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Abstract

For designing channel coding schemes, MAC- and data link protocols and for realistic packet
level simulations of wireless protocols some knowledge about the channel error behavior is
useful. In this report we describe the measurement setup and evaluation methodology that
we have developed for performing measurements of bit error behavior. Furthermore we
describe different approaches to stochastic modeling of the observed error processes. A major
contribution of this report and the companion reports are the results of two measurement
campaigns taken in an industrial environment and what they mean for developing stochastic

channel models suitable for simulations.
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Chapter 1

Introduction

When designing MAC protocols and framing methods for wireless LANS; it is of vital interest
to have insights into the stochastic behaviour of the bit errors occuring on the medium. This

knowledge is important for at least three purposes:
e To assess which kinds of error correcting codes are admissible.

e To build accurate and efficient stochastic channel error models as important part of

packet level simulations of MAC protocols.
e As input and design constraints for MAC protocols.

It is commonly believed that the wireless channel is a bad one with nonstationary error
characteristics and bursty errors. This belief is reflected in the fact that for modeling the
wireless channel many researchers resort to simple channel models exhibiting some short
range correlation, e.g. the Gilbert-Elliot channel model or models based on hidden markov
chains. However, it is hard to find publications where the corresponding model parameters
are obtained from real measurements instead of coming from a more or less “educated guess”.

This report and the companion reports [17], [18], [16] describe in detail some bit error rate
measurements made in different campaigns and in different environments. Since this work
is part of an effort in creating a MAC- and data link layer protocol especially for wireless
industrial LANs, considerable effort has been spent to obtain results for appropriate scenarios.
A second objective of this report is to determine suitable, measurement based parameters of
stochastic channel models usable for packet level simulations.

The remainder of this report is structured as follows: in chapter 2 we describe our basic
measurement setup and methodology including some remarks on how the traces are evaluated

and the common stochastic models are parameterized, while in chapter 3 the results of the

Copyright at Technical University _00-
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first measurement campaign are described. This campaign was important for evaluating our
measurement approach and the setup. The results for the second campaign are described in
the companion reports [17], [18], [16]. Our conclusions about the overall project can also be
found in [16].

A more thorough description of the stochastic error models and other measurement cam-

paigns can be found in an upcoming report.
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Chapter 2

Measurement and Evaluation
Methodology

In this chapter we describe our measurement methodology, consisting of the measurement
setup and the evaluation methods selected, and furthermore different approaches for stochas-

tic modeling of single traces.

2.1 Measurement Setup

For our measurements we use two stations, a transmitter station and a receiver station, which
do not change their roles during a measurement. The basic idea is that the transmitter sends
a well-known bit stream over the wireless link, which is captured and stored by the receiver.
It is important to note that there is no MAC protocol implemented, nor are there any higher
layer protocols involved, which can bias the measurement results. The setup is schematically
shown in figure 2.1.

The wireless network interface card (Wireless NIC) is a PCI microcontroller board (Mo-
torola PowerQUICC [9] with Tundra PCI Interface [12] with a core of a PowerPC 603e
processor with 50 MHz, 32 MBytes of memory and different devices especially suited for
communication purposes, e.g. timers, serial controllers and DMA devices. The coupling to
the (Windows NT based) host PC is achieved via a 64 KBytes memory segment located on
the microcontroller card, which is via the PCI bus mapped into the host memory and can
be “directly” accessed. For signalling purposes interrupts are used. This 64 KByte memory
area is denoted as host interface and mainly used for passing commands, acknowledgements,

status and statistical information and received packets.

Copyright at Technical University _00-
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Figure 2.1: Measurement Setup

The wireless NIC carries a MAC-less radiomodem (Harris/Intersil PRISM-I chipset [1]),
which is compliant to the IEEE 802.11 DSSS PHY using the 2.4 GHz ISM band and offers
four different bit rates and four different modulation types (1 MBit DBPSK, 2 MBit QPSK,
5.5 and 11 MBit CCK, 5.5 and 11 MBit QMBOK). The radiomodem basically comprises
of HF circuitry and a baseband processor, which accepts and delivers a serial bitstream
from upper layers, performs scrambling and direct sequence processing (chip generation) as
well as generation and reception of PHY packets [5]. The PHY packet format is shown in
figure 2.2. A packet starts with a preamble (of configurable length), followed by a constant
value indicating start of a packet (start frame delimiter, SFD). The signal field indicates
the bitrate/modulation type used in the data portion of the packet!, while the length field
indicates the length of the data portion in microseconds (the service field has no significance).
The CRC field spans over the three previous values. If the CRC is wrong, the whole packet
is discarded by the baseband processor. The PowerPC processor is signalled with this event,
however, no further evaluation takes place in the current software version.

In the following we shortly discuss the software modules indicated in figure 2.1.

!Please note that while the data part can use different bitrates / modulation types, the PHY header is
always transmitted with 1 MBit (D)BPSK modulation. When the data part uses another modulation, both
transmitter and receiver must switch the modulation type within a PHY packet, more precisely, after the
CRC16 checksum

Copyright at Technical University _00-
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Preamble SFD Signd Service Length CRC16 Data = { chunk}

Figure 2.2: Format of a PHY frame

2.1.1 Tx

The Tx module is located on the wireless NIC on the transmitting computer. Its main re-
sponsibilities are to accept control and configuration commands from the TxNICCtrl module
(located on the host) via the host interface, and to generate a well known packet stream. The
command interface allows the TxNICCtrl module to start and stop the generation of packets,
to set transmission parameters (frequency, diversity enable, number of packets to send, and
so forth) and to obtain some statistics. The set of adjustable radio parameters is shown in
table 2.1.

The main task of Tx, however, is the generation of the packet stream. A packet stream
consists of a given number of packets, which are transmitted at equidistant start times?.
The necessity for generating packets instead of a single long stream of bits stems from two
sources: a packet based transmission allows for re-synchronization (bit synchronization) at
the beginning of the next packet, even when synchronization is lost during the preceding
packet, and furthermore the PHY only allows for streams of maximum length, due to the
bounded size of the length field in the PHY header (which in turn is used by the receiver to
determine the end of the frame).

The packet format should allow for unique identification of erroneous bits (thus it must be
well known) and for determining the actually expected packet even when all the last received
packets show errors. Thus it should contain a high level of redundancy in order to have a
good chance of telling for each received packet which packet it could be. The Tx software
contains a 32 bit sequence number, which is reset to zero at the beginning of a packet stream.
A sequence number is coded into a chunk and then it is incremented. A chunk has the

following structure:

e It starts with two bytes of value 255 (0Oxf££f), this is called anchor

%Since no carrier sensing is carried out, this approach is not friendly to 802.11 networks running on the
same frequency, since 802.11 packets are destroyed and the medium is often busy. To point it out clearly: the

Tx module contains no MAC functionality!

Copyright at Technical University _00-
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Parameter Description

ScramblingEnabled | The baseband processor uses a shift register with pro-
grammable feedback interconnections, to pass the user data
through, and transmits the output of that register. If Scram-
blingEnabled is true, a scrambler tap of 0x48 is used (and
thus data is scrambled), otherwise a scrambler tap of 0x00

is used, and the data is transmitted as is.

DiversityEnabled Determines whether the receiver uses antenna diversity (i.e.

selects the antenna with maximum signal level)

Frequency this number (1 to 12) determines which of the carrier fre-

quencies in 802.11 to use

PreambleLength determines the number of bits used in the PHY preamble

SFD Threshold determines how many bit times the baseband processor waits
for an SFD after acquiring bit synchronization before giving
up

ModulationCode distinguishes modulation used for data portion: 1 MBit
DBPSK, 2 MBit QPSK, 5.5 MBit CCK, 5.5 MBit QMBOK,
11 MBit CCK, 11 MBit QMBOK

Table 2.1: Adjustable radio parameters

Copyright at Technical University _00-
Berlin. All Rights reserved. TKN-00-008 Page 8



TU BERLIN

Parameter Description

NumPackets Number of Packets within a trace

GapTime Time gap between two packets in a trace, given in microsec-
onds (Medium Idle Time)

Num Chunks Number of chunks per packet

CRCUsageEnabled | Determines whether the CRC at the end of each chunk is
used or not

Table 2.2: Adjustable trace parameters

e The 32 bit sequence number is 1b8b coded, using the following mapping:

0 ~ 00000000
1 ~ 00111100

corresponding to the byte values 0x00 and 0x3c.

e The last two bytes can be used as a CRC checksum over the whole chunk, allowing for

reliable assessment of whether a chunk is correct. However, checksum usage is disabled

and zero bytes are transmitted. The reason for this is that it is in case of errors hard

to tell whether some bits in the middle of the chunk or within the checksum bytes are

wrong.

A chunk thus consists of 36 bytes (ChunkSize). A packet now consists of an integral number

of chunks.

For our measurements we define a trace to be a stream of a finite number of packets,

where all parameters are fixed throughout the trace (thus each packet has the same length,

the same interpacket time and so forth). The parameters describing a trace are summarized

in table 2.2.

Basically the Tx module consists of two parts: in a main loop the packets are computed

and stored in a FIFO, while in a periodic timer interrrupt the corresponding interrupt routine

gets the first packet out of the FIFO and starts its transfer:

e The baseband processor is signaled to start transmitting, the packet parameters (length,

modulation code) are written to baseband processor configuration registers

e A serial controller (SCC, part of the PowerQUICC) is set up to transfer the packets

data in a bit serial fashion from the PowerPC’s memory to the baseband processor.

Copyright at Technical University
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e The packet is removed from the FIFO.

The timer period is the InterpacketTime, given by

NumChunks x 36 X 8 2.1)

Int ketT't = GapTt P bleL 64 .
nterpacketltme apTime + (PreambleLen + 64) + BitsPer Microsecond

in microseconds. Since the Preamble and all header information (64 bits) are transmitted
with 1 MBit/sec DBPSK modulation, their direct length in bits are counted in the given
expression.

Unfortunately the PowerPC processor and the SCC compete for the system bus. If
NumPackets is large or GapTime is small it may happen that the main loop is not fast
enough to compute new packets, such that the interrupt routine occasionally finds an empty
FIFO. It is easy to determine how often this happens, since for every successfully transmitted
packet a counter txpackets is incremented, which can, after finishing a trace, be compared
with NumPackets. However, for NumPackets = 20000 and 600 usec gaptime no losses are

observed.

2.1.2 Rx

The Rx module is located on the wireless NIC. Its main responsibilities are to accept control
and configuration commands from the RxNICCtrl module, to capture all packets from the
wireless link, to deliver the packets including metainformation via the host interface to the
RxNICCtrl module and to generate various statistics. The command interface allows the
RxNICCtrl module to start and stop the reception of packets (when starting several statistical
counters and the internal clock are resetted), to set modem parameters (see table 2.1) and
to obtain statistics.

The Rx module generates the following metainformation for every received packet:

e a timestamp (indicating the time of finishing packet reception)

an RSSI value (Received Signal Strength Indicator, taken at the beginning of a packet).

a counter value (incremented by Rx for every successfully received and buffered packet)

the value of the service field in the PHY header.

the length field t_length (in usec of the PHY header)

the corresponding number of bits in the packet bd_length.

Copyright at Technical University _00-
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e the rx_status indicates whether a received packet has a correct header and furthermore

transmission speed with which the packets data is transmitted.

e the bd_status indicates, whether the received bit stream could be successfully transferred

into the buffer provided by the user.
e the signal field is of no further interest.

In the remainder of this section we describe the statistics gathered by Rx while receiving
packets.

Before receiving a packet, the Rx software allocates an internal receive buffer (rcvbuf).
The packets data is transferred via the SCC from the baseband processor into that buffer.
After finishing the packet, the above mentioned metainformation is added. If none such
buffer is available, the new packet is written into the last successfully allocated buffer, thus
an old packet may be overwritten. Due to an programming error this has happened silently
during the first measurement campaign, in further versions a new counter rcvfrm dropped
was introduced. This counter is incremented every time no new rcvbuf could be allocated.
Furthermore it may happen, that packet reception is truncated e.g. due to loss of bit syn-
chronization. In this case the rcvbuf is only partially overwritten and may contain parts of
an old packet. In the first version of our software this was not detected, in further versions
this can be checked with the bd_length field.

Immediately after successfully receiving a packet a pointer to the corresponding rcvbuf
is stored into a list (which is called recvlist), however, this does not happen when rcvbuf
allocation has failed. If the allocation of a new list element for the recvlist failed (the new
element is tried to allocate from a special free list rxfreelist), the counter rcvbuf _dropped
is incremented. Otherwise the counter rxpackets is incremented.

A separate process within the Rx software is responsible for transferring the received
packets from the recvlist to the host, via the host interface. After packet transfer the
elements from recvlist are transferred back into the rxfreelist. From this we can conclude
that the host must fetch the packets fast enough from the host interface in order to avoid
incrementing rcvbuf _dropped.

In an older version of the Rx software another counter hostbuf_dropped is incremented,
whenever a packet to be transferred from the recvlist to the host via the host interface is too
long for a single buffer in the host interface (the host interface in this respect is organized as
a cyclic buffer with fixed element / buffer size). This behaviour was observed sometimes, and

we attribute it to incorrectly transferred length fields from the baseband processor to the Rx

Copyright at Technical University _00-
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software.
In our implementation the Tx module and the Rx module are merged in a single program

running on the PowerPC.

2.1.3 TxNICCtrl

The TxNICCtrl module is merely a wrapper, which offers to Windows NT users a command
line interface to the capabilities of the Tx module, i.e. it allows to set transmission parameters,
to start and stop packet generation and so forth. Internally it is a Windows command line
application, using a driver, which in turn accesses the host interface and exchanges commands

and data with the Tx module.

2.1.4 RxNICCtrl

The RxNICCtrl module serves also as a wrapper, offering a commandline interface to the
capabilities of the Rx module (setting parameters, starting and stopping packet reception).
However, an important additional functionality is to store all packets, which are received
from the Rx module via the host interface into a logfile. The packets data are dumped into

the file in a binary format. The format is as follows:

logfile == {  packet | text }
packet == 'p' header {byte}header-len
text = 't < string >' 0

The header contains metainformation about the packet (see section 2.1.2). Thus a logfile can
contain both binary packet entries and text entries (genererated by the RxNICCtrl software).

The behaviour of the RxNICCtrl software when receiving packets is as follows: after
starting the packet reception the software waits indefinitely for the first packet coming from
the host interface (however, console input aborts reception). Then, after every subsequent
packet from the host interface a timer is set to a specified timeout value. If the timer expires
packet logging is stopped.

We have observed that the RxNICCtrl software should run on a computer with a SCSI
harddisk instead of an EIDE harddisk, otherwise there occur packet losses (indicated via
the counter rcvbuf _dropped). This happens even for comparably low data rates (QPSK
modulation). Furthermore in a previous version of our RxNICCtrl software the packets are
transformed into an ASCII representation before they are dumped into the logfile. This also

results in packet losses.

Copyright at Technical University _00-
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The question of how to set the timeout value is difficult to answer when the measurement
setup is operated in proximity of a running IEEE 802.11 infrastructure wireless LAN, since
usually an 802.11 base station sends a beacon packet every second. Thus a timeout setting
smaller than one second would be useful. However, unfortunately it is not possible to achieve
a tight coupling between start of logging (at the Rx computer) and start of the packet
stream (at the Tx computer), since the necessary synchronization signals may experience
unpredictable delays. This requires for the Tx computer to wait a little while (it is necessary
for the Rx computer to first send the synchronization signal before starting to log packets,
since the Tx computer may not be ready, when the Rx computer wants to synchronize).
Before the Tx computer actually starts transmitting, the Rx computer may be in listen mode
for some unknown time. If the timeout is smaller than one second, it was often observed,
that the receiver returns after logging a single beacon. A possible solution of this problem is
to start the timer the first time, when two or more packets are received with small timestamp
differences (below 100 msec). In all campaigns where no 802.11 WLANSs were present, we
have set the timeout value to 10 seconds.

In our implementation the RxNICCtrl module and the TxNICCtrl module are merged in

a single program.

2.1.5 TxCtrl

The TxCtrl software is a short script, which synchronizes itself with the RxCtrl software for
controlling the measurements. For this synchronization a TCP connection over the Ethernet
cable is used (see figure 2.1). The TxCtrl software performs the following steps in an infinite

loop:

1. Send a connect request to the RxCtrl software over a socket.
2. If the connect request is rejected go back to the first step.
3. Read a string containing the measurement parameters from the socket.

4. Set parameters of the Tx process accordingly (using the TxNICCtrl module). Calculate

the time needed for the whole trace (sleeptime).

5. Wait a second, then start transmitting by triggering the TxNICCtrl module appropri-
ately.

6. sleep for the sleeptime.

7. Go back to the first step.

Copyright at Technical University _00-
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2.1.6 RxCtrl

The RxCtrl software is a short script, which is actually controlling a whole measurement
campaign. It loops over all variable parameters, for each parameter set a trace is started (by
triggering the TxCtrl software) and logged onto the harddisk. For every point in the product

space of the variable parameters the following steps are performed:
1. Code all parameters (variable and fixed ones) into a string (parameter string).
2. Open a socket, accept connection requests from TxCtrl on this socket.

3. On getting a connection request, send the parameter string back to the caller over the

socket, then close the socket.

4. Set parameters of the Rx module according to the current parameter set (employing
the RxNICCtrl module).

5. Start receiving packets by telling the RxNICCtrl module to do so.

6. After the RxNICCtrl module returns, a trace was recorded. Compress the logfile,

determine the next set of parameters and go back to the first step.

2.2 Trace Evaluation and Stochastic Modeling

In this section we describe approaches for constructing error models for the successfully re-
ceived packets of a single trace. It must be clear that this covers only a part of a realistic
channel model. Other aspects of such models are discussed later. We describe the methodol-
ogy for evaluating a single trace and for parameterizing diverse stochastic models from these
results. It must be noted that all parameters given in 2.1 and 2.2 have to be known before
trace evaluation starts. Besides some commonly used stochastic models, we introduce a spe-
cial class of markov models, called “bipartite models”, to our knowledge not yet covered in
the literature. This name stems from the fact that the corresponding markov chain forma a

bipartite graph.

2.2.1 Preprocessing

The preprocessing step tries to remove “strange” packets from further evaluation and gener-

ates the basic input information for the subsequent steps.

Copyright at Technical University _00-
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Filtering Missized Packets

The first step in trace evaluation is to filter out missized packets. Filtering out missized
packets is straightforward, since the Rx module passes with every packet its size via the
host interface. If the packets size is not equal to ChunkSize times NumChunks the packet is
discarded. The number of oversized packets is counted in the oversized packets statistics, the
number of undersized packets is counted in the truncated packets statistics. The rationale for

simply filtering out packets instead of further investigating them is as follows:
e In most cases, missized packet rates are low, thus the resulting bias can be neglected.

e When the measurement setup is operated in proximity of an 802.11 WLAN, the Rx soft-
ware sometimes captures 802.11 packets (e.g. beacons, data packets), which should be
removed from the trace. Typically beacons are shorter than the measurement packets,

data packets have different sizes.

e A trace has too much packets and there are too much traces to closely inspect every

missized packet.

However, in this way we loose information about “real” packet truncations, where reception
of measurement packets is aborted, e.g. due to loss of bit synchronization. But if we can
process x packets successfully from a trace (this value is given by the packetsprocessed
statistics), then trivially we have at most NumPackets minus packetsprocessed truncated

packets.

Identification of Lost Packets

The identification of lost packets is based on the packet timestamps and their comparison with
the InterpacketTime as computed in equation 2.1. If ¢; and 2 are timestamps of subsequently

dumped packets, we calculate

d to — t1
= roun
I InterpacketTime

The number of lost packets between t; and t» is then simply given by g — 1. We think that
the main reason for loosing packets is the following: the baseband processor requires for each
packet that: a) it acquires correctly bit synchronisation during the preamble and detects a
proper start frame delimiter (SFD) and b) the header checksum must be correct. If both is
given, the baseband processor trusts all the header fields (especially the packet length and

the modulation code) and starts to receiving the data. If any of these two fails, the baseband

Copyright at Technical University _00-
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processor does nothing, until the medium goes idle. In this case a packet can be lost. This is

not accounted for in our statistics.

