TU BERLIN

TK N Telecommunication
Networks Group

Technical University Berlin

Telecommunication Networks Group

Implementation Design of the
MOMBASA Software Environment

L. Westerhoff, A. Festag
{westerhoff|festag} @ee.tu-berlin.de

Berlin, November 2001
Version 1.0

TKN Technical Report TKN-01-017

TKN Technical Reports Series
Editor: Prof. Dr.-Ing. Adam Wolisz

Copyright at Technical University Berlin. All TKN-01-017 Page 1

Rights reserved.

mailto:westerhoff@ee.tu-berlin.de�
mailto:festag@ee.tu-berlin.de�

Abstract

In this report the implementation of tldOMBASA Software Environmeistpresented. Th®IOM-

BASA Software Environmeistan experimental platform to examine multicast-based host mobility in

IP networks. The report describes the implementation design of the main components (Mobile Agent,
MEF! and Gateway), the implementation environment and the necessary modifications of the Linux
kernel. Main purpose of the report is to document the current implementation M@MBASA
Software Environmerdnd particularly, to facilitate its extensibility for use as a generic toolkit for
experimentation with multicast-based mobility support.

Mobility Enabling Proxy

TU BERLIN

Contents

1 Introduction 4
2 Implementation Environment 7
3 Design of Agents 8
3.1 CommonDesign. e e e e e 8
3.1.1 DataFields. e 8
3.1.2 Methods 10
3.1.3 Initialization and Cleanup Helper Methods. 11
3.1.4 Policies. 11
3.1.5 Managementinterface oo 12
3.2 DesignofMobile Agent. 13
3.21 DataFields. e 13
3.22 Methods e 15
3.2.3 IdleDetection 16
3.2.4 Managementinterface 17
3.3 Design of Mobility EnablingProxy, 19
3.3.1 DataFields. e 19
3.3.2 Methods 25
3.3.3 Managementinterface oo Lo 27
3.4 Designof Gateway Proxy. e e 28
341 DataFields. e 28
3.42 Methods 32
3.4.3 Sending of Multicast Packats 33
3.4.4 Paging 34
3.45 Managementinterface oo 34
3.5 SupportCode. 34
3.5.1 MB2SocketHierarchy 34
3.5.2 MB2SocketGroup. 36
3.5.3 MB2TImers 37
3.5.4 MBZInterface 38
3.5.5 MB2PolicyHandlero 38
3.5.6 MB2Buffer 38
3.5.7 MBZ2BufferHandler and MBZFlushHandler. 39
g;&;gigzg;:rtv'gz.chnical University Berlin. All TKN-01-017 Page 1

TU BERLIN

3.5.8 MulticastChannels 39
3.5.9 MB2Route. e e 39
3.5.10 MB2Parser. e e e e 39
3.5.11 MB2Signal. e e 40
3.6 _Documentatian. e e e e 40
4 Kernel Implementation 41
4.1 NavigatingintheKernel. e 41
4.2 Multicast Network Address Translaton 42
4.3 Paging SUpport. e e e e e 43
5 Extensibility of the MOMBASA SE 47
5.1 Supportof Generic Multicast 47
5.2 SupportofPolicies. 47
5.3 Portability. 48
5.4 Openissues e e e 48

Copyright at Technical University Berlin. All 01-
Rights reserved. TKN-01-017 Page 2

TU BERLIN

List of Figures

3.1 Classdiagram: Designofagents. 9
3.2 Class diagram: Design of the Mobile Agent. 18
3.3 Class diagram: Design of the Mobility Enabling Proxy (1). 21
3.4 Class diagram: Design of the Mobility Enabling Proxy (2). 22
3.5 Class diagram: Design of Gateway Proxy (1). 29
3.6 Class diagram: Design of Gateway Proxy (2). 30
3.7 Class diagram: Sockethierarchy. 35
3.8 Linkedlistwithsentinel 37
3.9 Ringbuffer e 38
3.10 Class diagram: Parser hierarchy. 39
4.1 Inputrouting inthe Linuxkernel 43
4.2 Interaction between kernel, multicast routing and paging daemon. 44
4.3 EXxisting multicast group dilemma oo e 45
4.4 State machines for Multicast Forwarding Cache entries. 46

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 3

TU BERLIN

Chapter 1

Introduction

TheMOMBASA Software Environmedstan experimental platform to investigate multicast-based mo-
bility support in IP networks. The implementation is based on the specification descril¥§dTihé¢
implementation is publically availablelattp://www-tkn.ee.tu-berlin.de/research/
mombasa/mse.html|[15].

In the MOMBASA SEhe following functionalities have been implemented:

e Addressing and routing based on IP- and IP-style multicast.

e Multicast proxies in access points to disburden the mobile host from multicast group manage-
ment.

e Advertisements/Solicitations to advertise the availability of Mobility-Enabling Proxies (MEPS).
¢ Inter-MEP advertisements to register mobile hosts in advance.
e Support of different handover types: soft, predictive, inter-technology (vertical) handover.

¢ Differentiation between active and inactive mobile hosts, multicast-based paging to locate in-
active mobile hosts.

e Buffering of data packets for predictive handover and paging.

e Policies to control system behavior (handover type, selection of optimal interface among several
possible, control buffering, forwarding algorithm and paging algorithm).

Moreover, the implementation has the following features:

e The implementation supports IP (Version 4).

e It uses IP multicast to support hard, soft and predictive handover. It neither requires any modi-
fication to the multicast routing protocol nor does it depend on a certain one.

e It supports heterogeneous networks, namely all technologies which support and are supported
by IP. It has support for multiple network interfaces simultaneously in the mobile (potentially
of different technologies), and allows handover between access points on different interfaces
and therefore handover between different technologies.

Copyright at Technical University Berlin. All TKN-01-017 Page 4

Rights reserved.

http://www-tkn.ee.tu-berlin.de/research/mombasa/mse.html�
http://www-tkn.ee.tu-berlin.de/research/mombasa/mse.html�

TU BERLIN

No modification to the correspondent (i.e. fixed) host. That means any IP capable host can
communicate with the mobile host. Only the mobile host and the access network must have
special preparations for it.

The system is soft state, i.e. every state eventually times out. This makes the system robust
against the breakdown of network links and the crash of components within the system.

Important behavior, such as selecting an access point for handover or buffering packets during
handover, can be tuned by means of policies. This maked@dBASA Software Environment
usable for experimental evaluation of different handover mechanisms and buffer strategies.

The MOMBASA SEan be extended easily to support other multicast schemes.

The following (partly experimental) technologies were used to implement the described environment:

Link-layer socketswere used to intercept packets that should be buffered. AlthoudW@hé-
BASA SHs dealing with IP only, link-layer (i.e. packet) sockets had to be used, since Linux
Raw IP sockets are write-only. Howeveaw IP socketswere used for sending buffered data.

Linux socket filters (compatible to Berkeley Packet Filters) were used for the following pur-
poses:

— In the MEPs each mobile-associated buffer has its own socket. A filter is attached to this
socket accepting only packets for the respective mobile host.

— In the Mobile Agent the socket for idle detection has a quite complex filter that discards
signaling (including management interface), multicast and broadcast packets. Thus, any
packet that can be read from the socket is a data packet and should reset the activity timer
or trigger the wakeup procedure.

Network Address Translation between the unicast and the multicast realm was used. Therefor
the NAT code in the Linux kernel was modified.

TheEthertap device, a software device emulating an Ethernet network interface, was used for
sending of multicast packets by the gateway.

Paging was implemented efficiently. Multicast routing support in the Linux kernel was modified
to support paging.

Multithreading was used in the mobile host (main and idle thread) and in the MEP (main
thread and a thread for each mobile buffer).

The main components of tifdOMBASA Software Environmeate implemented as daemons run-
ning in user space with root privileges. Additionally, some modifications to the Linux kernel were
necessary. The following components has been implemented:

Mobile Agent The Mobile Agent is responsible for last-hop-signaling (detection of MEPS, registra-

tion, handover) and idle detection on the mobile host.

Copyright at Technical University Berlin. All TKN-01-017 Page 5

Rights reserved.

TU BERLIN

Mobility Enabling Proxy The Mobility Enabling Proxy (MEP) resides on the access point and is
responsible for last-hop-signaling (advertisements, handling of registrations), administration
of registered mobile hosts, inter-MEP-signaling (advertisement of registered mobiles to pre-
register them at neighboring MEPs) and MEP-GWP-signaling (sendirRpgihg Updates
handling ofPaging Reques}s

Gateway Proxy The Gateway Proxy maintains a paging table and controls paging of the mobile host.

NAT from/to multicast Packets must be translated from unicast to multicast in the gateway and
back to unicast in the access points. However, the original NAT code in the Linux kernel did
not support translation between unicast and multicast realm. Thus, a patch had to be developed.
Details are given in Sed.2.

Kernel paging support Paging in the gateway needs some support that can best be implemented in
the kernel. Se@.3gives details on this kernel patch.

This report is structured as follows: In the next section (S&dhe implementation environment
is described. In secticB the design of the agents and in sectibtine necessary modifications if the
Linux kernel are presented. Finally, the extensibility of W@MBASA Sks discussed.

Copyright at Technical University Berlin. All TKN-01-017 Page 6

Rights reserved.

TU BERLIN

Chapter 2

Implementation Environment

TheMOMBASA Sks implemented for a Linux system running on an x86 architecture (e.g. Intel Pen-
tium, Pentium Il, AMD Athlon). It would probably also run on other Linux architectures, however,
this was not tested at all. The kernel patches require a standard Linux kernel version 2.2.18. Other
versions of the 2.2 series may or may not work.

The MOMBASA SHuises only standard C and C++ libraries (including the Standard Template
Library). glibc 2.1.3 (and probably higher) is preferred but 2.1.1 will also work if a special switch
(COMPATTis set on compilation that enables the definition of some data structures that are missing in
the include files of this library version.

The MOMBASA SEvas developed with a Linux installation based on the S.u.S.E. Linux distribu-
tion, however, since only standard libraries and tools (GNU tools) are used, it should work with any
Linux distribution providing the necessary kernel and library versions.

Multicast support is provided by the standard Linux kernel (IGMPv2 and kernel support for a
PIM-SM Version 2 daemon) and a free multicast routing daemon for PIM-SM (pimd-2.1.0-alpha28)
by the University of Southern California’s Computer Networks and Distributed Systems Research
Laboratory (seel?]). Please note that the implementation of M®MBASA SHEloes not depend on
a specific multicast routing daemon.

Copyright at Technical University Berlin. All TKN-01-017 Page 7

Rights reserved.

TU BERLIN

Chapter 3

Design of Agents

3.1 Common Design

The three agents Mobile Agent, Mobility Enabling Proxy and Gateway Proxy have the same design.
However there is no inheritance relation between the agents. Only the design is reused not the im-
plementation. Inheritance will make only sense if either different classes have to be used in place
of each other and thus must have a common interface (this is called polymorphy) or if code shall be
reused. The first is not the case WWIOMBASA SEThe agent classes are in different applications
on different hosts and thus need not be polymorphic. The second is only the case on a superficial look
at the implementations. On a closer look, most parts are only similar. To make them reusable for all
agents would have been the same work as implementing them for each agent.

For this reasons | decided to reuse only the design of the agents and not the implementation. More
about re-usage of design can be readin [

The MOMBASA SEmploys mainly two design patterns or design concepts:

All agents are implemented as singletons, i.e. only one instance of the agent class may exist per
application. This is ensured by making the constructor protected, thus no instances can be constructed
from outside the scope of the agent. A protected static member variable holds a reference to the only
agent instance. The instance can be retrieved by a public static method.

The agents employ an event driven concept. Two types of events exist: external and internal
events. External events are the reception of protocol messages. Internal events are the expiration of
timers.

The design that is common to all agents can be seen ifBEkYy. Members or classes that are set in
italics are placeholders for members and classes in the agents that have similar purposes but differ in
some details.

