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Abstract

Wireless LAN are potentially an attractive networking technology for industrial applications. A major obstacle
towards the fulfillment of hard real-time requirements is the error-prone behavior of wireless channels. A common
approach to combat channel errors and to increase the probability of a message being transmitted successfully before
a prescribed deadline is to employ redundancy and diversity techniques. In this paper we introduce a specific
transmit diversity scheme, called antenna redundancy, and integrate this with two other redundancy / diversity
schemes, namely error-correcting codes and multicopy-ARQ, into a common framework allowing to investigate the
tradeoffs between these methods. In antenna redundancy the wireless stations are equipped with a single antenna,
but the base station / access point has several of them. For each trial to transmit a packet from the base station
to the wireless station another antenna is used. The relative benefits of using FEC versus adding antennas are
investigated. One important result obtained analytically and by simulation is that for independent Gilbert-Elliot
channels between the base station antennas and the wireless station the antenna redundancy scheme decreases the
probability of missing a deadline by approximately an order of magnitude per additional antenna. As a second
benefit, antenna redundancy decreases the number of transmission trials needed to transmit a message successfully,
thus saving bandwidth.

Index Terms

wireless industrial LANs, redundancy, FEC, multicopy-ARQ, antenna redundancy, antenna reuse strategy

I. INTRODUCTION

THE idea to use wireless technology on the factory floor is appealing, and some work has been
done to investigate its feasibility and to find sound technical approaches [1], [2], [3], [4], [5], [6],

[7], [8], [9], [10]. All approaches are faced to, and some of them seriously consider the problem of
supporting hard real-time guarantees despite the “unfriendliness” of wireless links, which show high error
rates and time-varying error behavior. It is argued in in [3] that deterministic guarantees to keep deadlines
are not appropriate for wireless links and therefore stochastic guarantees become important. Clearly,
the goal is to increase the probability of successful and deadline-preserving delivery of safety-critical or
periodic messages. Some strategies to achieve this are: a) improving the physical layer (e.g. find better
modulation schemes, better receivers, increase transmit power, directional antennas, antenna diversity);
b) proper frequency and interference planning; c) finding good locations for the wireless stations and
access points [11]; and d) improve the lower layer protocols, namely the medium access control (MAC)
and link-layer protocols. In this paper we focus on the last approach and look into the abilities of three
selected redundancy / diversity schemes to preserve deadlines.

Forward error correction (FEC) schemes add overhead bits to user data in order to correct a number
of bit errors [12], [13]. In automatic-repeat-request (ARQ) protocols a checksum is appended to each
packet. This checksum allows the receiver to detect almost all errors, but not to correct them. If the
receiver detects an erroneous packet, it requests a retransmission [14]. In hybrid schemes ARQ and FEC
are combined. One simple example of a hybrid scheme is to apply a light FEC code to each packet and
to let the ARQ protocol handle the uncorrectable errors. Another example are multicopy-ARQ protocols
[15]. In multicopy-ARQ multiple copies of the same packet are transmitted as a batch. The packet batch
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is retransmitted only when the receiver fails to receive any of these copies. Multicopy-ARQ can also be
viewed as a time-diversity scheme.

Other diversity schemes take advantage of the spatial diversity of wireless links: if a station A transmits
a packet to the distant stations B and C, then it might well happen that B receives the packet correctly,
while C experiences an error. Conversely, if two distant stations A and B transmit a packet to C, C might
fail to receive A’s packet but B’s packet is received correctly. In [3] spatial diversity and retransmissions
of the ARQ protocol are considered jointly: if station A’s packet to station C fails but station B has
“incidentally” picked up the packet, B could try its luck by sending it to C using the (different) spatial
channel between B and C. This kind of “channel hopping” for retransmissions is especially fruitful if
the channels are independent and exhibit bursty errors: if a packet transmitted at time t0 over channel
c1 is received erroneously and the channel is bursty, then the probability that a retransmission at time
t0 + τ over c1 also erroneous, can reach high values for small to moderate values of τ . Error bursts
on wireless channels often last some tens of milliseconds, which covers multiple packets and renders
immediate retransmissions nearly useless. If another channel is used for the retransmission the chances
to deliver the packet successfully and to preserve given deadlines can be higher.

The first contribution of this paper is an extension and generalization of the approach to use different
spatial channels for retransmissions [3]. This approach provides a kind of transmit diversity, however, for
brevity it is henceforth referred to as antenna redundancy. The idea is to equip a central station (base
station, access point) with a number K of spatially separated antennas whereas for a wireless station
a single antenna suffices. For downlink packets the central station switches the antennas in a round-
robin manner upon retransmissions. As an example, the first packet is transmitted on antenna 1, the first
retransmission on antenna 2, the second retransmission on antenna 3 and so forth. If the antennas are
placed appropriately, a wireless station separated by an obstacle from some antennas might still be in
reach of other antennas.1 As compared to other transmit diversity schemes this approach places does not
require complex signal processing at the receiver.

As a second contribution, we define a downlink transmission scheme combining antenna redundancy,
multicopy-ARQ and the use of (light) FEC for every packet. We look onto this scheme from a specific
perspective: one of the most important requirements in industrial communications is to transmit time-
critical packets before their deadline, and consequently we investigate an important stochastic measure for
this, the failure probability. The latter is defined here as the probability for an important downlink packet
to miss a prespecified deadline. Such important downlink packets can be for example actuator commands.

The third contribution of this paper is an analytical and simulation-based evaluation of the integrated
schemes failure probability for different combinations of the number of antennas, FEC strength and batch
sizes. A key parameter for the performance analysis is the channel error model. To facilitate analysis,
we focus to the case of independent channels between the antennas and the wireless station. For any
single of these channels we use two different stochastic models: the Gilbert-Elliot model [16], [17] and
a Semi-Markov model. The Gilbert-Elliot model is quite popular in performance evaluation of wireless
protocols because of the following reasons: it is sufficiently complex to express bursty error behavior (as it
is typical for wireless channels), it is sufficiently simple to be analytically tractable and it has been shown
both analytically and experimentally that it reasonably approximates the error statistics of certain types of
wireless fading channels. The Semi-Markov model is a modification of the Gilbert-Elliot model, giving
greater flexibility in modeling the duration of channel fades. The analytical method outlined in this paper
is constrained to the case of Gilbert-Elliot channels, the Semi-Markov model is investigated by simulation.
The fact that the analytical model and the simulation model give the same results for the Gilbert-Elliot
channel validates the simulation model and makes the results for other channel types credible.

Our results show that under these assumptions antenna redundancy alone can significantly decrease
the failure probability, in our example the reduction is almost an order of magnitude per additional

1Alternatively, a number K of tightly synchronized and coupled base stations can be used to achieve the same effect. However, this is not
explored further in this paper.
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Fig. 1. Example Scenario with four Antennas and a single Mobile Station (MS)

antenna. Furthermore, antenna redundancy can decrease the necessary number of trials to transmit a packet
successfully, thus saving bandwidth. Further bandwidth can be saved by using an additional optimization,
the antenna reuse policy: the first trial of a new packet uses the antenna over which the last successful
packet was transmitted, instead of always starting at antenna one. We show that additional reductions
in bandwidth expenditure can be made when the interarrival time of new packets is on the same order
or smaller than the average duration of a good channel period. This result is applicable to industrial
communication systems, as periodic data streams often have periods in the range of (tens of) milliseconds,
and on the other hand practical fading channels have an average good channel state durations in the order of
tens of milliseconds. We also shed some light of the relative benefits when combining antenna redundancy,
multicopy-ARQ and the light FEC / ARQ scheme. The effectiveness of multicopy-ARQ depends on the
actual error burst lengths. Clearly, in the presence of bit errors FEC also reduces the probability of a
deadline miss, however, at the cost of increased overhead. If the error rates during bad channel periods
are too high, FEC is often useless whereas antenna redundancy gives gains. On the other hand, for low
error rates FEC is more effective in decreasing the failure probability than antenna redundancy. The
developed models allow to explore the different tradeoffs and to find good solutions for known channel
conditions.