Generating the Indicator Sequence

As noted in 2.1.1 the rationale for the choice of the packet stream format was to support
unique identification of the received packet within the trace and thus to deduce what its
contents should be.

The received packet number v/ of n bits length is represented by the bit sequence ri'r¥ ... 7%

The packet indicator se-

the corresponding expected packet v is represented as efej ... e} .

quence of packet v is then defined as 275 .. .7}, with

if =7 XOR ¢]

We define the trace indicator sequence or simply indicator sequence iyis...i, to be the
concatenation of all packet indicator sequences for all received measurement packets of a
single trace (in order of increasing ). The mean bit error rate of a single trace can then be

simply computed as follows:
m .
Zl/:l v

m

By =

We can view the indicator sequence as finite subset of a sample path of a random process
{Bn}nen where each B; is a Bernouilli random variable.

The rules for determining which packet is the expected one are simple:

e In general, a chunk is considered correct, when at the corresponding positions the
correct flagbytes Oxff are found, when the checksum bytes are both 0x00 and when all

bytes in between have one of the values 0x3c or 0x00.

e First we look for the first chunk that looks correct and synchronize on the corresponding
sequence number (i.e. we store the sequence number in a variable seqno). The rationale
for this is that we cannot know how many packets from the start of the trace are lost.

Then seqno+1 is the next expected sequence number.

e If we detect a lost packet (recognized by comparing the timestamps, see above) we

increment seqno by the number of chunks in a packet.

o If we read a correct chunk with a sequence number greater than seqno+1 we have lost
a packet without recognizing an irregular timestamp. We set segno to the sequence

number actually read.

Copyright at Technical University _00-
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o If we read a correct chunk with a sequence number smaller than seqno+1 we are

irritated, since this should not happen.

e If we read a correct chunk with a sequence number equal to seqno+1, we are happy

and increment seqno.

e If we read an incorrect chunk, we compare it bit for bit to seqno+1, then seqgno is

incremented.

Please note that in the indicator sequence any information about packet boundaries, lost
packets or packet gap times is completely ignored. However, this sequence is the input for
any error detecting or error correcting algorithm and, in the second line, to any MAC scheme.
For MAC schemes additionally information about lost packets must be considered.

An interesting intermediate statistic is the fraction of wrong bits in a packet, which can

be easily computed by simply counting the ones in a packet indicator sequence.

Packet Filtering Heuristics based on Packet Indicator Sequences

During evaluation of the first set of measurements there occured some packets with an exceed-
ingly high fraction of wrong bits. A closer inspection of these packets showed the following
phenomenon: it appears that somewhere in the middle of a packet a few single bits are sim-

ply not delivered, and the remaining packet is a “shifted” version of the original packet. A

sample packet where this phenomenon occurs is shown below?®:

<H>signal: 0x££0107e0
<H>bd_length: 2016
<H>bd_status: Oxicl0
0x7c
<H>t_length: 8064

0x0

<H>rx_status:

<H>service:
<H>rssi: 0
4392s:951321us
<H>pktcnt: 408

<D>ff ff
<D>ff ff
<D>ff 7f
<D>ff 7f
<D>ff 7f
<D>ff 7f
<D>ff 7f
<D>ff 7f
<D>ff 7f
<D>ff 7f

<H>time:

00
80 48
0

© © ©o ©o o0 © © © ©
© © 0 0o 00 o o o ©
© © 0o ©o ©o 0 © © © ©
© © ©o © © © ©

© © 0o 0o © 0 © ©

© © 0 0 00 © o ©o ©
© © 0o ©o ©o 0 © © © ©
© © 0 0o 00 o o o ©
© © 0 0o 00 o o o ©

However, unfortunately it is not so easy to devise a set of rules for detecting “shifted”
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8 All lines starting with <D> contain a chunk, all other lines show meta information.
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have found that the best indicator seems to be the fraction of erroneous bits per packet and
to look for packets with a comparably high fraction. However, we have the problem, that the
1b8b mapping described in section 2.1.1 tends to produce much more 0x00 bytes than 0x3c
bytes at the beginning of a trace, which makes it hard to detect shifts and tends to decrease
the fraction of erroneous bits produced by the shifting (The mapping was changed for the
second campaign). Another approach was to use character statistics for a single packet,

however, this is not yet explored.

2.2.2 Indicator Sequence Evaluation

The basic idea is to subdivide the indicator sequence into error bursts and errorfree bursts,
where intuitively an error burst is a subsequence where many errors occur, while errorfree
bursts show a long sequence of zeros in the indicator sequence. More formally we define an

error burst as follows:

Definition. An error sequence of length n and of order ky is a subsequence jij41 ... 011n—1

of the indicator sequence i1is ... iy, such that:
1.g=144p1=1
2. for s,t € {l,...,l +n—1} with s <t we have the implication:

is=1,4=1Yre{s+1,....t—1}:i, =0 = d(is,is) < ko

3. in =0, ing1 =0 ...insk =0
4o u—1=0, 42=0, ...0_(1y41) =0
where d(is,1;) := |t — s| denotes the distance of is and i; in the indicator sequence.

In this definition an error bursts consists of all subsequences, where between two errors at
most ko other bits are (regardless of whether they are correct or not) and where all errorfree
bursts have a length of at least kg + 1.

Using this definition the indicator sequence is segmented into alternating error bursts and

errorfree bursts. The indicator sequence is transformed into a sequence

X171 XoYaZs ... X, Yo 2,
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where X, is the length of the n-th errorfree burst, Y, is the length of the n-th error burst
and Z, is the number of erroneous bits within the n-th error burst*. Using this sequence we

can immediately calculate the following simple statistics:
1. Mean bit error rate:

Zf:l Zi
Zzi):l(Xi + Yz)

& =
2. Mean error burst length (sample mean):

Y =

D=

P
.Y
i=1

3. Variance of error burst length (sample variance):

1 & _
L o o

5. Mean errorfree burst length (sample mean):

X =

=N
by
Il
—

6. Variance of errorfree burst length (sample variance):

1 & _
ok =——= (X; - X)

Of some interest are also the following conditional probabilities, since these give insigths

into the error burstiness:

*In our discussion we neglect the fact that an indicator sequence may start with an error burst or may end

with an errorfree burst. Furthermore we do not indicate explicitly the dependence on k¢ in the notation.
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1. Error correlation: Pr[i, s = 1|ip, = 1] for (s > 1). This is approximated as follows:

. . Py Uj " Ujts
j=1%4j

2. Errorfree correlation: Prlin4s = 0]i, = 0] for (s > 1). This is approximated as follows:

2jmr (L =dg) - (1= 4j45)

Prlinys =0lip, =0] =~ ST X
i=1%j

and they are directly related to the correlation function of the indicator sequence, since, with

the assumption of equally distributed i; we have:

CO . .
Cortlin,insy] = Climintt]

2 52
n " Intk
 Elinin ] — Blin] Elingal
2 52
n " Intk

E[znln—l—k] —é°
Vel —e)e(l —e)
Prlinig = llin = 16 — &> Pripir =1lin =1 —&

(1 —e) (1-¢)
~ Prlipir = 1ip = 1]

where the approximation holds for small € values. Furthermore we have used that

Elininik] = Z ry Prli, = 2,11k = Y]
z,ye{0,1}
= Prlip =1,ipp = 1]
= Prlipyr = 1|in, = 1] - Prfiy, = 1]

= Prlipy=1lin=1]-¢

2.2.3 Modeling of Burst Lengths as iid Sequence of Random Variables

A very simple and popular class of stochastic models is the class of iid models, i.e. the
random variables X7, ..., X, are assumed to be independent and identically distributed, the
same holds for Y7,...,Y, (and furthermore that the X; and Y; are also independent). The
distinction between errorfree bursts and error bursts together with iid modeling give rise to the
popular two-state (semi-)markov channel models (e.g. the Gilbert or Gilbert/Elliot channel

model), where the channel state alternates between a “good” state (corresponding to error
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free bursts) and “bad” states (corresponding to error bursts). Beneath the distributions of
the good state and bad state durations also the error rates in the bad state must be specified.

The invalidity of this assumption can be checked using the autocovariance function Rx (k)
of the sequence {X;};c(1, .. p) (the same holds for Ry (k) and the sequence {Y;}scq1,...p}), which

is estimated using the method described in [2]

C
Rx(k) ~rj, = é (ke{l,...,p—1})
where
1 =k _ ]
o= D (X = X)(Xiyn — X)
t=1

The rule of thumb is that if for some & > 1 the value of r; exceeds 0.2 then there is more
than weak correlation and thus the X; cannot be independent.

For modeling there are (at least) two possibilities: a) we use directly the histograms of
the X; and Y; as distributions of error burst lengths and errorfree burst lengths, or b) we use
some simple distribution function matching the sample mean of the X; (Y;) and maybe some
higher moments, but otherwise neglecting the shape of the distribution. The first method
is accurate but requires knowledge of the whole distribution, while the second method is
inaccurate and requires only few parameters. In the following we restrict the discussion to
the second method, since the simple distributions can easily be used within most simulation

tools.

Markovian Two-State Model

For a markovian model the state holding times are necessarily geometrically distributed
(Pr[X; = k] = px(1 — px)* 1, Pr[Y; = k] = py(1 — py)*¥! for k£ > 1) and errors occur
independently with a fixed rate in every state. The geometric distribution only has a single
parameter and thus we can only hope for matching the first moment of the “true” distribution.
For estimating the parameters px and py we use the fact that the geometric distribution has
the mean value E[X;] = zi and E[Y;] = z%' Since X and Y are approximations of E[X] and

E[Y] we simply put

_ v\—1
px = (X)
_ vy —1
py = (V)
Copyright at Technical University
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Furthermore, the bit error rate in the good state e, is simply zero, while in the bad state it
is given by

P

i=1 Zi

e =Sp o
i=1Yi

Semi-Markovian Two-State Model approximating the first two Moments

The basic channel model chosen here belongs also to the class of two-state models, however,
the distributions of the state holding times are chosen to match the measured mean and
variance more closely, thus in most cases loosing the memoryless property of these holding
times.

We seek for a simple discrete random variable X taking only positive integer values, for
which E[X] = X and V[X] = 0% holds, which are assumed to be positive, but otherwise
arbitrary. Denote a := X, b := ag(. Unfortunately none of the well known distributions can

be parameterized appropriately:

1. The binomial distribution, hypergeometric distribution and negative binomial distribu-

tion require V[X] < E[X], which is often not true for errorfree lengths.

2. The geometric distribution and the Poisson distribution have only a single parameter

to vary.

3. Two-Point, Three-Point and Four-Point distributions are restricted in their range of

joint expectations and variances.
Therefore we employ certain heuristics to assign suitable distributions to the state durations:

1. For distributions with mean values a € [1,3] and coefficients of variation % < \/g ~

0.81 we choose a geometric distribution with parameter p = % (p = %

This is reasonable since the distribution has its main mass on 1 and decays rapidly

respectively).

because of its small coeflicient of variation.

2. For mean values a € [3,25], b < a and coefficients of variation ? < \/g ~ 0.577 we

5

use a binomial distribution as an approximation®. The parameters are calculated as

follows:

p = =

’The coefficient of variation of a binomial distribution with parameters n, p and ¢ = 1 — p is given by

Cx = \/Lnip. Since np > 3 we have that Cx < —= ~ 0.577.
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The binomial distribution is chosen because in this case the mass of the distribution is
shifted to the right, and thus has some similarity to the shape of the binomial distribu-

tion.

3. For all other cases we resort to a “quantized” version of a continuous distribution®. Since
we only want to match the first two moments and neglect the shape of the distribution,
we can restrict the set of candidate distributions to the well-known ones living on the
positive real axis. We choose to use the lognormal distribution function [8], which has
the density function

1 _ (logz—p)?

f(z) = me 202 (z > 0)

(for 4 € R and 02 > 0) and the expected value and the coefficient of variation are given
by
0_2
E[X]=ettT

and

Cx = e’ — 1

respectively. Then we can simply calculate the parameters of the distribution as follows:

0?2 = log (% +1>
a

2

o

= ]_ _—

I oga— 5

The question of how to assign error rates to the bad states is addressed in section 2.2.5.

2.2.4 Hidden Markov Modeling

Beyond the models using markov chains recently error models based on hidden markov chains
(hidden markov models, HMM) have found some interest. Some references are [14], [13],
[15] and [4]. Especially in [4] a methodology is given for constructing a HMM based on
indicator sequences, which, however, has the drawback of using only a single state for the
good channel condition. However, this issue is not covered further in this report and remains

to be investigated.

5The question how close mean and variance of a quantized version of a continuous random variable comes

to the true values is not further addressed in this paper.
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S
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Figure 2.3: A sample bipartite markov chain

)

2.2.5 Bipartite Markovian Model

A natural generalization of the two state markov model is to employ a number ny of “bad”
states and ny of “good” states and to allow state transitions only from good states to bad
states and vice versa (thus forming a bipartite graph). An example model with three good
states and four bad states is shown in figure 2.3 with all possible state transitions for the first
good state and bad state respectively. If the states are numbered ey, ..., en;,€n141,- - - €ny+ns

then the transition matrix has the form:

(o 7)
Q: 0

where Q1 is an ny X ns stochastic matrix describing the state transitions from the bad states
to the good states, while Q2 is an no X ny stochastic matrix for the other direction. A similar
model in [7], however, uses two matrices P and @, not further restricted, where P is used
every time the preceding channel symbol was in error, while @ is used otherwise. In general
the proposed model occurs as a special subclass of the class of Fritchman channel models [3],
where, however, the bad states can have a bit error rate smaller than one. To the best of our
knowledge, error models similar to our bipartite model are not discussed in the literature so
far.

The operation of this model is as follows: to every state e; there is assigned a probability
distribution pe,(k) on a subset of the natural numbers (or more precisely an independent

random variable having just this distribution). When the system enters a specific good state
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ek, a random number is generated according to the distribution p.,. This random number
is then interpreted as the number of bits where no error occur. When the system enters a
specific bad state e;, again a random number is generated according to pe,, determining the
length of the error burst in bits. Within an error bursts we make the simplistic assumptions

that
e at least one bit error occurs within the burst
e The bit errors occur independently with a fixed rate.

In order to build a model from the traces we need to identify the numbers of states n;
and ng, the matrices ()1 and @2, the probability distributions p., and the bit error rates in
the bad states. A rather simple approach, which linearly approximates the specific shape of

the involved distribution functions, can be shortly summarized as follows:
e Select a number of good states and bad states.

e Partition the range of possible error burst lengths such that every subinterval has the

same probability.

e Construct the transition matrix P by simply counting for every state i the number of
times it is left towards every possible target state j and divide this by the total number

of times the system has left state .

e Assign to every state a uniform distribution for the corresponding burst lengths (this

is the linearization).

e We assume for the error states that errors occur independently with a fixed rate. For

this rate two simple approaches exist:

— All error states have the same mean bit error rate given by

&= 725,:1 i’“
k=1"k
— For every error state ¢ denote I'; C {1,...,p} the subset of all error bursts which
belong to state ¢ and use
& = Zker‘i Zy,
D ker; Yk

In some more detail we perform the following steps for constructing the transition matrix P:
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e Define hy € N and hy € N with hy > 1 and hy > 1. Denote for a single trace Fx and
Fy the distribution function of the X; and Y; respectively. This can be precalculated

from the measured data.

e Let z1,...,7p, be defined via

r; ‘= max 1 1, Fl (L> }
vl ).

and y1,...,yn, be defined via

Yi = max{l, F;l <hi> }
L b/ |

where we use the pseudoinverse of a distribution function defined by

F’l(y) = inf{z: F(z) > y}

In the following we assume that £ =1 < 21 < 2 < ... < zp, and yo =1 <y1 <ya2 <
... < yn, holds, otherwise we assume that duplicates are removed and the numbers are

re-indexed appropriately. Define ny = hg, na = hy.

e In the next step we count for every interval I'x; = [z;—1,2;) (i € {1,...,hg — 1}) and
for interval Ixp, = [Th,—1,%h,] the number of the values Xi,..., X, that lie within
this interval. Denote this number as Nx ;. Accordingly for the Y; values, giving the

numbers Ny;.

e Define a (ny + n2) x (n1 + n2) matrix P’ and set all entries to zero. Now we loop over
the sequence X1Y1Z1X2Y2Z5 ... XY, Z, the following way: for i € {1,...,p} do:

— let Ix, be the uniquely determined interval with X; € Ix, and let Iy} be
the uniquely determined interval with Y; € Iy;. Increment the matrix element
((P"))ny+a,p by one.

— if ¢ < p: let Iy be the uniquely determined interval with Y; € Iy, and let Ix, be

the uniquely determined interval with X; 1 € Ix ,. Increment the matrix element
((P,))b,n1+a by one.

e For i e {1,...,n1} divide row i of P’ by Ny; and for i +n; € {ny +1,...,ny} divide

row ¢ + ni of P/ by Nx ;. The resulting matrix is then our state transition matrix P.

However, in order to get results of some accuracy, reasonably large values of p are needed,
i.e. we need a comparably high bit error rate. For low bit error rates this approach may lead

to misleading models.
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The number and distributions of the good states and bad states may also be determined

by inspection.
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Chapter 3

Campaign 1:
Produktionstechnisches Zentrum
(PTZ), Berlin, June 26, 2000

A set of measurements was performed on June 26, 2000 in the Produktionstechnisches Zen-
trum (PTZ) in Berlin, Germany, which is a research facility for machinery engineering, driven
by industry and academia. The PTZ owns a large factory building, which contains several
machines. The measurements were started at ~ 11 AM and stopped at ~ 16 PM. We have in-
vestigated a non line-of-sight (NLOS) scenario, with a die sinking electrical discharge (EDM)
machine placed between transmitting and receiving station. Both stations have a distance of
~ 6-7 meters. Furthermore it must be noted that the receiving computer was in close proxim-
ity to a cabinet containing the power supply for a huge 5 axis milling machine. Both stations
are stationary during the measurement campaign, the die sinking machine has worked most
of the time, only between 11.53 AM and 12.07 PM it was shut down. A trace number recorded
in this interval is 22. In addition, the milling machine worked at the beginning of the cam-
paign and was shut down between 12 PM and 13 PM. To our knowledge, no active interferers
(e.g. 802.11 Wireless LANs or cordless telephone sets) were present. A sketch of the setup is
shown in figure 3.1.

The main purposes of this campaign is to improve the measurement setup and the mea-
surement methodology and to identify the aspects which are important for channel error

modeling.
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5 axes milling machine

Die Sinking
— Electrical Discharge Machine
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Working Area

Rx

Milling Machine
Power Supply Cabinet

TX

Figure 3.1: Setup of PTZ measurement

3.1 Measurement Parameters

The set of fixed parameters is given in table 3.1. For the remaining parameters we have
chosen a factorial design, the values taken for the variable parameters are shown in table 3.2.
A single trace consists of 20000 packets and lasts between one and ten minutes, depending
on the packet size and gap time chosen. The traces are numbered consecutively, the mapping
from the trace numbers to the parameters is given in table A.1. As a brief orientation,
traces 1 to 36 are with 2 MBit QPSK modulation, traces 37 to 71 are with 11 MBit CCK
modulation and the remaining traces are again with 2 MBit QPSK modulation. Within one
type of modulation packet sizes increase, for a single packet size five traces with increasing
gap times are made. The choice of 11 MBit CCK modulation is due to the fact that this
modulation is also used in the IEEE 802.11 standard [10], [11].
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Parameter Value

PreambleLength 128 bits

ScramblingEnabled | True

DiwversityEnabled True

SFD Threshold 152
Frequency 12
NumPackets 20000
Rx-Tx-Distance ~ 6-7 meter

CRCUsageEnabled | False

Table 3.1: Fixed Parameters for PTZ Campaign

Parameter

Value

Num Chunks

3,9, 14, 28, 56, 112, 167

GapTime

600, 1000, 2000, 5000, 10000 psec

ModulationCode

2 MBit QPSK, 11 MBit CCK

Table 3.2: Variable Parameters for PTZ Campaign
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3.2 Measurement Results

In this section we present our measurement results. Since this was the first measurement
campaign, we start with some results judging the quality of our measurement equipment,
then proceeding with the most interesting first and second order statistics. In the next

section then our conclusions regarding stochastic modeling are discussed.