3.1.1 Data Fields

The following fields can be identified in the agents (field that are only specific to one agent are omitted
here and discussed later):

The class diagrams in this chapter are UML class diagrams.

Copyright at Technical University Berlin. All TKN-01-017 Page 8

Rights reserved.

TU BERLIN

Agent

$# instance: Agent
terminating: bool

+ init
+run
+ cleanup

gt

1
‘—4 Agent::Config ‘

configy |

1
MB2_SocketGroup ‘
socketsy |

+ handle_IncomingMessage
+ handle_XXX
+ send_XXX

gt

} DatabaseEntry

+ register_XXX_Handler
+ deregister_XXX_Handler

readCmdLine
readConfig
checkConfig

gt

1 - 1 Agent, bool I
MB2_Signal --=------- -

database ; |

signalling |

1
Agent::Managementinterface

openSockets

closeSockets

initRouting

restoreRouting

initSignalHandler
resetDefaultValues

showHelp
exitHandler

xxxExpire

management_interface

+ Managementinterface
+ ~Managementinterface

+ handle_Managementinterface
+ handle_ManagementServer
+ handle_ManagementSocket

xxxTimeout

MB2_TCP_Server_Socket ‘
[1
1

parsery1
| MB2_TCP_Parser \
[
L

Figure 3.1:Class diagram: Design of agents

instance Static member holding t

he only instance of the agent class.

terminating
the next possible time.

Flag set by a signal handkeor by critical errors to trigger a clean termination|at

config

Structure holding configuration options from the configuration file and the com-
mand line. Holds also information about configured interfaces and possibly sackets
bound to this interfaces.

sockets

Group of sockets that can generate external events. Note that a socket group is not
used as a container for sockets but only to group them for the purpose of being
watched. See S€8.5.2for details on how a socket group works.

timers

See Sec3.5.3for details.

Chronologically ordered list of timers. A timer encapsulates its expiration
with a callback method that is called on expiration and data passed to this method.

time

The term signal is used in the sense of a kind of software interrupts in UNIX-like operating systems here.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017

Page 9

TU BERLIN

database

Each agent holds one or more databases. The Mobile Agent g
the known access points, the MEPs store registered mobiles arn

pageable mobiles in a hash map that maps unicast IP addresses
administered objects.

signaling

the protocol signaling.

tores
d ac-

cess points in the same MEP group and the Gateway Proxy stores the

to the

List that holds the handlers for UNIX signals. It has nothing to do with

managementinterface | The management interface is a TCP-socket-based interface used for

internal state information can be retrieved.

3.1.2 Methods

The following methods are present in all agents:

Main Methods

init

testing. With the management interface handover can be initiated and

Does the initialization of the agent (e.g. reading of configuration file, opening of sockets

etc.). Calls some helper methods to do so. See below for details.

run

Contains the main event loop. Waits until a message arrives at one of the watched

sockets (sockets in theockets group) or a timer expires. This is done by waiting

for a socket to become ready to read from and setting the timeout to the expiratioh time

of the next timer. The main message handiemdle _IncomingMessage) or the
handler of the expired timer is called respectively. If thieminating flag is set the
event loop will be canceled.

cleanup

Does the cleanup of the agent (closing of sockets etc.). Calls the helper methg
scribed below.

Handling of Messages

cated messages or read errors and dispatches the message to
propriate handler for this message type.

ds de-

handle_IncomingMessage| Main message handler and dispatcher. This method identifies the
type of message, reads the message, handles general errors like trun-

the ap-

handle_xxx Each message type has its own message handler that is called

main message handlaandle _IncomingMessage . This han-
dler usually is passed the message together with some context
mation such as the receiving interface, signal quality, etc.

The signal quality is supposed to have a value betvoesmmd 100 or
—1 if not supported. The signal quality can be used as a crite
of access point selection. To implement this a pre or post proc
ing policy handler for the message must be installed that is ab

by the
infor-
rion

teSS-
le to

retrieve the signal quality from the MAC layer.

Copyright at Technical University Berlin. All TKN-01-017 Page 1

Rights reserved.

0

TU BERLIN

sendxxx | Each message that can be sent by the agent has a corresponding send method. Message
fields that can not be filled in from internal fields of the agent are passed as arguments.

Handling of Timers Methods that are called on the expiration of a timer are set on the initialization
of the timer. One argument is passed to the timer method. This argument is also set with the timer.
This argument usually contains a pointer to an entity the timer is responsible for (e.g. a mobile host
entry).

xxXXExpire/xxxTimeout/xxxTimer | Timer methods either called in normal operation, usually to
maintain soft-state behavior or called in exceptional condi-
tions, e.g. when an expected message did not arrive in time.

3.1.3 Initialization and Cleanup Helper Methods

The following protected methods are called by eitindgr or cleanup :

readCmdLine Parses the command line and sets the appropriate flagsfiyg . Initial-
ization method that is called bit

readConfig Parses the config file and sets the appropriate variablamifig . Initial-
ization method that is called bgit

checkConfig Checks if the configuration is consistent. The validity of single configu-

ration options is already checkedreadConfig . This method checks
only the inter-operation between several configuration options. Initializa-
tion method that is called hipit

openSockets Creates and opens sockets that are necessary for the operation of the agent.
Initialization method that is called kipit

closeSockets Closes sockets used by the agent. Cleanup method that is called by
cleanup .

initRouting Configures routing. Initialization method that is callediby

restoreRouting Restores routing to the state before start of the agent. Cleanup method that

is called bycleanup
initSignalHandler | Initializes the UNIX signal handlers. Initialization method that is called by
init
resetDefaultValues| Sets default values for all members. Method that is called by the constructor
and bycleanup .

3.1.4 Policies

The handling of messages, selection of access point in the Mobile Agent, buffering and flushing
buffers can be fine-tuned by policies. A policy is represented by a template class
(MB2PolicyHandler , see below) that has methods for pre- and post-processing. The argument
and return types of the processing methods are template parameters.

Registration and de-registration methods for each type of policy handler are provided by the agent
class.

The policy handlers are stored in ordered lists (implemented as maps). In most cases multiple
handlers can be registered for one message. Two phases exist for message processing. Pre-processing

Copyright at Technical University Berlin. All TKN-01-017 Page 11

Rights reserved.

TU BERLIN

handlers are called before the standard message processing, post-processors are called afterwards.
The handlers are executed in the order of their preference until one of them returns a non-zero return
code. If the return code is negative the messages processing will be aborted.

The only exceptions to this rule are the SelectBS policy in the Mobile Agent and the buffer and
flush policies. Of these handlers only one may be registered and they have only one phase. The latter
two policy handlers are not represented by g2 PolicyHandler template but by own classes.

3.1.5 Management Interface

The management interface can be used to externally control handover and to retrieve internal state
information. This can be used for testing. The management interface provides a TCP server socket
on a configured port. This server accepts one single connection at a time. Text commands from
this connection are interpreted by a parser and replies are given in a text-based format. Commands
should be given to the interface in complete lines at a time. The connection should be closed only
with a close command. Valid commands are different for each agent and are discussed in the
corresponding agent specific sections.

Copyright at Technical University Berlin. All TKN-01-017 Page 12

Rights reserved.

TU BERLIN

3.2 Design of Mobile Agent

The design of the Mobile Agent can be seen in Big. Members that are common to the design of
all agents were already presented in the previous section. Access methods and the policy registry are
also omitted here.

3.2.1 Data Fields
state State of the mobile. Valid states are:

NONINITIALIZED The Mobile Agent has not been initialized, yet.

INITIALIZED,WAITAMEP The Mobile Agent is initialized and is waiting
foraMEP Advertisement

REGPENDING The Mobile Agent has no valid registration but has sent a eg-
istration message to a MEP for which a reply was not received, yet.

T
Y

ACTIVE The Mobile Agent is active and has a valid registration with a ME

INACTIVE The Mobile Agent is inactive and is not waiting folMEP Ad-
vertisement

active Set when the mobile is active. Needed to distinguish between active and inac-
tive mobiles when in stat&/AITAMEPR
wakeup_pipe UNIX pipe used as a communication channel between the main thread and the
idle thread. The idle thread writes a dummy value to the pipe on wakeup| The

wakeup trigger appears in the main thread like an external message.

waking_up The Mobile Agent should wake up but a valid registration could not be estab-
lished, yet.
last.id Identifier of the last seriH Registration Request

basestations Database of known access points hashed by their IP address.
registered bs Pointer to the entry of the access point we are registered at (if any). Only set in
stateACTIVE.

pending.reg Information about aMH Registration Requegbr which a MH Registration
Replyis expected, but was not received, yet. May be set in sta&EEVE
andPENDINGREG The info structure contains the message, a pointer to the
relatedBaseStationEntry and the sending timestamp.
reg_retry _count | When a reply to a registration was not received in time, we retry sending of the
request. This counts how many retries are left.
regreg.timeout | Timeout, within which a reply to a registration request should be received,

expired.

rereg_timer Timer expires when it is time to re-register at an access point to refresh| state
information. Usually one third of the registration lifetime.

reg_timer Timer expires when the lifetime of the current registration expires. Usually this

means that re-registrations failed.

Copyright at Technical University Berlin. All TKN-01-017 Page 13

Rights reserved.

TU BERLIN

default_route_saved

The default route was saved on initialization of the agent.

orig_default_route

Saved default route.

default_route

Current default route.

last_activity

Timestamp (in microseconds) of the last sent or received data packet.
for the purpose of idle detection.

Used

activity_mutex

Mutex® that protectdast _activity
and idle thread.

from concurrent access by mal

n

activity _timeout

Timer for checking of an idle condition.

idle_thread

Thread handle of the idle thread.

idle_thread_started

The idle thread was started, iidle _thread contains a valid handle.

Configuration

10de

1S not

ts.

N

iface Map of configured interfaces, indexed by the interface name.

paging enabled The Mobile Agent is pageable. Also used as a switch for inactive m
support.

broadcast The mobile host wants to receive broadcast packets. This feature wa
implemented due to lack of time.

predictive The mobile host wants to be pre-registered at neighboring access poir]

reg_port UDP port used for registration messages.

idle_timeout After how many seconds of no data activity should we go to idle mode?

managementport | TCP port of the management interface (zero if turned off.).

dummy_dev_name | Name of the dummy device.

dummy_dev MBZ2Interface object of the dummy device.

foreground Agent should run in foreground.

config file Name of the configuration file.

Interface The Interface

sented by théMB2Interface
preferred registration lifetime, timeout values and the sending of de-registrations are configured here,
as they may depend on the used technology (e.g. values optimal for wired connection via 100Mbps

structure augments the abstraction of network interfaces (as
class) with interface dependant configuration options. Note th

Ethernet may be different than optimal values for GSM).

handover policy to select an access point.

active_regtime

Preferred registration lifetime in seconds for active registrations on this inte
(can be limited by the maximum lifetime advertised by access points).

idle_regtime

Preferred registration lifetime in seconds for inactive registrations on this i
face.

repre-
at the

iface MB2lInterface object of the network interface.

force_addr IP address used for the interface. If none has been given this will be the first IP
address retrieved from the kernel.

preference Preference of the interface as set in the configuration file. Can be used by the

rface

nter-

3Mutual exclusion device used in multithreded environments. Protects shared data from concurrent modifications.

Copyright at Technical University Berlin. All

Rights reserved.

TKN-01-017

Page 14

TU BERLIN

regreg-timeout | Timeout within which aMH Registration Replyo an active registration is ex
pected. Otherwise thdH Registration Requess resent.

senddereg Set if the agent should try to send de-registration messages to access points at
this interface.

adv_socket ICMP socket for the reception MEP Advertisementsnd the sending dVIEP
Solicitations Bound only to this interface.

reg_socket UDP socket for sending dfiH Registration Requestsnd reception oMH

Registration ReplieandPaging Request8ound only to this interface.