This paper is structured as follows: in the next Section II we explain in greater detail the system
model and our approaches for antenna redundancy, multicopy-ARQ and FEC. Following this, in Section
III we discuss the most important general characteristics of the error behavior of wireless channels and
introduce the Gilbert-Elliot model. In Section IV we present the analytical model for the probability
of a combination of antenna redundancy, multicopy-ARQ and FEC when operated over a Gilbert-Elliot
channel to miss a prespecified deadline. After this we discuss in Section V the simulation setup and the
set of fixed parameters used throughout the simulations and analytical evaluations presented in Section
VI. Finally, in Section VII we give our conclusions and discuss future research directions.

Some of this papers results were already presented in [18].

II. APPROACH AND SYSTEM MODEL

We consider a system consisting of one central station having K spatially distributed antennas, numbered
from 1 to K. The mutual distance between the antennas is assumed to be much larger than the wavelength
used by the wireless transmission system (see below). There is a single mobile station (MS), and a separate
wireless channel between the MS and each antenna (see Figure 1); the channel between antenna i and
the MS is denoted as Ci. The notion of a wireless channel used here includes the wireless transceivers
of central station and wireless station as well as the “air” between the antennas. Hence, in this paper we
regard a wireless channel primarily as an entity generating bit errors during data transmission.

We assume that the channels C1, . . . , CK are stochastically independent. This assumption is reasonable
if the wireless channel errors can be attributed to multipath fading: for this case it is well-known that
beyond a geographical distance of half a wavelength between the antennas the spatial channels are often

Copyright at Technical University Berlin. All
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found to be uncorrelated [19, Chap.7]. We make the stronger assumption of independence because of its
theoretical utility. If the error behavior would be dominated by interference (e.g. the MS is located close
to a microwave oven), then different channels would probably show strongly correlated error behavior.

First we present the combined transmission scheme integrating antenna redundancy, multicopy-ARQ
and the light FEC/ARQ protocol, before explaining the components. We denote as a request a piece of
data which has to be transmitted within a prescribed deadline from the central station to wireless / mobile
station (MS). This piece of data is encapsulated into a packet. The following procedure is used to handle
a request: the central station transmits a batch of R ≥ 1 identical copies of the packet over antenna 1.
Each packet is equipped with an error-correcting code capable of correcting up to t ≥ 0 errors in l > t
bits. When the MS receives any of the R packets correctly, it sends an acknowledgement (ack) frame.
We assume the ack to be transmitted in zero time and error-free. Otherwise the central station retransmits
the R packets immediately over antenna 2. If there is again no ack, the central station retransmits the
R packets immediately over antenna 3, and so forth. After the deadline has passed without getting an
ack, the central station discards the request and marks it as failure. In the other case the request (one of
its packets) was successfully received by the MS and we have a success. The deadline d is defined as
follows:

d =
D · l

b
seconds

where b is the raw data rate of the channel in bits/s, l is the packet length in bits, and D ∈ N with
D > 1 is the admissible number of trials. The main performance measure used in this paper is the failure
probability pF (D) for an important downlink request to miss its deadline. Important downlink requests
can for example be actuator commands.

Next we discuss the “ingredients” of the combined scheme. In multicopy-ARQ the transmitter transmits
a batch of R ∈ N back-to-back copies of the same packet instead of only a single one. The MS sends an
acknowledgement when it manages to receive at least one of those copies. The receiving MS can filter
out further copies of the same packet by means of sequence numbers provided by the ARQ protocol.

The second scheme is the combination of FEC and ARQ. As for the ARQ protocol, we assume the
alternating-bit protocol, which is simple to implement and provides sequence numbers. The general idea
of FEC is to add a number of redundancy bits to the data bits to be able to correct a few bit errors.
Todays most often used FEC schemes can be broadly divided into block codes, convolutional codes and
turbo codes [12], [13], [20]. FEC has some disadvantages: its overhead reduces the user bandwidth and
is expended even during good channel periods, in case of very high bit error rates an enormous overhead
would be needed, and furthermore FEC can only combat bit errors but no packet losses.2 Here we make
the simplistic assumption that we can correct a number t of bit errors in a packet of l bits length, no
matter where exactly the bit errors are located in the packet. The case of t = 0 corresponds to no error
correction capability. We assume that uncorrectable bit error patterns are detected reliably, for example
by means of additional checksums.

In the antenna redundancy approach with K antennas a packet / batch directed from the central station
to the MS is first transmitted over antenna 1. If there is need for a retransmission, then antenna 2 is
used. If another retransmission is needed, antenna 3 is used and so forth, until the packet is successfully
received or a prescribed deadline for transmitting the request expires. The antennas are used in round-
robin fashion. If all channels are independent, the transmissions can be regarded as a series of independent
Bernoulli trials as long as no antenna is re-used. It is important to note that the receiving MS needs only
a single antenna and can be kept simple. In the uplink direction the K antennas provide receiver diversity
[21]. If the K antennas are equipped with full transceivers each delivering a stream of bits, the central
station might try to figure out the correct packet by performing a bit-by-bit majority voting procedure
[22, Chapter 4]. However, we do not consider this any more in this paper.

2Packet losses occur due to the inability of the receiver to acquire bit synchronization, whereas bit errors can occur only if the receiver
is already synchronized.
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In the downlink direction antenna redundancy belongs to the class of transmit diversity schemes [19,
Chapter 7]. Its most important property is that the receiver requires only a single antenna and can be kept
simple as compared to other transmit diversity schemes, most notably MIMO (multiple input, multiple
output) systems. The latter employ multiple transmit and multiple receive antennas and achieve an increase
in channel capacity at the cost of significant computational complexity [23], [24], which translates directly
into increased system costs. The antenna redundancy scheme is closest in spirit to [25] (which transmits
on two antennas simultaneously) or to the CDMA-based soft handover technique employed in UMTS
[26].

III. ERROR BEHAVIOR OF WIRELESS CHANNELS

It is widely accepted that transmission over wireless channels is much more error-prone than over cable-
based media. The error patterns that lower layer protocols (MAC, link layer protocols) are exposed to, are
influenced by multiple factors, some of them are: frequency, modulation scheme, interference, propagation
environment, mobility and the imperfections of transmitter and receiver circuitry. With respect to creating a
wireless industrial LAN the nowadays popular, mature, standardized and constantly evolving IEEE 802.11
wireless LAN technology [27], [28], [29] is an attractive choice. Several measurement studies investigate
the error behavior of IEEE 802.11-compliant radio modems in different environments (e.g. [4], [30], [31],
[32], [33], [34]), some of them in industrial environments ([4], [30]). These measurements showed some
characteristics which we take as basis and motivation for this work:

• Time-varying behavior.
• Large variability in the distributions of the lengths of error bursts and error-free periods (called runs).

Some measurements even revealed heavy-tailed burst and run length distributions [35].
• Bursty errors / long-lasting correlation.
• Sometimes high bit error rates up to 10−3 . . . 10−2.

A. Stochastic models for generating bit errors

For simulation-based and analytical performance evaluation of communication protocols one often uses
stochastic channel error models. For packet- and bit-level error models often simple stochastic processes
like for example Markov chains are used, which in turn rely on a set of parameters. Roughly speaking,
there is a tradeoff between the model complexity (measured by number of parameters) and the models
accuracy in matching certain error statistics, as they are desired by the models user or found in error
traces.

