient than SISO systems as soon as the length of the long-haul link exceeds a certain
threshold (≈ 15 m for the parameters used in the paper), whereas for the true MIMO
case the threshold is slightly larger. Please note that this already takes the additional
energy consumption of the local cooperation in the transmit / receive groups and the
usage of several instances of transmit / receive circuitry into account.

Finally, we remark that the contention scheme developed in this paper can be mod-
ified for usage in settings where a number of N sensors are triggered by the same
physical event and make correlated observations. For such a setting the Sift MAC pro-
tocol [11] has been designed with the goal of making sure that one of the N sensors
can send its observation quickly so that the remaining sensors do not need to send
their packets, thus saving energy and reducing interference to others. In Sift a CSMA-
based transmission strategy with random backoff times has been adopted, in which the
distribution of the backoff time is chosen such that most of the probability mass is con-
centrated at the end of the admissible time interval. The rationale is that only few nodes
will decide for early transmission times and hence there is small risk of collisions at
the beginning of the admissible time interval. Our contention scheme can be viewed as
complementary to Sift, but designed for the same purpose.
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Chapter 7

Conclusions

In this paper we have started the investigation of practical schemes for the construction
and operation of repeater groups, which follow the goal of realizing the reliability
gains achievable with spatial diversity over wireless channels while at the same time
considering the need to let individual nodes sleep and save energy, which is important
in sensor networks. Specifically, we have shown that already for schemes without
explicit coordination it is possible to ensure that on average a certain number of packet
copies indeed reach the destination node successfully. We have demonstrated that this
cannot only be done for cases without channel errors, but that it is also possible to
construct coordination-free behaviours for repeater nodes which give close-to-optimal
performance of the group even when the error probability for incoming packets is high.
We are convinced that these results are a good starting point for the search of more
efficient schemes.

There is a significant potential for future research. Already for the class of coordi-
nation-free schemes a number of issues arises: Which improvements are possible with
CSMA-based schemes? Which improvements are possible when the environment is
only slowly varying and repeater nodes can obtain estimates of error rates? How can
feedback from the destination node be accommodated, for example to stop the repeat-
ing activities as quickly as possible? Which gains can be achieved when in addition
coding and packet combining at the destination are considered? And what is the per-
formance of these schemes in case of multi-hop repeater groups?
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Appendix A

Optimal slot probabilities

For ease of reference we restate the problem. The target function f(·) to optimize
depends on the probability distribution π as:

f(π) = f(p1, . . . , pM+1) =
M
∑

j=1

K · pj · (1 − pj)
K−1

This leads to the following nonlinear constrained optimization problem:

maximize f(p1, . . . , pM+1)

s.t. h(p1, . . . , pM+1) = 1 −

M+1
∑

i=1

pi = 0

g(p1, . . . , pM+1) =









g1(p1, . . . , pM+1)
g2(p1, . . . , pM+1)

. . .
gM+1(p1, . . . , pM+1)









=









p1

p2

. . .
pM+1









≥ 0

This kind of problems can be solved with the help of the Karush-Kuhn-Tucker (KKT)
theorem (see [6, Chap. 20]). To use this theorem, we first must determine which of
the constraints gi(·) are inactive (i.e. gi(·) > 0). At least one of the probabilities
p1, . . . , pM is nonzero, since otherwise none of the M slots would be used for trans-
missions. This already implies that all probabilities p1, p2, . . . , pM should be nonzero.
To see this, assume without loss of generality that for some 0 < j < M we have
p1 = p2 = . . . = pj = 0 and that 0 < pj+1 ≤ pj+1 ≤ . . . ≤ pM holds. If we now
introduce a new probability distribution π′ such that

p′1 = p′2 = . . . = p′j = p′M =
pM

j + 1

and p′i = pi for i ∈ j + 1, . . . ,M − 1 then indeed

f(π′) > f(π)

since for j > 0 we have
1 − pM < 1 −

pM

j + 1
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which implies

(1 − pM )K−1 <

(

1 −
pM

j + 1

)K−1

and furthermore

pM (1 − pM )K−1 < (j + 1)
pM

j + 1

(

1 −
pM

j + 1

)K−1

The difference f(π′) − f(π) is just given by:

f(π′) − f(π)