3.2.1 Judging our Measurement Equipment

The key statistics for the quality of our measurement equipment are (see sections 2.1.2 and
2.2.1):

e The Rx counter rcvbuf_dropped, indicating the number of frames dropped due to
memory shortage or too slow packet transfer to the host. However, this did not happen

during this campaign.

e The statistics ghost packets counts the number of packets with correct length, where a
correctly decoded sequence number is an already consumed one, i.e. where a too old
packet is delivered (cf. section 2.2.1). We think that this can happen due to truncated

packets, as discussed in section 2.1.2, however, we have not definitely proved this claim.

e The Rx counter rxpackets is incremented every time a frame of any (including wrong)
size could be successfully received and stored. Accordingly, we define the lost packets

statistics to be given by NumPackets minus rxpackets.

e The Rx counter hostbuf_dropped counts the number of frames which are too large for
a single buffer in the host interface (probably pointing to an error in communicating

packet lengths between baseband processor and Rx software)

e The oversized packets statistics counts the number of packets larger than allowed (which
could happen due to interfering Wireless LANSs or to errors in passing the packet length
from baseband processor to the Rx software), the truncated packets statistics counts
the number of packets too small (which can occur for similar reasons or by loss of bit

synchronization).
e The value rcvframe dropped was not available in this campaign.

In figure 3.3 we show the rates of ghost packets, oversized packets and truncated packets

vs. the trace number, in figure 3.2 we show the hostbuf dropped statistics. It is interesting
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Figure 3.2: Rates of hostbuf dropped packets w.r.t. rxpackets

to note that all curves are practically zero starting with trace number 26. The presumption
that the occurence of missized packets is due to a software error can be rejected with high
probability, because otherwise the error is likely to occur over the whole campaign. Instead
we think that the good behaviour starting with trace 26 coincides with shutting down the
milling machine (remember that the receiver was located right near the power supply cabinet)
and that the errors are due to magnetic and electrical induction. It is often assumed that
truncated packets are mainly a result of loss of bit synchronization, which in turn is often due
to multipath fading. However, our results do not support this assumption, since the truncated
packet rates are comparably low and occur only up to trace number 26. Furthermore, the
rate of missized packets are comparably low and can be neglected in modeling.

In figure 3.4 we show the percentage of lost packets (see section 2.2.1) versus the trace
number. This figure shows the same behaviour, i.e. starting with trace 26 this number drops
to zero. Since for some traces the fraction of lost packets (presumably due to failing preamble
acquisition or PHY header checksum errors) reaches values near 10% this phenomenon should
be included in stochastic channel modeling, since lost packets are an important “input” to

the MAC protocol, which cannot be handled by lower layer mechanisms, e.g. FEC schemes.
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Figure 3.3: Rates of ghost packets, oversized packets and truncated packets w.r.t. rxpackets
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Figure 3.4: Percentage of lost packets vs. Trace Number
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Figure 3.5: Positions of Bit Errors, Trace Number 1
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Figure 3.6: Positions of Bit Errors, Trace Number 5
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Figure 3.7: Positions of Bit Errors, Trace Number 7
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Figure 3.8: Positions of Bit Errors, Trace Number 13
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Figure 3.9: Positions of Bit Errors, Trace Number 48
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Figure 3.10: Positions of Bit Errors, Trace Number 55
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In figures 3.5, 3.6, 3.7, 3.8, 3.9, 3.10 we show the error position histogram for selected
traces. That is, within a single trace for every bit error we determine its bit position index
within its packet and increment an appropriate counter (which is associated to the index
number). Most of the QPSK traces show a pronounced peak around bit position 100 and
further peaks with nearly equal distances (from inspection the distance in many traces is
approximately 128). Two examples are figures 3.5, 3.8. Other QPSK traces look more
irregular, however, the peak at the beginning of a frame occurs also. For CCK modulation
the curves shown in figures 3.9, 3.10 are representative. They also show a peak at the
beginning of a frame (up to index 200), then the histogram decays. For this modulation we

have no periodicity observed. To summarize, we can observe two different effects:

e Bit errors tend to occur most often at the beginning of a frame. This holds for both
modulation types. We think that this can be attributed to the need of switching
the modulation type from the DBPSK modulated PHY header to the QPSK or CCK
modulated data part. However, this should be checked against traces employing DBPSK

modulation.

e For QPSK modulation additionally some periodicity can be observed. We currently
have no satisfactorily explanation for this, however, we think this can be due to the
operation of the scrambler [5]. For this reason in the next campaign we perform a set

of measurements with scrambling disabled.

A major problem with the results shown in this section is that it is not immediately
clear, whether we have just used a bad pair of modems (due to monday production), or if
the described behaviour is typical for this family of modems or even for all 802.11 compliant
modems. For this reason in the next campaign we should perform measurements with another
pair of modems and compare the results. More in the future it is planned to upgrade to the
PRISM II chipset.
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NumChunks Mean BER

3 0.0013868

9 0.0001284
14 0.0000848
28 0.0000084
56 0.0001908
112 0.0000714
167 0.0000242

Table 3.3: Mean BER vs. packet size

3.2.2 First Order Statistics

In this section we show the main first order statistics, some of them are introduced in section
2.2.2. In figure 3.11 we show the mean bit error rate per trace E} vs. the trace number k
(also given in table A.1). In figure 3.12 we show for every trace the fraction of erroneous
packets, where an erroneous packet is defined to be a packet with at least one bit error. The

following observations are interesting;:

e For QPSK modulation traces the mean BERs vary over many orders of magnitude and
over longer timescales (remember that each trace lasts at least one minute, up to ten),
even for a single packet size. Several QPSK traces show no bit errors at all. However,
as a general trend we can observe that the mean bit error rate decreases with increasing
packet size (increasing NumChunks), as can be seen from table 3.3. An explanation is
that the most of the errors tend to occur at the beginning of packets (typically within
the first 1000 bits, see also section 3.2.1) while in the middle and end of a packet
relatively fewer errors occur. So for longer packets the error clustering at the beginning
can be compensated. Furthermore it can be observed that the packet error rates for
QPSK are all below 20%, this holds for all packet sizes. This is a further indication
that bit errors in the remainder of a packet occur only rarely, since otherwise the packet
error rate should increase more than linearly with increasing packet sizes'. We have

not observed any clear relationships for the GapTime parameter.

e For CCK modulation traces the mean BERs have a much higher level, they do not

vary so much, and they are decaying with time, while the packet error rates seem to

! An interesting experiment would be to cut off the first 1000 bits from all packets and to run all evaluations

again.
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remain constant (however, on a high level). We think that this behaviour is due to the
same reasons as in the QPSK case, however, the CCK modulation seems to be far more

susceptible to errors.

Of prime importance for the iid modeling approach are the distributions of the error burst
lengths and the error free burst lengths. However, before turning to their distributions, we
shortly discuss the behaviour of their mean values and variances (or coefficient of variations,
respectively). In figure 3.13 the respective mean values and in 3.14 the coefficients of variation

are shown. The following points are important:
e The mean error burst lengths do not differ significantly from the burst order value:

— For ky = 1 the mean burst lengths in most cases is smaller than two, furthermore
the coefficient of variation is in almost every case smaller than one, thus the
respective distributions show their main mass between one and three, and often

look like geometric distributions (see below).

— For ky = 8 all except one mean error burst lengths are smaller than 20, thus not

longer as 2.5 times ky.

— For ky = 15 and QPSK modulation the mean values are bounded by 30, most of

them are in the proximity of 20.

— Interestingly, for ky = 50 and k9 = 100 and QPSK modulation the variation of the
mean error burst lengths increases, while for lower burst orders the mean values

the variation is smaller.

Thus in general we can say that error bursts tend to be short. Furthermore, except for
ko = 1 error bursts for CCK tend to be longer than for QPSK, which, however, can be
easily explained by the higher mean bit error rates for CCK.

e The mean error burst lengths do not increase linearly with the burst order ky. This
is to be expected if we have longer error free bursts within the trace, which form a

“natural barrier” for error bursts.

e For QPSK modulation the coefficient of variation is almost below two (except for kg =
100), thus the variation is bounded. For CCK modulation the variation can be much

larger, except for the burst order ko = 1.

Since in most cases the range of the error burst length is comparably restricted, we show

directly the density plots (normalized histograms). However, the errorfree distributions span
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Copyright at Technical University _00-
Berlin. All Rights reserved. TKN-00-008 Pa'ge 4]‘



TU BERLIN

a much wider range, which is sparsely covered, especially in the tail regions, and shows
wild fluctuations in small regions (for a longer trace lengths these fluctuations are assumed
to be smaller). Therefore we choose to show a “smoothed” version of the errorfree length
distributions, according to the methodology used in [6]2. The distributions of the lengths
of error bursts of order ky = 1 are shown in tables 3.4, 3.5, 3.6, 3.7, while for ky = 15 the
distributions are shown in tables 3.8, 3.9, 3.10, 3.11. The smoothed curves for the errorfree
runlength distributions for ky = 1 are shown in 3.12, 3.13, 3.14, 3.15, while for ky = 15 please
refer to tables 3.16, 3.17, 3.18 and 3.19. We can make the following important observations:

e For ky = 1 the error burst lengths in many cases can be well approximated by a
geometric distribution. This can be seen from the shape of the distributions as well as
from the fact that the mean values are often between one and three and the coefficients
of variation are small. This holds for both modulation types. Furthermore, most error

bursts are only a single bit long.

e For ky = 1 the smoothed versions of the density functions for the errorfree length
distribution show roughly a similar behaviour: the first part the density decays linearly,

the remaining part is nearly constant and has a small nonzero value.

e For ky = 15 the smoothed versions of the density functions for the errorfree length
distribution look irregular, there seems to be no common pattern, except that the tail

of the distribution often is close to zero.

In figure 3.15 we show the mean values for the error rates within the bad states (given by

2
m = % b, % and the sample variance given by ﬁ b, (%’ — m) ) vs. the trace number,
while in figure 3.16 we show the corresponding coeflicients of variation. The following points

are worth discussion:

e In general the error densities (i.e. mean bit error rate during bad states) have compa-
rably high values of more than 0.2. Please not that by our definition of error bursts the
density is bounded below by 1/kg for bursts of order kg. However, even for burst order

ko = 100 the mean density only rarely drops below 0.3.

*In short: let z1,...,z, be the observations, let » € R™ \ {0} a parameter and let K : R — R" be a
so-called “estimator kernel” function with [, K(¢)dt = 1. Then the estimated density f(z) at = € R is given
by f(z) =Y, #K (*5%). The rationale is to give more weight to places where many of the z; are clustered.
One crucial point is the choice of h, which can be interpreted as the window size. As a heuristic we choose h
to be 10 percent of the range of the z; values. In the paper [6] the authors have chosen K to be a triangular
window: K(t) = (14+1t) - Lj—1,0)(¢) + (1 —t) - 1[o,11(t)., as is done in [6]. However, in order to avoid mass on
negative values, we have used K (t) = (2 — 2¢t) - 1jo,1)(t) instead.

Copyright at Technical University _00-
Berlin. All Rights reserved. TKN-00-008 Pa'ge 42



TU BERLIN

e For all burst orders the coeflicient of variations of the error densities are well below 0.7,
so the corresponding distributions have their main mass clustered around the mean

error density.

o For CCK modulation both the mean values and the coefficients of variation remain

nearly constant, with the mean density decreasing with increasing burst orders.

e For QPSK modulation there is more variation in the mean values and coefficients of
variations, however, the trend for higher mean values for smaller burst orders can be
observed again. The mean values for ky = 50 and kg = 100 are often very close to each

other.
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Table 3.4: Density of Error Burst Length (Order 1) for Traces 1 to 15
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Table 3.5: Density of Error Burst Length (Order 1) for Traces 16 to 41
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Table 3.6: Density of Error Burst Length (Order 1) for Traces 42 to 56
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Table 3.7: Density of Error Burst Length (Order 1) for Traces 57 to 88
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Table 3.8: Density of Error Burst Length (Order 15) for Traces 1 to 15
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Table 3.9: Density of Error Burst Length (Order 15) for Traces 16 to 41
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Table 3.10: Density of Error Burst Length (Order 15) for Traces 42 to 56
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Table 3.11: Density of Error Burst Length (Order 15) for Traces 57 to 88
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Table 3.12: Smoothed density of Errorfree Burst Length (Order 1) for Traces 1 to 15
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Table 3.13: Smoothed density of Errorfree Burst Length (Order 1) for Traces 16 to 41
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Table 3.14: Smoothed density of Errorfree Burst Length (Order 1) for Traces 42 to 56
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Table 3.15: Smoothed density of Errorfree Burst Length (Order 1) for Traces 57 to 88
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Table 3.16: Smoothed density of Errorfree Burst Length (Order 15) for Traces 1 to 15
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Table 3.17: Smoothed density of Errorfree Burst Length (Order 15) for Traces 16 to 41
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Table 3.18: Smoothed density of Errorfree Burst Length (Order 15) for Traces 42 to 56
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Table 3.19: Smoothed density of Errorfree Burst Length (Order 15) for Traces 57 to 88
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3.2.3 Second Order Statistics

We now turn to some second order statistics of the measured traces. These allow to gain
some insights into the correlation structure of the errors occuring on the medium. We look
at this at the bit level and at the packet level, where we consider a packet as erroneous, when
at least one bit within this packet is erroneous?.

First we discuss the conditional bit error probability Pr[i, s = 1|i, = 1] as described in
section 2.2.2. The corresponding curves are shown in tables 3.20, 3.21, 3.22, 3.23%. Since
in all cases the mean BERs are small enough, we can use Pr[i,s = 1|i, = 1] as a good
approximation to the correlation function, as discussed in section 2.2.2. We can make the

following observations:

e All traces with CCK modulation (traces 37 to 71) show the same behaviour of slow and
monotonic decaying and a large peak for small lags. On very short distances of a few
bits (up to 20) the bit errors appear to be strongly correlated, while correlation rapidly
drops to levels below 0.2 and thus are weakly correlated, but much above the mean bit
error level. In traces 37 to 41 we observe a small peak between lag 800 and 900. The
explanation is that these traces correspond to a packet size of 108 bytes (NumChunks
equals three), giving 108 - 8 = 864 bits, and that bit errors tend to occur at the start of

a packet®.

e For QPSK traces we can observe, that for small lags (20 to 30 bits) there is strong
correlation, however, this decays rapidly. The remaining behaviour is much more diverse

than in the CCK case (for small bit error rates the curves do not have much meaning).

e Some QPSK traces show a nice repeated triangular shape, e.g. traces k = 6, k = 10,
k=21,k=22 k=25 k=172 k=76 k=78 and k = 81. The period observed
is roughly 300 bits, which can be obtained by multiplying the chunk size of 36 bytes
with eight (288). After inspection of the corresponding traces we find that these traces

contain packets with bit shifts (as explained in section 2.2.1). We have selected two

®In future studies one may use different criteria for whether a packet is erroneous, e.g. based on the residual

errors of different error correcting codes.
“Please note that every figure is annotated with the corresponding mean bit error rate, however, due to

presentation with limited precision, occasionally the value zero occurs. In the corresponding traces bit errors

show up, but with a rate smaller 1076
°Tt might be fruitful to evaluate all traces after the first 1000 bits of each packet are removed (see also

section 3.2.1), and thus with the influence of error clustering at packets beginning disappeared.

Copyright at Technical University _00-
Berlin. All Rights reserved. TKN-00-008 Pa'ge 61



TU BERLIN

such traces (trace number 6 and trace number 25) and removed all packets with bit

shifts. The result was that the triangular shape disapears.

e Most QPSK traces with a sufficiently high error rate show some periodicity of roughly
128 bits (e.g. traces k = 1, k = 2, k = 8 and k = 9), often with alternating high
and low peaks, and decaying amplitude of the high peaks (such a behaviour cannot
be observed for CCK traces). We currently have no satisfactorily explanation for this
behaviour, however, we think that this may due to the operation of the scrambler. In
a future measurement campaign for this reason we plan to perform measurements with

scrambling disabled.

As a conclusion we can state that for CCK modulation the errors show much correlation
over comparably long distances, thus errors tend to be clustered. For QPSK things are
more diverse: we can observe a strong short term correlation, however, for larger distances
correlation often disappears (except the periodicity observed and the effects given by bit
shifts).

In tables 3.24, 3.25, 3.26 and 3.27 we show the conditional probability that packet n + [
is erroneous, given that packet n is erroneous. The method of estimation is the same as for

the bit error probabilities (see section 2.2.2). The following observations are interesting:

e For CCK traces this probability is nearly constant and close to the overall PER. Thus

packet errors seem to occur nearly independent from each other, since

Pr[Packet n + k erroneous| ~ Pr[Packet n + k erroneous|Packet n erroneous]

e For QPSK traces this probability is decaying slowly, but remains much beyond the

overall PER level. Thus packet errors tend to occur clustered.
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Table 3.20: Conditional Error Probabilities for Traces 1 to 15
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Table 3.21: Conditional Error Probabilities for Traces 16 to 41
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Table 3.22: Conditional Error Probabilities for Traces 42 to 56
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Trace 86, E; = 0.000006 Trace 87, E; = 0.000000 Trace 88, E; = 0.000000

Table 3.23: Conditional Error Probabilities for Traces 57 to 88
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Table 3.24: Conditional Packet Error Probabilities for Traces 1 to 15
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Trace 38, PER = 0.5966 Trace 39, PER = 0.5296 Trace 41, PER = 0.5537

Table 3.25: Conditional Packet Error Probabilities for Traces 16 to 41
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Trace 54, PER = 0.5763 Trace 55, PER = 0.5236 Trace 56, PER = 0.5454

Table 3.26: Conditional Packet Error Probabilities for Traces 42 to 56
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Trace 61, PER = 0.6807
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Trace 72, PER = 0.0041

Table 3.27: Conditional Packet Error Probabilities for Traces 57 to 72
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3.3 Stochastic Modelling

After inspection of the traces we conclude that we have the following aspects to consider

when constructing models:

e Loss of whole packets due to errors in the (fixed length and fixed modulation) PHY

header®.
e Occurence of bit shifts (see section 2.2.1).

e Bit error behaviour within a single trace, as given by the indicator sequence. How-
ever, to obtain sufficiently accurate results, one needs high mean bit error rates, for

comparably low mean bit error rates (< 107°) we run into difficulties.
e Different mean bit error rates for different packet sizes
e Long term variation for a single packet size.

One key issue to resolve is the appropriate choice of timescales in the model. The loss of
whole packets and the long term variation for a single packet size are expected to change only
slowly, on the scale of one hour or more. However, in this campaign we have not measured
the long term variation for a single packet size, so we cannot make any statements on it
(especially for the smallest packets we have measured only ten minutes in succession).

At this point in time it is also questionable on whether it makes sense to model the
behaviour of different packet sizes. As mentioned before, we think that the differences are
mainly due to the fact that in all traces bit errors tend to occur at the beginning of frames,
maybe due to the necessary switching of the modulation type between PHY header and data
part. For longer packets many errors in the beginning can be compensated by fewer errors
in the remaining packets, for short packets this cannot happen’. Currently we are not sure

whether this behaviour is special to the modem pair actually used or if it is typical for this

SIn section 3.2.1 we have also discussed the phenomenon of ghost packets and missized packets. The key
observation was that all three anomalies seem to be correlated to switching off the milling machine. For
the ghost packets and missized packet statistics we assume that these can be attributed to our measurement
equipment (e.g. lack of proper magnetic shielding) and thus do not tell anything about the stream of received
packets. For this reason they are not included in modeling. For lost packets we assume that they occur due to
failure of the receiving radio modem to get bit synchronization or of a wrong checksum in the DBPSK header.