A wide range of digital error models is discussed in [36], and specific model classes describing the
measurement data of [30] are discussed in [35]. In this paper we focus on two different models: the popular
Gilbert-Elliot model and a Semi-Markov model, which in fact is a variation of the Gilbert-Elliot model.
The Gilbert-Elliot model is of utmost importance for this paper, since it is complex enough to capture
burstiness, simple enough to be treated analytically and it has been shown experimentally and analytically
that it provides a reasonable approximation to the channel error characteristics of certain types of wireless
fading channels [37]. Furthermore, it is used in numerous performance evaluation studies investigating
lower layer protocols over wireless channels and thus makes results better comparable.

B. The time-homogeneous discrete-time Gilbert-Elliot channel model

Let us assume two stations A and B connected through a wireless channel. Station A wants to transmit
a packet of length l bits to station B. The channel error behavior is governed by a discrete-time Gilbert-
Elliot model [16], [17], which produces either correct bits or erroneous bits.3 The Gilbert-Elliot model is
a two-state time-homogeneous discrete time Markov chain (TH-DTMC). The model works with slotted

3For simplicity we do not distinguish between bit errors and packet losses [30]. The latter can be approximated by chosing high error
rates during the bad state.
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time, the state transitions happen at times (Xn)n∈N0
. The time between Xn and Xn+1 corresponds to one

bit duration. The state space of the TH-DTMC contains only the two states 0 (=good) and 1 (=bad). The
initial state X0 is selected randomly.

The state of slot Xn+1 is determined at its beginning by executing a Bernoulli experiment, whichs
parameter depends on the previous state Xn: if Xn = 0 then Xn+1 = 0 with probability pg,g and Xn+1 = 1
with probability 1− pg,g. Accordingly, if Xn = 1 then Xn+1 = 1 with probability pb,b and Xn+1 = 0 with
probability 1 − pb,b. The state transition matrix of the TH-DTMC is thus given by:

P =

(

pg,g 1 − pg,g

1 − pb,b pb,b

)

The steady-state vector π = (π0, π1) of P is given by:

π0 =
1 − pb,b

2 − (pg,g + pb,b)

π1 =
1 − pg,g

2 − (pg,g + pb,b)

The matrix P has the eigenvalues λ1 = 1 and λ2 = pg,g +pb,b−1. Using diagonalization and some algebra
one can show that with z(k) := (pg,g + pb,b − 1)k for some integer k, we can compute the matrix power
P

k as follows:

P
k =

1

pg,g + pb,b − 2
·

[

z(k)

(

pg,g − 1 1 − pg,g

1 − pb,b pb,b − 1

)

+

(

pb,b − 1 pg,g − 1
pb,b − 1 pg,g − 1

)]

It is not hard to see that for pg,g + pb,b ∈ (1, 2) the matrix entries [[Pk]]1,1 and [[Pk]]2,2 are monotonically
decreasing for increasing k, while [[Pk]]1,2 and [[Pk]]2,1 are monotonically increasing for increasing k.
Thus, for the autocorrelation function R(t) we have:

R(k) = E [X0Xk] = Pr [X0 = 1, Xk = 1]

= Pr [Xk = 1 |X0 = 1] · Pr [X0 = 1]

= [[Pk]]2,2 · Pr [X0 = 1]

which translates into an exponentially decreasing autocorrelation (short term dependence) / vanishing
channel memory.

The state holding times are geometrically distributed and hence are memoryless.4 The mean state holding
times for the good state E [H0] and the mean state holding time for the bad state E [H1] are given by:

E [H0] =
1

1 − pg,g

E [H1] =
1

1 − pb,b

During the bad channel states each transmitted bit is subjected to an independent Bernoulli experiment to
determine whether it is transmitted erroneously or correct. Let p be the bit error probability. In the good
state no bit errors occur.

4Be X a real-valued nonnegative random variable. X is called memoryless, if for all s, t ∈ R
+
0 (N0for discrete random variables) the

following holds:
Pr [X > s + t |X > s ] = Pr [X > t]

The geometric distribution is the only discrete memoryless distribution, while the exponential distribution is the only continuous one.

Copyright at Technical University Berlin. All
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C. The semi-Markov model

In this paper we use a specific Semi-Markov model as a second model. The model is in fact a variation
of the Gilbert-Elliot model: it has the same two states good and bad, but the state holding times have a
(quantized) lognormal distribution instead of a geometric distribution. The lognormal distribution generates
positive real numbers with arbitrary mean and variance (equivalently: coefficient of variation). These can
be chosen freely and are used to investigate the influence of highly variable state holding times.

IV. ANALYTICAL MODELING

In this section we derive an analytical model for the failure probability pF (D), that a request transmitted
from the central station with K antennas to the MS could not be delivered successfully (i.e. acknowledged)
within the deadline of D packets over K independent Gilbert-Elliot channels. This is a key performance
measure for industrial networks. Developing such an analytic model is not only interesting in itself, but is
also a valuable tool for verifying a simulation model of the same system. A working and valid simulation
model is inevitably needed when more complex channel types are to be investigated for which no analytical
solution exists.

The derivation proceeds in two steps:
• First we focus on transmission of a single packet over a single channel following the Gilbert-Elliot

model, which was chosen due to its analytic tractability and its ability to express bursty channel
behavior. Two different cases are investigated: a) packet transmission when the channel is in the
steady-state (Section IV-A) , and b) packet transmission some short time after a previous packet has
experienced errors on the same channel and the channel might thus still be in the bad state (Section
IV-B). The former case corresponds to the first trial to transmit a packet, the latter case to the first
retransmission, and by the time-homogeneity and memoryless property of the Gilbert-Elliot channel,
to any subsequent retransmission on the same channel.

• These building blocks are used to calculate the overall probability that a request could not be
transmitted within a prescribed deadline (Section IV-C).

In Section IV-D some first consequences are derived from the developed analytical model.

A. Steady-state packet error probability over a Gilbert-Elliot channel

Let us assume that the TH-DTMC has reached its steady state, however, for notational convenience we
assume that we start at time X0, where a request arrives at the central station. We introduce the random
variable Ti(l) denoting the number of bit errors which occur in a packet of length l bits when starting
transmission at time Xi. Be pS(l) the probability that a packet of length l bits being transmitted over a
steady-state Gilbert-Elliot channel at time X0 is received erroneously (i.e. has more than t bit errors).
This probability is then given by:

pS(l) =
l
∑

n=t+1

Pr [T0(l) = n]

=
l
∑

n=t+1

{Pr [T0(l) = n |X0 = 0] · Pr [X0 = 0]

+ Pr [T0(l) = n |X0 = 1] · Pr [X0 = 1]}

Clearly, since we assume the TH-DTMC P to be in steady state, we have that:

Pr [X0 = 0] = π0 =
1−pb,b

2−(pg,g+pb,b)

Pr [X0 = 1] = π1 = 1−pg,g

2−(pg,g+pb,b)
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We are now faced to the calculation of Pr [T0(l) = n |X0 = 0] and Pr [T0(l) = n |X0 = 1]. We have
developed an analytical model for the general case (see appendix), allowing an arbitrary number of
state changes during the packets transmission time, as well as arbitrary ways to distribute the n bit
errors over the bad periods during the packet. However, even with explicit formulae the model consumed
significant computation time. To resolve this, we introduce the restriction that at most one state change
happens during a packet. For industrial applications this seems to be a reasonable approximation, since
the important packets (alarms, cyclic data packets) tend to be short compared to the timescales of changes
in wireless channels [38]. For example, for a bit rate b of 1 Mbit/s safety-critical packets will likely be
no longer than 500 µs, while channel fluctuations occur on timescales of tens of milliseconds. Indeed, a
comparison between the exact model and the approximate model revealed virtually no loss in precision.