Access Point Database Known access point (called base stations within the implementation) are
stored in a hash table that hashes them by their IP address. They are stoBasetsationEn-

try .

addr IP address of the access point. Different interfaces of the access point (passibly
with different technologies) have different IP addresses and are thus treated as
different access points.

registered This is the access point we are registered at.

busy This access point had the busy flag set in its last advertisement and thus does not
want to receive new advertisements.

stale This access point reacted strange previously and thus should be avoided. Anjaccess
point with this flag will time out even if a refreshing advertisement is received.

quality Signal quality of the last received advertisement-arif not supported.

adv_segno | Sequence number of the last received advertisement.
adv_lifetime | Lifetime of the last received advertisement.
maxregtime | Maximum lifetime for registrations as advertised.
adv_flags Flags in the last received advertisement.

timer Expiry timer for this entry.

3.2.2 Methods

Message Handlers

handle MEP _Advert Handler forMEP AdvertisementsThis handler is passed an info stryc-
ture that contains the raw packet, a pointer to the receiving interface and
the signal quality. On entry of the post-processing handlers it contains
also a pointer to the correspondirBaseStationEntry . The signal
guality must be filled in by a policy handler. The handler updates the
access point (i.e. base station) database.
handle MH _RegReply | Handler forMH Registration RepliesThe passed info structure cop-
tains the message, the receiving interface, signal quality and access
point address and port.
handle_PagingReq Handler forPaging Requesthat is passed the message and the regeiv-
ing interface. The handler triggers the wakeup procedure.

Copyright at Technical University Berlin. All TKN-01-017 Page 15

Rights reserved.

TU BERLIN

Sending of Messages

send MEP _Solicit | Sends aMEP Solicitationon the given interface.
sendMH _RegReq| Sends a registration or de-registration to the given access point.

Mobile-specific Methods

selectBS| Returns the access point that should be used for the next registration. Calls either the
corresponding policy handler or returns the first feasible access point.
wakeup | Wakes up from idle mode. Sends an active registration to a suitable access point.
goldle Switches to idle mode. Send inactive registration, de-register and cancel pending reg-
istration if applicable.

Initialization and Cleanup

startldleThread | Starts the idle thread. The purpose of the idle thread is described below.
stopldleThread | Stops the idle thread.

Handling of Timers

baseExpire Called when an base station entry expires. A pointer to the entry is passed.

regreqTimeout | Called when an expected registration reply did not arrive in time.

regTimeout Called when the registration at the current access point expires. Usually the
registration should be refreshed by the next timer.

reregExpire Called when it is time to refresh the current registration.

activityTimeout | Called when it is time to check for an idle condition.

Idle Thread

idleThread Static method that constitutes the main method of the idle thread (see next
section).

idleThreadCleanup | Cleanup for the idle thread.
getAddrFromIPH Function that extracts the destination address from the IP header when
flushing buffers.

3.2.3 Idle Detection

One essential property of the mobile host is the distinction between active and inactive mode. The
mobile host has to switch from active to inactive mode after a configurable idle period (no IP data
traffic). The idle detection works as follows:

A packet socket, which receives all incoming and outgoing packets of the host, is opened. A
socket filter, which only accepts IP data packets but rejects non-IP, signaling and broadcast packets,
is attached to the socket. In active mode the so-called idle thread does nothing than observing the
packet socket and recording the timestamp of the last data packet. The main thread sets a timer to
the duration of the activity timeout. When the timer expires, the timestamp of the last data packet is

Copyright at Technical University Berlin. All TKN-01-017 Page 16

Rights reserved.

TU BERLIN

checked. If it lies within the last timer period the timer will be prolongated, otherwise the mobile host
will switch to inactive mode. The change from inactive to active mode is triggered by the reception

of an incoming or outgoing packet by the idle thread or bAGINGREQUEST In the case of
outgoing data the packets are buffered by the idle thread until a valid registration at an access point
can be obtained. To cause outgoing packets to appear on the idle socket but not be sent out on an
interface a dummy device is used, a software network device which discards any packets. In inactive
mode the default route points to this device.

3.2.4 Management Interface

The management interface of the Mobile Agent understands the following commands. For the syntax
see the paragraph &iB2Parser . Note that the management interface will collide with idle detec-
tion if TCP packets are fragmented. This will usually not be the case if client and server are on the
same link or if path MTU discovery is performed.

handover Triggers a handover. The optional argument denotes the address of the
access point to handover to.

getState Prints the current state as symbolic state name, value of the active and
wakeup flags (0/1).

getBaseStation Prints the access point with the given address or a table of all knowh ac-

cess points finished bynd in the following format: IP address, registered
flag, busy flag, stale flag (0/1), quality, interface name, sequence number,
lifetime, maximum registration time, flags and expiry time in sec,usec
getRegBaseStation| Prints the access point we are registered at in the same format.
getPendingReg Prints the pending registration as a comma separated list of the follow-
ing fields: access point address, flags, lifetime, extended flags, identifier
(high,low), sending time (sec,usec).
getRegRetryCount | Get the registration retry counter.

getRegTimer Get the expiry time ofegtimer as sec,usec.
getRegReqTimeout| Get the expiry time ofegreqtimeout as sec,usec.
getReregTimer Get the expiry time of theeregtimer as sec,usec.
getActivityTimeout | Get the expiry time of thactivitytimeout as sec,usec.
getLastActivity Get the timestamp of the last activity as sec,usec.

close Close the connection.

terminate Shutdown the agent.

reset Shutdown and restart the agent.

Copyright at Technical University Berlin. All TKN-01-017 Page 17

Rights reserved.

TU BERLIN

MA_Mobile] MA_Mobile::Config
state: State ‘—f» # paging_enabled
active: bool CONNG | 4 proadcast
waking_up: bool # predictive
last_id: MH_Regldent # reg_port
pending_reg: MH_RegReqInfo # idle_timeout
reg_retry_count: int # management_port
regreg_timeout: Timers::Handle # dummy_dev_name
rereg_timer: Timers::Handle
reg_timer: Timers::Handle # foreground
default_route_saved: bool # config_file
last_activity: int64_t Confi
activity_mutex: pthread_mutex_t + Coniig
activity_timeout: Timers::Handle * getXxX
idle_thread: pthread_t
idle_thread_started: bool
dummy_devy 1
#MA_Mobile MB2_Interface
+~MA_Mobile iface_1
+ handle_MEP_Advert ifaceLl..*
+ handle_MH_RegReply -
+ handle_PagingReq MA_Mobile::Interface
+ force_addr
+ send_MEP_Solicit + preference
+ send_MH_RegReq + active_regtime
+ idle_regtime
+ selectBS + regreq_timeout iface
+ wakeup + send_dereg 1
+ goldie + Interface
+ ~Interface
startldleThread + print
stopldleThread
printBasestations adv_socket/ reg_socke3l
baseExpire MB2_ICMP_Socket MB2_UDP_Socket
regreqTimeout
regTimeout 1 [vB2 Pipe
rer(_egExplre wakeup_pipe —
activityTimeout
S !dIeThread . MA_Mobile::BaseStationEntry
$# idleThreadCleanup basestations :
$# getAddrFromIPH 01|t addr: uint32_t
- . b + registered: bool
registered_bs| busy: bool
‘ + stale: bool

+ quality: int8_t

+ adv_seqno: uintl6_t
+ adv_lifetime: uint16_t
+ maxregtime: uint16_t
+ adv_flags: uint16_t

+ timer: Timers::Handle

orig_default_route ¥0..1 default_route y1
MB2_Route

+ BaseStationEntry
+ print

Figure 3.2:Class diagram: Design of the Mobile Agent

Copyright at Technical University Berlin. All 01-
Rights reserved. TKN-01-017

Page 18

TU BERLIN

3.3 Design of Mobility Enabling Proxy

3.3.1 Data Fields

initialized

The agent is initialized.

direct_mobiles

Number of directly registered mobiles. The total number of mobiles ca
retrieved from the mobile database. The number of indirectly registere
be calculated from this.

predictive_mobiles

Number of directly registered mobiles that wish to be pre-registered at
access points. Used for sendingIEP Advertisements

. hat_route Network route that translates multicast addresses to unicast addres
mobile hosts.
blackhole Network route to the (sub)network of mobile hosts that prevent packet

mobiles that are not directly registered from being forwarded. Each dir
registered mobile has its own host route.

old_netroute_saved

The original route to the mobile network was saved.

old_netroute

The original network route.

mobiles

Database of known mobiles hashed by their unicast IP address. Th
biles are either directly registered withH Registration Requesty pre-
registered witHMEP Advertisementisom other access points.

n be

d can

other

ses of

s for
pctly

e MOo-

otherBaseStations | Database of known other access points hashed by their IP address| Col-
lected throughtMEP Advertisements
Configuration

upstream Configuration of the upstream interface.

downstream Map of downstream interfaces, indexed by their names.

sendpaging.updates | Paging Updateshould be sent to the gateway proxy.

paging_proxy IP address and port of the gateway proxy.

mobile_uc Unicast address range of the mobile hosts.

mobile_mc Multicast address range of the mobile hosts.

mobile_mask Address mask for the address ranges.

mobile_mask len Length of the address mask.

tunnel_type Is the data transported via NAT to/from multicast or via encapsulatign in
multicast packets. Only NAT is implemented.

reg_port Registration UDP port number.

imep_port UDP port forIMEP Advertisements

managementport TCP port of the management interface (zero if turned off).

paging.area count Number of paging areas this MEP is member of.

paging area Multicast groups for paging areas. The first is the paging area we report
as location for directly registered mobiles to the gateway proxy.

mep_group_count Number of MEP groups this MEP belongs to including the one, we are
only sending to.

mep_group Multicast groups for MEP groups. The first one is the group centered
around us, i.e. the one this MEP is only sending to.

Copyright at Technical University Berlin. All TKN-01-017 Page 19

Rights reserved.

TU BERLIN

max_direct_mobiles

Maximum allowed number of directly registered mobiles.

max_indirect_mobiles

Maximum allowed number of indirectly registered mobiles.

mobile_threshold

Not used.

max_regtime Maximum accepted registration time in seconds.
mobile_buffer _size Size of mobile buffers in bytes.

foreground Agent should run in foreground.

config file Name of the configuration file.

US.Interface This structure augments the interface object for the upstream interface with configu-

ration data.

iface MB2lInterface object of the network interface.

force_addr IP address that should be used for the interface. If none has been given this
will be the first IP address retrieved from the kernel.

imep_interval Interval betweenMEP Advertisementthis agent sends in seconds.

imep_lifetime Lifetime of sentiMEP Advertisements

imep_adv_timer Timer for the regular sending MEP Advertisements

imep_seqno Sequence number of the néMEP Advertisements

imep_socket Socket for sending and receptitMEP Advertisements

shared.imep_socket | Do we share themep _socket with a registration socket? Not supported
in this version.

Interface TheInterface
(as represented by tivB2Interface

structure augments the abstraction of downstream network interfaces
class) with interface dependant configuration options. Note

that the advertisement interval and lifetime are configured here, as they may depend on the used
technology (e.g. values optimal for wired connection via 100Mbps Ethernet may be different than
optimal values for GSM).

iface MB2Interface object of the network interface.

force_addr IP address that should be used for the interface. If none has been given this will be
the first IP address retrieved from the kernel.

adv_interval | Interval between setMEP Advertisemenis microseconds.

adv_lifetime | Lifetime for sentMEP Advertisemenis microseconds.

adv_timer Timer for the regular sending MEP Advertisements

adv_segno | Sequence number of the next advertisement.

Bound

adv_socket | Socket for sending oMEP Advertisementand reception oMEP Solicitations

only to this interface.

reg_.socket | Socket for reception diH Registration Requestsending of replies anBaging
RequestsBound only to this interface.

Copyright at Technical University Berlin.
Rights reserved.