Because this is related to the packet stream, it should be modeled.
"For selecting a framing method this may lead to the unusual idea to protect only the first few bytes of the

data part with a strong FEC code and to use for the remaining part a weaker code (with better coderate) or

no code at all.
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class of modems. This question will be addressed in a subsequent measurement campaign. If
it turns out that this is a typical behaviour, then an interesting problem for modeling occurs:
assume that at time ty a packet of size s; is transmitted and the channel state is governed by
model m;. Assume furthermore that the current channel state w.r.t. m; lasts for a time 7
much larger than needed for s;. When finishing the first packet, the next packet is selected,
having a size ss #* s; with another model my associated to it. So the question is: to which

state of model mso should we switch? We can make the following points:

e Consider the case where all models are two-state markovian models (Gilbert/Elliot-
Model). The canonical choice would be to go to the bad state, when we are in the bad
state, and to go into the good state, when we were in the good state. If the bit error
rates within the states were arbitrary, another possible approach would be to enter the
state whose bit error rate is the closest to the current error rate. However, with our
approach in the good state no error occurs and in the bad state the bit error rate is
comparably high, which justifies our choice. However, please note that the channel
acquires memory this way, because the sum of two geometric random variables (state

holding times) is not geometric anymore, and thus not memoryless.

e Consider the case where all models are semi-markovian models as generated by the

heuristics described in section 2.2.3. The same considerations as above apply.

e Consider the case of bipartite models where the number of good states and bad states

can be arbitrarily. We propose to use the following policy:

— When within a good state, let 7 denote the remaining time within the good state
in model my. From ms select the state so from the set of good state such that 7

is in the range of state durations generated by ss.

— When within a bad state, we can base our decision on at least two criterias: error
rate and state duration. However, we assume that for running simulations we
restrict ourselves to models of a single burst order kg, and thus for all traces we
have a common lower bound on the error rate. Furthermore from our traces we
have observed that the bit error rates are comparable, and thus we resort only to
the state duration for determining the next state. For this reason, again we choose

a state from the set of bad states, for which 7 can be generated within that state.
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3.3.1 Modeling of Traces as iid

In this section we present the parameters for the simple stochastic models based on iid
sequences of random variables, see section 2.2.3. Every trace is treated with different burst
orders (see section 2.2.2).

The (in)validity of the iid assumption can be checked using the autocovariance function
of the X; and Y; respectively. As mentioned in section 2.2.3, if the value of this function
for some lag exceeds the value 0.2 the values can be regarded as correlated (and thus not as

independent). Therefore in figure 3.18 we show for every trace the value
max{Rx i, (k)|k € Nk > 1}

accordingly in figure 3.17 we show for every trace the value
max{Ry,(k)|k € Nk > 1}

respectively for all burst orders kg investigated. While the figures give only an optical impres-
sion, in tables B.1, B.2 and B.3 we give numerically for every trace number the same values,
however, along with the lag n at which this maximum occurs. We can make the important
conclusion that for many traces the independence assumption has to be rejected and that iid
models are not adequate.

An important issue to resolve is the choice of the proper burst order. The most important
factor are the resulting computation costs when simulating, which in turn depend on two

factors:

e the rate of state or model changes, which involve timer expiration, determining the new

error rate and setting a new timer based on a random number, and

e the duration of the bad states, since every packet transmitted within a bad state involves
random number generation for determining whether a packet is correct (for exceedingly

high error rates we can mark all packets as erroneous).

It is clear from definition, that with increasing burst order kq the (mean) length of bad states
increases, because their number decreases while their size increases. However, for good states
this is not immediately clear, since their length decreases, and their number too. Certainly,
for ko large enough we can represent a whole trace as a single bad period (or as a single
good period, when no errors occur), however, this is not meaningful. On the other hand,
with kg = 1 we certainly have the highest rate of state changes. We can think of different

heuristics for setting ko:
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e If we want to simulate bit errors with high accuracy (e.g. when bit errors in packet

headers have different consequences than those in the packet data) we choose kg = 1.

e Fix a minimum number of state changes within a trace (say, 100) and determine kg
such that the sum of the coefficients of variation of good state durations and bad state

durations is minimal, thus trying to reduce the overall variability in state durations.

In our evaluations we have chosen kg € {1,8,15,50,100}. In figure 3.19 we show for all burst
orders, how often the channel was in bad state, thus giving a direct measure of the rate of
state changes. It can be seen that for kg = 1 we have by far the most state changes, while
for all other burst orders the rates do not differ so much. If we leave out kg = 1 as done in
figure 3.20 we can see that the reduction from kg = 8 to kg = 15 is approximately a factor of
two, while the reductions for higher burst orders are much smaller. Thus we conclude that

ko = 15 might be a good compromise between precision and simulation time.

Two-State Markov Model

For the markovian two-state model we give for every trace and for burst orders kg = 1, kg = 8,
ko = 15, kg = 50 and ky = 100 the values px, py and e as discussed in section 2.2.3. The

corresponding values are shown in tables C.1, C.2 and C.3.

Two-State Semi-Markov Models

For determining the two-state semi-markovian models, we have applied the heuristics de-
scribed in section 2.2.3. The resulting distributions including their parameters are shown for
ko = 1 in table C.4, for ky = 8 in table C.5, for ky = 15 in table C.6, for kg = 50 in table
C.7 and for kg = 100 in table C.8. The corresponding error densities can be taken from the
tables of the two-state markovian model. It is worth noting that in all cases the errorfree
burst lengths are modelled with the lognormal distribution, while for error burst lengths the
picture is more diverse: For kg = 1 the geometric distribution frequently occurs, while for all
other burst orders it does not occur at all, being dominated by the lognormal distribution.

The binomial distribution occurs only occasionally.

3.3.2 Bipartite Modeling

We do not discuss the results of bipartite modelling here for two reasons:

e They are hard to communicate, since the number of parameters is large, and
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e there is no appealing physical meaning associated with the data, only a density plot of

the matrix P would give insights.

The bit error rates in the bad state are for all burst orders well above 10%, often ranging to
60%-70%.

3.4 Conclusions and Lessons Learned

In the following, we shortly discuss our findings and impressions from this first measurement
campaign. Regarding our measurement setup and choice of parameters, we see the following

improvements:

e The 1b8b coding used in the Tx module (see section 2.1.1) has the drawback that
specifically at the beginning of a trace significantly more zero bits than one bits are
transmitted. However, with zero bits it is harder to obtain a high bit error rate when
bit shifts occur. But a high bit error rate in case of bit shifting can serve as a nice

criterion for filtering out these packets. For this reason we switch to the 1b8b coding:

0 ~ 11000011
1 — 00111100

This method allows also to investigate whether errors are independent from the value

of the data bits.

e We should repeat the measurements with another pair of modems, because it is not
clear in the moment whether the findings discussed in section 3.2.1 belong only to
the actually used pair of modems or are typical for this class of modems. Some test
measurements within our institute have produced too few errors in order to make any

statement.

e If strong electromagnetic fields are present, our setup produces packets with incorrect

lengths or delivers old packets. A more appropriate shielding should be investigated.

e Since we cannot observe any dependency on the GapTime parameter, we keep it fixed

in further measurement campaigns.

e In one of the next campaigns we should investigate LOS scenarions as well.
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e The periodicity of 128 bits found for QPSK modulation in the error correlation structure
(see section 3.2.3) cannot be explained satisfactorily. However, one guess is that it has
something to do with the operation of the scrambler. In a following measurement
campaign we will perform measurements with and without scrambling and compare

the results.

e The question of whether the presence of scrambling influences error rates should be ad-
dressed in a following campaign. Some preliminary measurements taken at our institute

showed a significantly reduced error rate for operation without scrambling®.

e For further measurement campaigns an upgrade to the more recent PRISM II chipset

is interesting.

For characterizing the error behaviour of the channel, we can make the following state-

ments:

e Errors tend to occur at the beginning of packets, where the error rate is much higher
than in the remaining packet. This implies different mean bit error rates for different
packet sizes. In the moment it is not clear whether this is due to the pair of modems
actually used or whether this is a more general property. In the latter case, this must be
considered when building stochastic models (e.g. differentiating against packet sizes).
A possible approach would be to use two submodels: one for, say, the first 1000 bits,

and a second for the remaining bits of a packet.

e We can clearly identify the need to incorporate different aspects into a channel model,
namely the stochastic bit error behaviour of the received packets and the packet loss

process.

e In our measurements for QPSK the mean bit error rates even for a single packet size

can differ over two or three orders of magnitude.

e Regarding bit errors, there is a considerable degree of correlation, especially over short
distances. Over longer distances the correlation shows up for the CCK modulation,
while for QPSK the picture is more diverse. Regarding packet errors, for CCK the
packet losses can be regarded as independent, while for QPSK they seem to be correlated

/ clustered.

8Since the scrambler operation incorporates usage of an eight-bit shift register with feedback, one erroneous

bit may have influence on other bits currently present in the shift register.
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e Within error bursts the error density is very high (ranging from 0.1 to 0.5), however,
the number of consecutively wrong bits is in most cases one or two, longer bursts of

consecutively wrong bits are rare.

e Since the channel is instationary on longer timescales (switching on and off machines),
we need measurements of a single packet size over longer times, in order to capture the

long term channel behaviour.

e Using iid models for the length of good states and bad states is often bad or not

adequate, as can be seen from high autocorrelation values.

e For iid models the geometric distribution (as necessary for markovian models) is often
not adequate, because of the large coefficients of variation, especially for errorfree burst

lengths.

e In general the errorfree burst lengths show much more variability than the error burst
lengths. Error bursts tend to be short, in most cases not more than two or three times
the burst order. For errorfree bursts it is often the case that after an error burst the

following errorfree burst is a short one.

e Its not worth to use models based on 11 MBit CCK modulation, since this modulation

type shows so much errors, that it is ruled out for use in industrial environments.

e The packet loss process is of equal importance as the bit error process. It can be
investigated with the same methods as described in section 2.2.2 by simply forming an

indicator sequence (received packets are marked as '0’ and lost packets as ’1’).

For building MAC- and data link protocols for industrial wireless LANs, we can draw the

following conclusions:

e Since even for higher burst orders the error densities are comparably high (typically 0.2
and more) the effectiveness of FEC schemes is questionable. However, this needs to be

investigated.

e Any MAC-scheme should incorporate both FEC (for which effectiveness can be eval-
uated using the indicator sequences) and suitable retransmission schemes (since there
are losses of whole packets). Especially the latter calls for good repolling schemes in

case of polling-based MAC protocols.
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e Since we are investigating and modeling the behaviour in industrial environments, it
makes sense to use channel models based on worst-case-traces (at least for QPSK, CCK

seems to be ruled out).

Some interesting questions for further research and measurements are the following:

Evaluate the effectiveness of different FEC schemes when confronted with our traces.

Evaluate the effectiveness of different retransmission schemes when confronted with our

traces. How can these schemes effectively combined with FEC?

The occurence and the reasons for bit shifts should be investigated more deeply.

Evaluate how good bipartite models can approximate the measured process.
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Appendix A

Mapping of Trace Numbers to
Parameters for PTZ Traces

(Campaign 1)

The table gives the mapping from trace numbers to the variable parameters of the corre-

sponding traces.

Three values are given: the modulation type, the packet size in bytes

(equals NumChunks times ChunkSize) and the interpacket gap (GapTime). Furthermore,

for each trace we give the mean bit error rate and the fraction of erroneous packets w.r.t. the

number of received packets.

Number Parameters Mean BER PER

1 QPSK,108,600 0.001276 0.120228814417333

2 QPSK,108,1000 0.002051 0.157344432037357

3 QPSK,108,2000 0.002734 0.165141496958477

4 QPSK,108,5000 0.000134 0.0134877657440834

5 QPSK,108,10000 0.000739 0.0846138293570562

6 QPSK,324,600 0.000015 0.00230172629472104

7 QPSK,324,1000 0.000123 0.0316279069767442

8 QPSK,324,2000 0.000231 0.0425974025974026

9 QPSK,324,5000 0.000119 0.0217871485943775

10 QPSK,324,10000 0.000154 0.000935453695042095

11 QPSK,504,600 0.000002 0.0008

12 QPSK,504,1000 0.000001 0.00065006500650065

13 QPSK,504,2000 0.000315 0.0627441161742614

14 QPSK,504,5000 0.000036 0.00855941535689258

15 QPSK,504,10000 0.000070 0.0276339400153807

16 QPSK,1008,600 0.000027 0.0114820435002529

17 QPSK,1008,1000 0.000000 0.00025

18 QPSK,1008,2000 0.000008 0.00364188163884674
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19 QPSK,1008,5000 0.000001 0.0003
20 QPSK,1008,10000 0.000006 0.00310124049619848
21 QPSK,2016,600 0.000098 0.00145007250362518
22 QPSK,2016,1000 0.000003 5.00375281461096e-05
23 QPSK,2016,2000 0.000007 0.00360992730007521
24 QPSK,2016,5000 0.000442 0.0937373737373737
25 QPSK,2016,10000 0.000404 0.103620347268191
26 QPSK,4032,600 0.000044 0.0265013250662533
27 QPSK,4032,1000 0.000015 0.0189
28 QPSK,4032,2000 0.000136 0.155046513954186
29 QPSK,4032,5000 0.000011 0.015650782539127
30 QPSK,4032,10000 0.000151 0.136647826739359
31 QPSK,6012,600 0.000118 0.0992049602480124
32 QPSK,6012,1000 0.000001 0.00710035501775089
33 QPSK,6012,2000 0.000002 0.00285
34 QPSK,6012,5000 0.000000 0.0007
35 QPSK,6012,10000 0.000000 0.00085
36 QPSK,108,600 0.000281 0.00520340586565752
37 CCK11Mbps,108,600 0.025511 0.7906
38 CCK11Mbps,108,1000 0.018970 0.5966
39 CCK11Mbps,108,2000 0.020942 0.52965
40 CCK11Mbps,108,5000 0.015398 0.55115
41 CCK11Mbps,108,10000 0.015353 0.5537
42 CCK11Mbps,324,600 0.002740 0.36405
43 CCK11Mbps,324,1000 0.007271 0.67965
44 CCK11Mbps,324,2000 0.007188 0.55175
45 CCK11Mbps,324,5000 0.005575 0.59755
46 CCK11Mbps,324,10000 0.003861 0.42865
47 CCK11Mbps,504,600 0.008375 0.65745
48 CCK11Mbps,504,1000 0.015173 0.585179258962948
49 CCK11Mbps,504,2000 0.003788 0.5424
50 CCK11Mbps,504,5000 0.002321 0.49655
51 CCK11Mbps,504,10000 0.002682 0.44545
52 CCK11Mbps,1008,600 0.002499 0.74565
53 CCK11Mbps,1008,1000 0.001536 0.57485
54 CCK11Mbps,1008,2000 0.001844 0.57635
55 CCK11Mbps,1008,5000 0.001441 0.5236
56 CCK11Mbps,1008,10000 0.001608 0.5454
57 CCK11Mbps,2016,600 0.000654 0.5411
58 CCK11Mbps,2016,1000 0.001836 0.60785
59 CCK11Mbps,2016,2000 0.000898 0.681
60 CCK11Mbps,2016,5000 0.000560 0.56055
61 CCK11Mbps,2016,10000 0.000974 0.6807
62 CCK11Mbps,4032,600 0.000424 0.52155
63 CCK11Mbps,4032,1000 0.000226 0.5305
64 CCK11Mbps,4032,2000 0.000357 0.623
65 CCK11Mbps,4032,5000 0.000577 0.65445
66 CCK11Mbps,4032,10000 0.000209 0.4662
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67 CCK11Mbps,6012,600 0.000407 0.74995

68 CCK11Mbps,6012,1000 0.000206 0.512328082020505
69 CCK11Mbps,6012,2000 0.000166 0.4266

70 CCK11Mbps,6012,5000 0.000308 0.68547418967587

71 CCK11Mbps,6012,10000 0.000349 0.726422642264226
72 QPSK,108,600 0.000262 0.0041533226581265
73 QPSK,108,1000 0.000000 0

74 QPSK,108,2000 0.000000 0

75 QPSK,108,5000 0.000000 0

76 QPSK,108,10000 0.000003 5e-05

7 QPSK,324,600 0.000000 0

78 QPSK,324,1000 0.000005 0.0001

79 QPSK,324,2000 0.000000 0

80 QPSK,324,5000 0.000000 5.00125031257814e-05
81 QPSK,324,10000 0.000005 0.0001

82 QPSK,504,600 0.000001 0.000200010000500025
83 QPSK,504,1000 0.000000 0

84 QPSK,504,2000 0.000000 0.0001

85 QPSK,504,5000 0.000000 0

86 QPSK,504,10000 0.000006 0.00075

87 QPSK,1008,600 0.000000 0.0002

88 QPSK,1008,1000 0.000000 5e-05

89 QPSK,1008,2000 0.000002 0.00150958587027625

Table A.1: Mapping of Trace numbers to measurement parameters
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Appendix B

Maximum Values of Autocovariance
Functions for Error Bursts and
Errorfree Bursts for PTZ Trace
(Campaign 1)

In the following tables we give for the burst orders kg € {1,8,15,50,100} the maximum

values of the autocovariance functions Rx i,(n) and Ry ,(n) along with the lag at which the

maximum OCCcurs.