We can express Pr [T0(l) = n |X0 = 0] as follows:

Pr [T0(l) = n |X0 = 0] =
l−n
∑

k=1

b(n; l − k, p)(1 − pg,g)p
k
g,g

where b(k; n, p) =
(

n

k

)

pk(1 − p)n−k is the binomial distribution. Each term b(n; l − k, p)(1 − pg,g)p
k
g,g

corresponds to the probability that a good burst starting at X0 lasts until Xk and that there are n bit errors
in the remaining l−k bits. This representation is valid since the bit errors during the bad state are assumed
independent, and the state holding time of the good state is geometrically distributed. Furthermore, there
have to be at least n bits in the bad state at the end of the packet.

For the computation of Pr [T0(l) = n |X0 = 1] we have to take into account that the first bit of the
packet is definitely transmitted during a bad channel state / error burst. Using this and the law of total
probability, we have:

Pr [T0(l) = n |X0 = 1] =

Pr [burst lasts for n bits, n errors in n bits]

+ Pr [burst lasts for n + 1 bits, n errors in n + 1 bits]

+ . . .

+ Pr [burst lasts for l − 1 bits, n errors in l − 1 bits]

+ Pr [burst lasts for k ≥ l bits, n errors in l bits]

=
l−1
∑

k=n

b(n; k, p)(1 − pb,b)p
k−1
b,b

+b(n; l, p)
∞
∑

k=l

(1 − pb,b)p
k
b,b

=
l−1
∑

k=n

b(n; k, p)(1 − pb,b)p
k−1
b,b + b(n; l, p)pl

b,b

The lowered exponent k − 1 in the first sum accounts for the fact that the first bit is transmitted in bad
state anyway.

Putting everything together, we have:

Pr [T0(l) = n] =

1 − pb,b

2 − (pg,g + pb,b)
·

(

l−n
∑

k=1

b(n; l − k, p)(1 − pg,g)p
k
g,g

)

+
1 − pg,g

2 − (pg,g + pb,b)
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·

(

l−1
∑

k=n

b(n; k, p)(1 − pb,b)p
k−1
b,b + b(n; l, p)pl

b,b

)

B. Conditional packet error probability

The next building block considers retransmissions over a channel which already showed errors. Let us
assume that a station transmits a packet at time X0, and the packet experiences more than t bit errors. If
the station starts a retransmission at some later time Xm (m ≥ l), then we are interested in the probability
that this retransmission fails, too. Intuitively, for the Gilbert-Elliot channel one might expect that this
probability is larger than the steady-state probability pS(l), since the channel has some memory and is
known to have been in the bad state during X0 until Xl. Hence, if the retransmission is scheduled too
early, the packet error probability is increased.

More precisely, we are interested in calculating the probability

pC(l,m) = Pr [Tm(l) > t] =
l
∑

n=t+1

Pr [Tm(l) = n]

for some starting time m ≥ l. To compute the probability Pr [Tm(l) = n], we start as follows:

Pr [Tm(l) = n] =

Pr [Tm(l) = n |Xm = 0] · Pr [Xm = 0]

+ Pr [Tm(l) = n |Xm = 1] · Pr [Xm = 1]

Since the TH-DTMC is time-homogeneous, we can write:

Pr [Tm(l) = n |Xm = x ] = Pr [T0(l) = n |X0 = x ]

for x ∈ {0, 1} and we can use the above expressions.
For computation of Pr [Xm = 0] and Pr [Xm = 1] we condition on the channel state at the time where

the original packet ends, Xl, as follows:

Pr [Xm = x] =

Pr [Xm = x |Xl = 0] Pr [Xl = 0]

+ Pr [Xm = x |Xl = 1] Pr [Xl = 1]

We can again take advantage of the time-homogeneity and write:

Pr [Xm = j |Xl = i ] = Pr [Xm−l = j |X0 = i ]

= [[Pm−l]]i+1,j+1

To compute Pr [Xl = 0] we condition on Xl−1 which is the channel state during the last transmitted
bit of the first (and erroneous) packet. We can write:

Pr [Xl = 0] =

pg,g · Pr [Xl−1 = 0] + (1 − pb,b) · (1 − Pr [Xl−1 = 0])

The event Xl−1 = 0, by the assumption of having at most one state change, requires that X0 = . . . =
Xt = 1 (i.e. the packet has to start during a bad burst and this must span at least t + 1 bits) and that the
state change happens at one of the time instants Xt+1, . . . Xl−1. Hence,

Pr [Xl−1 = 0] =

l−1
∑

k=t+1

(1 − pb,b)p
k
b,b
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This gives us:

Pr [Xl = 0] =

pg,g ·
l−1
∑

k=t+1

(1 − pb,b)p
k
b,b

+ (1 − pb,b) ·

(

1 −
l−1
∑

k=t+1

(1 − pb,b)p
k
b,b

)

and clearly Pr [Xl = 1] is given by:

Pr [Xl = 1] = 1 − Pr [Xl = 0]

Putting everything together and using the shorthand pl,0 = Pr [Xl = 0] we have:

Pr [Tm(l) = n] =

Pr [T0(l) = n |X0 = 0]

·
(

pl,0 · [[P
m−l]]1,1 + (1 − pl,0) · [[P

m−l]]2,1

)

+ Pr [T0(l) = n |X0 = 1]

·
(

pl,0 · [[P
m−l]]1,2 + (1 − pl,0) · [[P

m−l]]2,2

)

and finally, the overall probability pC(l,m) that a packet of length l transmitted at some time m ≥ t is
received erroneously, given that the same packet transmitted at time 0 is received erroneously, is given
by:

pC(l,m) =
l
∑

n=t+1

Pr [Tm(l) = n]

For fixed n > 0 the probability Pr [Tm(l) = n] decreases with increasing m, at least under the following
conditions:

• pg,g + pb,b ∈ (1, 2)
• Pr [Xl = 0] is small and can be neglected
• Pr [T0(l) = n |X0 = 0] ≤ Pr [T0(l) = n |X0 = 1]

(to see this, it suffices to apply some algebra to Pr [Tm(l) = n]−Pr [Tm+1(l) = n], and to drop the terms
containing Pr [Xl = 0]). For pg,g and pb,b close to 1 these conditions can be fulfilled.

A numerical example is shown in Figure 2 with l = 416 bits, t = 0, and p = 1, the same values as
used in Section V. Furthermore, we have set the mean state holding time of the good channel state E [H0]
to 65.000 bits ( =⇒ pg,g ≈ 0.9999846153846), while the mean bad state holding time is 10.000 bits
( =⇒ pb,b = 0.9999).

C. Failure probability for K antennas with round-robin scheme

1) Case 1: K · R ≥ D: In this simple case each antenna gets at most one chance to transmit its R
copies to the MS. There are K1 := bD

R
c antennas which can transmit full batches of R packets. All their

channels C1, . . . CK1 are independent. The last antenna, called slack antenna gets the chance to transmit
RS := D mod R packets of its batch.