Al TKN-01-017

Page 20

TU BERLIN

MEP_BaseStation

initialized: bool

direct_mobiles: unsigned

predictive_mobiles: unsigned
old_netroute_saved

MEP_BaseStation
+ ~MEP_BaseStation

+ handle_MH_RegReq
+ handle_MEP_Solicit
+ handle_IMEP_Advert
+ handle_PagingReq

+ send_MEP_Advert
+ send_MH_RegReply
+ send_IMEP_Advert
+ send_PagingUpdate

+ insertMobileExpiry
+ bufferPolicy
+ flushPolicy

joinPermanentChannels
leavePermanentChannels
initAdvert

printMobiles

advertTimer

imepAdvTimer
mobileExpire

otherBaseExpire

MEP_BaseStation::Config

config

mobile_uc
mobile_mc

tunnel_type
reg_port
imep_port

foreground
config_file

send_paging_updates
paging_proxy

mobile_mask
mobile_mask_len

management_port

paging_area_count

mep_group_count

max_direct_mobiles
max_indirect_mobiles
mobile_threshold

max_regtime

mobile_buffer_size

+ Config
+ ~Config
+ getXXX

1“*

MB2_MC_Channel

MEP_BaseStation::Interface 1.

*

1?nat_route Jblackhole lyold_netroute

MB2_Route

mep_group
*

“paging_area

downstream

MEP_BaseStation::US_Interface

* | mobiles

MEP_BaseStation::MobileEntry

otherBaseStations

MA_Mobile::BaseStationEntry

+ addr: uint32_t

+ seqno: uintl6_t

+ holdtime: uint16_t

+ mobiles: set of uint32_t
+ timer: Timer::Handle

+ BaseStationEntry
+ ~BaseStationEntry
+ print

+ force_addr

+ imep_interval

+ imep_lifetime

+ imep_adv_timer

+ imep_seqno

+ shared_imep_socket

+ US_Interface
+ ~US_Interface
+ print

4

MB2_Interface

iface

1
MB2_UDP_Socket

upstream

] imep_socket

Figure 3.3:Class diagram: Design of the Mobility Enabling Proxy (1)

Copyright at Technical University Berlin. All

Rights reserved.

TKN-01-017

Page 21

TU BERLIN

MEP_BaseStation 1 *_| MEP_BaseStation::MobileEntry
11 bs mobiles | # addr: uint32_t
is_direct: bool
- 0.1 1 # registerer: uint32_t
MEP_BaseStation # buffer_mutex: pthread_mutex_t
::MobileEntry::BufferContext | buffer mh
+ buffer_thread: pthread_t # hwe.‘ddr: HwAddr_t
+ flush_thread: pthread_t # I|fet|r.ne:.umt16_t
+ flush_dest: uint32_t # quallty:_lntS_t
flags: uint8_t
’ ’ # ext_flags: uint32_t
#id: MH_Regldent
timer: Timers::Handle
LI MB2_SocketGroup
group + MobileEntry
+ ~MobileEntry
1 + isPredictive
SOCO elt MB2_RawlIP_Socket + print
flush_socket + startBufferThread
+ stopBufferThread
0..1 | MB2_Buffer
data + newDirectMobile
+ updateDirectMobile
+ newlndirectMobile
MB2_MC_Channel 1 + updatelndirectMobile
channel + mobilelndirect2Direct
+ mobileDirect2Indirect
+ removeMobile
MB2_Route e
route # enableForwarding
disableForwarding
MEP_BaseStation::Interface 9.1 $# bufferThread
+ force_addr: uint32_t iface $# bufferThreadCleanup
+ adv_interval: uint16_t $# flushThread
+ adv_lifetime: uint16_t $# flushThreadCleanup
+ adv_timer: Timers::Handle
+ adv_seqno: uintl6_t 1 [MB2 Interface
+ Interface iface
+ ~Interface
+ print L/ MB2_UDP_Socket
? reg_socket
LIMB2_IcCMP_Socket
adv_socket

Figure 3.4:Class diagram: Design of the Mobility Enabling Proxy (2)

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017

Page 22

TU BERLIN

Mobile Database The mobile database, unlike the access point database, contains active objects (of
classMobileEntry) not passive data structures. The updating of entries, buffering etc. is done by
the entry objects itself.

Data Fields

addr Unicast IP address of the mobile host.

bs Back pointer to the enclosing agent.

is_direct This mobile is directly registered.

registerer If a valid indirect registration exists this will contain the IP address of the regis-
tering MEP.

buffer Context information (including the buffer itself) for the buffer thread.

buffer _mutex | Mutex for concurrent access to the buffer context.

channel Multicast group for this mobile.

route Host route to this mobile host.

hwaddr Hardware (i.e. MAC) address of the mobile host. Not implemented.

iface Interface from which a direct registration was received.

lifetime Lifetime of the direct registration in seconds.

quality Signal quality of the direct registration (if supported and set by a policy handler).

flags Flags of the last direct registration.

ext flags Extended flags of the last direct registration.

id Identifier of the last direct registration.

timer Expiry timer for this entry if the mobile has been directly registered. Otherwise
this entry will be controlled by the access point entry of the registering MEP

Housekeeping Methods

is_predictive Checks if the mobile is a directly registered one that wishes to be|pre-
registered at other MEPs.

newDirectMobile Initializes the entry with data from thielH Registration Requesen-
ables forwarding to the last hop and subscribes to the mobile’s multicast
channel.

updateDirectMobile Updates the entry with data from thMH Registration Request

newlndirectMobile Initializes the entry for an indirectly registered mobile, starts the byffer

thread and joins the multicast group.
updatelndirectMobile | Updates the registerer of this entry.

mobilelndirect2Direct | Turns the indirect mobile into a direct one. Enables forwarding to| the
last hop, stops buffering and starts flushing.
mobileDirect2Indirect | Turns the direct mobile into an indirect one. Disables forwarding and
starts buffering.
removeMobile Prepares the removal of this mobile entry by disabling forwarding for
direct mobiles, stopping buffering for indirect ones and un-subscribing
from the multicast channel.

Copyright at Technical University Berlin. All TKN-01-017 Page 23

Rights reserved.

TU BERLIN

Support Methods

enableForwarding

Enables forwarding to the mobile host by setting a host route to the last hop

overriding the network blackhole route.

disableForwarding

Disables forwarding by removing the host route. Thus the blackhole

net-

work route for the mobile subnetwork causes the packets to vanish in this

host. However the raw sockets feeding the buffers still get the packets.

Buffering When a mobile is registered indirectly by another MEP, packets for the mobile are
buffered by this MEP to reduce loss of packets when the mobile does a handover to this MEP. Each
mobile entry has its own buffer, its own raw socket and its own buffer thread. The socket is attached a
filter only accepting packets for this mobile. The buffer thread runs in an infinite loop and is canceled
from the main thread either when the mobile entry becomes invalid or the mobile becomes directly
registered. In the latter case a flush thread is started to forward buffered data to the mobile host.

BufferContext
bs Pointer to the agent instance.
mh Pointer to the embedding mobile entry.
group Socket group. Contains only one socket. This is a bug workaround.
socket Raw IP socket for the data to be buffered.
buffer _thread | Handle for the buffer thread.
data The ring buffer.
flush_thread | Handle for the flush thread.
flush_dest Destination for the flushed packets (the mobile’s unicast IP address).
flush_socket | Raw IP socket for flushing the buffer to the mobile host.

Buffer related Methods

startBufferThread | Starts buffering of data for the mobile host. The buffer context and the
buffer are allocated and a raw socket is opened.
stopBufferThread | Stops the buffering for the mobile host. Either the flushing thread is started

(this is the case, when a pre-registered mobile registers directly) or the
buffer content is discarded and memory freed (this happens when the|inac-
tive registration becomes invalid, because either the entry of the registering
MEP expires or the mobile does not appear in the IMEP Advertisements of

the registerer anymore).

Copyright at Technical University Berlin. All TKN-01-017 Page 2

Rights reserved.

4

TU BERLIN

bufferThread

The buffer thread. This is a static method, however, a buffer th
is created for each indirect mobile. It is passeBudferContext
structure including a pointer to the mobile for which to buffer. Sinc

read

eit

works only on this structure it can be seen as a logical member of this

structure. Runs in an infinite loop unless canceled by the main th
Reads data for the mobile host from the raw IP socket and writes
the ring buffer. Whether a packet should be buffered can be contr
by the buffer policy which operates on the IP header.

read.
it to
olled

bufferThreadCleanup

Cleanup method for the buffer thread called on its cancellation.

flushThread

The flush thread. The same facts as for the buffer thread apply.

The

flush thread translates the buffered packets to unicast, and forwards them

to the mobile. This can also be controlled by a policy e.g. to a

oid

forwarding of aged packets. The flush thread terminates when flushing

is finished.

flushThreadCleanup

Cleanup method for the flush thread.

Access Point Database

addr IP address of the access point.

seqgno Sequence number of the last received IMEP advertisement.

holdtime | Lifetime of the last received IMEP advertisement.

mobiles | Set of the unicast IP addresses of the advertised mobiles in the last IMEP advertise-
ment. Used to check which mobiles to remove and to add on a new advertisement.

timer Expiry timer for this entry.

3.3.2 Methods

Message Handlers

handle.MH _RegReq

Handler forMH Registration Request<Lreates or updates mobile e
tries (or removes them in the case of de-registrations or inactive reg
tions), joins the multicast group if appropriate, send2aging Update

n_
istra-

for inactive mobiles. The handler is passed an info structure that contains

context information about the message, such as the receiving inte
signal quality (if filled in by a policy handler) etc.

rface,

handle. MEP _Solicit

Handler forMEP Solicitations Schedule the sending of MEP Ad-
vertisemenion the receiving interface. The advertisement is not §
instantly to avoid synchronizing effects with other MEPSs.

sent

handle_IMEP _Advert

Handler for Inter-MEP Advertisements Updates the access poi
database, removes old mobiles from the mobile database and inser
ones. Calculates the difference set of the mobile addresses in the |3
vertisement and those in the current advertisements to do so.

nt
IS new
st ad-

handle_PagingReq

Handler forPaging RequestsForwards the request to all downstreg
interfaces.

AM

Copyright at Technical University Berlin. All

Rights reserved.

TKN-01-017 Page 2

5

TU BERLIN

Sending of Messages

send MEP _Advert

Sends aMEP Advertisementin the given interface.

sendMH _RegReply

Sends aMH Registration Replyith a given code that is a reply to th
passed request.

sendIMEP _Advert

Sends anMEP Advertisemenwith the given holdtime (i.e. lifetime).

send PagingUpdate

Sends &Paging Updatefor the given mobile host to the gateway pro
The identifier of the triggerind/lH Registration Requesind the lifetime
of this update are also passed as arguments.

MEP-specific Methods

y.

insertMobileExpiry | Inserts an expiry timer for a mobile entry into the timer list.
bufferPolicy Calls the buffer policy handler if one exists. The handler is passed the IP
header of the packet in question. It controls whether the packet should be
buffered. If no policy handler is installed, all packets will be accepted
flushPolicy Calls the flush policy handler if one exists. The handler is passed the re-
ception timestamp and the IP header of the packet in question and controls
whether the packet should be forwarded to the mobile or discarded, All
packet will be forwarded if no policy handler is installed.
Initialization and Cleanup
joinPermanentChannels | Joins the permanent multicast groups such as the paging areas and
the MEP groups.
leavePermanentChannelg Leaves the permanent multicast groups.
initAdvert Schedule the sending of the fildEP Advertisementsn the down-
stream interfaces and of the fitMEP AdvertisementThe sending
times are randomized to avoid synchronization effects.
Handling of Timers
advertTimer It is time to send aMEP Advertisemenbn a certain interface. A new timer
is set. Although the advertisements are send frequently, the exact time is
randomized to avoid synchronization effects.
imepAdvTimer Itis time to send a neWMEP AdvertisementA new timer is set which is also
randomized.
mobileExpire A direct mobile entry expired. The entry will either be removed or turned jnto
an indirect entry if there is an indirect registerer.
otherBaseExpire | The entry of an access point expired. This entry and the mobile entries |of all
mobiles indirectly registered by this access point are deleted.

Copyright at Technical University Berlin.

Rights reserved.