Number (n,Rx,1(n)) (n,Ry,1(n)) (n, Rx,s(n)) (n, Ry g(n))
1 (1517, 0.188476) (1, 0.355329) (2, 0.364152) (1, 0.326969)
2 (3, 0.576872) (1, 0.275673) (1, 0.281042) (1, 0.160558)
3 (44, 0.317083) (1, 0.341952) (24, 0.312294) (6, 0.212329)
4 (978, 0.345473) (1, 0.302541) (389, 0.379306) (1, 0.184038)
5 (121, 0.187709) (3, 0.191350) (58, 0.196288) (1, 0.270865)
6 (497, 0.490600) (40, 0.157503) (166, 0.489302) (1, 0.344042)
7 (256, 0.364594) (1, 0.411813) (135, 0.365051) (1, 0.285437)
8 (482, 0.230897) (1, 0.394028) (123, 0.229900) (1, 0.453673)
9 (4733, 0.332474) (4, 0.205795) (1938, 0.332128) (1, 0.342109)
10 (159, 0.492886) (5, 0.331876) (60, 0.483437) (6, 0.408792)
11 (5, 0.526302) (2, 0.345663) (10, 0.267806) (1, 0.289674)
12 (8, 0.373427) (26, 0.209290) (2, 0.261637) (9, 0.356355)
13 (17, 0.177035) (5, 0.135784) (5425, 0.168409) (1, 0.601614)
14 (6, 0.491948) (3, 0.130838) (1, 0.382522) (1, 0.348281)
15 (10, 0.207235) (1, 0.324747) (4, 0.256168) (1, 0.243275)
16 (10, 0.284205) (5, 0.554525) (2, 0.339065) (1, 0.350002)
17 (0, 0) (8, 0.213333) (0, 0) (1, 0.009804)
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Number (n,Rx,1(n)) (n,Ry,1(n)) (n,Rx,s(n)) (n, Ry g(n))
18 (1078, 0.191425) (1, 0.483173) (493, 0.189582) (2, 0.577241)
19 (9, 0.459079) (19, 0.207814) (3, 0.480267) (7, 0.224320)
20 (30, 0.384136) (5, 0.549628) (12, 0.417007) (1, 0.217184)
21 (5629, 0.325594) (16, 0.144555) (1964, 0.301001) (7, 0.396884)
22 (1049, 0.302983) (0, 0) (492, 0.301786) (9, 0.375896)
23 (1411, 0.054416) (5, 0.165522) (347, 0.053035) (1, 0.559670)
24 (7027, 0.345937) (5, 0.410550) (2540, 0.301545) (5, 0.390586)
25 (7332, 0.236089) (1, 0.377808) (2625, 0.313188) (7, 0.240581)
26 (6, 0.220078) (1, 0.309689) (8737, 0.023199) (7, 0.341481)
27 (24, 0.281950) (1, 0.176093) (8, 0.284717) (1, 0.492954)
28 (5, 0.462636) (1, 0.150083) (1, 0.433976) (1, 0.628358)
29 (39, 0.189951) (4, 0.332225) (8, 0.232166) (1, 0.396785)
30 (4, 0.370249) (4, 0.274331) (1, 0.364274) (8, 0.288225)
31 (6, 0.370150) (1, 0.133040) (1, 0.579042) (1, 0.556828)
32 (147, 0.297118) (1, 0.415273) (4, 0.334051) (1, 0.267063)
33 (42, 0.267090) (5, 0.126292) (10, 0.267595) (1, 0.552098)
34 (35, 0.332709) (2, 0.696860) (14, 0.308828) (8, 0.254088)
35 (80, 0.273870) (1, 0.577985) (20, 0.229963) (16, 0.267639)
36 (39, 0.337197) (0, 0) (16, 0.317137) (6, 0.336848)
37 (3, 0.135526) (1, 0.101039) (651, 0.046973) (1, 0.208606)
38 (2001, 0.064682) (1, 0.123320) (25, 0.069481) (1, 0.190638)
39 (3, 0.105129) (1, 0.118660) (245, 0.043449) (1, 0.250007)
40 (3, 0.069571) (1, 0.122592) (388, 0.030569) (1, 0.178471)
41 (3, 0.092534) (1, 0.109642) (365, 0.047201) (1, 0.179030)
42 (3, 0.137779) (1503, 0.032671) (6, 0.038219) (1, 0.207065)
43 (3, 0.106882) (1, 0.063147) (921, 0.043345) (1, 0.240854)
44 (3, 0.119263) (1, 0.091690) (5, 0.376095) (1, 0.343384)
45 (3, 0.141741) (1, 0.048708) (3, 0.072958) (1, 0.243602)
46 (3, 0.123837) (1, 0.036587) (6, 0.061748) (1, 0.215372)
47 (5, 0.100662) (3, 0.059253) (230, 0.176803) (1, 0.424185)
48 (3, 0.160180) (2, 0.090409) (2, 0.175755) (1, 0.331744)
49 (452, 0.244868) (6, 0.062870) (2, 0.154972) (1, 0.265747)
50 (3, 0.107476) (1, 0.050872) (11, 0.077190) (1, 0.196609)
51 (3, 0.081317) (1, 0.083840) (925, 0.036390) (1, 0.232894)
52 (3, 0.127174) (1, 0.086098) (253, 0.065594) (1, 0.213141)
53 (3, 0.094240) (1, 0.100910) (208, 0.033967) (1, 0.164183)
54 (3, 0.107240) (1, 0.110289) (1570, 0.039514) (1, 0.397975)
55 (3, 0.085923) (3, 0.108267) (3, 0.043761) (1, 0.217066)
56 (3, 0.105151) (1, 0.099185) (2, 0.060730) (1, 0.177934)
57 (3, 0.094317) (1, 0.064022) (656, 0.042023) (1, 0.123373)
58 (3, 0.167872) (1, 0.103878) (9, 0.155962) (1, 0.178637)
59 (3, 0.060741) (1, 0.074212) (7, 0.066357) (5, 0.422960)
60 (3, 0.089261) (1, 0.063914) (8, 0.036013) (1, 0.157638)
61 (3, 0.069440) (1, 0.079326) (83, 0.042564) (1, 0.216535)
62 (3, 0.158420) (3, 0.107219) (2, 0.191828) (1, 0.163408)
63 (3, 0.064052) (1, 0.108273) (2385, 0.037334) (1, 0.122621)
64 (3, 0.092166) (1, 0.105159) (641, 0.035217) (1, 0.255688)
65 (3, 0.084569) (1, 0.118741) (10, 0.080645) (1, 0.180769)
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Number | (n, Rx.1(n)) (n,Ry.1(n)) (n, Rx.s(n)) (n, Ry ¢(n))
66 (3, 0.101010) (3, 0.097772) (258, 0.039197) (1, 0.162669)
67 (3, 0.143098) (1, 0.082202) (23, 0.079227) (1, 0.172013)
68 (3, 0.112713) (1, 0.074086) (237, 0.075912) (1, 0.154969)
69 (3, 0.064237) (2, 0.101475) (27, 0.048738) (1, 0.624431)
70 (562, 0.036058) (2, 0.074291) (117, 0.041421) (1, 0.097509)
71 (3, 0.057132) (1, 0.057118) (10, 0.086563) (1, 0.119101)
72 (4192, 0.348697) (1, 0.599705) (1515, 0.348121) (6, 0.336322)
73 (0, 0) (0, 0) (0, 0) (0, 0)

74 (0, 0) (0, 0) (0, 0) (0, 0)
75 (0, 0) (0, 0) (0, 0) (0, 0)
76 (53, 0.280340) (0, 0) (22, 0.256178) (15, 0.322061)
7 (0, 0) (0, 0) (0, 0) (0, 0)
78 (164, 0.216404) (0, 0) (58, 0.213625) (13, 0.302611)
79 (0, 0) (0, 0) (0, 0) (0, 0)
80 (6, 0.104731) (0, 0) (0, 0) (0, 0)
81 (284, 0.262434) (0, 0) (122, 0.257366) (7, 0.613316)
82 (15, 0.330028) (14, 0.351459) (7, 0.298800) (4, 0.293805)
83 (0, 0) (0, 0) (0, 0) (0, 0)
84 (5, 0.246408) (0, 0) (0, 0) (0, 0)
85 (0,0) (0,0) (0,0) (0, 0)
86 (7, 0.216166) (25, 0.230739) (3, 0.211205) (15, 0.308860)
87 (12, 0.162901) (1, 0.188713) (3, 0.128060) (6, 0.329016)
88 (6, 0.195011) (0, 0) (0, 0) (0, 0)
89 (5, 0.388001) (1, 0.256566) (1, 0.367798) (1, 0.307202)
90 (0, 0) (0, 0) (0, 0) (0, 0)

Table B.1: Trace numbers and maximum values of autocovariance function for

error bursts and errorfree bursts
Number (n,Rx,15(n)) (n,Ry,15(n)) (n,Rx,50(n)) (n, Ry 50(n))
1 (2, 0.360660) (2, 0.126107) (2, 0.359884) (1, 0.282755)
2 (246, 0.284178) (2, 0.117206) (1, 0.280821) (2, 0.189569)
3 (20, 0.313839) (4, 0.195267) (16, 0.313501) (1, 0.578934)
4 (238, 0.346268) (4, 0.195214) (175, 0.360196) (1, 0.618106)
5 (83, 0.245998) (1, 0.146826) (4, 0.273628) (1, 0.562310)
6 (115, 0.488576) (5, 0.575516) (115, 0.484106) (1, 0.883419)
7 (82, 0.362664) (2, 0.179826) (71, 0.361757) (2, 0.344701)
8 (113, 0.231509) (2, 0.179368) (111, 0.231007) (2, 0.216799)
9 (1135, 0.331720) (5, 0.179625) (1101, 0.331691) (1, 0.703720)
10 (47, 0.478820) (5, 0.732388) (12, 0.437217) (1, 0.240804)
11 (6, 0.204829) (2, 0.235053) (6, 0.204829) (2, 0.235053)
12 (11, 0.238892) (6, 0.261661) (11, 0.238892) (6, 0.261661)
13 (4715, 0.168315) (2, 0.249066) (4713, 0.168315) (2, 0.222660)
14 (1, 0.382507) (6, 0.229072) (1, 0.382513) (1, 0.248355)
15 (3, 0.266586) (2, 0.116340) (3, 0.266376) (19, 0.091836)
16 (2, 0.303263) (4, 0.620974) (2, 0.303244) (4, 0.605529)
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Number (n, Rx,15(n)) (n, Ry 15(n)) (n,Rx 50(n)) (n, Ry 50(n))

17 (0, 0) (1, 0.009804) (0, 0) (1, 0.009804)

18 (304, 0.187585) (101, 0.236399) (302, 0.187552) (83, 0.259045)

19 (2, 0.432336) (2, 0.660091) (2, 0.432336) (2, 0.660091)

20 (8, 0.414077) (4, 0.541674) (8, 0.413373) (4, 0.376389)

21 (1419, 0.300734) (4, 0.361483) (306, 0.300293) (2, 0.566064)

22 (311, 0.300485) (5, 0.628507) (61, 0.286648) (17, 0.494407)

23 (326, 0.052890) (1, 0.170905) (326, 0.052890) (1, 0.170905)

24 (2, 0.237347) (4, 0.480152) (2, 0.207994) (1, 0.914086)

25 (2061, 0.309221) (5, 0.358609) (408, 0.308673) (1, 0.922403)

26 (5914, 0.023124) (4, 0.364537) (3071, 0.022909) (2, 0.894617)

27 (8, 0.284635) (1, 0.219580) (8, 0.284635) (1, 0.219580)

28 (1, 0.508682) (1, 0.292089) (1, 0.508682) (1, 0.292069)

29 (2, 0.381454) (3, 0.403721) (2, 0.361178) (1, 0.937086)

30 (7278, 0.368198) (4, 0.354289) (2219, 0.373805) (1, 0.935331)

31 (1, 0.579712) (1, 0.370433) (1, 0.579711) (1, 0.355986)

32 (4, 0.331172) (75, 0.221328) (4, 0.331040) (20, 0.037780)

33 (10, 0.267037) (2, 0.330475) (10, 0.267037) (2, 0.330475)

34 (10, 0.302322) (3, 0.530271) (7, 0.311745) (2, 0.619289)

35 (18, 0.225126) (17, 0.103593) (17, 0.222502) (3, 0.012260)

36 (12, 0.409254) (4, 0.638222) (4, 0.487427) (4, 0.890383)

37 (2, 0.051233) (965, 0.040907) (2, 0.068571) (211, 0.037146)

38 (70, 0.070525) (154, 0.049147) (1, 0.093362) (27, 0.057536)

39 (173, 0.033506) (1, 0.046573) (807, 0.030095) (172, 0.036526)

40 (1624, 0.032374) (1, 0.040021) (3094, 0.036923) (522, 0.038714)

41 (19, 0.066056) (1, 0.079171) (81, 0.101465) (810, 0.035471)

42 (2, 0.041055) (1, 0.135709) (2, 0.040221) (2673, 0.053761)

43 (3, 0.045517) (1, 0.145282) (2, 0.064694) (3362, 0.048175)

44 (4, 0.491737) (6494, 0.103158) (5, 0.474295) (1568, 0.058320)

45 (3, 0.116019) (1, 0.134048) (1, 0.220844) (2342, 0.059853)

46 (3, 0.068636) (1, 0.105743) (1, 0.078002) (410, 0.042873)

47 (7, 0.199011) (539, 0.216634) (6, 0.314213) (1052, 0.101677)

48 (1, 0.231190) (1, 0.244314) (1, 0.261550) (306, 0.214159)

49 (2, 0.167635) (412, 0.093247) (2, 0.213444) (48, 0.059604)

50 (30, 0.086780) (8846, 0.086929) (3, 0.109757) (3168, 0.042476)

51 (2232, 0.033820) (1, 0.127492) (1158, 0.040496) (1241, 0.055437)

52 (167, 0.062143) (703, 0.111285) (36, 0.078608) (455, 0.073565)

53 (599, 0.041468) (1, 0.138022) (69, 0.033408) (335, 0.048736)

54 (146, 0.040721) (4885, 0.300179) (18, 0.042968) (2870, 0.110460)

55 (2, 0.048651) (1, 0.113355) (1, 0.045348) (5728, 0.043102)

56 (2, 0.041774) (1, 0.084882) (2, 0.037378) (1187, 0.036558)

57 (113, 0.034313) (1676, 0.047128) (21, 0.032886) (999, 0.037806)

58 (6, 0.249095) (1, 0.102457) (2, 0.354413) (3636, 0.047472)

59 (49, 0.106537) (2383, 0.066519) (3, 0.157921) (1984, 0.102499)

60 (81, 0.053764) (421, 0.060101) (5, 0.074982) (7, 0.038267)

61 (248, 0.048672) (1, 0.089975) (109, 0.057814) (4973, 0.056363)

62 (4, 0.350057) (1, 0.194656) (18, 0.401281) (183, 0.051243)

63 (359, 0.040130) (1, 0.059900) (2, 0.041953) (323, 0.034493)

64 (80, 0.033084) (1, 0.148446) (129, 0.037368) (1915, 0.051508)
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Number (n, Rx,15(n)) (n, Ry 15(n)) (n,Rx 50(n)) (n, Ry 50(n))
65 (1, 0.120676) (1, 0.070757) (14, 0.120607) (458, 0.049979)
66 (3, 0.077016) (3409, 0.088215) (3, 0.064366) (662, 0.063680)
67 (14, 0.075250) (1, 0.097794) (11, 0.089830) (6714, 0.026676)
68 (11, 0.089645) (372, 0.131078) (1, 0.190215) (3, 0.065573)

69 (20, 0.039242) (1, 0.520622) (12, 0.040011) (5171, 0.497904)
70 (6, 0.062234) (1, 0.039104) (65, 0.082347) (128, 0.037078)
71 (4, 0.133308) (1, 0.097915) (3, 0.152495) (1607, 0.068491)
72 (1052, 0.347710) (4, 0.420603) (348, 0.345159) (4, 0.450469)

73 (0, 0) (0, 0) (0, 0) (0, 0)

74 (0, 0) (0, 0) (0, 0) 0, 0)

75 (0, 0) (0, 0) (0, 0) (0, 0)

76 (12, 0.228339) (4, 0.658217) (4, 0.166918) (0, 0)

" (0, 0) (0, 0) (0, 0) (0, 0)

78 (45, 0.213543) (5, 0.429804) (10, 0.193305) (1, 0.444954)

79 (0, 0) (0, 0) (0, 0) (0, 0)

80 (0, 0) (0, 0) (0, 0) (0, 0)

81 (103, 0.255759) (5, 0.675010) (21, 0.220150) (10, 0.339535)
82 (4, 0.275489) (4, 0.469790) (4, 0.275489) (4, 0.469790)

83 (0, 0) (0, 0) (0, 0) (0, 0)

84 (0, 0) (0, 0) (0, 0) (0, 0)

85 (0, 0) (0, 0) (0, 0) (0, 0)

86 (2, 0.216929) (2, 0.788147) (2, 0.216929) (2, 0.788147)

87 (3, 0.120178) (3, 0.115961) (3, 0.120178) (3, 0.115961)
88 (0, 0) (0, 0) (0, 0) (0, 0)

89 (1, 0.365193) (12, 0.286758) (1, 0.364639) (12, 0.115116)
90 (0,0 (0,0 (0,0) (0,0)

Table B.2: Trace numbers and maximum values of autocovariance function for

error bursts and errorfree bursts

Number (n,Rx,100(n)) (n,Ry 100(n))
1 (2, 0.359076) (1, 0.226269)
2 (1, 0.280688) (1, 0.141291)
3 (16, 0.314800) (1, 0.442401)
4 (174, 0.360077) (1, 0.569652)
5 (69, 0.298183) (1, 0.305256)
6 (114, 0.484059) (1, 0.822723)
7 (69, 0.361627) (2, 0.153837)
8 (110, 0.233475) (2, 0.158028)
9 (1093, 0.331683) (1, 0.538659)
10 (11, 0.433638) (1, 0.385269)
11 (6, 0.204829) (2, 0.235053)
12 (11, 0.238892) (6, 0.261661)
13 (4712, 0.168315) (2, 0.191055)
14 (1, 0.382476) (98, 0.195360)
15 (3, 0.266186) (4, 0.200075)
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Number (n,Rx 100(n)) (n, Ry 100(n))
16 (2, 0.303217) (10, 0.397451)
17 (0, 0) (1, 0.009804)

18 (300, 0.187519) (70, 0.337115)
19 (2, 0.432336) (2, 0.660091)

20 (8, 0.413373) (4, 0.376389)

21 (173, 0.289320) (1, 0.892735)

22 (0, 0) (0, 0)

23 (326, 0.052880) (298, 0.128326)
24 (2, 0.208404) (2, 0.627812)

25 (37, 0.310368) (1, 0.499281)

26 (2221, 0.022739) (1, 0.665786)
27 (8, 0.284634) (1, 0.096184)

28 (1, 0.508681) (1, 0.189588)

29 (2, 0.409782) (638, 0.000159)
30 (747, 0.373590) (1, 0.707789)

31 (1, 0.579711) (1, 0.320241)

32 (4, 0.331040) (20, 0.037780)
33 (10, 0.267037) (2, 0.330475)

34 (7, 0.311745) (2, 0.619289)

35 (17, 0.222502) (3, 0.012260)

36 (4, 0.487427) (4, 0.890383)

37 (1, 0.140811) (10, 0.041899)
38 (1, 0.126203) (3, 0.054314)

39 (488, 0.037057) (381, 0.036600)
40 (248, 0.032282) (790, 0.038502)
a1 (1, 0.109831) (158, 0.042446)
42 (15, 0.040374) (3079, 0.044278)
43 (90, 0.056684) (226, 0.034699)
44 (10, 0.334494) (5357, 0.046759)
45 (1, 0.197862) (1589, 0.038817)
46 (19, 0.094127) (141, 0.034742)
a7 (3, 0.420609) (242, 0.105914)
48 (1, 0.250063) (243, 0.329697)
49 (1, 0.219332) (28, 0.062149)
50 (3, 0.118246) (1733, 0.044546)
51 (41, 0.041381) (689, 0.039422)
52 (49, 0.075199) (368, 0.071487)
53 (2901, 0.038534) (1190, 0.035856)
54 (8, 0.047644) (1738, 0.098559)
55 (1, 0.064807) (466, 0.049209)
56 (19, 0.048028) (3424, 0.033707)
57 (1786, 0.032418) (1279, 0.038054)
58 (2, 0.423960) (2, 0.109638)

59 (25, 0.204193) (4333, 0.089834)
60 (5, 0.083771) (1, 0.048994)

61 (10, 0.077074) (197, 0.040481)
62 (1, 0.370857) (2409, 0.096799)
63 (30, 0.054442) (1742, 0.034141)
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Table B.3:

Number (n,Rx 100(n)) (n, Ry 100(n))
64 (103, 0.047951) (52, 0.040515)
65 (4, 0.147516) (106, 0.062990)
66 (4, 0.073511) (218, 0.052788)
67 (16, 0.093153) (524, 0.033181)
68 (1, 0.224645) (6, 0.043535)
69 (6, 0.052665) (4614, 0.496145)
70 (9, 0.118291) (5, 0.062833)
71 (4, 0.148599) (13, 0.063345)
72 (311, 0.344852) (4, 0.924206)
73 (0, 0) (0, 0)

74 (0, 0) (0, 0)

75 (0,0 (0, 0)

76 (4, 0.166918) (0, 0)

" (0, 0) (0, 0)

78 (10, 0.192062) (10, 0.514564)
79 (0, 0) (0, 0)

80 (0, 0) (0, 0)

81 (20, 0.218189) (10, 0.610857)
82 (4, 0.275489) (4, 0.469790)
83 (0, 0) (0, 0)

84 (0, 0) (0, 0)

85 (0, 0) (0, 0)

86 (2, 0.216929) (2, 0.788147)
87 (3, 0.120178) (3, 0.115961)
88 (0, 0) (0, 0)

89 (1, 0.364639) (12, 0.115116)
90 (0, 0) (0, 0)

Trace numbers and maximum values of autocovariance function for

error bursts and errorfree bursts
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Appendix C

Model Parameters for Markovian

and Semi-Markovian Trace Models

for Campaign 1

In the following tables we give for the burst orders kg € {1,8,15,50,100} the parameters of

two-state markovian and two-state semi-markovian models for every trace. For the marko-

vian model, as discussed in section 2.2.3 for every trace the parameters of two geometric

random variables px and py are given, determining the state holding times in the good state

and bad state, respectively, and also the bit error rate e, in the bad state. For the semi-

markovian models we give for the good states and the bad states the respective distributions

and the according parameters, i.e. the success probability p in case of a geometric distribution

(geom(p)), the numbers n and success probability p in case of a binomial distribution (bi-

nomial(n,p)) and the parameters y and o2 in case of a lognormal distribution (lognormal(y,

0?)).