If a single of the K1 antennas fails with probability p(R) to successfully transmit one of its R packets,
and the slack antenna fails with probability p′(R), then the overall failure probability is given by:

pF (D) = (p(R))K1 · p′(R)

since the trials can be seen as a sequence of independent Bernoulli experiments.
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Fig. 2. Conditional probability that a packet transmitted at time m is erroneous given that a packet transmitted at 0 is erroneous (l = 416,
t = 0, p = 1, E [H0] = 65.000 bits, E [H1] = 10.000 bits)

The protocol prescribes that R copies are transmitted over a single antenna, and the MS has to receive
at least one of them. The first copy is transmitted over a steady-state Gilbert-Elliot channel and fails with
probability pS(l). The second copy is transmitted immediately after the first one. Since it is transmitted
over the same channel, the second packet fails with the conditional packet error probability pC(l, l) (here
we have chosen m = l, since we assume the packets to be sent back-to-back). If the second packet is
also erroneous, the third packet fails with probability

Pr [T2l(l) > t |Tl(l) > t ] = Pr [Tl(l) > t |T0(l) > t ]

= pC(l, l)

where we have used the time-homogeneity of the channel. Hence, we have:

p(R) = pS(l)(pC(l, l))R−1

By similar arguments we conclude that for RS 6= 0 we have:

p′(R) = pS(l)(pC(l, l))RS−1

otherwise, if RS = 0 then p′(R) should be set to one. We can express this as:

p′(R) = 10(RS) + (1 − 10(RS))pS(l)(pC(l, l))RS−1

where the function 10(x) equals 1 for x = 0 and equals zero for x 6= 0.
Putting everything together we have:

pF (D) = (pS(l))K1(pC(l, l))K1(R−1)

·(10(RS) + (1 − 10(RS))pS(l)(pC(l, l))RS−1)

2) Case 2: K · R < D: This case is important, since the number of antennas K may be bounded by
economic reasons.

During the first K trials each antenna transmits R copies of the same packet using K independent
channels. Using the result from the preceding Section IV-C.1 these first K trials fail with the overall
probability:

(pS(l))K(pC(l, l))K(R−1)

Now let us consider the case where the first round robin round expired without success and antenna 1
starts its second trial to transmit a batch of R copies. The first packet is not transmitted over a steady-state
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channel. Instead, we have to take into account that the last packet of antenna 1’s first batch was transmitted
erroneously. Hence, the first copy of the second batch is erroneous with probability:

Pr
[

TKRl(l) > t
∣

∣T(R−1)l(l) > t
]

= pC(l, ((K − 1)R + 1)l)

For the second, third, . . . , R-th copy of the second batch the same considerations apply as outlined in the
preceding Section IV-C.1. Hence, the overall probability that the second batch of antenna 1 fails is given
by:

pC(l, ((K − 1)R + 1)l)(pC(l, l))R−1

By the time-homogeneity and the Markov property the third, fourth, etc. batch of the first antenna are
stochastic replicas of the second batch. The same arguments are true for the other antennas.

Now we can put everything together. We have K batches transmitted over independent channels
(Bernoulli experiments) and K1 = bD−KR

R
c full “retransmission” batches, i.e. those batches which are

transmitted after a preceding batch over the same channel already failed. Furthermore there might be one
“slack” batch of RS = D − R(K + K1) packets, which fails with probability:

10(RS) + (1 − 10(RS))pC(l, ((K − 1)R + 1)l)(pC(l, l))RS−1

The assignment of a failure probability of one for the case RS = 0 was done to maintain a uniform
representation in the overall formula for the failure probability, presented next.

By the independence of the channels the overall failure probability can be computed as:

pF (D) = (pS(l))K · (pC(l, l))K(R−1)

·
[

pC(l, ((K − 1)R + 1)l) · (pC(l, l))R−1
]bD−KR

R
c

·
[

10(RS) + (1 − 10(RS))

·pC(l, ((K − 1)R + 1)l)(pC(l, l))RS−1
]

(1)

D. Consequences

We are already in the position to provide a first insight into the gain which can be obtained by adding a
number M of antennas (for the case K ·R < D). Assume that R = 1 (see below why this is a reasonable
assumption), and for simplicity we assume that the numbers K and K +M divide D evenly (M ∈ N), i.e.
there are no slack batches to consider. For this special case Equation 1 reduces to (with a slight change
in notation):

pF (D,K) = (pS(l))K · (pC(l,Kl))D−K

The reduction factor of the failure probability by adding M antennas is then given by:

pF (D,K)

pF (D,K + M)
=

(

pC(l, (K + M)l)

pS(l)

)M

·

(

pC(l,Kl)

pC(l, (K + M)l)

)D−K

For a bursty channel it is reasonable to assume that the conditional packet error probability pC(l, (K+M)l)
is larger than the steady state packet error probability pS(l). Furthermore, as we have seen in Section
IV-B, for sufficiently high values of pg,g and pb,b the conditional packet error probability is for increasing
m monotonically decreasing down to the steady-state packet error probability. Hence, it is also reasonable
to assume that pC(l, (K + M)l) < pC(l,Kl). Both conditions together show that adding antennas truly
improves the reliability by reducing the failure probability.

We are also in the position to investigate the effect of increasing R (i.e. the number of copies) on
the failure probability, while K and D are kept fixed. For simplicity we assume that the numbers K · R
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and K · (R + 1) divide D evenly, such that again no slack batches have to be considered. For this case
Equation 1 becomes:

pF (D,R) =

(pS(l))K · (pC(l, l))K(R−1)

·(pC(l, ((K − 1)R + 1)l))
D−KR

R · (pC(l, l))
(R−1)(D−KR)

R

Comparing pF (D,R) and pF (D,R + 1) gives us after some algebra:

pF (D,R)

pF (D,R + 1)
=

(

pC(l, ((K − 1)(R + 1) + 1)l)

pC(l, l)

)
D

R(R+1)

·

(

pC(l, ((K − 1)R + 1)l)

pC(l, ((K − 1)(R + 1) + 1)l)

)
D−KR

R

For monotonically decreasing conditional packet error probability the first term is smaller than one, the
second term is larger than one, i.e. it depends on the rate of decay whether the multicopy-ARQ approach
gives gains. As an example, for the numerical values used in Figure 2 and Section V (where the channel
stays in the same state for comparably long times) the multicopy-ARQ approach makes things worse, i.e.
it is better to not use this approach and to increase the number of antennas instead. However, for channels
where the bad state holding time is short and the good state holding time is long, this approach can give
gains.

V. SIMULATION SETUP

We have implemented a simulation model of the system described in Section II using a commercial
simulation library [39]. The simulation model was verified by code inspection, by careful analysis of
generated event sequences and by successful comparison of the simulation results with results obtained
from the analytical model, see Section VI-A.

The main performance measure of interest is the failure probability pF (D) for some prescribed deadline
of D trials per request. All simulations were carried out such that a minimum of 10 million requests and
a maximum of 100 million requests was transmitted. If in between these bounds the confidence interval
for the failure probability is with 95% confidence smaller than 2% of the true value then the simulation is
stopped. This high number of requests is needed to obtain statistically significant results for small failure
probabilities in the range of 10−5 . . . 10−6.

To evaluate the analytical model, a separate program in ANSI Common Lisp [40] was written. This
language offers, amongst other features, integers of arbitrary precision. The analytical model gives mean-
ingful results where simulation is likely to fail: in case of extremely low failure probabilities ≤ 10−6

prohibitively long simulation times would be needed to obtain statistically significant results.