Al TKN-01-017 Page 26

TU BERLIN

3.3.3 Management Interface

The management interface of the Mobility Enabling Proxy understands the following commands. For
the syntax see the paragraphMB2Parser .

getState Prints whether the agent was initialized (0/1).

getMobile Prints the entry of the mobile with the given address or a table of all known
mobiles finished byend in the following format: unicast IP address, direct
flag, interface name, lifetime, quality, flags, extended flags, registration id
(high,low), expiration time (sec,usec) and IP address of registerer.

getBaseStation | Prints the access point with the given address or a table of all known access

points finished bend in the following format: IP address, sequence number,
holdtime, number of advertised mobiles and expiry time in sec,usec.

getDirectMobiles

Prints the number of directly registered mobiles.

getPredMobiles

Prints the number of directly registered mobiles that want to be pre-registered
at other MEPs.

close Close the connection.
terminate Shutdown the agent.
reset Shutdown and restart the agent.

Copyright at Technical University Berlin. All TKN-01-017 Page 27

Rights reserved.

TU BERLIN

3.4 Design of Gateway Proxy

3.4.1 Data Fields

initialized

The agent is initialized.

paging_socket

Special raw IP socket that forms the connection of the agent to the k
support and used to control it. The packets that have to be buffered d
paging are sent up by the kernel through this socket.

ernel
uring

flush_socket

Netlink socket that forms the connection to tethertapdevice. Used for
flushing of buffers towards the mobile hosts and for sendingagfing Re-
quests

nat_route

Network route that translates unicast addresses to multicast addres
mobile hosts.

ses of

old_netroute_saved

The original route to the mobile network was saved.

old_netroute

The original network route.

mobiles

Database of known mobiles hashed by their unicast IP address. The m
are reported by the MEPs wittaging Updates

obiles

last_paging seqno

Sequence number used for the IBaging Requests

Configuration

upstream Configuration of the upstream interface.

downstream Map of downstream interfaces, indexed by their names.

mobile_uc Unicast address range of the mobile hosts.

mobile_mc Multicast address range of the mobile hosts.

mobile_mask Address mask for the address ranges.

mobile_mask.len Length of the address mask.

tunnel_type Is the data transported via NAT to/from multicast or via encapsulation
in multicast packets. Only NAT is implemented.

paging_port UDP port number used for paging.

managementport TCP port of the management interface (zero if turned off).

paging.source

IP address used as the sourceHaging RequestdMust be on thé&ther-
tap network.

paging areas

Multicast address range of paging areas.

paging.areasmask

IP Mask for paging areas.

paging.areasmasklen

Mask length for paging areas.

max_mobiles

Maximum number of mobile entries.

max_cachetime

Maximum time in seconds that a cache entry may exist without b
refreshed (i.e. the maximum lifetime of the paging table entries).

eing

mobile_buffer _size

Size of mobile buffers in bytes.

ethertap_unit

Unit number for the useBthertapdevice (e.g. 1 for “tapl”).

ethertap_name

Name of the Ethertap device (e.g. “tapl”).

ethertap_dev

MBZ2Interface object for the Ethertap device.

foreground

Agent should run in foreground.

config file

Name of the configuration file.

Copyright at Technical University Berlin. All

Rights reserved.

TKN-01-017 Page 2

8

TU BERLIN

GWP_Gateway

initialized: bool
old_net_route_saved: bool
last_paging_seqno: uint1l6_t

GWP_Gateway
+ ~GWP_Gateway

+ handle_PagingSocket
+ handle_PagingUpdate

+ send_PagingReq
+ insertMobileExpiry
+ insertPagingExpiry
+ bufferPolicy

+ flushPolicy

printMobiles

mobileExpire
pagingExpire

awal

mobiles | *

GWP_Gateway::MobileEntry

MB2_PagingSocket 1 -
paging
_socket
MB2_Ethertap 1
flush_socket

1

MB2_Route

nat_route
1=

old_netroute

MB2_UDP_Socket

1

|

GWP_Gateway::Config

mobile_uc

mobile_mc

mobile_mask

mobile_mask_len

tunnel_type

paging_port

paging_source

management_port
paging_areas

paging_areas_mask
paging_areas_masklen
max_mobiles

max_cachetime

mobile_buffer_size
ethertap_unit

ethertap_name

config

foreground

config_file

+ Config

+ getXXX
GWP_Gateway::US_Interface |1
+ force_addr upstream
+ print

iface y 1
MB2_Interface L

ethertap_dev

iface # 1

*

GWP_Gateway::Interface

+ force_addr downstream

upd_socket PN

+ Interface
+ ~Interface
+ print

Figure 3.5:Class diagram: Design of Gateway Proxy (1)

Copyright at Technical University Berlin. All

Rights reserved.

TKN-01-017

Page 29

TU BERLIN

GWP_Gateway

GWP_Gateway::Interface

GWP_Gateway::MobileEntry

MB2_Buffer

® gw mobiles
1 *
iface
1
buffer PN
0.1

addr: uint32_t

location: uint32_t

lifetime: uint16_t

#id: MH_Regldent

timer: Timers::Handle

deleted: bool

paging: bool

paging_finish: bool

paging_timer: Timers::Handle
buffer_mutex: pthread_mutex_t
flush_thread: pthread_t

flushing: bool

+ MobileEntry
+ ~MobileEntry

+ updateMobile
+ newMobile
+ removeMobile

+ pagingAbort

+ handlePagingReport
+ startFlushThread

+ print

$# flushThread
$# flushThreadCleanup
$# insertEthertapHeader

Figure 3.6:Class diagram: Design of Gateway Proxy (2)

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017

Page 30

TU BERLIN

US.Interface This structure augments the interface object for the upstream interface with configu-

ration data.
iface MBZ2Interface object of the network interface.
force_addr | IP address that should be used for the interface. If none has been given this

the first IP address retrieved from the kernel.

Interface The Interface
(as represented by tidB2Interface

class) with interface dependant configuration options.

iface MB2Interface object of the network interface.

force_addr | IP address that should be used for the interface. If none has been given this
the first IP address retrieved from the kernel.

upd_socket | Socket for the reception ¢faging UpdatesBound only to this interface.

will be

structure augments the abstraction of downstream network interfaces

will be

Mobile Database The mobile database contains active objects not passive data structures. The
updating of entries, buffering, handling of paging messages from the kernel etc. is done by the entry

objects itself.

Data Fields
gw Back pointer to the enclosing agent.
addr Unicast IP address of the mobile host.
location Multicast address of the paging area reported in theRaging Updateas the
location of the mobile host.
iface Interface from which the lagaging Updatevas received.
lifetime Lifetime of the lastPaging Update
id Registration identifier of the laflaging Update Used to detect reordering.
timer Expiry timer of this entry.
deleted The entry is not valid anymore. The entry is not deleted instantly to deteg

ordering ofPaging Updates

ot re-

1

2rnel

ernel

paging Paging for this mobile is just in progress, i.ePaging Requesivas sent but 3
Paging Updatesvith lifetime zero was not received, yet.

pagingfinish | We are in the finishing phase of the paging for this mobile, i.ePggng Updates
with lifetime zero was received and we are now waiting for a report by the ke
that the multicast group corresponding to the mobile becomes existent.

paging.timer | Timer that is kept running during the paging process and expires when the
does not send a refresh message.

buffer Buffer for packets for the mobile host that are buffered during the paging ph

ase.

buffer _mutex

Mutex used to synchronize the flush thread with the main thread on destr
of the mobile entry.

Iction

flush_thread

Thread handle of the corresponding flush thread.

flushing

Just flushing the buffer. Only if this is true there will be a flush thread.

Copyright at Technical University Berlin. All

Rights reserved.

TKN-01-017 Page 3

1

TU BERLIN

Housekeeping Methods

[¢)

newMobile Initializes the entry with data from tHeaging Updateand potentially deletes th
corresponding entry in the kernel Multicast Forwarding Cache.
updateMobile | Updates the entry with data from tRaging Update

removeMobile | Prepares the removal of this mobile entry.

Support Methods

pagingAbort Called when paging was aborted.
handlePagingReport| Handler for kernel paging reports concerning this mobile. Starts and stops
paging, buffers data for this mobile and starts the flushing thread.

Buffering During paging of a mobile it is not yet reachable and its exact position is not yet
known. Thus the data for the mobile has to be buffered in the gateway proxy. Each mobile entry has
its own buffer but unless the MEP all data packets arrive through one special raw socket, the paging
socket. Moreover, buffering is done by the main thread. This is acceptable because the time period for
which buffering is necessary is relatively short and so buffering will not be necessary for a lot mobile
hosts at the same time. As in the MEP flushing is done by a separate thread to avoid interruption of
message processing.

Buffer related Methods

startFlushThread Starts the flushing thread for the buffered data packets.
flushThread The flush thread is a static method that is passed a pointer to the corre-
sponding mobile entry as an argument. Thus is can be logically treated
as a non-static method. The flush thread insertEthertapheader to
each packet and forwards it to the mobile host through the multjcast
channel. Flushing can be controlled by a flush policy.
flushThreadCleanup | Cleanup method for the flush thread.

insertEthertapHeader | Static method that does the insertionkthertapheaders for the flush
thread. The necessary room for the header is reserved on the buffering
of the packet.

3.4.2 Methods

Message Handlers

handle_PagingSocket | Handler for kernel reports from the paging socket. Checks whether a
corresponding mobile entry exists and either dispatches the report to this
entry or reports failure to the kernel.
handle_PagingUpdate | Handler forPaging Updatemessages. Creates and updates the corre-
sponding mobile entry in the mobile database.

Copyright at Technical University Berlin. All TKN-01-017 Page 32

Rights reserved.

TU BERLIN

Sending of Messages

] sendPagingReq \ Sends a paging request for the given mobile host to the given paging aréa.

Gateway-Specific Methods

insertMobileExpiry | Inserts an expiry timer for a mobile entry into the timer list.
insertPagingExpiry | Inserts an expiry timer for the paging process of a mobile into the timer
list.
bufferPolicy Calls the buffer policy handler if one exists. The handler is passed the IP
header of the packet in question. It controls whether the packet should be
buffered. If no policy handler is installed, all packets will be accepted
flushPolicy Calls the flush policy handler if one exists. The handler is passed the re-
ception timestamp and the IP header of the packet in question and cantrols
whether the packet should be forwarded to the mobile or discarded, All

packet will be forwarded if no policy handler is installed.

Handling of Timers

mobileExpire | The lifetime of a mobile entry expired. The entry is removed unless we are paging
or flushing. In this case the entry is prolongated until paging or flushing finishes.
pagingExpire | The paging process timed out.

3.4.3 Sending of Multicast Packets

PAGING REQUESTsnNd buffered packets are multicast packets originating from the gateway, which

is also a multicast router. Under Linux, sending of multicast packets from a multicast router is treated
as if the router acted as a normal end system. On sending you have to specify a single interface on
which a multicast packet should leave the host. In our case it is however desired that multicast packets
are fed into the multicast routing mechanism the same way as forwarded packets are. This is achieved
by a trick:

The Ethertapdevice, a software network device simulating an Ethernet adapter, is used. Every-
thing that is written into a special socket from user space appears in the kernel as if it was received
from the Ethertapnetwork device. Everything that is sent to tBéhertapdevice appears on the
socket. Only small modifications were necessary to allow an MTU of up to 65535 bytes (to avoid
useless fragmentation) and to enforce acceptance of packetEtimrtap which were originally
expected from another interface.

This could better be achieved by divert sockets (see &é&cl for details). Unfortunately when |
discovered the concept of divert sockets and their working implementation for Linux the agents had
already been implemented.

Copyright at Technical University Berlin. All TKN-01-017 Page 33

Rights reserved.

TU BERLIN

3.4.4 Paging

Paging is done partly in the Gateway Proxy and partly in the kernel. The paging process from the
view of the kernel is described in S&2. This section discusses only the user space part:

1. The agent receivesMFCPAGINGCHECKeport through the paging socket.
(a) If a corresponding mobile entry exists it will do the further processing. It seRdgiag
Requesand notifies the kernel that paging has started.
(b) Otherwise this will be reported to the kernel and the packets will be treated like normal
multicast packets.