Number ko =1:(px,Pv,eb) ko =8 : (px,PvY;eb)

1 (0.00089, 0.70432, 1) (0.00029, 0.09967, 0.43140)

2 (0.00144, 0.70106, 1) (0.00037, 0.07304, 0.40540)

3 (0.00186, 0.67958, 1) (0.00072, 0.12108, 0.45672)

4 (0.00010, 0.76103, 1) (4.11639e-05, 0.13537, 0.44168)
5 (0.00055, 0.74997, 1) (0.00028, 0.19029, 0.50274)

6 (1.23956e-05, 0.82496, 1) (4.42157e-06, 0.12317, 0.41977)
7 (6.14167e-05, 0.49767, 1) (2.96369e-05, 0.13387, 0.55770)
8 (0.00015, 0.67896, 1) (5.62397e-05, 0.10611, 0.43543)
9 (9.18537e-05, 0.77308, 1) (3.75993e-05, 0.14662, 0.46355)
10 (2.88863e-05, 0.98757, 1) (1.10135e-05, 0.13245, 0.35540)
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Number ko =1:(px,PY>,€b) ko =8 : (px,PY>,€b)

11 (1.02936e-06, 0.65079, 1) (4.34070e-07, 0.15044, 0.55752)
12 (7.56562e-07, 0.72289, 1) (1.86040e-07, 0.06730, 0.39903)
13 (0.00025, 0.79434, 1) (6.76710e-05, 0.07967, 0.37080)
14 (2.88564e-05, 0.81138, 1) (1.26282e-05, 0.16922, 0.47684)
15 (4.65521e-05, 0.66587, 1) (2.12983e-05, 0.16413, 0.53899)
16 (1.60046e-05, 0.58604, 1) (6.37058e-06, 0.11896, 0.51028)
17 (1.55017e-07, 0.8, 1) (3.72042e-08, 0.06410, 0.38461)
18 (6.96431e-06, 0.86708, 1) (3.14965e-06, 0.17134, 0.43741)
19 (2.54302e-07, 0.23809, 1) (1.30252e-07, 0.08064, 0.67741)
20 (3.09114e-06, 0.53041, 1) (1.19177e-06, 0.11182, 0.54859)
21 (9.82895e-05, 0.99804, 1) (3.25029¢-05, 0.10987, 0.33301)
22 (3.25782e-06, 0.99809, 1) (1.52963e-06, 0.18081, 0.38625)
23 (5.82049e-06, 0.79481, 1) (1.44892¢-06, 0.07350, 0.37211)
24 (0.00032, 0.72991, 1) (0.00012, 0.12642, 0.45237)

25 (0.00033, 0.82779, 1) (0.00012, 0.13348, 0.42067)

26 (3.96793e-05, 0.90867, 1) (1.35515e-05, 0.11393, 0.36719)
27 (1.19225e-05, 0.77263, 1) (2.96095e-06, 0.07393, 0.38546)
28 (0.00010, 0.77731, 1) (2.85059e-05, 0.08049, 0.38393)
29 (9.19465e-06, 0.86975, 1) (3.04478e-06, 0.10814, 0.37560)
30 (0.00012, 0.84529, 1) (4.69026e-05, 0.12599, 0.40664)
31 (9.16340e-05, 0.77757, 1) (2.88859¢-05, 0.10276, 0.41932)
32 (9.46167e-07, 0.80017, 1) (2.06909e-07, 0.06818, 0.39118)
33 (1.89214e-06, 0.77569, 1) (6.11311e-07, 0.10398, 0.41541)
34 (1.28934e-07, 0.55405, 1) (4.05520e-08, 0.08154, 0.47639)
35 (9.04531e-08, 0.68253, 1) (2.28732e-08, 0.07317, 0.43902)
36 (0.00028, 1, 1) (0.00010, 0.12542, 0.34779)

37 (0.01623, 0.62003, 1) (0.00378, 0.06145, 0.44002)

38 (0.01193, 0.61739, 1) (0.00268, 0.06070, 0.44836)

39 (0.01288, 0.60260, 1) (0.00240, 0.04964, 0.45242)

40 (0.00962, 0.61541, 1) (0.00229, 0.06555, 0.45568)

41 (0.00973, 0.62464, 1) (0.00231, 0.06525, 0.44794)

42 (0.00174, 0.63561, 1) (0.00040, 0.06352, 0.43205)

43 (0.00455, 0.62244, 1) (0.00101, 0.06074, 0.44366)

44 (0.00451, 0.62402, 1) (0.00095, 0.05745, 0.44163)

45 (0.00354, 0.63241, 1) (0.00086, 0.06798, 0.44587)

46 (0.00243, 0.62786, 1) (0.00053, 0.06001, 0.43869)

47 (0.00526, 0.62360, 1) (0.00125, 0.06683, 0.45602)

48 (0.00898, 0.58314, 1) (0.00134, 0.03991, 0.46414)

49 (0.00232, 0.61260, 1) (0.00046, 0.05491, 0.45098)

50 (0.00150, 0.64813, 1) (0.00035, 0.06624, 0.43838)

51 (0.00171, 0.63610, 1) (0.00035, 0.05785, 0.43651)

52 (0.00165, 0.65973, 1) (0.00037, 0.06521, 0.43871)

53 (0.00102, 0.66456, 1) (0.00024, 0.06873, 0.43694)

54 (0.00118, 0.63972, 1) (0.00024, 0.05921, 0.44560)

55 (0.00095, 0.66331, 1) (0.00022, 0.06685, 0.43810)

56 (0.00105, 0.65676, 1) (0.00024, 0.06533, 0.43930)

57 (0.00042, 0.64216, 1) (0.00010, 0.07167, 0.45522)

58 (0.00113, 0.61557, 1) (0.00028, 0.07256, 0.46519)
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Number ko =1:(px,PY>,€b) ko =8 : (px,PY>,€b)

59 (0.00058, 0.65637, 1) (0.00016, 0.08286, 0.45370)

60 (0.00037, 0.67260, 1) (0.00011, 0.09043, 0.45217)

61 (0.00063, 0.65248, 1) (0.00017, 0.07924, 0.45249)

62 (0.00027, 0.64662, 1) (6.93771e-05, 0.07319, 0.44796)
63 (0.00015, 0.68693, 1) (4.70245e-05, 0.08919, 0.42982)
64 (0.00023, 0.67037, 1) (6.46474e-05, 0.07851, 0.43447)
65 (0.00036, 0.63567, 1) (9.69821e-05, 0.07573, 0.45115)
66 (0.00014, 0.67311, 1) (3.94988e-05, 0.08213, 0.43494)
67 (0.00025, 0.62601, 1) (6.29061e-05, 0.07086, 0.45835)
68 (0.00013, 0.65777, 1) (3.65912e-05, 0.07914, 0.44484)
69 (0.00010, 0.62895, 1) (2.33391e-05, 0.06364, 0.45321)
70 (0.00020, 0.65814, 1) (5.66804e-05, 0.08225, 0.44672)
71 (0.00022, 0.65894, 1) (6.25334e-05, 0.07964, 0.44440)
72 (0.00026, 0.99757, 1) (9.36721e-05, 0.12354, 0.34638)
73 (5.78732¢-08, nan, n/a) (5.78732e-08, nan, n/a)

74 (5.78732¢-08, nan, n/a) (5.78732¢-08, nan, n/a)

75 (5.78732e-08, nan, n/a) (5.78732e-08, nan, n/a)

76 (3.12516e-06, 1, 1) (1.33109e-06, 0.15277, 0.36805)
7 (1.92910e-08, nan, n/a) (1.92910e-08, nan, n/a)

78 (5.34365e-06, 1, 1) (2.00630e-06, 0.12955, 0.34716)
79 (1.92910e-08, nan, n/a) (1.92910e-08, nan, n/a)

80 (1.35071e-07, 1, 1) (3.85918e-08, 0.04545, 0.27272)
81 (5.49799e-06, 1, 1) (2.37283e-06, 0.15844, 0.36883)
82 (3.47321e-07, 0.23275, 1) (1.98469e-07, 0.09146, 0.70731)
83 (1.24014e-08, nan, n/a) (1.24014e-08, nan, n/a)

84 (1.24014e-07, 0.90000, 1) (3.72042e-08, 0.06451, 0.32258)
85 (1.24014e-08, nan, n/a) (1.24014e-08, nan, n/a)

86 (1.22860e-06, 0.22072, 1) (6.82558e-07, 0.08709, 0.71612)
87 (1.11618e-07, 0.34000, 1) (4.96080e-08, 0.07954, 0.56818)
88 (4.34049¢-08, 1, 1) (1.24014e-08, 0.0625, 0.375)

89 (1.53512e-06, 0.75617, 1) (3.93143e-07, 0.07579, 0.39608)
90 (n/a, nan, n/a) (n/a, nan, n/a)

Table C.1: Parameters for Two-State Markovian Models for kg =

landkO:S

Number ko =15: (px,pPv,eb) ko =50: (px,PY,€b)

1 (0.00022, 0.06247, 0.35653) (0.00021, 0.05841, 0.34198)

2 (0.00035, 0.06641, 0.39082) (0.00034, 0.06382, 0.38119)

3 (0.00046, 0.05491, 0.32532) (0.00036, 0.03427, 0.25708)

4 (2.47369e-05, 0.05429, 0.29513) (2.09064e-05, 0.03799, 0.24449)
5 (0.00014, 0.05338, 0.27291) (0.00014, 0.04985, 0.26311)

6 (3.12796e-06, 0.06465, 0.31204) (2.43289¢-06, 0.03848, 0.23922)
7 (1.97242e-05, 0.06357, 0.39811) (1.81503e-05, 0.05249, 0.35730)
8 (4.12504e-05, 0.06273, 0.35103) (4.03774e-05, 0.05957, 0.34061)
9 (2.20393e-05, 0.05589, 0.30159) (2.13806e-05, 0.05197, 0.28913)
10 (8.66657e-06, 0.08047, 0.27568) (2.34750e-06, 0.00923, 0.12394)
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Number

ko =15: (px,PY,€b)

ko =50: (px,PY,€b)

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

(2.23236e-07, 0.04644, 0.34426
(1.73637e-07, 0.06018, 0.38425
(5.88338e-05, 0.06335, 0.33915
(7.06571e-06, 0.05805, 0.29265
(1.10715e-05, 0.05058, 0.31972
(3.96204e-06, 0.05221, 0.36036
(3.72042¢-08, 0.06410, 0.38461
(1.96385e-06, 0.07012, 0.28748
(8.06326e-08, 0.03488, 0.48837
(7.01410e-07, 0.04584, 0.38354
(2.16660e-05, 0.05219, 0.23734
(9.68050e-07, 0.06600, 0.22304
(1.35253e-06, 0.06577, 0.35677
(7.69426e-05, 0.05500, 0.31670
(8.15443e-05, 0.05865, 0.29104
(9.17483e-06, 0.05540, 0.26375
(2.84004e-06, 0.06905, 0.37538
(2.47928e-05, 0.06403, 0.35118
(1.76271e-06, 0.04277, 0.25674
(2.91785e-05, 0.05362, 0.27827
(2.18077e-05, 0.06335, 0.34246
(2.04830e-07, 0.06703, 0.38850
(4.44968e-07, 0.06040, 0.33173
(3.22336e-08, 0.05464, 0.40437
(2.07938e-08, 0.06109, 0.40514
(7.73169e-05, 0.07106, 0.26040
(0.00242, 0.03237, 0.36669)

(0.00163, 0.03021, 0.36981

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)
0.00143, 0.02475, 0.38298)
0.00146, 0.03422, 0.37583)
0.00147, 0.03418, 0.37021)
0.00026, 0.03466, 0.36276)
0.00064, 0.03263, 0.37334)
0.00059, 0.03001, 0.37166)
0.00055, 0.03609, 0.36922)
0.00034, 0.03293, 0.37134)
0.00080, 0.03566, 0.37831)
0.00077, 0.01973, 0.40287)
0.00029, 0.03006, 0.38538)
0.00023, 0.03652, 0.36680)
0.00022, 0.03139, 0.36961)
0.00022, 0.03243, 0.35973)
0.00014, 0.03456, 0.35671)
0.00015, 0.03081, 0.37388)
0.00013, 0.03341, 0.35847)
0.00014, 0.03270, 0.36059)

6.19105e-05, 0.03438, 0.36382)
0.00018, 0.03836, 0.38022)

(2.23236e-07, 0.04644, 0.34426
(1.73637e-07, 0.06018, 0.38425
(5.88090e-05, 0.06328, 0.33894
(7.04088e-06, 0.05763, 0.29151
(1.09055e-05, 0.04901, 0.31456
(3.94947e-06, 0.05190, 0.35935
(3.72042e-08, 0.06410, 0.38461
(1.95130e-06, 0.06910, 0.28510
(8.06326e-08, 0.03488, 0.48837
(6.88996e-07, 0.04422, 0.37675
(5.28446e-06, 0.00648, 0.12092
(1.92372e-07, 0.00585, 0.10082
(1.35253e-06, 0.06577, 0.35677
(6.77287e-05, 0.04221, 0.27616
(5.92786e-05, 0.03087, 0.21085
(4.76698e-06, 0.01798, 0.16480
(2.84004e-06, 0.06905, 0.37538
(2.47897e-05, 0.06401, 0.35107
(1.31158e-06, 0.02542, 0.20516
(2.13327e-05, 0.02933, 0.20822
(2.18067e-05, 0.06334, 0.34241
(2.03790e-07, 0.06570, 0.38274
(4.44968e-07, 0.06040, 0.33173
(2.91142e-08, 0.04265, 0.35071
(1.97541e-08, 0.05438, 0.38066
(2.47051e-05, 0.01059, 0.12349
(0.00164, 0.01655, 0.28243)

(0.00106, 0.01490, 0.28474

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

—_ T e — v e e e e T D D e O T D e T e DD

)
0.00093, 0.01282, 0.30818)
0.00102, 0.01806, 0.28772)
0.00097, 0.01672, 0.27843)
0.00018, 0.01863, 0.28013)
0.00043, 0.01664, 0.28550)
0.00036, 0.01371, 0.27849)
0.00039, 0.01977, 0.28421)
0.00024, 0.01820, 0.29114)
0.00055, 0.01822, 0.28495)
0.00042, 0.00852, 0.32293)
0.00020, 0.01651, 0.30758)
0.00015, 0.01891, 0.27776)
0.00014, 0.01563, 0.28329)
0.00014, 0.01610, 0.27406)

9.87931e-05, 0.01727, 0.27012)
0.00010, 0.01642, 0.29388)

9.12183e-05, 0.01734, 0.27546)
9.63204e-05, 0.01638, 0.27512)
4.38561e-05, 0.01902, 0.28421)
0.00013, 0.02193, 0.29475)
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Number ko = 15: (px,PY>,€b) ko =50: (px,PY,€b)
59 (0.00010, 0.03995, 0.35610) (8.02668e-05, 0.02571, 0.28840)
60 (6.77723e-05, 0.04158, 0.34440) (5.23490e-05, 0.02529, 0.27137)
61 (0.00010, 0.03913, 0.35921) (7.75074e-05, 0.02180, 0.27504)
62 (4.38854e-05, 0.03766, 0.36449) (3.31466e-05, 0.02247, 0.28809)
63 (3.06410e-05, 0.04591, 0.33962) (2.40762e-05, 0.02809, 0.26454)
64 (4.08983e-05, 0.03983, 0.34852) (3.13479e-05, 0.02416, 0.27593)
65 (6.33387e-05, 0.04035, 0.36817) (4.74787e-05, 0.02341, 0.28516)
66 (2.52877e-05, 0.04193, 0.34692) (1.91843e-05, 0.02477, 0.27022)
67 (3.97959e-05, 0.03653, 0.37356) (2.80841e-05, 0.01973, 0.28610)
68 (2.33706e-05, 0.04046, 0.35617) (1.71504e-05, 0.02279, 0.27347)
69 (1.47215e-05, 0.03335, 0.37661) (1.13610e-05, 0.02128, 0.31146)
70 (3.63044e-05, 0.04185, 0.35498) (2.63811e-05, 0.02293, 0.26773)
71 (3.91518e-05, 0.03953, 0.35240) (2.75894e-05, 0.02094, 0.26507)
72 (6.47679e-05, 0.06012, 0.24395) (2.14750e-05, 0.01041, 0.12784)
73 (5.78732¢-08, nan, n/a) (5.78732e-08, nan, n/a)
74 (5.78732¢-08, nan, n/a) (5.78732¢-08, nan, n/a)
75 (5.78732e-08, nan, n/a) (5.78732e-08, nan, n/a)
76 (7.52363e-07, 0.04724, 0.20866) (2.89373e-07, 0.00947, 0.12559)
7 (1.92910e-08, nan, n/a) (1.92910e-08, nan, n/a)
78 (1.69764e-06, 0.08959, 0.28424) (4.43716e-07, 0.00882, 0.11075)
79 (1.92910e-08, nan, n/a) (1.92910e-08, nan, n/a)
80 (3.85918e-08, 0.04545, 0.27272) (3.85918e-08, 0.04545, 0.27272)
81 (2.00631e-06, 0.10520, 0.29009) (4.24429¢-07, 0.00663, 0.08967)
82 (1.11639e-07, 0.03225, 0.46774) (1.11639e-07, 0.03225, 0.46774)
83 (1.24014e-08, nan, n/a) (1.24014e-08, nan, n/a)
84 (3.72042¢-08, 0.06451, 0.32258) (3.72042e-08, 0.06451, 0.32258)
85 (1.24014e-08, nan, n/a) (1.24014e-08, nan, n/a)
86 (3.84716e-07, 0.03303, 0.48898) (3.84716e-07, 0.03303, 0.48898)
87 (3.72060e-08, 0.04464, 0.44642) (3.72060e-08, 0.04464, 0.44642)
88 (1.24014e-08, 0.0625, 0.375) (1.24014e-08, 0.0625, 0.375)
89 (3.61941e-07, 0.06612, 0.37587) (3.55701e-07, 0.06147, 0.35565)
90 (n/a, nan, n/a) (n/a, nan, n/a)

Table C.2: Parameters for Two-State Markovian Models for kg = 15 and

ko = 50

Number ko = 15: (px,PY,€b)

© 00 N O W N

(0.00020, 0.04695, 0.28669)
(0.00033, 0.05365, 0.33001)
(0.00034, 0.02645, 0.21526)
(2.06745e-05, 0.03630, 0.23622)
(0.00013, 0.04731, 0.25232)
(2.41359e-06, 0.03715, 0.23284)
(1.78741e-05, 0.04847, 0.33506)
(4.00736e-05, 0.05705, 0.32864)
(2.12258e-05, 0.04997, 0.28003)
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Number

ko =15: (px,PY,€b)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

2.16694e-06, 0.00811, 0.11873)
2.23236e-07, 0.04644, 0.34426)
1.73637e-07, 0.06018, 0.38425)
5.87966e-05, 0.06321, 0.33864)
7.00364e-06, 0.05603, 0.28496)
1.07651e-05, 0.04624, 0.30065)
3.93061e-06, 0.05049, 0.35127)
3.72042¢-08, 0.06410, 0.38461)
1.93875e-06, 0.06633, 0.27546)
8.06326e-08, 0.03488, 0.48837)
6.88996e-07, 0.04422, 0.37675)
6.45676e-07, 0.00053, 0.08250)

6.20567e-09, 6.20809e-05, 0.06524)

(

(

(

(

(

(

(

(

(

(

(

(

(

(1.34942e-06, 0.06513, 0.35409)
(6.60077e-05, 0.03771, 0.25323)
(5.38569e-05, 0.02264, 0.17027)
(3.44925e-06, 0.00904, 0.11454)
(2.83849¢-06, 0.06877, 0.37403)
(2.47681e-05, 0.06362, 0.34927)
(1.12556e-06, 0.01625, 0.15286)
(1.90443e-05, 0.02050, 0.16308)
(2.17994e-05, 0.06320, 0.34178)
(2.03790e-07, 0.06570, 0.38274)
(4.44968e-07, 0.06040, 0.33173)
(2.91142e-08, 0.04265, 0.35071)
(1.97541e-08, 0.05438, 0.38066)
(2.47051e-05, 0.01059, 0.12349)
(0.00132, 0.01042, 0.22592)
(0.00087, 0.01014, 0.23871

(0.00076, 0.00887, 0.26343

(0.00083, 0.01153, 0.22929

(0.00080, 0.01119, 0.22877

(0.00016, 0.01388, 0.24008

(0.00035, 0.01111, 0.23435

(0.00029, 0.00927, 0.23416

(0.00032, 0.01299, 0.22722

(0.00020, 0.01283, 0.24274

(0.00043, 0.01101, 0.22128

(0.00029, 0.00502, 0.27342

(0.00017, 0.01210, 0.26347

(0.00013, 0.01392, 0.23630

(0.00012, 0.01095, 0.23924

(0.00011, 0.01061, 0.22459)
(
(
(
(
(

)
)
)
)
)
)
)
)
)
)
)
)
)
)

8.25664e-05, 0.01204, 0.22555)
8.63578e-05, 0.01146, 0.24666)
7.62751e-05, 0.01210, 0.23007)
7.96607e-05, 0.01128, 0.22944)
3.73654e-05, 0.01361, 0.23881)
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Number ko = 15: (px,PY,€b)

85
86
87

1.24014e-08, nan, n/a)
3.84716e-07, 0.03303, 0.48898)
3.72060e-08, 0.04464, 0.44642)
88 1.24014e-08, 0.0625, 0.375)

89 3.55701e-07, 0.06147, 0.35565)
90 (n/a, nan, n/a)

Table C.3: Parameters for Two-State Markovian Models for kg = 100

58 (0.00010, 0.01330, 0.22419)
59 (6.83078e-05, 0.01717, 0.22659)
60 (4.40322¢-05, 0.01670, 0.21313)
61 (6.23245e-05, 0.01349, 0.21198)
62 (2.76772e-05, 0.01483, 0.22772)
63 (2.09654e-05, 0.01944, 0.21028)
64 (2.68397e-05, 0.01656, 0.22093)
65 (3.92041e-05, 0.01495, 0.22066)
66 (1.69932e-05, 0.01832, 0.22572)
67 (2.32520e-05, 0.01313, 0.23008)
68 (1.46054e-05, 0.01566, 0.22064)
69 (1.01157e-05, 0.01627, 0.26749)
70 (2.20355e-05, 0.01507, 0.21082)
71 (2.27114e-05, 0.01363, 0.20969)
72 (1.92721e-05, 0.00874, 0.11963)
73 (5.78732¢-08, nan, n/a)
74 (5.78732e-08, nan, n/a)
75 (5.78732¢-08, nan, n/a)
76 (2.89373e-07, 0.00947, 0.12559)
7 (1.92910e-08, nan, n/a)
78 (4.05133e-07, 0.00762, 0.10518)
79 (1.92910e-08, nan, n/a)
80 (3.85918e-08, 0.04545, 0.27272)
81 (4.05138e-07, 0.00620, 0.08808)
82 (1.11639e-07, 0.03225, 0.46774)
83 (1.24014e-08, nan, n/a)
84 (3.72042¢-08, 0.06451, 0.32258)

(

(

(

(

(

Number Error Bursts Errorfree Bursts

1 geom (0.70432) lognormal(4.81406, 4.39900)
2 geom(0.70106) lognormal(3.35844, 6.36769)
3 geom(0.67958) lognormal(2.97831, 6.61420)
4 geom(0.76103) lognormal(6.72093, 4.93707)
5 geom (0.74997) lognormal(5.06832, 4.85714)
6 geom (0.82496) lognormal(8.47806, 5.64020)
7 lognormal(0.38011, 0.63540) lognormal(6.98874, 5.41815)
8 geom (0.67896) lognormal(5.83091, 5.86175)
9 geom (0.77308) lognormal(6.07189, 6.44683)
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Number Error Bursts Errorfree Bursts

10 geom(0.98757) lognormal(8.27341, 4.35745)
11 geom (0.65079) lognormal(12.73038, 2.11236)
12 geom(0.72289) lognormal(13.11192, 1.96510)
13 geom(0.79434) lognormal(4.30151, 7.98504)
14 geom(0.81138) lognormal(7.49564, 5.91507)
15 geom (0.66587) lognormal(7.42952, 5.09082)
16 lognormal(0.26311, 0.54251) lognormal(8.31454, 5.45616)
17 geom(0.8) lognormal(14.06954, 3.22037)
18 geom (0.86708) lognormal(8.87207, 6.00527)
19 lognormal(1.32464, 0.22087) lognormal(13.79547, 2.77852)
20 lognormal(0.33843, 0.59131) lognormal(10.61722, 4.13949)
21 geom (0.99804) lognormal(4.85912, 8.73693)
22 geom (0.99809) lognormal(9.39327, 6.48235)
23 geom (0.79481) lognormal(8.40814, 7.29196)
24 geom(0.72991) lognormal(4.34393, 7.38769)
25 geom(0.82779) lognormal(3.40659, 9.19182)
26 geom (0.90867) lognormal(5.38203, 9.50528)
27 geom(0.77263) lognormal(8.00835, 6.65744)
28 geom(0.77731) lognormal(5.19296, 7.92474)
29 geom (0.86975) lognormal(9.55538, 4.08299)
30 geom (0.84529) lognormal(5.39516, 7.13772)
31 geom(0.77757) lognormal(5.60512, 7.38516)
32 geom(0.80017) lognormal(11.60478, 4.53211)
33 geom (0.77569) lognormal(10.22632, 5.90294)
34 geom (0.55405) lognormal(14.18321, 3.36148)
35 geom(0.68253) lognormal(14.71177, 3.01331)
36 geom(1) lognormal(5.99841, 4.35303)
37 geom (0.62003) lognormal(2.77479, 2.69197)
38 geom (0.61739) lognormal(3.01685, 2.82226)
39 geom(0.60260) lognormal(2.67375, 3.35517)
40 geom(0.61541) lognormal(3.14605, 2.99474)
41 geom (0.62464) lognormal(3.34878, 2.56550)
42 geom(0.63561) lognormal(4.84056, 3.01908)
43 geom(0.62244) lognormal(3.82989, 3.12162)
44 geom (0.62402) lognormal(4.54784, 1.70362)
45 geom (0.63241) lognormal(4.29879, 2.68645)
46 geom(0.62786) lognormal(4.39712, 3.24230)
47 geom(0.62360) lognormal(4.11708, 2.25843)
48 geom (0.58314) lognormal(1.65620, 6.11207)
49 geom (0.61260) lognormal(4.68805, 2.74815)
50 geom(0.64813) lognormal(4.99367, 3.00720)
51 geom(0.63610) lognormal(4.76431, 3.21293)
52 geom (0.65973) lognormal(4.85020, 3.11029)
53 geom (0.66456) lognormal(5.40467, 2.96253)
54 geom(0.63972) lognormal(5.20424, 3.07320)
55 geom(0.66331) lognormal(5.38275, 3.13733)
56 geom (0.65676) lognormal(5.32314, 3.05688)
57 geom (0.64216) lognormal(6.30270, 2.94460)

Copyright at Technical University

Berlin. All Rights reserved.

TKN-00-008

Page 101



TU BERLIN

Number Error Bursts Errorfree Bursts

58 geom(0.61557) lognormal(4.42009, 4.72644)

59 geom (0.65637) lognormal(6.08591, 2.70009)

60 geom(0.67260) lognormal(6.50470, 2.75638)

61 geom(0.65248) lognormal(5.76750, 3.18441)

62 geom (0.64662) lognormal(6.69431, 3.01326)

63 geom (0.68693) lognormal(7.44071, 2.65488)

64 geom(0.67037) lognormal(6.89308, 2.88618)

65 geom(0.63567) lognormal(6.04884, 3.72263)

66 geom(0.67311) lognormal(7.50266, 2.73172)

67 geom (0.62601) lognormal(6.94094, 2.66989)

68 geom(0.65777) lognormal(7.24839, 3.31999)

69 geom(0.62895) lognormal(7.68554, 2.96151)

70 geom (0.65814) lognormal(6.99823, 3.01285)

71 geom (0.65894) lognormal(7.13873, 2.47895)

72 geom(0.99757) lognormal(5.25932, 5.97753)

73 lognormal(nan, nan) lognormal(16.66501, 0)

74 lognormal(nan, nan) lognormal(16.66501, 0)

75 lognormal(nan, nan) lognormal(16.66501, 0)

76 geom(1) lognormal(10.90764, 3.53675)
7 lognormal(nan, nan) lognormal(17.76362, 0)

78 geom(1) lognormal(9.52053, 5.23812)

79 lognormal(nan, nan) lognormal(17.76362, 0)

80 geom(1) lognormal(14.96541, 1.70408)
81 geom(1) lognormal(9.49779, 5.22666)

82 lognormal(1.29075, 0.33400) lognormal(13.54575, 2.65452)
83 lognormal(nan, nan) lognormal(18.20545, 0)

84 geom(0.90000) lognormal(14.99774, 1.81024)
85 lognormal(nan, nan) lognormal(18.20545, 0)

86 lognormal(1.36443, 0.29284) lognormal(11.80708, 3.60509)
87 lognormal(0.64525, 0.86710) lognormal(14.87683, 2.26269)
88 geom(1) lognormal(16.15875, 1.58788)
89 geom (0.75617) lognormal(11.31093, 4.15192

Table C.4: Distributions and Parameters for Semimarkovian Models for kg = 1

Number Error Bursts Errorfree Bursts

1 lognormal(2.07113, 0.46935) lognormal(6.48231, 3.28804)
2 lognormal(2.54992, 0.13344) lognormal(5.39008, 5.01535)
3 lognormal(1.72624, 0.76997) lognormal(4.38362, 5.67954)
4 lognormal(1.58796, 0.82352) lognormal(8.08315, 4.02959)
5 lognormal(1.21514, 0.88803) lognormal(6.09234, 4.17501)
6 lognormal(1.82697, 0.53433) lognormal(10.02293, 4.61216)
7 lognormal(1.67837, 0.66499) lognormal(8.08150, 4.68996)
8 lognormal(1.98386, 0.51868) lognormal(7.36679, 4.83818)
9 lognormal(1.56755, 0.70460) lognormal(7.41149, 5.55406)
10 lognormal(1.67273, 0.69762) lognormal(9.71486, 3.40305)
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Number

Error Bursts

Errorfree Bursts

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

lognormal(1.55404, 0.68026)
lognormal(2.60952, 0.17790)
lognormal(2.44275, 0.17409)
lognormal(1.37658, 0.79993)
lognormal(1.40686, 0.80035)
lognormal(1.80824, 0.64142)
binomial(16,0.975)
lognormal(1.36147, 0.80525)
lognormal(2.30517, 0.42504)
lognormal(1.81186, 0.75787)
lognormal(1.83890, 0.73895)
lognormal(1.41461, 0.59131)
lognormal(2.56773, 0.08530)
lognormal(1.63168, 0.87283)
lognormal(1.67809, 0.67130)
lognormal(1.86680, 0.61062)
binomial(287,0.04712)
lognormal(2.43349, 0.17201)
lognormal(1.95969, 0.52923)
lognormal(1.74795, 0.64715)
lognormal(2.10162, 0.34741)
binomial(21,0.69841)
lognormal(2.07474, 0.37751)
lognormal(2.38499, 0.24319)
lognormal(2.56981, 0.09029)
lognormal(1.70539, 0.74131)
lognormal(2.33673, 0.90547)
lognormal(2.29548, 1.01242)
lognormal(2.33981, 1.32594)
lognormal(2.25844, 0.93296)
lognormal(2.24153, 0.97575)
lognormal(2.24827, 1.01593)
lognormal(2.24594, 1.11014)
lognormal(1.96943, 1.77477)
lognormal(2.16283, 1.05126)
lognormal(2.21456, 1.19721)
lognormal(2.10237, 1.20643)
lognormal(2.39150, 1.65886)
lognormal(1.90872, 1.98661)
lognormal(2.31834, 0.79197)
lognormal(2.33459, 1.03045)
lognormal(2.05765, 1.34475)
lognormal(2.11053, 1.13388)
lognormal(1.62264, 2.40794)
lognormal(2.09650, 1.21748)
lognormal(2.14648, 1.16351)
lognormal(2.17169, 0.92771)
lognormal(2.17015, 0.90624)

lognormal(14.02060, 1.25890)
lognormal(15.20841, 0.57778)
lognormal(6.26140, 6.67890)
lognormal(8.73493, 5.08926)
lognormal(8.60225, 4.30926)
lognormal(9.69602, 4.53558)
lognormal(16.15326, 1.90714)
lognormal(10.06178, 5.21286)
lognormal(14.78919, 2.12919)
lognormal(12.04535, 3.18942)
lognormal(6.51887, 7.63060)
lognormal(10.52678, 5.72740)
lognormal(10.49318, 5.90301)
lognormal(5.68454, 6.62542)
lognormal(4.87114, 8.17930)
lognormal(6.99345, 8.43110)
lognormal(10.09753, 5.26493)
lognormal(7.15792, 6.61493)
lognormal(11.21301, 2.97814)
lognormal(6.90016, 6.13454)
lognormal(7.33670, 6.23090)
lognormal(13.88314, 3.01568)
lognormal(11.92054, 4.77422)
lognormal(15.91064, 2.22007)
lognormal(16.76079, 1.66501)
lognormal(7.52043, 3.34088)
lognormal(4.82346, 1.50798)
lognormal(5.09277, 1.65683)
lognormal(5.17495, 1.70660)
lognormal(5.29727, 1.56156)
lognormal(5.25491, 1.62587)
lognormal(7.02907, 1.56251)
lognormal(6.08658, 1.61824)
lognormal(5.97317, 1.97051)
lognormal(6.21966, 1.67580)
lognormal(6.70880, 1.65652)
lognormal(5.34076, 2.68709)
lognormal(5.25424, 2.70820)
lognormal(6.84927, 1.64772)
lognormal(7.19218, 1.51617)
lognormal(7.12169, 1.62819)
lognormal(7.08464, 1.61540)
lognormal(7.52746, 1.59474)
lognormal(7.51769, 1.58485)
lognormal(7.61234, 1.61327)
lognormal(7.51021, 1.64907)
lognormal(8.42747, 1.50481)
lognormal(6.90399, 2.49996)
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Number Error Bursts Errorfree Bursts

59 lognormal(1.55489, 1.87134) lognormal(7.87504, 1.67811)
60 lognormal(1.96984, 0.86645) lognormal(8.32111, 1.54775)
61 lognormal(2.07766, 0.91500) lognormal(7.83356, 1.68036)
62 lognormal(1.63617, 1.95679) lognormal(8.59745, 1.95698)
63 lognormal(2.04116, 0.75146) lognormal(9.23614, 1.45738)
64 lognormal(1.99575, 1.09730) lognormal(8.87908, 1.53494)
65 lognormal(2.00362, 1.15384) lognormal(8.28889, 1.90417)
66 lognormal(2.03277, 0.93320) lognormal(9.40858, 1.46130)
67 lognormal(1.46344, 2.36705) lognormal(8.84825, 1.65122)
68 lognormal(2.08532, 0.90236) lognormal(9.30292, 1.82554)
69 lognormal(1.16293, 3.18293) lognormal(9.93257, 1.46561)
70 lognormal(2.10719, 0.78150) lognormal(8.92576, 1.70463)
71 lognormal(2.09577, 0.86877) lognormal(8.82304, 1.71352)
72 lognormal(1.69237, 0.79751) lognormal(6.80030, 4.95080)
73 lognormal(nan, nan) lognormal(16.66501, 0)

74 lognormal(nan, nan) lognormal(16.66501, 0)

75 lognormal(nan, nan) lognormal(16.66501, 0)

76 lognormal(1.55362, 0.65028) lognormal(12.17623, 2.70655)
7 lognormal(nan, nan) lognormal(17.76362, 0)

78 lognormal(1.56846, 0.95029) lognormal(10.98699, 4.26444)
79 lognormal(nan, nan) lognormal(17.76362, 0)

80 binomial(22,1) lognormal(16.78368, 0.57308)
81 lognormal(1.49649, 0.69173) lognormal(10.75595, 4.39094)
82 lognormal(2.22965, 0.32433) lognormal(14.37378, 2.11769)
83 lognormal(nan, nan) lognormal(18.20545, 0)

84 binomial(16,0.96875) lognormal(16.75521, 0.70326)
85 lognormal(nan, nan) lognormal(18.20545, 0)

86 lognormal(2.27239, 0.33668) lognormal(12.68497, 3.02489)
87 lognormal(2.43039, 0.20205) lognormal(16.06763, 1.50295)
88 binomial(16,1) lognormal(18.00997, 0.39095)
89 lognormal(2.49457, 0.17029) lognormal(13.34871, 2.80074)