A. Parameters

The simulator allows to vary the following parameters:
• K is the number of base station antennas (or tightly coupled base stations).
• l is the length of a packet in bits.
• D is the number of admissible trials before a packet of length l misses its deadline.
• p is the bit error probability during the bad state of the Gilbert-Elliot channel and the Semi-Markov

channel.
• pg,g, and pb,b describe the state transition probabilities of the Gilbert-Elliot channel and thus their

(mean) state holding times and the steady state probabilities to find the system in either state.
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Parameter Value
packet length l 416 bits
bit rate b 1 Mbit/s
deadline D 10 packets
pg,g(Gilbert-Elliot) 0.9999846153846 (corresponds to 65.000 bits)
pb,b(Gilbert-Elliot) 0.9999 (corresponds to 10.000 bits)
CoV bad state holding times (Semi-Markov) 10
CoV good state holding times (Semi-Markov) 20

TABLE I

FIXED PARAMETERS FOR ALL EXPERIMENTS (COV = COEFFICIENT OF VARIATION)

• b is the bit rate.
• ω is the interarrival time of requests at the central station. The requests are assumed to arrive

periodically.
It is appropriate to fix some parameters in advance. The bit rate b is 1 Mbit/s. On each channel Ci

runs a separate and independent instance of a channel error model (Gilbert-Elliot or Semi-Markov). For
all channels the mean bad burst length is set to 10 ms (corresponding to 10.000 bits), and the mean good
burst length to 65 ms (corresponding to 65.000 bits). These mean burst lengths are similar to those used
in [41], which in turn were derived using a methodology described in [42], where the parameters of a
N -state Markovian channel model are derived from some simple physical parameters like wavelength,
Doppler frequency etc. These numbers lead to a rather bad channel: the steady-state probability π1 for
finding the channel in bad state is approximately 13.3%. For the Semi-Markov model we have chosen
the mean good and bad burst lengths the same as for the Gilbert-Elliot model. However, inspired by the
results of the measurement study [30] we set the coefficient of variation for the bad state holding times to
10, and for the good state to 20. This means that the channel state holding times are much more variable,
with longer holding times occuring with higher probability than for the Gilbert-Elliot model, which has
coefficients of variation below one.

The packet length l was set to 416 bits, corresponding to the 192 µs PHY header of an IEEE 802.11
compliant radio modem with DSSS PHY, plus eight bytes MAC header, plus 20 bytes user data, FEC
overhead bits and checksum. PHY header bits, MAC header bits and user data bits are treated in the
same way.5 The deadline was set to a maximum of D = 10 trials, higher numbers need unacceptable
simulation runtimes to achieve a certain accuracy. The fixed parameters are summarized in Table I, the
other parameters were varied according to the needs of different experiments.

VI. RESULTS

We present the results for different simulation experiments.

A. Experiment: comparison of analytical model and simulation model

The first experiment is carried out to show the close correspondence between the analytical model
and the simulation model under steady-state conditions. As channel model only the Gilbert-Elliot model
is used. In the simulation the requests have a large interarrival time of 40 seconds in order to find
the channel back in steady-state conditions when the next request arrives. We have simulated only for
t = 0 and t = 1, since for higher values of t there are not sufficient failure events to make statistically
meaningful statements. The variable parameters are summarized in Table II. Having both models showing
similar results is important for verifying the simulation model and to trust its results when applied to more
complex channel models.

5This assumption is inaccurate with respect to the PHY header, whichs main purpose is to allow the receiver to acquire bit synchronisation.
Hence, it is not appropriate to talk about bit errors here, since the receiver has no access to single bits during the PHY header.
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Parameter Value
# of antennas K 1, 2, 3
# of correctable errors t 0, 1
interarrival time ω 40 s
error models Gilbert-Elliot (p ∈ {1, 0.1, 0.01, 0.005, 0.001}

TABLE II

PARAMETERS FOR EXPERIMENT “COMPARISON OF ANALYTICAL AND SIMULATION MODEL”
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Fig. 3. Failure Probabilities vs. bit error probability p during bad state for the experiment “Comparison of Analytical and Simulation
Model”, t = 0
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Fig. 4. Failure Probabilities vs. bit error probability p during bad state for the experiment “Comparison of Analytical and Simulation
Model”, t = 1
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Parameter Value
# of antennas K 1, 3, 5
# of correctable errors t 0, 2
error models Gilbert-Elliot (p ∈ {1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001}

TABLE III

PARAMETERS FOR EXPERIMENT “EFFICIENCY OF REDUNDANCY APPROACHES”

In Figure 3 we show the failure probability pF (D) vs. the bit error probability in the bad state p for
the case of t = 0, while Figure 4 displays the same for t = 1. The latter Figure 4 does not show the
results for p = 0.001 since the simulation showed no failures during 10 million requests and the failure
probability predicted by the analytical model is < 10−12. The simulation values for p = 0.001 in Figure
3 are zero for K = 2 and K = 3, which matches the analytical results: for t = 0 and K = 2 the failure
probability is ≈ 1.6 ·10−7, for K = 3 it is ≈ 1.8 ·10−8. Furthermore, without showing the results here, for
t > 1 the simulation results and the analytical results match very well in those cases where the simulation
gives nonzero values. We conclude that the analytical model and the simulation model match very well
and the simulation model passes this verification.

B. Experiment: efficiency of the redundancy approaches

In this experiment we use the analytical model to assess the relative influence of K and t when both
are varied. The number of back-to-back copies R is set to one, inspired by the results from Section IV-D.
The parameters K and t as well as the bit error probability p during the bad channel state (Gilbert-Elliot
model) were varied according to the values given in Table III. In Figure 5 we show for the different
values of K and t the failure probability pF (D) vs. the bit error probability p. The following points are
remarkable:

• In any case, adding an antenna reduces the failure probability pF (D) by almost an order of magnitude.
• Using FEC starts to pay out when the bit error probability p is low enough to likely hit only a

few bits within a packet. In the measurement study [30] we distinguished between bit errors and
packet losses. Packet losses could be explained by the receiver not acquiring bit synchronisation. In
case of packet losses FEC would be of no help, since utilizing the overhead bits already assumes
to have bit synchronization. If we identify here the case of high bit error rates (p = 0.1, p = 1)
with packet losses, and furthermore consider the observation that the bit error rates in the remaining
packets were in the range 10−2 . . . 10−3 at worst, we could recommend that adding antennas is the
appropriate measure for combatting packet losses, while for combatting bit errors below a certain
threshold FEC is much more effective. (Under the assumption that the primary goal is a reduction of
the failure probability). For example: if we know beforehand that there are no packet losses and the
bit error rate will not exceed p = 0.001, then for t = 0 and K = 5 we could achieve pF (D) ≈ 10−9,
while t = 2 and K = 1 gives pF (D) ≈ 10−21.

C. Experiment: antenna redundancy over different channels

In this experiment we investigate by simulations the influence of antenna redundancy on the failure
probability and the bandwidth need for the two different channel models, namely the Gilbert-Elliot model
and the Semi-Markov model. In both models the error probability p during the bad channel state is set to
one. The experiment is designed such that the requests have a large interarrival time (ω = 100 seconds),
which means that the next request hits the respective channels in steady-state conditions. The variable
parameters of this experiment are summarized in Table IV. In this paper the bandwidth need is measured
by the mean number of packets required to handle a request. Please note that we vary only the parameter
K.
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Fig. 5. Failure Probabilities vs. bit error probability p during bad state for the experiment “Efficiency of Redundancy Approaches”, t ∈ {0, 2}

Parameter Value
K 1, 2, 3, 4, 5, 6
interarrival time 100 s
error models Gilbert-Elliot (p = 1), Semi-Markov (p = 1)

TABLE IV

PARAMETERS FOR EXPERIMENT “ANTENNA REDUNDANCY OVER DIFFERENT CHANNELS”

One important result is that for both error models each additional antenna buys approximately one order
of magnitude lower failure probability, see Figure 6. Furthermore, pF (D) for the Semi-Markov channel
is almost consistently higher than for the Gilbert-Elliot channel. An explanation for this is discussed in
Section VI-D.

In Figure 7 we present the mean number of trials needed to handle a request vs. the number of antennas
K. The mean number of trials reduces already significantly when adding a second antenna, the third and
all further antennas show almost the same value. Therefore, already with the second antenna not only a
reduced failure probability but also a reduced bandwidth need can be reached. The bandwidth reduction
for increasing K can be explained by the fact that it takes longer before the base station is forced to return
to an antenna which already experienced a transmission error and where it likely has to waste further
bandwidth due to channel memory.