2. From now on packets for the mobile host are send up to the agent through the paging socket and
are buffered here. Packets to be buffered can be distinguished from kernel reports by having an
non-zero protocol field (unless the kernel reports).

3. When aPaging Updatewith lifetime zero is received for the mobile host the kernel is notified
that paging has finished. The kernel waits now for the corresponding multicast group to become
existent.

4. This (or the failure) is reported by the kernel.

(a) In the first case flushing is started.
(b) Inthe second case the buffer is freed.

3.4.5 Management Interface

The management interface of the Gateway Proxy understands the following commands. For the
syntax see the paragraph bfB2Parser .

getState Prints whether the agent was initialized (0/1).
getMobile Prints the entry of the mobile with the given address or a table of all known
mobiles finished bynd in the following format: unicast IP address, deleted
flag, paging area address, interface name, lifetime, registration id (high,low),
expiration time (sec,usec), paging flag, pagimish flag and flushing flag.
getPagingSeqna| Prints the last paging sequence number.

close Close the connection.
terminate Shutdown the agent.
reset Shutdown and restart the agent.

3.5 Support Code

3.5.1 MB2Socket Hierarchy

The access to network sockets is encapsulated by socket classes. The different types of sockets
form a hierarchy of classes that inherit from the abstMB2Socket class (see Fig3.7). All
sockets provide methods for opening, closing, reading, writing and querying about the amount of

Copyright at Technical University Berlin. All TKN-01-017 Page 34

Rights reserved.

TU BERLIN

data available for reading. The most sockets can be passed certain flags on opening that depend on
the type of the socket. Some sockets provide additional type-specific operations. Special features or
implementation details of some socket types are discussed in the following paragraphs.

MB2_Socket

MB2_NonSocket
AN

MB2_RealSocket
VANIVANIIVAN
MB2_Pipe ‘ MB2_Ethertap MB2_IP_Socket MB2_LinkSocket ‘

‘ MBZ_RaWIP_Socket‘ ‘ MB2_UDP_Socket ‘ ‘ MB2_TCP_Socket ‘
‘ MB2_ICMP_Socket ‘ ‘ MB2_PagingSocket ‘ ‘MBZ_TCP_Server_Socket‘

Figure 3.7:Class diagram: Socket hierarchy

Socket Filter Linux allows a packet filter to be attached to a network socket. The Linux socket
filter model is essentially an in-kernel implementation of the Berkeley Packet Filter riddelhe
possibility to attach filters to sockets is somewhat limited in this implementation. It provides only the
filtering by source, destination and protocol fields in the IP header and a special filter only accepting
data packet, thus filtering oMOMBASA SEsignaling, broadcast packets etc. The latter is used for
idle detection in the mobile host. The filter programs were mainly generated by the tcpdump program
and edited by hand afterwards.

Non-Sockets A subclass oMMB2Socket that does not represent a network socket is somewhat
astonishing. Limiting inheritance is generally considered a design error. However, | decided to do
just that in this case. The reason is the following: Some agents are multithreaded. It is necessary
to signal certain conditions from sub-threads to the main thread (e.g. the Mobile Agent’s idle thread
has to signal a wakeup condition to the main thread). However, the main event loop only handles
events from socket-like input channels and pre-scheduled timer events. The waiting for this kind
events can be implemented quite easy and efficiently (without the need for busy waiting) on the basis
of the UNIX select function (see the paragraph abdB2 SocketGroup for details). To avoid
introduction of a third type of events the inter-thread communication is done via a pipe. To make the
pipe insertable into a socket group it was implemented as a subclk¥3afBocket .

The cleanest solution would probably have been to make pipes and sockets subclasses of a common
base class (e.g0iB2CommChannel) and makeMiB2 SocketGroup a group of such communica-

tion channels. Since all these classes are implemented on the basis of file descriptors this would also
have been possible.

C_opyright at Technical University Berlin. All TKN-01-017 Page 35

Rights reserved.

TU BERLIN

Real Sockets Classes that represent real network sockets are derived fromiBR&RealSocket

class. Besides the inherited methods it provides the possibility to peek for data without removing it
from the kernel buffers. It allows setting of a socket filter and retrieving the timestamp of received
packets. Some general socket options such as binding to devices and broadcast can be set.

Ethertap The Ethertapdevice is a software network device emulating a Ethernet device. Frames
can be sent to aetlink socket associated with the device and appear in the kernel as if they had been
arriving from a network device. Frames sent by the kernel tdEthertapnetwork device appear at
thenetlink socket in user space. Thus user space programs can make packets appear as coming from
outside. They can even emulate whole networks. The access tetlivek socket corresponding to

the Ethertapdevice is encapsulated ilMB2Ethertap which is a subclass dfiIB2Socket .

Divert Sockets Another possibility to extract packets from the kernel are divert sockets. Packets can
be diverted from the kernel protocol stack to the divert socket in user space and can be re-injected into
the kernel via the divert socket. The concept comes from NetBSD but an experimental implementation
for Linux also exists1]. Unfortunately this became to my knowledge after the implementation of the
MOMBASA SEDivert sockets could have provided a uniform interface for buffering and flushing the
buffers in MEPs and Gateway Proxy and for sendin@ading Requests the Gateway Proxy.

Raw IP Sockets Raw IP sockets in Linux will only allow receiving if they are bound to a cer-

tain IP protocol. A raw IP socket for all IP protocol (as is necessary for buffering in the MEP)
can only be used for sending. However the encapsulation of raw IP sockets as represented by the
MB2RawlIP _Socket class does allow reception of all IP protocols. This is implemented by using

a packet (i.e. link-layer) socket for receiving and a raw IP socket for sending. The packet socket is
bound to IP and configured to strip the link-layer header. For the client4B&RawlP _Socket

this is totally transparent and it appears for them as if they are reading from and writing to the same
socket.

Why not libpcap? The pcap library is a portable library used for capturing of network frames. This

is used by the tcpdump program for example. Howeverlitipeap does its own buffering that is not
intended to keep packets permanently. So | would still have had to do my own buffering which would
have resulted in double-buffering. Thbpcapreads the packets from the kernel into its own buffer

and these packets would have had to be copied into the permanent buffers. This would have resulted
in a unnecessary overhead.

3.5.2 MB2SocketGroup

The socket group (which should better be a group of communication channels as mentioned in the
paragraph about non-sockets) is not designed as a container for sockets but as a class to group them
as a common source for events. Sockets can be members of multiple gktBpSocketGroup

is an object-oriented interface to the select function which allows a group of file descriptors to be
watched. The group is used to wait for any socket in the group to become ready to read from or to
write to. This waiting can be limited by a timeout. It is mainly used in the main event loops of the
agents. Members of the group are the sockets on which signaling messages arrive and the timeout is
set to the expiration of the next timer in the timer list.

Copyright at Technical University Berlin. All TKN-01-017 Page 36

Rights reserved.

TU BERLIN

3.5.3 MB2Timers

MB2Timers is atemplate class that is parameterized by the class of which the methods are called on
expiration of the timer and the type of the argument of these expiration methods. The class represents
a chronologically ordered list of timers. Each timer consists of the time at which it expires, the
method to be called, the object for which the method is to be called and auxiliary data to be passed to
the method. The timers are able to store times in microsecond precision, however the real precision
depends on the granularity of system clocks and timers (Linux on a x86 architecture usually has a 10
milliseconds precision, i.e. 100 timer ticks per second). Times can be specified relative to the current
time or absolute (which means relative to the “epoch” which begun on January 1, 1970). Methods
for insertion and changing of timers return a handle that is implemented internally as a pointer to the
corresponding list node.

Empty List

-

sentinel

List with two real members

Y e e A

sentinel normal node normal node

Figure 3.8:Linked list with sentinel

The listitself is implemented as a circular double-linked list that uses a sentinel as descr2jed in [
With a sentinel node, start and end of the list are not represented by NULL pointers but by a special
node, called the sentinel. This avoids special handling of boundary conditions such as deletion of the
first or last node. There are several reasons why a linked list and not a more complex data structure,
such as a binominal heap, is used. Although most operations of heaps have a better asymptotic
behavior than linked lists (see Tal3€l) the involved factor is a lot bigger and the implementation a
lot more complicated. Thus the better asymptotic behavior would only become effective for timer lists
with a lot of timers. Moreover an operation often performed is the deletion which can be performed
in constant time with linked lists.

Operation Linked List | Binomial Heap| Fibonacci Heap
Key Insertion | O(N) O(lg(N)) O(1)

Key Deletion | O(1) O(lg(N)) O(lg(N))

Key Changing| O(N) O(lg(N)) O(lg(N))

Table 3.1:Asymptotic behavior of several data structures

Copyright at Technical University Berlin. All TKN-01-017 Page 37

Rights reserved.

TU BERLIN

3.5.4 MB2Interface

TheMBZ2Interface encapsulates the access to network interfaces such as the retrieval of interface
name, address, index, flags, etc. Data that usually remains constant is cached in the object instead of
retrieving it from the kernel with IO-controls every time.

3.5.5 MB2PolicyHandler

Most policy handlers are derived from tMB2PolicyHandler template class. The template is
parameterized by the argument and return types of the pre- and post-processing method and by the
type of the property field. The agents provide type definitions of the handler with the correct argument
types. To implement a policy handler one derives from these defined types and overrides the virtual
pre and post methods.

The same module that provides ti82 PolicyHandler template class also provides template
functions and template classes for registering, de-registering and calling of policy handlers. The
implementation of policy handlers employs the strategy design pattern (also called policy pattern).

3.5.6 MB2Buffer

MB2Buffer provides a ring buffer for variably-sized data objects such as IP padkB2Buffer

is not responsible for reading the data into buffer but only for reserving the memory space. Since the
buffer is a ring buffer, it may happen that a data object is split into two parts with the first part being
saved at the end of the buffer and the second part being saved at the beginning of the buffer (like
packet 4 in Figi3.9). This depends on the ability to read from and write to gather/scatter arrays.
Data read from sockets can be split into multiple buffers (i.e. scattered) and written to sockets from
multiple buffers (i.e. gathered). The splitting point within the message is guaranteed to be aligned
to a given alignment. The last reservation can be canceled (e.g. if a read error has occurred). New
data can overwrite older data (remember that the buffer is cyclic), however, it is guaranteed that only
whole data objects are discarded. For example if a packet bigger than the unused spacg.t Fig.

is stored in the buffer packet 1 will be discarded. If the new packet is very big maybe even packet 2
will be removed from the buffer. To preserve the boundaries between data objects the size of the data
objects is stored in front of the data.

end start

packet 4
part 2

packet 4

packet 5 unused | packet 1 packet 2 packet 3 part 1

Figure 3.9:Ring buffer

The buffer can flush all data objects to a given socket. Each data object is written in a single
operation (this will be important if the socket is datagram oriented). The flush method can be passed
operations that manipulate the data object and to retrieve the address to which the data object before
sending. These operations can also reject the data objects. The calling of flush policy handlers is
usually done in such an operation.

Copyright at Technical University Berlin. All TKN-01-017 Page 38

Rights reserved.

TU BERLIN

3.5.7 MB2BufferHandler and MB2 _FlushHandler

MB2BufferHandler andMB2FlushHandler are the only policy handlers that are not derived
from theMB2PolicyHandler template. They only provide a virtual function operator that should

be overridden in real policy handlers. The buffer policy handler is passed the IP header of a packet
to buffer, the flush policy handler additionally gets the receiving timestamp of the packet. They will
returntrue if the packet shall be buffered/flushed respectively fatge otherwise.