=





j
∑

i=1

K
pM

j + 1

(

1 −
pM

j + 1

)K−1

+

M−1
∑

i=j+1

Kpi (1 − pi)
K−1

+ K
pM

j + 1

(

1 −
pM

j + 1

)K−1




−

M
∑

i=j+1

Kpi (1 − pi)
K−1

K(j + 1)
pM

j + 1

(

1 −
pM

j + 1

)K−1

− KpM (1 − pM )
K−1

> 0

This implies that all the constraints g1, . . . , gM are inactive. Observing that the total
differentials of f(·), g(·) and h(·) are as follows:

Df(π) =

(

d

dp1
f(π), . . . ,

d

dpM

f(π),
d

dpM+1
f(π)

)

=
(

K(1 − p1)
K−2(1 − Kp1), . . . ,K(1 − pM )K−2(1 − KpM ), 0

)

Dh(π) =

(

d

dp1
h(π), . . . ,

d

dpM

h(π),
d

dpM+1
h(π)

)

= (−1, . . . ,−1,−1)

Dg(π) = I

The KKT theorem now states that for an optimal vector π∗ there exists a Lagrange
multiplier λ and a vector µ∗ = (µ∗

1, . . . , µ
∗
M , µ∗

M+1) such that:

0 ≤ µ∗ (A.1)
0T = Df(π∗) + λDh(π∗) + µ∗T Dg(π∗) (A.2)
0T = µ∗T g(π∗) (A.3)

The above shown fact that p1 > 0, . . . , pM > 0 together with Equations A.1 and A.3
implies that µ∗

1 = . . . = µ∗
M = 0. Taking this into consideration, when writing down

Equation A.2 component-wise, we obtain:

0 = K(1 − p1)
K−2(1 − Kp1) − λ

. . .

0 = K(1 − pM )K−2(1 − KpM ) − λ

0 = −λ + µ∗
M+1
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The first M of these equations imply that p1 = p2 = . . . = pM holds. Hence, an
individual node picks each of the M slots with the same probability, say p := p1.

This means that we have reduced our problem to an easier one:

maximize f(p, q) = M · K · p · (1 − p)K−1

s.t. h(p, q) = 1 − M · p − q = 0

p ≥ 0, q ≥ 0

where M and K are fixed and q is the probability that a repeater node does not transmit,
whereas p is the probability that one fixed slot i is chosen when the node has decided
to transmit. Observe that f(·) is continuous in p. The parameter p is restricted to the
interval

[

0, 1
M

]

. Obviously, f(0) = 0 and

f

(

1

M

)

= K ·

(

M − 1

M

)K−1

Hence, we consider the open interval p ∈
(

0, 1
M

)

. The partial derivative of f(·) w.r.t.
p is given by (assuming K ≥ 2, M ≥ 1):

∂f(p, q)

∂p
= M · K · (1 − p)K−2 · (1 − K · p)

For p ∈
(

0, 1
M

)

this expression becomes zero when 1−K ·p becomes zero, i.e. p = 1
K

.
Hence we have:

popt ∈
{

1

K
,

1

M

}

(A.4)

For K ≤ M we must necessarily have popt = 1
M

since with p = 1
K

it is not possible
to satisfy the constraints.

So, suppose that K > M . Observe that:

∂f
(

1
M

, q
)

∂p
= M · K ·

(

1 −
1

M

)K−2

·

(

1 −
K

M

)

becomes negative for K > M . Since f(·) is continuous, there must exist at least one
point p∗ smaller than 1

M
with f(p∗) > f

(

1
M

)

. Because of Equation A.4 and since
1
K

< 1
M

this already implies that popt = 1
K

.
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Appendix B

Moment representation of
E

[

K · aK

]

From the discussion in Section 3 we are interested in finding another representation for
the expression

f(p) = E
[

K · (1 − p)K
]

which we generalize as
f(a) = E

[

K · aK
]

for some a ∈ (0, 1) and with K being a non-negative discrete random variable for
which all moments exist. Then:

E
[

KaK
]

= E [K] + E
[

K2
]

log(a) + . . . +
E [Kn]

(n − 1)!
(log(a))

n−1
+ . . .