D. Experiment: effectiveness of the antenna-reuse policy

Finally, we present simulation results for the non-steady-state case: the interarrival times between
requests are small enough that the channels could not expected to have reached the steady-state. Instead,
each channel is likely correlated from request to request. The interarrival times chosen in this experiment
are of practical interest for industrial applications: they are in the range of 5 to 30 milliseconds.

We additionally evaluate the antenna reuse strategy: in the original strategy described in Section II the
central station starts each new request with antenna 1, while in the antenna reuse strategy it starts with
the antenna where the last successful packet was transmitted. The effects of this strategy are evaluated
for the two different channel error models. The variable parameters of this experiment are summarized in
Table V.

In Figure 8 we show the failure probability for the two channel types and the two antenna reuse
strategies. The following points are remarkable:
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Fig. 7. Mean number of trials for the experiment “Antenna Redundancy over Different Channels”

Parameter Value
K 3
interarrival time 5, 6, 7, 8, 9, 10, 12, 15, 20, 30, 40, 50 ms
error models Gilbert-Elliot (p = 1), Semi-Markov (p = 1)
antenna reuse yes, no

TABLE V

PARAMETERS FOR EXPERIMENT “EFFECTIVENESS OF THE ANTENNA REUSE POLICY”

Gilbert-Elliot Semi-Markov
# of failure bursts 17618 11552
mean failure burst length 1.2968554 requests 3.0114267 requests
product (= number of failures) 22848 34788

TABLE VI

COMPARISON OF FAILURE BURST STATISTICS FOR l = 416, t = 0, R = 1, D = 10, K = 3, ω = 5 MILLISECONDS ARRIVAL PERIOD,

WITHOUT ANTENNA REUSE AND 20 MILLION REQUESTS
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Fig. 8. Failure Probabilities for the experiment “effectiveness of antenna reuse policy” vs. arrival period ω for the two different channel
types

• For both the Gilbert-Elliot model and the Semi-Markov model the failure probabilities are not sensitive
against the arrival period. This is even true for the “steady-state” interarrival period of 100 seconds,
which show almost identical results as for the much smaller arrival periods.

• The Semi-Markov model has significantly higher failure probabilities than the Gilbert-Elliot model
(increased by more than 50%), hence, the increased variability reduces the system reliability. This
can be explained as follows: the lognormal distributions used for the channel state holding times
have comparably large coefficients of variation. The first packet of a request transmitted on one of
the K = 3 channels corresponds to a random sampling during either a good or a bad channel state
holding time. From renewal theory [43, Chapter 3] we know that in the steady state for an arbitrary
interarrival time distribution X the expected value of the residual lifetime (here: the expected time
to stay in the same state) is given by:

E [X2]

2E [X]

which we can rewrite using the squared coefficient of variation C2
X = Var[X]

(E[X])2
as:

E [X] ·
1 + C2

X

2

The geometric distributions used in the Gilbert-Elliot model have a coefficient of variation smaller
than one, while for the Semi-Markov model we have used much higher values. By the above formula,
we have much higher expected residual lifetimes. This has the consequence that once a channel is
found in the bad state, it will likely stay in this state for longer time than in the Gilbert-Elliot model.
The same holds true for the good state holding times. If we denote successively failed requests as a
failure burst, we compare in Table VI for a specific example the statistics of failure bursts for both
the Gilbert-Elliot model and the Semi-Markov model, both taken for the same parameters and 20
million requests. It can be seen that the increased length of the failure bursts for the Semi-Markov
channel outweighs their more rare occurence, which in turn explains the higher failure probability
for the Semi-Markov model.

• For the Semi-Markov model the difference in the failure probabilities between the strategies with and
without antenna reuse is statistically significant. It can be seen that the antenna reuse policy gives an
(albeit small) reduction in the failure probability, while for the Gilbert-Elliot model the differences
tend to become small for arrival periods larger than 10 milliseconds.
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Fig. 9. Mean number of trials for the experiment “effectiveness of antenna reuse policy” for two different channel types

In Figure 9 we show the mean number of packets needed to handle a request until it is successful or
reaches its deadline. Two conclusions can be drawn:

• For both channel error models the strategies without antenna reuse deliver almost the same per-
formance, and in both cases the antenna reuse scheme gives a real gain in the number of packets
/ bandwidth needed to handle a request. However, in both cases the gain decreases for increasing
arrival period, until eventually the antenna reuse strategy gives no gain over the scheme without
antenna reuse.

• The larger variability of the channel state holding times for the Semi-Markov model makes the
antenna reuse strategy much more effective than for the Gilbert-Elliot model. As stated above, once
the channel is in the good state (as is typically the case for the last successful packet of the preceding
request) it can be expected to stay here for much longer time as for the Gilbert-Elliot channel. Hence,
the next packet on this channel (aka: the first packet of the next request) is more likely to succeed
and to reduce the number of packets needed to handle the next request to one.

To summarize, for small interarrival times and channels with some memory (like the Gilbert-Elliot
and Semi-Markov channels) the antenna reuse strategy reduces the failure probabilities only by a small
amount, but it reduces the mean number of packets needed to transmit a request significantly, which saves
bandwidth and power.

VII. CONCLUSIONS

This paper has explored the capabilities of different kinds of redundancy to reduce the failure probability,
i.e. the probability to miss an important deadline. This probability is of utmost importance for the
application of wireless LAN technology in industrial environments. We have investigated three different
kinds of redundancy: the well-known FEC and multicopy-ARQ approaches, and antenna redundancy.
Antenna redundancy explores the advantages of spatial transmitter diversity (and of receiver diversity in
the case of packets sent from the wireless station to the central station) while keeping the complexity of
the receiver low, as compared to true transmit diversity/MIMO systems. This makes the implementation
of antenna redundancy attractive in scenarios where the mobile / wireless stations are small and cheap
field devices (for example sensors)

For the case of independent (and rather bad) channels between the antennas and a mobile station the
antenna redundancy approach decreases the failure probability by almost one order of magnitude per
additional antenna. Furthermore, already for the second antenna we achieve a significant reduction in the
mean number of packets needed to handle a request; using the antenna reuse strategy can give further
bandwidth savings for request interarrival times of practical interest (millisecond range). These savings

Copyright at Technical University Berlin. All
Rights reserved.

TKN-05-002 Page 21



TU BERLIN

can be used to meanwhile serve other mobile stations. As compared to FEC the antenna redundancy
approach is most effective w.r.t. failure probability when the error rates are high or the channel shows
packet losses, while FEC gives larger gains when the error rates are low enough to distort only a few bits
per packet. The multicopy-ARQ approach does not behave well over the kind of channels used in this
paper.

To conclude the paper we discuss possible research directions, both theoretical and practical. The aspect
of channel models and their influence on the reduction in failure probability the antenna redundancy
approach can achieve offers several opportunities for theoretical work. In fact, in this paper we have
used quite an idealized channel model for evaluating the antenna redundancy approach: the channels are
independent and follow the same stochastic process. Neither of these assumptions will be true in practice
and the question comes up how much can still be gained with antenna redundancy in terms of failure
probability when these assumptions are removed. If we assume that all channel error processes are driven
by the same stochastic model but allow for some correlation between the channels, then we can ask how
the achievable gains in terms of failure probability depend on the degree of correlation between channels.
If we allow heterogeneous channels then strategies to treat the channels differently become interesting:
if one channel stays in bad state for long time then it should be less frequently chosen for performing
retransmissions, and better channels should be favored. Another restriction of this paper with respect to
channel modeling is the complexity of a single channel: neither the issue of packet losses nor the influence
of state holding time distributions with very large variability or even heavy-tailed distributions have been
assessed so far.