3.5.8 Multicast Channels

The MOMBASA SEvas designed to work with any kind of IP multicast. It was designed especially
with Single Source Multicast in mind. However, since no free SSM implementation for Linux exists,
this is not implemented. ThRIB2ZMCChannel class provides an interface to Single Source Mul-
ticast channels but discards silently the source address. It uses socket options provided by the Linux
kernel for joining and leaving multicast groups. The kernel maps these socket options to IGMPv2
messages and takes care of the multicast leaf signaling. To support SSM, which uses an extended
socket interface, the methods EB2MCChannel would have to be rewritten but the rest of the
MOMBASA SEould stay the same.

3.5.9 MBZ2Route

MB2Route represents a network route. It provides methods for setting, modifying and querying
of the correspondent routing table entry in the kernel. Access to the routing table in Linux is not
very well documented. ThBIB2Route class is more or less an object-oriented variant of the cor-
responding support code of Dynamics Mobile [EB8][which is based on thébnetlink by Alexey
Kuznetsov.

3.5.10 MB2Parser

MB2Parser implements a parser for simple configuration files or similar things (e.g. the manage-
ment interface). Th&B2Parser hierarchy (see Fig3.10 employs the template method design
pattern. The reading of text lines is not implemented in the base class but delegated to the subclasses.
MB2FileParser implements reading from a text file and is used for the parsing of configuration
files in MOMBASA SE.MB2TCP_Parser reads from a TCP socket. It is used for the management
interface.

‘ MB2_Parser ‘

5%

MB2_FileParser ‘ ‘ MB2_TCP_Parser ‘

Figure 3.10:Class diagram: Parser hierarchy

The parsed (very simple) language has the following properties:

e Empty lines and comments introduced#byre ignored.

Copyright at Technical University Berlin. All TKN-01-017 Page 39

Rights reserved.

TU BERLIN

Other lines contain a keyword and may contain up to 16 arguments. Starting and trailing whites-
paces and trailing comments are ignored.

Keywords are case insensitive.

The keyword is separated from the arguments by colon or an equal sign and/or one or multiple
whitespaces.

e Arguments are separated by commas and/or whitespaces.

The parser is passed a table that associates a numeric token and the minimum and maximum
number of arguments to each keyword. The client of the parser can advance line per line, read the
keyword token, the number of arguments and the arguments themselves in various formats (strings,
integers, boolean value, IP address, pair of IP addresses).

3.5.11 MB2Signal

MB2Signal implements a template class to enable object methods to be installed as UNIX signal
handlers. The template can be parameterized by the class of which the methods should be called and
the type of an auxiliary argument that can be passed to this method.

It must be guaranteed that only one instanceB2 Signal class exist in an application. Thus
the template is implemented as a singleton. However, the scheme describe®id Bawt sufficient
for a template class, since a static member would be created for each incarnation of the template. To
make it work nevertheless, | instantiated the template with dummy parametBsOummyas the
receiver class andool as the data type). Only the static instance pointer of this class is used. The
constructor of aMB2Signal class checks that this pointerNRJLL and assigns its own address to
the pointer. To make it assignable, the pointer to the instance is untypedbfde).

The rest of the implementation is straightforward. Since the number of signals is constant and
quite small a static array of signal entries is sufficient. A static method of the template class is installed
as the signal handler for each signal for which a special handler is installed. This handler calls the
specified method of the specified object with the signal number and auxiliary data as arguments.

3.6 Documentation

The declarations in the source code are commented in a format suitable for doxygen 1.2.10 (it works
also with 1.2.3). Doxygen is a tool that generates HTML and other documentation from the source
code. A configuration file is enclosed in tNeeOMBASA SHlistribution. To generate the documenta-

tion

doxygen doxygen.cfg must be called in the source directoryMOMBASA SE

Copyright at Technical University Berlin. All TKN-01-017 Page 40

Rights reserved.

TU BERLIN

Chapter 4

Kernel Implementation

4.1 Navigating in the Kernel

Network Address Translation from and to multicast addresses and paging requires modifications to
the kernel. Navigating in the Linux kernel can be quite confusing. A useful tool for browsing the
Linux kernel is LXR [L0]. Nevertheless, it is not an easy task to understand the operation of the
kernel. To avoid getting lost one should select a certain scenario one is interested in and follow the
control flow of only this scenario, ignoring exceptional cases at first. Even this is not as easy as it
sounds, as the Linux kernel is more or less object-oriented. However, it is not implemented in C++
but object-orientation is emulated in C by putting pointers to functions into data structures. Often
these functions are passed a pointer to just this structure as an argument. Note that this is equivalent
to virtual methods in C++ where it is hidden from the programmer that the methods are called through
pointers and the object is passed as an implicit argument (dhiked in C++).

In the case of function calls through pointers it is often easier to do an educated guess which
function is called and assert later that the variable really pointed to this function. For example suppose
we are looking at the functiosock _recvmsg (taken from Linux 2.2.18):

int sock_recvmsg(struct socket *sock, struct msghdr *msg, int size,
int flags)
{

struct scm_cookie scm;
memset(&scm, 0, sizeof(scm));
size = sock->ops->recvmsg(sock, msg, size, flags, &scm);
if (size >= 0)
scm_recv(sock, msg, &scm, flags);
return size;

This call tosock->ops->recvmsg is really ugly. However, if you know that the socket for
which itis called is a UDP socket, it is most probable that the function calledidgsrecvmsg . Such

Copyright at Technical University Berlin. All TKN-01-017 Page 41

Rights reserved.

TU BERLIN

heuristics can be used in many cases. It also may be helpful to look at initialization code of certain
kernel parts to figure out how those pointers to functions are usually initialized.

4.2 Multicast Network Address Translation

To make the usage of multicast transparent to fixed and mobile host, packets must be translated from
unicast to multicast in the gateway and back in the access point. However, the Linux kernel only
supports network address translation between unicast addresses. Thus the standard kernel (2.2.18 in
our case) had to be modified.

Besides the configuration files, three files had to be modified: routeforward.c, ipmr.c and
fib_frontend.c. All of them are in the net/ipv4 directory.

In this paragraph | describe the control flow in the unmodified kernel (sed.Eig). Dur-
ing procession of an incoming packiptroute.input(route.c) is called for retrieval (or generation)
of a fitting route cache entry. First, this function tries to find an entry in the routing cache, which
matches the packet’s source, destination, input interface and type of service. If it finds one it will
return successfully, otherwise a cache entry must be generated. In the next step unicast and multi-
cast traffic is separated. For unicast traificoute input slow(route.c) is called, for multicast traf-
fic ip_route.inputmdroute.c). The former does a route lookup and creates an appropriate routing
cache entry taking translation of source and destination address into account. The latter does not
use the unicast routing tables and thus ignores NAT entries. The address translation itself happens
in ip_forward(ip_forward.c). If the NAT flag is set in the packet's routing cache efiprglo_nat
(ip_natdumb.c) is called which changes the IP addresses in the IP header and recalculates checksums
for IP, TCP, UDP and ICMP.

When addresses can be translated between the multicast and the unicast realm, the major problem
is that we can't tell from the original address if a packet has to be treated as unicast or multicast. So
the multicast recognition has to be deferred until we know the mapped address (or that the packet
doesn't have to be mapped).

The following description assumes that both translation from multicast and to multicast addresses
is enabled: After routing cache lookig route input slowis now called no matter if the destination
address is multicast or not. A lookup of the (unicast) routing table is done. If the destination address
is multicast and no fitting NAT entry has been foupdoute input mcis called as before. If a NAT
entry exists the mapped address is checked whether it is multicast or unicast and depending on that
unicast or multicast routing is done.

Some minor change were appliediparoute input mcto set the mapped addresses and the NAT
flag in the routing cache entry. lip_mr_input(ipmr.c) a call ofip_do_nat was added since it ex-
isted only in the unicast branch before. Finally, the checlpiforward that the packet type was
PACKETHOSThad to be relaxed since the original packed could also have been of type
PACKETMULTICASTbefore mapping.

In the unmodified kernel, for an incoming packet it is checked that a unicast route to the source of
the packet exists. This causes upstream packets from the mobile to be dropped in the gateway since
there is only a NAT entry from unicast to multicast. Therefiiibevalidate sourcefib_frontend.c) was
modified to check whether a NAT entry to multicast exists for the checked packed. However if reverse
path checking is enabled (i.e. the check that a packet came from the interface replies woulde be sent
to) the packet will be dropped nevertheless.

Copyright at Technical University Berlin. All TKN-01-017 Page 42

Rights reserved.

TU BERLIN

| ip_route_input | | ip_route_input |
‘ routing cache 100kKup | ..cne hit ‘ routing cache 10okup |_cache it
#cache miss return #cache miss return

| multicast recognition | | ip_route_input_siow |
unicast multicast

| ip_route_input_slow | | ip_route_input_mc | | routelookup |

| routelookup | [generation of routing [NAThandiing |
cache entry

‘ multicast recognition ‘

‘ NAT handli ng ‘ uni CV Nulticesl

generation of routing ‘ ip_route_input_mc
generation of routing !! cache entry ¢
cache entry return
generation of routing
cache entry

(a) Unmodified kernel (b) Modified kernel

Figure 4.1:Input routing in the Linux kernel

Network Address Translation is only appropriate for classical IP multicast. For single-source-multicast
the source address would have to be changed to the address of the gateway. Since original source
address must be restored in the access point this could only be done by IP encapsulation. Some mod-
ifications to the tunneling code would be necessary to be able to tunnel packets through multicast
trees.

4.3 Paging Support

When data is sent to an inactive mobile host, it must be paged by the gateway. The paging itself is
done by the gateway proxy or paging daemon (see Ch8pte). However paging is triggered by
the reception of packets for the mobile which requires some kernel support.

Since the unicast packets for the mobile host are translated to multicast packets in the gateway
the best place to insert paging support is the multicast forwarding cache (MFC) implemented in
net/ipv4/ipmr.c. In the following paragraphs routing of multicast packets in an unmodified router
will be described. After this the original paging support and why it wasn’t appropriate is discussed.
Finally the paging support as it is now is depicted.

In an unmodified multicast router (see F4g2(a)and Fig/4.4(a) when a multicast packet first arrives

(1) an unresolved entry for the combination of source and destination is inserted into the MFC (2) and
the cache miss is reported to the multicast routing daemon viathete socket(3). A timer is set for

the MFC entry (4). For a non-existent multicast group the timer will expire or the MFC entry will be

Copyright at Technical University Berlin. All TKN-01-017 Page 43

Rights reserved.

TU BERLIN

deleted explicitely by the multicast daemon through the socket opie@DEL (5a, 6a). Otherwise

the MFC entry will be resolved with the socket optitFCADD(5b, 6b). As long as the entry is

not resolved (i.e. statlFCQUEUEParriving packets are queued in the unresolved entry as long as
there are no more than 4 packets in the queue. The resolution of the entry among other things sets the
output interfaces for this source/multicast group combination. The buffered and subsequent packets
are only treated by the kernel and sent to all outgoing interfaces stored in the MFC entry.

multicast
routing
daemon
delete add
unresolved resolved
MFC @ MFC @
entry entry USER SPACE
(32 @ KERNEL
repol
cache st @ (&)
. miss timer
Pecketamival_(MFClookup) (MFCdelete) (MFCadd)
@ add delete add or
unresolved unresolved resolve
MFC @ @ MFC @ MFC
entry entry entry
| Mulicast Forwarding Cache (MFC) |

(a) without paging

) multicast
paging routing
daemon daemon
<ot A stop A resolve
tar i paging| 1 MFC
paging @ ! @ ~ . o entry
: AN . USER SPACE
3 E @ @ KERNEL
send @) ' buffer report | report |
report ' packets cache 1+ paging \
A : miss | succ
%,M'(M FClookup) (‘startpaging) ' (Stoppaging) | (_ MFCadd)
add MFC mark ' mak | resolve
entry |) MFC|a 1 MFC ©, @|wmrFc
PAGING entry as | entryas| buffer! entry
CHECK PAGING QUEUEDY ~ packets:

| Mulicast Forwarding Cache (M Fb)

(b) with paging

Figure 4.2:Interaction between kernel, multicast routing and paging daemon

When the mobile host is inactive, the corresponding multicast group should not exist. Originally, the
reception of a multicast packet for a non-existent group in the range of pageable groups was signaled
by the kernel to the gateway proxy via thaging socket In the case that a paging cache entry existed

for the mobile, the gateway proxy sent a paging request to the last reported paging area otherwise it

Copyright at Technical University Berlin. All TKN-01-017 Page 44

Rights reserved.