=

∞
∑

n=1

E [Kn]

(n − 1)!
· (log a)

n−1

This can be seen as follows. We have:

E
[

KaK
]

=
∞
∑

k=1

kak Pr [K = k] = a
∞
∑

k=1

kak−1 Pr [K = k]

= a
∞
∑

k=1

d

da
ak Pr [K = k]

= a
d

da

∞
∑

k=1

ak Pr [K = k] = a
d

da

∞
∑

k=0

ak Pr [K = k]

= a
d

da

∞
∑

k=0

ek log(a) Pr [K = k]

= a
d

da
ΦK(log(a))

where ΦK(x) = E
[

exK
]

is the moment-generating function of the random variable
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K. 1 One of the well-known properties of moment-generating functions is that [3, Sec.
2.9]:

ΦK(x) = 1 + xE [K] + . . . +
xn

n!
E [Xn] + . . .

provided all moments exist. From this we have:

a
d

da
ΦK(log(a))

= a
d

da

(

1 + E [K] log(a) + E
[

K2
] log2(a)

2!
+ . . . + E [Kn]

logn(a)

n!
+ . . .

)

= a

(

E [K]

a
+

E
[

K2
]

2!

2 log(a)

a
+ . . . +

E [Kn]

n!

n logn−1(a)

a
+

)

= E [K] + E
[

K2
]

log(a) + . . . +
E [Kn]

(n − 1)!
logn−1(a) + ...

1To compute the variance of KaK the second moment E
ˆ

K2a2K
˜

is needed, for which can be ex-
pressed as:

E
h

K2a2K

i

= a2
d2

da2
ΦK(2 log(a)) + a

d

da
ΦK(2 log(a))
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Appendix C

Average time to the first
successful slot in the contention
scheme

In this appendix we use a Markovian model for the behaviour of the contention scheme
described in Section 5.2 to derive the average slot number carrying the first successful
slot. In our model we make the following assumptions:

• The parameter m (number of slots after which the contention scheme ends) is
disregarded, we assume m = ∞. In addition, we assume that all the nodes
which have lost contention defer any further transmissions until the contention
scheme has been terminated, so as to avoid any interference from outside.

• The number of wave-zero nodes W0 > 1 is known and fixed. The case W0 = 1
is easy to handle, since with the exception of the first slot the average time until
the first successful slot is a geometric random variable.

• In the first slot a wave-zero node transmits with probability r0 (and listens with
probability 1−r0) and in all the subsequent slots it transmits (listens) with proba-
bility r1 (1−r1). Please note that we have changed the notation here as compared
to Section 5.2 to be more consistent with the following derivation.

We have a slotted, discrete-time system and we model the evolution of the number of
contenders (Xn)n≥0 as a time-homogeneous discrete-time Markov chain. The random
variable Xn denotes the number of contenders at the end of the n − 1-th slot, and X0

is the initial probability distribution (discussed below). The state space of the Markov
chain is given by:

I = {1, 2, . . . ,W0}

As discussed in Section 5.2, each of the W0 wave-zero nodes decides to transmit in the
first slot with probability r0 and to receive with probability 1−r0. If at least one wave-
zero node transmits, all the nodes which have chosen are eliminated from contention.
For the number X0 of remaining nodes we then have:

• The event that X0 = W0 occurs when either all wave-zero nodes decide to
transmit in the first slot or all wave-zero nodes receive in the first slot.
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• The event that X0 = i for some 1 ≤ i < W0 occurs when exactly i wave-zero
nodes decide to transmit and the remaining W0 − i nodes decide to receive (and
are eliminated subsequently).

Taking into account that all wave-zero nodes make their decision independently with
the same transmit probability r0 we have:

Pr [X0 = i] =

{

b(0;W0, r0) + b(W0;W0, r0) : i = W0

b(i;W0, r0) : 1 ≤ i < W0

where b(k;n, p) =
(

n
k

)

pk(1 − p)n−k is the probability mass function of the binomial
distribution with parameters n and p.

For the further evolution of the number of contenders Xn we have to specify the
state transition probabilities pi,j for having i contenders at time n and j contenders at
time n + 1. From the description of the contention scheme we have:

pi,j =







0 : j > i
b(0; i, r1) + b(i; i, r1) : i = j

b(j; i, r1) : 1 ≤ j < i

which can be justified as follows. Suppose we are currently in state i ≥ 1. The number
of contenders cannot increase over time, which explains pi,j = 0 for j > i. To stay
in state i, either all contenders have to transmit (with probability r1) or all contenders
have to receive. Because of the independence of the contenders, this event happens
with probability b(0; i, r1) + b(i; i, r1). Finally, to have 1 ≤ j < i contenders in step
n + 1, exactly j of the contenders decide to transmit, which happens with probability
b(j; i, r1). Summarizing, the state transition matrix P of the Markov chain is given
by:

P =

0

B

B

B

@

1 0 0 . . . 0
b(1; 2, r1) b(0; 2, r1) + b(2; 2, r1) 0 . . . 0
b(1; 3, r1) b(2; 3, r1) b(0; 3, r1) + b(3; 3, r1) . . . 0

. . .

b(1; W0, r1) b(2; W0, r1) b(3; W0, r1) . . . b(0; W0, r1) + b(W0; W0, r1)

1

C

C

C

A

where the i-th row gives the state transition probabilities for state i, and P has W0 rows
and columns. It is obvious that state 1 is absorbing, and the other states 2, . . . ,W0 are
transient states. Hence, the Markov chain reaches state 1 with probability one. Let Q
denote the lower-right W0 − 1 × W0 − 1 submatrix of P given by:

Q =

0

B

B

@

b(0; 2, r1) + b(2; 2, r1) 0 . . . 0
b(2; 3, r1) b(0; 3, r1) + b(3; 3, r1) . . . 0

. . .

b(2; W0, r1) b(3; W0, r1) . . . b(0; W0, r1) + b(W0; W0, r1)

1

C

C

A

then Q has the following properties: it is a truly sub-stochastic (non-negative elements
with row sum smaller than one) and lower triangular matrix, with non-zero elements
[[Q]]i,j for j ≤ i. Since all diagonal elements are nonzero and distinct, the matrix has
W0 − 1 distinct Eigenvalues and is thus diagonalizable. Furthermore, with respect to
the row-sum matrix norm we have ‖Q‖ < 1.

Now, let T be the random variable denoting the first successful slot. For this random
variable the following holds:

• When X0 = 1 holds, then the first successful slot is already the first one, and
hence we have Pr [T = 1|X0 = 1] = 1.

• When X0 > 1 holds, then the first successful slot appears as soon as the chain
reaches state 1, i.e.

T = inf {n ∈ N : Xn = 1}

that is, T is the first hitting time of the absorbing state 1.
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It is well-known [18, Sec. 1.3] that if ki denotes the average time to reach state 1 if
the chain starts in X0 = i, then the vector k = (ki : i ∈ {1, . . . ,W0}) is the minimal
non-negative solution to the following set of linear equations:

ki =

{

0 : i = 1

1 +
∑i

j=2 pi,j · kj : 1 < i ≤ W0

In matrix notation, the vector k = (ki : i ∈ {2, . . . ,W0}) hence satisfies

k = e + Q · k

(where e is an W0 − 1-dimensional column vector of ones), or differently:

(I − Q) · k = e (C.1)

where I is the W0 − 1-dimensional identity matrix. Since ‖Q‖ < 1, the theorem about
the von Neumann series [7, Chap. 1] guarantees that I − Q is invertible and Equation
C.1 has a unique solution.

However, explicitly computing this solution quickly becomes infeasible. Instead,
by utilizing the triangular structure of P, it is easy to derive the following recursive
solution:

k1 = 0

ki =
1 +

∑i−1
j=2 b(j; i, r1) · kj

1 − (1 − r1)i − ri
1

Taking into account the first slot needed to determine X0 out of W0 we have:

E [T |X0 = 1] = 1

E [T |X0 = 2] = 1 + k2

. . .

E [T |X0 = W0] = 1 + kW0

For the average time needed to see the first successful slot we finally have from
using the properties of conditional expectation:

E [T ] = E [E [T |X0]]

=

W0
∑

x=1

E [T |X0 = x] · Pr [X0 = x]

= b(1;W0, r0) +

W0−1
∑

x=2

b(x;W0, r0) · (1 + kx) + (b(0;W0, r0) + b(W0;W0, r0)) · (1 + kW0
)

= 1 +

W0−1
∑

x=2

kx · b(x;W0, r0) + kW0
·
(

rW0

0 + (1 − r0)
W0

)

Please note that E [T ] depends on three parameters: W0, r0 and r1.
This model has been validated by comparing numerical results for E [T ] with the

result of simulations. The results show an excellent correspondence between theoreti-
cal and simulated results.
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