There are also several more practical aspects deserving attention in the future. One interesting topic
is adaptivity: in practical applications the channel statistics are time-variable and not known in advance,
so any fixed choice of the parameters K, t and R will not always be optimal. Therefore, methods for
estimating the channel state and for sensible adaptation of t and R are interesting (K will be fixed at
configuration time). Another worthwhile question is how the techniques described in this paper can be
applied to commercial wireless LAN technologies, for example the IEEE 802.11 family.
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APPENDIX A: EXACT SOLUTION FOR THE STEADY-STATE PACKET ERROR PROBABILITY OVER A

GILBERT-ELLIOT CHANNEL

We are given a Gilbert-Elliot channel in steady-state, however, for notational convenience we assume
to start at time 0, i.e. the states of the channel are given as X0, X1, X2, . . .. The steady-state assumption
implies that Pr [X0 = 0] = π0 and Pr [X0 = 1] = π1. We introduce the random variable Ti(l), denoting
the number of bit errors which occur in a packet of length l bits, when its transmission is started at
time Xi. Furthermore, let pS(l) denote the probability that a packet of length l bits transmitted over the
steady-state Gilbert-Elliot channel at time X0 is erroneous, i.e. has more than the t bit errors that can be
corrected by the FEC code. We can thus express pS(l) as:

pS(l) =
l
∑

n=t+1

Pr [T0(l) = n]

We can express Pr [T0(l) = n] by conditioning over the number of bits which are in bad state during the
packet transmission time:

Pr [T0(l) = n] =
l
∑

m=n

b(n; m, p) · Pr [m out of l bits in bad state]

=:
l
∑

m=n

b(n; m, p) · Pr [B0(l) = m]
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Fig. 10. Two different outcomes with l = 9 and m = 4

where b(n; m, p) =
(

n

k

)

pk(1− p)n−k is the binomial distribution and Pr [Bi(l) = m] is the probability that
a packet of length l bits started at time i is in the bad state for exactly m bits over its duration. This
expression results from the assumption that during bad states bit errors occur according to independent
Bernoulli experiments with probability p.

The tricky part is to find Pr [Bi(l) = m], since the number of bursts and their respective lengths during
a packet can be arbitrary, as long as the sum of the burst lengths is just m. We illustrate our approach by
help of an example, shown in Figure 10 for the special case of having m = 4 error states during l = 9
bits. The good state is marked with a “low” line segment, and the bad state with a “high” line segment.
Due to the Markov property of the channel TH-DTMC we can compute the probability for the upper
sequence as:

Pr [X0 = 0] · Pr [X1 = 0 |X0 = 0] · Pr [X2 = 0 |X1 = 0] · Pr [X3 = 1 |X2 = 0]

·Pr [X4 = 1 |X3 = 1] · Pr [X5 = 0 |X4 = 1] · Pr [X6 = 1 |X5 = 0]

·Pr [X7 = 1 |X6 = 1] · Pr [X8 = 0 |X7 = 1]

which, by the time-homogeneity of P and with introducing the shorthand pi,j = Pr [X1 = j |X0 = i ] is
the same as:

Pr [X0 = 0] · p0,0 · p0,0 · p0,1 · p1,1 · p1,0 · p0,1 · p1,1 · p1,0

= Pr [X0 = 0] · p
N0,0

0,0 · p
N0,1

0,1 · p
N1,1

1,1 · p
N1,0

1,0

It is noteworthy that the two lower example sequences of Figure 10 have the same probability. We can
observe that for all three example sequence the following holds: we have N0,1 = 2, and since we start
and end with a good state, it follows that N1,0 = N0,1 = 2. Since we also must have that m = N0,1 +N1,1

we can express N1,1 also in terms of N0,1 as N1,1 = m − N0,1. Finally, with X0 = 0 given, the number
N0,0 is given as N0,0 = l − m − N0,1 − 1. Therefore, the numbers N0,0, N1,1, and N1,0 can be expressed
in terms of l, m and N0,1. Consequently, all sequences X0, . . . , X8 starting and ending with good states
and having two “rising edges” (going from state 0 to state 1) have the same probability. Therefore, we
need “only” to count the number of such sequences. Be C0,0(l,m, u) be the number of sequences where
m bits are in bad state for a packet of length l ≥ 2 bits, such that we have u rising edges and the first as
well as the last bit are in good state. Therefore, be l ≥ 3 and 0 ≤ m ≤ l − 2 the number of bits in bad
state during the l bits of the packet. If the number of rising edges u is zero, we have:

C0,0(l, 0, 0) = 1

C0,0(l,m, 0) = 0 (for m > 0)

because there is only a single sequence with zero errors in l bits, and there are no sequences where we
have m > 0 errors but no rising edges; the all-errors sequence would require X0 = 1 and Xl−1 = 1. Next
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consider u = 1 and an overall of m bits in bad state. Consequently, these bits must be contiguous and
the number possibilities to place m bad bits in a packet of l bits starting with a good and a bad bit is:

C0,0(l,m, 1) = l − m − 1

For higher numbers of rising edges u we can separate the first burst of m′ bits length, which occurs at
position k and ends at position k+m′−1 and is by its definition followed by one good bit. There are then
C0,0(l − (m′ + k),m−m′, u− 1) ways to distribute the remaining m−m′ bad states over the remaining
l − (m′ + k) bits by using u − 1 rising edges. Considering all possible burst lengths m′ of the first burst
and all possible start positions we have:

C0,0(l,m, u) =

m−u+1
∑

m′=1

l−m−u
∑

k=1

C0,0(l − (m′ + k),m − m′, u − 1)

One can now prove inductively that this recursive equation can be turned into an explicit representation:

C0,0(l,m, u) =
1

u! (u − 1)!
·
(m − 1)!

(m − u)!
·

(l − m − 1)!

(l − m − 1 − u)!

which holds for l ≥ 3, 1 ≤ m ≤ l − 2 and m + u ≤ l − 1; for parameters not satisfying these constraints
C0,0(l,m, u) = 0.

How about those cases where the packet starts with a good state but ends with a bad state or where the
packet starts in bad state? Consider first the case where the packet starts in bad state and ends in good
state. We can enumerate the different possible lengths for the first error burst (including the first bit) and
can use our previous results to distribute u bursts over the remaining bits, which by definition start with
the good bit following the first burst and end with a good bit. Therefore, we have:

C1,0(l,m, 0) = 1

C1,0(l,m, u) =
m−u
∑

m′=1

C0,0(l − m′,m − m′, u)

subject to the constraints l ≥ 2, m ≤ l − 1, and m + u ≤ l − 1. Similarly:

C0,1(l,m, 0) = 0

C0,1(l,m, 1) = 1

C0,1(l,m, u) =
m−u+1
∑

m′=1

C0,0(l − m′,m − m′, u − 1)

and finally, for the number of outcomes starting and ending with a bad state we have:

C1,1(l,m, 0) = 1

C1,1(l,m, u) =
∑

m′=1

m − uC0,1(l − m′,m − m′, u)
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Putting everything together, we can express Pr [B0(l) = m] as:

Pr [B0(l) = 0] = Pr [X0 = 0] · pl−1
0,0

Pr [B0(l) = m] = Pr [X0 = 0] ·
(

m
∑

u=1

C0,0(l,m, u) · pu
0,1 · p

u
1,0 · p

m−u
1,1 · pl−m−u−1

0,0

+
m
∑

u=1

C0,1(l,m, u) · pu
0,1 · p

u−1
1,0 · pm−u

1,1 · pl−m−u
0,0

)

+ Pr [X0 = 1] ·
(

m
∑

u=1

C1,0(l,m, u) · pu
0,1 · p

u+1
1,0 · pm−u−1

1,1 · pl−m−u−1
0,0

+
m
∑

u=1

C1,1(l,m, u) · pu
0,1 · p

u
1,0 · p

m−u−1
1,1 · pl−m−u

0,0

)
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