Table C.5: Distributions and Parameters for Semimarkovian Models for kg =

8

Number Error Bursts Errorfree Bursts

1 lognormal(2.66337, 0.21908) lognormal(6.89569, 3.01291)
2 lognormal(2.66232, 0.09896) lognormal(5.47747, 4.95722)
3 lognormal(2.63924, 0.52528) lognormal(5.05573, 5.23313)
4 lognormal(2.71016, 0.40616) lognormal(8.84652, 3.52136)
5 lognormal(2.88986, 0.08089) lognormal(7.07978, 3.51767)
6 lognormal(2.59835, 0.28055) lognormal(10.54121, 4.26783)
7 lognormal(2.56073, 0.38966) lognormal(8.69204, 4.28323)
8 lognormal(2.69390, 0.14996) lognormal(7.83160, 4.52848)
9 lognormal(2.83749, 0.09368) lognormal(8.21247, 5.02040)
10 lognormal(2.13944, 0.76061) lognormal(10.07223, 3.16760)
11 lognormal(2.99338, 0.15207) lognormal(15.01573, 0.59859)
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

lognormal(2.74205, 0.13654)
binomial(31,0.50919)
lognormal(2.74528, 0.20199)
lognormal(2.91692, 0.13450)
lognormal(2.81566, 0.27337)
binomial(16,0.975)
lognormal(2.61509, 0.08467)
lognormal(3.24703, 0.21739)
lognormal(2.96428, 0.23640)
lognormal(2.42650, 1.05256)
lognormal(2.29756, 0.84101)
binomial(21,0.72394)
lognormal(2.65347, 0.49360)
lognormal(2.57843, 0.51540)
lognormal(2.42827, 0.92965)
binomial(24,0.60335)
binomial(28,0.55770)
lognormal(2.62722, 1.04903)
lognormal(2.61292, 0.62553)
binomial(172,0.09176)
binomial(20,0.74591)
binomial(57,0.29043)
lognormal(2.77724, 0.25931)
lognormal(2.66817, 0.25436)
lognormal(2.14026, 1.00776)
lognormal(2.95140, 0.95816)
lognormal(2.96999, 1.05854)
lognormal(2.96945, 1.45836)
lognormal(2.87486, 0.99997)
lognormal(2.85743, 1.03698)
lognormal(2.75395, 1.21595)
lognormal(2.76762, 1.30940)
lognormal(2.52235, 1.96721)
lognormal(2.70617, 1.23070)
lognormal(2.72186, 1.38259)
lognormal(2.56839, 1.53046)
lognormal(2.77191, 2.30660)
lognormal(2.31785, 2.37301)
lognormal(2.86457, 0.89043)
lognormal(2.80645, 1.30924)
lognormal(2.58389, 1.68951)
lognormal(2.75376, 1.22222)
lognormal(1.83411, 3.29120)
lognormal(2.71865, 1.36033)
lognormal(2.76328, 1.31398)
lognormal(2.93953, 0.86093)
lognormal(2.74713, 1.02684)
lognormal(1.84285, 2.75407)

lognormal(15.31231, 0.50795)
lognormal(6.47125, 6.53907)
lognormal(9.60555, 4.50939)
lognormal(9.58331, 3.65563)
lognormal(10.40811, 4.06126)
lognormal(16.15326, 1.90714)
lognormal(10.76976, 4.74167)
lognormal(15.49773, 1.67126)
lognormal(12.83887, 2.66258)
lognormal(7.12716, 7.22518)
lognormal(11.21244, 5.27107)
lognormal(10.59636, 5.83433)
lognormal(6.39711, 6.15066)
lognormal(5.55127, 7.72618)
lognormal(7.57845, 8.04117)
lognormal(10.16005, 5.22326)
lognormal(7.36724, 6.47542)
lognormal(12.03270, 2.43189)
lognormal(7.61202, 5.66010)
lognormal(7.75829, 5.94989)
lognormal(13.89827, 3.00562)
lognormal(12.39663, 4.45724)
lognormal(16.25243, 1.99564)
lognormal(16.90231, 1.57258)
lognormal(7.93458, 3.06603

lognormal(5.48682, 1.07393
lognormal(5.83136, 1.17069
lognormal(5.95110, 1.19504
lognormal(5.96827, 1.11918
lognormal(5.92386, 1.18488
lognormal(7.67293, 1.13409
lognormal(6.75340, 1.17579
lognormal(6.68188, 1.50012
lognormal(6.88101, 1.23666
lognormal(7.35551, 1.22646
lognormal(5.99489, 2.25357
lognormal(6.10974, 2.11228
lognormal(7.51409, 1.20548
lognormal(7.81588, 1.10107
lognormal(7.78674, 1.18558
lognormal(7.83230, 1.11780
lognormal(8.25264, 1.11182
lognormal(8.23246, 1.10888
lognormal(8.35032, 1.12178
lognormal(8.25046, 1.15612
lognormal(9.19219, 0.99525
lognormal(7.55558, 2.06616
lognormal(8.60456, 1.19213

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
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60 lognormal(2.83095, 0.69828) lognormal(9.07746, 1.04378)
61 lognormal(2.76587, 0.94970) lognormal(8.54449, 1.20678)
62 lognormal(1.27231, 4.01332) lognormal(9.28431, 1.49923)
63 lognormal(2.79303, 0.57580) lognormal(9.87856, 1.02920)
64 lognormal(2.64756, 1.15065) lognormal(9.56577, 1.07729)
65 lognormal(2.42328, 1.57367) lognormal(8.92779, 1.47843)
66 lognormal(2.77180, 0.79954) lognormal(10.07744, 1.01548)
67 lognormal(0.96055, 4.69812) lognormal(9.53496, 1.19355)
68 lognormal(2.75515, 0.90420) lognormal(9.97535, 1.37734)
69 lognormal(0.82192, 5.15708) lognormal(10.62375, 1.00488)
70 lognormal(2.81135, 0.72431) lognormal(9.59390, 1.25933)
71 lognormal(2.82714, 0.80687) lognormal(9.52532, 1.24548)
72 lognormal(2.26699, 1.08863) lognormal(7.35349, 4.58240)
73 lognormal(nan, nan) lognormal(16.66501, 0)
74 lognormal(nan, nan) lognormal(16.66501, 0)
75 lognormal(nan, nan) lognormal(16.66501, 0)
76 lognormal(2.54167, 1.02149) lognormal(13.01748, 2.16512)
7 lognormal(nan, nan) lognormal(17.76362, 0)
78 lognormal(1.89802, 1.02878) lognormal(11.23671, 4.09911)
79 lognormal(nan, nan) lognormal(17.76362, 0)
80 binomial(22,1) lognormal(16.78368, 0.57308)
81 lognormal(1.54831, 1.40698) lognormal(11.00690, 4.22461)
82 lognormal(3.30654, 0.25489) lognormal(15.21894, 1.57809)
83 lognormal(nan, nan) lognormal(18.20545, 0)
84 binomial(16,0.96875) lognormal(16.75521, 0.70326)
85 lognormal(nan, nan) lognormal(18.20545, 0)
86 lognormal(3.29941, 0.22125) lognormal(13.53873, 2.46405)
87 lognormal(3.00100, 0.21610) lognormal(16.48727, 1.23903)
88 binomial(16,1) lognormal(18.00997, 0.39095)
89 lognormal(2.67888, 0.07463) lognormal(13.47214, 2.71927)
Table C.6: Distributions and Parameters for Semimarkovian Models for ko =
15
Number Error Bursts Errorfree Bursts
1 lognormal(2.64914, 0.38205) lognormal(6.93376, 2.98763)
2 lognormal(2.65396, 0.19522) lognormal(5.49946, 4.94265)
3 lognormal(2.87359, 0.99927) lognormal(5.40506, 5.00176)
4 lognormal(2.83339, 0.87367) lognormal(9.09864, 3.35362)
5 lognormal(2.84989, 0.29730) lognormal(7.12708, 3.48621)
6 lognormal(2.76286, 0.98922) lognormal(10.91729, 4.01826)
7 lognormal(2.71199, 0.47007) lognormal(8.81672, 4.20019)
8 lognormal(2.69237, 0.25615) lognormal(7.86367, 4.50712)
9 lognormal(2.77825, 0.35733) lognormal(8.25797, 4.99010)
10 lognormal(4.56901, 0.23085) lognormal(12.00754, 1.90922)
11 lognormal(2.99338, 0.15207) lognormal(15.01573, 0.59859)
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

lognormal(2.74205, 0.13654)
binomial(34,0.46475)
lognormal(2.73356, 0.24023)
lognormal(2.94652, 0.13811)
lognormal(2.82146, 0.27378)
binomial(16,0.975)
lognormal(2.62165, 0.10097)
lognormal(3.24703, 0.21739)
lognormal(2.96924, 0.29820)
lognormal(4.94787, 0.18221)
lognormal(5.09991, 0.08215)
binomial(21,0.72394)
lognormal(2.62551, 1.07895)
lognormal(2.89834, 1.15905)
lognormal(3.54070, 0.95542)
binomial(24,0.60335)
binomial(31,0.50394)
lognormal(3.10019, 1.14340)
lognormal(2.93135, 1.19548)
binomial(221,0.07143)
lognormal(2.66809, 0.10910)
binomial(57,0.29043)
lognormal(2.84503, 0.61919)
lognormal(2.68282, 0.45783)
lognormal(4.42532, 0.24461)
lognormal(3.57350, 1.05502)
lognormal(3.65908, 1.09416)
lognormal(3.68363, 1.34481)
lognormal(3.43614, 1.15532)
lognormal(3.54728, 1.08717)
lognormal(3.29541, 1.37510)
lognormal(3.39453, 1.40227)
lognormal(3.46886, 1.64119)
lognormal(3.17724, 1.49191)
lognormal(3.19299, 1.62570)
lognormal(3.16184, 1.68669)
lognormal(2.96198, 3.60630)
lognormal(3.07988, 2.04665)
lognormal(3.43479, 1.06621)
lognormal(3.45591, 1.40464)
lognormal(3.36315, 1.53036)
lognormal(3.39605, 1.32438)
lognormal(2.78959, 2.63920)
lognormal(3.30587, 1.49725)
lognormal(3.39924, 1.42454)
lognormal(3.49349, 0.93749)
lognormal(3.10619, 1.42653)
lognormal(2.46151, 2.39870)

lognormal(15.31231, 0.50795)
lognormal(6.47189, 6.53864)

lognormal(9.61083, 4.50587)

lognormal(9.60596, 3.64054)

lognormal(10.41288, 4.05808)
lognormal(16.15326, 1.90714)
lognormal(10.77937, 4.73528)
lognormal(15.49773, 1.67126)
lognormal(12.86559, 2.64486)
lognormal(9.24320, 5.81505)

lognormal(13.62988, 3.66789)
lognormal(10.59636, 5.83433)
lognormal(6.58833, 6.02333)

lognormal(6.02934, 7.40783)

lognormal(8.56045, 7.38667)

lognormal(10.16005, 5.22326)
lognormal(7.36743, 6.47529)

lognormal(12.47601, 2.13652)
lognormal(8.08171, 5.34711)
lognormal(7.75836, 5.94984)
lognormal(13.90589, 3.00056)
lognormal(12.39663, 4.45724)
lognormal(16.40382, 1.89642)
lognormal(16.97846, 1.52288)
lognormal(9.63912, 1.93875

lognormal(6.05614, 0.70904
lognormal(6.46713, 0.75754
lognormal(6.58305, 0.78305
lognormal(6.49971, 0.77354
lognormal(6.54025, 0.78340
lognormal(8.21219, 0.77608
lognormal(7.34879, 0.78293
lognormal(7.41095, 1.01847
lognormal(7.38181, 0.90585
lognormal(7.87372, 0.88291
lognormal(6.56225, 1.88028
lognormal(7.01838, 1.51299
lognormal(8.06907, 0.83717
lognormal(8.38184, 0.72513
lognormal(8.42901, 0.75888
lognormal(8.46941, 0.69451
lognormal(8.87283, 0.69929
lognormal(8.81280, 0.72288
lognormal(8.93627, 0.73196
lognormal(8.87872, 0.73821
lognormal(9.70910, 0.65098
lognormal(8.00918, 1.76470
lognormal(8.94855, 0.96320
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60 lognormal(3.18758, 0.97900) lognormal(9.46457, 0.78600)
61 lognormal(3.21114, 1.22932) lognormal(9.01995, 0.89036)
62 lognormal(2.10647, 3.37739) lognormal(9.70511, 1.21890)
63 lognormal(3.08199, 0.98016) lognormal(10.24014, 0.78827)
64 lognormal(2.99311, 1.45910) lognormal(9.96454, 0.81162)
65 lognormal(2.65025, 2.20811) lognormal(9.35988, 1.19068)
66 lognormal(3.16894, 1.05783) lognormal(10.49170, 0.73943)
67 lognormal(1.80249, 4.24548) lognormal(10.05763, 0.84533)
68 lognormal(3.19124, 1.17976) lognormal(10.43945, 1.06806)
69 lognormal(1.21749, 5.26428) lognormal(11.01239, 0.74585)
70 lognormal(3.23215, 1.08604) lognormal(10.07269, 0.94032)
71 lognormal(3.34491, 1.04157) lognormal(10.05017, 0.89580)
72 lognormal(4.38934, 0.34961) lognormal(9.00802, 3.48119)
73 lognormal(nan, nan) lognormal(16.66501, 0)
74 lognormal(nan, nan) lognormal(16.66501, 0)
75 lognormal(nan, nan) lognormal(16.66501, 0)
76 lognormal(4.54255, 0.23231) lognormal(14.40750, 1.29608)
7 lognormal(nan, nan) lognormal(17.76362, 0)
78 lognormal(4.61955, 0.22049) lognormal(13.23420, 2.78774)
79 lognormal(nan, nan) lognormal(17.76362, 0)
80 binomial(22,1) lognormal(16.78368, 0.57308)
81 lognormal(4.94824, 0.13553) lognormal(13.31993, 2.70517)
82 lognormal(3.30654, 0.25489) lognormal(15.21894, 1.57809)
83 lognormal(nan, nan) lognormal(18.20545, 0)
84 binomial(16,0.96875) lognormal(16.75521, 0.70326)
85 lognormal(nan, nan) lognormal(18.20545, 0)
86 lognormal(3.29941, 0.22125) lognormal(13.53873, 2.46405)
87 lognormal(3.00100, 0.21610) lognormal(16.48727, 1.23903)
88 binomial(16,1) lognormal(18.00997, 0.39095)
89 lognormal(2.56862, 0.44112) lognormal(13.49810, 2.70214)
Table C.7: Distributions and Parameters for Semimarkovian Models for ko =
50
Number Error Bursts Errorfree Bursts
1 lognormal(2.58054, 0.95584) lognormal(6.99517, 2.94718)
2 lognormal(2.52926, 0.79191) lognormal(5.54198, 4.91487)
3 lognormal(2.98128, 1.30191) lognormal(5.52303, 4.92452)
4 lognormal(2.87946, 0.87281) lognormal(9.11534, 3.34252)
5 lognormal(2.82909, 0.44368) lognormal(7.14259, 3.47596)
6 lognormal(2.79922, 0.98665) lognormal(10.92921, 4.01036)
7 lognormal(2.68156, 0.69018) lognormal(8.83970, 4.18490)
8 lognormal(2.62793, 0.47174) lognormal(7.87499, 4.49959)
9 lognormal(2.74814, 0.49609) lognormal(8.26886, 4.98285)
10 lognormal(4.74067, 0.14744) lognormal(12.12517, 1.83402)
11 lognormal(2.99338, 0.15207) lognormal(15.01573, 0.59859)
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

lognormal(2.74205, 0.13654)
binomial(41,0.38582)
lognormal(2.71207, 0.33934)
lognormal(2.85792, 0.43171)
lognormal(2.78990, 0.39200)
binomial(16,0.975)
lognormal(2.56144, 0.30314)
lognormal(3.24703, 0.21739)
lognormal(2.96924, 0.29820)
lognormal(6.52270, 2.01069)
lognormal(9.68707, 0)
binomial(123,0.12482)
lognormal(1.02009, 4.51496)
lognormal(1.12938, 5.31730)
lognormal(1.98817, 5.43561)
binomial(570,0.02551)
lognormal(2.71257, 0.08428)
lognormal(1.15078, 5.93710)
lognormal(0.87587, 6.02251)
lognormal(2.72707, 0.06850)
lognormal(2.66809, 0.10910)
binomial(57,0.29043)
lognormal(2.84503, 0.61919)
lognormal(2.68282, 0.45783)
lognormal(4.42532, 0.24461)
lognormal(4.10143, 0.92452)
lognormal(4.11319, 0.95535)
lognormal(4.14892, 1.15148)
lognormal(3.93552, 1.05396)
lognormal(4.00705, 0.97042)
lognormal(3.61782, 1.31779)
lognormal(3.87532, 1.24803)
lognormal(3.97428, 1.41267)
lognormal(3.63865, 1.40922)
lognormal(3.59226, 1.52731)
lognormal(3.64658, 1.72461)
lognormal(3.55536, 3.47507)
lognormal(3.50555, 1.81669)
lognormal(3.78453, 0.97882)
lognormal(3.86217, 1.30273)
lognormal(3.89625, 1.29874)
lognormal(3.81759, 1.20310)
lognormal(3.35386, 2.22893)
lognormal(3.73721, 1.35462)
lognormal(3.83489, 1.29858)
lognormal(3.89074, 0.81231)
lognormal(3.59820, 1.44233)
lognormal(3.06617, 1.99616)

lognormal(15.31231, 0.50795)
lognormal(6.47220, 6.53843)
lognormal(9.61878, 4.50058)
lognormal(9.62538, 3.62761)
lognormal(10.42005, 4.05331
lognormal(16.15326, 1.90714
lognormal(10.78903, 4.72885
lognormal(15.49773, 1.67126
lognormal(12.86559, 2.64486
lognormal(12.39430, 3.71732
lognormal(18.69928, 0.39704
lognormal(10.59981, 5.83203
lognormal(6.62686, 5.99773)
lognormal(6.17298, 7.31237)
lognormal(9.04567, 7.06336)
lognormal(10.16087, 5.22272)
lognormal(7.36874, 6.47442)

lognormal(12.70535, 1.98373)
lognormal(8.25181, 5.23385)
lognormal(7.75886, 5.94951)
lognormal(13.90589, 3.00056
lognormal(12.39663, 4.45724
lognormal(16.40382, 1.89642
lognormal(16.97846, 1.52288
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lognormal(6.36573, 0.51843
lognormal(6.75220, 0.57640
lognormal(6.87585, 0.59590
lognormal(6.80349, 0.58035
lognormal(6.82236, 0.60355
lognormal(8.41811, 0.63990
lognormal(7.64675, 0.58804
lognormal(7.72763, 0.81068
lognormal(7.66617, 0.71959
lognormal(8.12077, 0.71999
lognormal(6.92101, 1.64690
lognormal(7.54248, 1.16953
lognormal(8.29871, 0.68546
lognormal(8.59544, 0.58370
lognormal(8.70492, 0.57611
lognormal(8.79267, 0.48035
lognormal(9.14140, 0.52099
lognormal(9.08634, 0.54133
lognormal(9.20411, 0.55408
lognormal(9.16299, 0.54947
lognormal(9.94913, 0.49125
lognormal(8.34468, 1.54235
lognormal(9.19012, 0.80272
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Number Error Bursts Errorfree Bursts

60 lognormal(3.62753, 0.92946) lognormal(9.72380, 0.61355)
61 lognormal(3.72560, 1.15942) lognormal(9.34645, 0.67340)
62 lognormal(2.75628, 2.90953) lognormal(9.97541, 1.03897)
63 lognormal(3.40846, 1.06346) lognormal(10.44755, 0.65014)
64 lognormal(3.42938, 1.34238) lognormal(10.19728, 0.65668)
65 lognormal(3.09797, 2.20969) lognormal(9.64683, 0.99977)
66 lognormal(3.47491, 1.04866) lognormal(10.67353, 0.61830)
67 lognormal(2.50847, 3.64772) lognormal(10.34068, 0.65686)
68 lognormal(3.60862, 1.09596) lognormal(10.68030, 0.90762)
69 lognormal(1.69348, 4.84903) lognormal(11.18649, 0.62984)
70 lognormal(3.65702, 1.07482) lognormal(10.34252, 0.76064)
71 lognormal(3.80717, 0.97558) lognormal(10.34184, 0.70158)
72 lognormal(4.61738, 0.24360) lognormal(9.17014, 3.37340)
73 lognormal(nan, nan) lognormal(16.66501, 0)

74 lognormal(nan, nan) lognormal(16.66501, 0)

75 lognormal(nan, nan) lognormal(16.66501, 0)

76 lognormal(4.54255, 0.23231) lognormal(14.40750, 1.29608)
7 lognormal(nan, nan) lognormal(17.76362, 0)

78 lognormal(4.82325, 0.10693) lognormal(13.36876, 2.70056)
79 lognormal(nan, nan) lognormal(17.76362, 0)

80 binomial(22,1) lognormal(16.78368, 0.57308)
81 lognormal(5.03799, 0.08931) lognormal(13.38873, 2.66061)
82 lognormal(3.30654, 0.25489) lognormal(15.21894, 1.57809)
83 lognormal(nan, nan) lognormal(18.20545, 0)

84 binomial(16,0.96875) lognormal(16.75521, 0.70326)
85 lognormal(nan, nan) lognormal(18.20545, 0)

86 lognormal(3.29941, 0.22125) lognormal(13.53873, 2.46405)
87 lognormal(3.00100, 0.21610) lognormal(16.48727, 1.23903)
88 binomial(16,1) lognormal(18.00997, 0.39095)
89 lognormal(2.56862, 0.44112) lognormal(13.49810, 2.70214)

Table C.8: Distributions and Parameters for Semimarkovian Models for kg =

100
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