TU BERLIN

deleted the MFC entry. During the paging phase the kernel sent all packets for the mobile up to the
gateway proxy for buffering. When the multicast group was created, this was again signaled to the
gateway proxy which flushed the buffer for the mobile and sent out all packets.

However under some circumstances a multicast group for an inactive mobile host could exist. This
happens in the following case (see FEd3): When a mobile host sends its first inactive registration to
another access point than its last active registration and doesn’t send a deregistration to the old access
point the old access point doesn’t know about the inactive state of the mobile host and will stay in
the multicast group until the lifetime of the mobile registration will expire. With the just described
scheme, during this period paging would not be triggered and the mobile host would be unreachable.

Old Access Point

Intermediate
Router

@ Active @ /14%, Gateway
Registration

Sy Ay
| /6‘\7&//7 ;7’ 0y

Mobile

@

Inactive
Registration

New Access Point

Figure 4.3:Existing multicast group dilemma

With the new scheme we don't depend on the existence or non-existence of the mobile-related mul-
ticast group but on the existence of a paging cache entry in the gateway proxy. Thus we have to
notify the proxy first. The paging for an inactive mobile is depicted in the following paragraph (see
Fig. 4.2(b). Packets for multicast groups that don’t correspond to mobiles are treated like before.
Normal multicast routing is not affected by the paging patch. Entries of mobile-related (i.e. page-
able) groups are marked with tMFCPAGEABLHIlag. This flag is ommitted in Figl.4(b)although
present in every shown state.

After the arrival of a multicast packet to a pageable group (1) a MFC entry with the flag
MFCPAGINGCHECKs created (2) and a timer is set. A report is sent to the gateway proxy via the
pagingsocket(3). If an entry exists in the daemon’s paging table it will start paging and signal this
condition to the kernel with thBIFCSTARTPAGINGsocket option (4). The MFC entry is marked
as paging (5), data packets to the multicast group are now sent up to the gateway proxy for buffering
(6). When the paging cache entry in the daemon was deleted through a paging update with lifetime 0,
denoting that paging was successful, this is again signaled to the kernel wiliFr@8TOPPAGING
socket option (7). The MFC entry is marked as unresolved MECQUEUEID(8) and a previously

Copyright at Technical University Berlin. All TKN-01-017 Page 45

Rights reserved.

TU BERLIN

saved cache miss report is sent to the multicast routing daemon (9). Data packets are still buffered in
the gateway proxy (10). The resolution of the MFC entry by the multicast routing (11/12) is signaled
to the paging daemon (13). Buffering is stopped and the buffers are flushed. The MFC entry is set to
MFCRESOLVED

The real behavior is, however, even a bit more complicated since the previous description omitted
some exceptional cases (e.g. timeouts and retries). For all details please conzidt(Big.

set timer
cache miss report to multicast routing daemon

delete timer,
send buffered packets

timer expire
or MFC_DEL

delete cache entry

delete timer

Set paging timer
start buffering

save report for MRD

MFC_START_PAGING

set cache timer,

report to MRD
(timer expire

or MFC_DEL)

and not max. retries

delete timer

set paging-finish timer
MFC_STOP_PAGING| report to MRD

send deletion report to GWP
delete cache entry

delete cache entry
timer expire

send deletion report to GWP
delete cache entry

(timer expire
or MFC_DEL)
and max. retries

MFC_PAGING

MFC_QUEUED
delete timer,

stop buffering
send flush report to GWP

set timer,
report to MRD
(timer expire
or MFC_DEL)
and not max. retries

(b) with paging

Figure 4.4:State machines for Multicast Forwarding Cache entries

Copyright at Technical University Berlin. All 0.
Rights reserved. TKN-01-017 Page 46

TU BERLIN

Chapter 5

Extensibility of the MOMBASA SE

5.1 Support of Generic Multicast

The actual version of th#lOMBASA SEworks with IP multicast as it is defined by the standard

IP multicast service model in RFC 1113][The MEPs use IGMPv2 for multicast management.
Since IGMPv2 works with all multicast routing protocols according RFC 1112ViD&IBASA SEs
independent of the multicast routing protocol. However, there are multicast routing protocols which
are less suitable for mobility support (such as broadcast- and prune protocols, like D\AM|RIA]

some which are more suitable (such as PIM-8M3] which is based on a concept of rendezvous
points).

Recently, multicast has been subject of research efforts. There are several proposals for multicast
which break with the standard IP multicast service model. An example is single source multicast,
such as EXPRES®] and PIM-SSM B]. We understand thMOMBASA SEas a generic platform
to investigate multicast-based mobility support. Hence, it is prepareslifigte-source multicasits
usage requires only minor modifications of the implementation, i.e. diiB2MCChannel class.

Moreover MOMBASA SHas been designed to be suitable fgeaeric multicaswhich is based
on a group identifidrand a member identifiér For generic multicast, a number of basic operations
can be identified: Creation of group, subscribing to the group, un-subscribing from the group, de-
struction of group. The implementation RIOMBASA Skas been designed with respect to support
generic multicast, and hence it is expected to be extended easily.

5.2 Support of Policies

Policies are rules to control and fine-tune certain behavior of the MOMBASA SE system. The usage
of policies in the MOMBASA SE ensures a flexible and easy extensibility by certain functionality.
Typical examples of policies are to control in the mobile when to do handover and which access point
to select, to determine in MEP and Gateway Proxy which packets to buffer and which packets to flush
from the buffer, to pre- and post-process protocol messages. Hence, the MOMBASA SE provides
hooks for policy handlers

lwith standard IP multicast this ischass DIP address.
2\ith standard IP multicast the unicast IP address of the member.

Copyright at Technical University Berlin. All TKN-01-017 Page 47

Rights reserved.

TU BERLIN

5.3

that may select time and destination of handovers thus allowing evaluation of different handover
schemes including predictive handovers.

that control buffering of packets and flushing of buffers allowing evaluation of various buffer
strategies.

that may retrieve the signal quality of messages received from the last hop for use by other
policies, e.g. the handover decision.

that may pre- or post-process any protocol message of the environment to achieve goals that
have not thought of.

Portability

In the MOMBASA SEonly standard libraries are used. This facilitates porting MOMBASA SE to
other architectures. In particular, it is feasible to port MOMBASA SE to handheld PC architectures
running with a Linux operating system. Since memory is a scarce resource of handheld computers, it
is important to have only a few dependencies.

5.4

Open Issues

There are still a few missing features:

1.

The multicast routing daemon used in the testbed had the following limitation: Multicast
senders must be in the same IP network as the upstream interface of the gateway, since the
daemon does not support operation as a border router.

. There are only a few policies implemented. The following policies are included in MOMBASA

SE: ASelectBS policy that does a regular ping-pong handover and also supports externally
triggered handovers (e.g. by the management interface) and a flush policy that only flushes
packets that are younger than a configured number of microseconds. Additional policies can
be easily implemented.

. The current version of MOMBASA SE uses the standard ARP mechanism to resolve IP ad-

dresses to hardware addresses. This could be avoided by supplying the hardware address in
MOMBASA signaling messages.

. In the current version of MOMBASA SE, the support for Single Source Multicast is only im-

plemented as stubs. The implementatioM&2MCChannel would have to be modified and
a patch to the Linux kernel to support IP tunneling trough multicast tunnels would have to be
developed to achieve full support.

. Support of generic multicast as discussed in the previous section.

Copyright at Technical University Berlin. All TKN-01-017 Page 48

Rights reserved.

TU BERLIN

Bibliography

[1]
(2]
[3]
[4]

[5]

[6]

[7]

[8]
[9]

llia Baldine. Divert Sockets for Linuxhttp://www.anr.mcnc.org/ divert/index.shtml !

2001.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rilrgsbduction to Algorithmschapter 11,
pages 204—-208. The MIT Press, eighteenth printing edition, 1997.

S. Deering. Host Extensions for IP Multicasting. RFC 1112, August 1889://www.ietf.org/

rfc/rfic1112.txt

S. Deering, D. Estrin, D. Farinacci, M. Handley, A. Helmy, V. Jacobson, L. Wei, P. Sharma, and D. Thaler.
Protocol Independent Multicast-Sparse Mode (PIM-SM): Motivation and Architecture. Internet Draft
work in progress, October 1994ttp://citeseer.nj.nec.com/373495.html

D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson C. Liu, P. Sharma,
and L. Wei. Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification. RFC 2362,
June 1998http://www.ietf.org/rfc/rfc2362.txt

B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas. Protocol Independent Multicast - Sparse Mode
(PIM-SM): Protocol Specification (Revised). Internet Draft work in progress, March 20iith:
/Iwww.lett.org/internet-drafts/dratt-ietf-pim-sm-v2-new-03.txt

A. Festag and L. Westerhoff. Protocol Specification of the MOMBASA Software Environment. Tech-
nical Report TKN-01-014, TKN, TU Berlin, Berlin, Germany, May 200mttp://www-tkn.ee.

tu-berlin.de

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissksvurfsmuster: Elemente wiederver-
wendbarer objektorientierter Softwar&ddison-Wesley, 1996. German translation.

H.W. Holbrook and D.R. Cheriton. IP Multicast Channels: EXPRESS Support for Large-scale Single-
source Applications. InProceedings of ACM SIGCOMM 199%ages 65-78, MA, USA, 1999.
gregorio.stanford.edu/holbrook/express/ !

[10] LXR - Cross-Referencing Linwfttp://Ixr.linux.no

[11] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New Architecture for User-level Packet
Capture. InProceedings of the 1993 Winter USENIX Technical Conference (San Diego, CA, Jan. 1993),
USENIX Lawrence Berkeley Laboratory, January 1993.

[12] University of Southern California. USC pimHttp://catarina.usc.edu/pim/ , 2000. PIM-SM
Version 2 Multicast routing daemon.

[13] Helsinki University of Technology Dynamics Group. Dynamics - HUT MobileARp://www.Cs.
hut.fi/Research/Dynamics/

[14] D. Waitzmann, C. Patridge, and S. Deering. Distance Vector Multicast Routing Protocol (DVMRP). RFC
1075, November 198http://www.ietf.org/rfc/rfc1075.txt

[15] L. Westerhoff and A. Festag. Implementation of the MOMBASA Software Environment. Download
at http://www-tkn.ee.tu-berlin.de/research/mombasa/download/mombasa se
1.0.tgz

Copyright at Technical University Berlin. All TKN-01-017 Page 49

Rights reserved.

http://www.anr.mcnc.org/~divert/index.shtml�
http://www.ietf.org/rfc/rfc1112.txt�
http://www.ietf.org/rfc/rfc1112.txt�
http://citeseer.nj.nec.com/373495.html�
http://www.ietf.org/rfc/rfc2362.txt�
http://www.ietf.org/internet-drafts/draft-ietf-pim-sm-v2-new-03.txt�
http://www.ietf.org/internet-drafts/draft-ietf-pim-sm-v2-new-03.txt�
http://www-tkn.ee.tu-berlin.de�
http://www-tkn.ee.tu-berlin.de�
gregorio.stanford.edu/holbrook/express/�
http://lxr.linux.no�
http://catarina.usc.edu/pim/�
http://www.cs.hut.fi/Research/Dynamics/�
http://www.cs.hut.fi/Research/Dynamics/�
http://www.ietf.org/rfc/rfc1075.txt�
http://www-tkn.ee.tu-berlin.de/research/mombasa/download/mombasa_se_1.0. tgz�
http://www-tkn.ee.tu-berlin.de/research/mombasa/download/mombasa_se_1.0. tgz�

