
TU BERLIN

Technical University Berlin

Telecommunication Networks Group

Implementation Design of the
MOMBASA Software Environment

L. Westerhoff, A. Festag
{westerhoff|festag}@ee.tu-berlin.de

Berlin, November 2001
Version 1.0

TKN Technical Report TKN-01-017

TKN Technical Reports Series

Editor: Prof. Dr.-Ing. Adam Wolisz

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 1

mailto:westerhoff@ee.tu-berlin.de�
mailto:festag@ee.tu-berlin.de�

Abstract

In this report the implementation of theMOMBASA Software Environmentis presented. TheMOM-
BASA Software Environmentis an experimental platform to examine multicast-based host mobility in
IP networks. The report describes the implementation design of the main components (Mobile Agent,
MEP1 and Gateway), the implementation environment and the necessary modifications of the Linux
kernel. Main purpose of the report is to document the current implementation of theMOMBASA
Software Environmentand particularly, to facilitate its extensibility for use as a generic toolkit for
experimentation with multicast-based mobility support.

1Mobility Enabling Proxy

TU BERLIN

Contents

1 Introduction 4

2 Implementation Environment 7

3 Design of Agents 8
3.1 Common Design . 8

3.1.1 Data Fields. 8
3.1.2 Methods . 10
3.1.3 Initialization and Cleanup Helper Methods. 11
3.1.4 Policies. 11
3.1.5 Management Interface. 12

3.2 Design of Mobile Agent . 13
3.2.1 Data Fields. 13
3.2.2 Methods . 15
3.2.3 Idle Detection. 16
3.2.4 Management Interface. 17

3.3 Design of Mobility Enabling Proxy. 19
3.3.1 Data Fields. 19
3.3.2 Methods . 25
3.3.3 Management Interface. 27

3.4 Design of Gateway Proxy. 28
3.4.1 Data Fields. 28
3.4.2 Methods . 32
3.4.3 Sending of Multicast Packets. 33
3.4.4 Paging . 34
3.4.5 Management Interface. 34

3.5 Support Code. 34
3.5.1 MB2Socket Hierarchy. 34
3.5.2 MB2SocketGroup. 36
3.5.3 MB2Timers . 37
3.5.4 MB2 Interface . 38
3.5.5 MB2PolicyHandler . 38
3.5.6 MB2Buffer . 38
3.5.7 MB2BufferHandler and MB2FlushHandler 39

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 1

TU BERLIN

3.5.8 Multicast Channels. 39
3.5.9 MB2Route . 39
3.5.10 MB2Parser. 39
3.5.11 MB2Signal. 40

3.6 Documentation. 40

4 Kernel Implementation 41
4.1 Navigating in the Kernel. 41
4.2 Multicast Network Address Translation. 42
4.3 Paging Support. 43

5 Extensibility of the MOMBASA SE 47
5.1 Support of Generic Multicast. 47
5.2 Support of Policies. 47
5.3 Portability . 48
5.4 Open Issues. 48

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 2

TU BERLIN

List of Figures

3.1 Class diagram: Design of agents. 9
3.2 Class diagram: Design of the Mobile Agent. 18
3.3 Class diagram: Design of the Mobility Enabling Proxy (1). 21
3.4 Class diagram: Design of the Mobility Enabling Proxy (2). 22
3.5 Class diagram: Design of Gateway Proxy (1). 29
3.6 Class diagram: Design of Gateway Proxy (2). 30
3.7 Class diagram: Socket hierarchy. 35
3.8 Linked list with sentinel. 37
3.9 Ring buffer . 38
3.10 Class diagram: Parser hierarchy. 39

4.1 Input routing in the Linux kernel. 43
4.2 Interaction between kernel, multicast routing and paging daemon. 44
4.3 Existing multicast group dilemma. 45
4.4 State machines for Multicast Forwarding Cache entries. 46

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 3

TU BERLIN

Chapter 1

Introduction

TheMOMBASA Software Environmentis an experimental platform to investigate multicast-based mo-
bility support in IP networks. The implementation is based on the specification described in [7]. The
implementation is publically available athttp://www-tkn.ee.tu-berlin.de/research/
mombasa/mse.html [15].
In theMOMBASA SEthe following functionalities have been implemented:

• Addressing and routing based on IP- and IP-style multicast.

• Multicast proxies in access points to disburden the mobile host from multicast group manage-
ment.

• Advertisements/Solicitations to advertise the availability of Mobility-Enabling Proxies (MEPs).

• Inter-MEP advertisements to register mobile hosts in advance.

• Support of different handover types: soft, predictive, inter-technology (vertical) handover.

• Differentiation between active and inactive mobile hosts, multicast-based paging to locate in-
active mobile hosts.

• Buffering of data packets for predictive handover and paging.

• Policies to control system behavior (handover type, selection of optimal interface among several
possible, control buffering, forwarding algorithm and paging algorithm).

Moreover, the implementation has the following features:

• The implementation supports IP (Version 4).

• It uses IP multicast to support hard, soft and predictive handover. It neither requires any modi-
fication to the multicast routing protocol nor does it depend on a certain one.

• It supports heterogeneous networks, namely all technologies which support and are supported
by IP. It has support for multiple network interfaces simultaneously in the mobile (potentially
of different technologies), and allows handover between access points on different interfaces
and therefore handover between different technologies.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 4

http://www-tkn.ee.tu-berlin.de/research/mombasa/mse.html�
http://www-tkn.ee.tu-berlin.de/research/mombasa/mse.html�

TU BERLIN

• No modification to the correspondent (i.e. fixed) host. That means any IP capable host can
communicate with the mobile host. Only the mobile host and the access network must have
special preparations for it.

• The system is soft state, i.e. every state eventually times out. This makes the system robust
against the breakdown of network links and the crash of components within the system.

• Important behavior, such as selecting an access point for handover or buffering packets during
handover, can be tuned by means of policies. This makes theMOMBASA Software Environment
usable for experimental evaluation of different handover mechanisms and buffer strategies.

• TheMOMBASA SEcan be extended easily to support other multicast schemes.

The following (partly experimental) technologies were used to implement the described environment:

• Link-layer socketswere used to intercept packets that should be buffered. Although theMOM-
BASA SEis dealing with IP only, link-layer (i.e. packet) sockets had to be used, since Linux
Raw IP sockets are write-only. However,raw IP socketswere used for sending buffered data.

• Linux socket filters (compatible to Berkeley Packet Filters) were used for the following pur-
poses:

– In the MEPs each mobile-associated buffer has its own socket. A filter is attached to this
socket accepting only packets for the respective mobile host.

– In the Mobile Agent the socket for idle detection has a quite complex filter that discards
signaling (including management interface), multicast and broadcast packets. Thus, any
packet that can be read from the socket is a data packet and should reset the activity timer
or trigger the wakeup procedure.

• Network Address Translationbetween the unicast and the multicast realm was used. Therefor
the NAT code in the Linux kernel was modified.

• TheEthertap device, a software device emulating an Ethernet network interface, was used for
sending of multicast packets by the gateway.

• Paging was implemented efficiently. Multicast routing support in the Linux kernel was modified
to support paging.

• Multithreading was used in the mobile host (main and idle thread) and in the MEP (main
thread and a thread for each mobile buffer).

The main components of theMOMBASA Software Environmentare implemented as daemons run-
ning in user space with root privileges. Additionally, some modifications to the Linux kernel were
necessary. The following components has been implemented:

Mobile Agent The Mobile Agent is responsible for last-hop-signaling (detection of MEPs, registra-
tion, handover) and idle detection on the mobile host.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 5

TU BERLIN

Mobility Enabling Proxy The Mobility Enabling Proxy (MEP) resides on the access point and is
responsible for last-hop-signaling (advertisements, handling of registrations), administration
of registered mobile hosts, inter-MEP-signaling (advertisement of registered mobiles to pre-
register them at neighboring MEPs) and MEP-GWP-signaling (sending ofPaging Updates,
handling ofPaging Requests).

Gateway Proxy The Gateway Proxy maintains a paging table and controls paging of the mobile host.

NAT from/to multicast Packets must be translated from unicast to multicast in the gateway and
back to unicast in the access points. However, the original NAT code in the Linux kernel did
not support translation between unicast and multicast realm. Thus, a patch had to be developed.
Details are given in Sec.4.2.

Kernel paging support Paging in the gateway needs some support that can best be implemented in
the kernel. Sec.4.3gives details on this kernel patch.

This report is structured as follows: In the next section (Sect.2) the implementation environment
is described. In section3 the design of the agents and in section4 the necessary modifications if the
Linux kernel are presented. Finally, the extensibility of theMOMBASA SEis discussed.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 6

TU BERLIN

Chapter 2

Implementation Environment

TheMOMBASA SEis implemented for a Linux system running on an x86 architecture (e.g. Intel Pen-
tium, Pentium II, AMD Athlon). It would probably also run on other Linux architectures, however,
this was not tested at all. The kernel patches require a standard Linux kernel version 2.2.18. Other
versions of the 2.2 series may or may not work.

The MOMBASA SEuses only standard C and C++ libraries (including the Standard Template
Library). glibc 2.1.3 (and probably higher) is preferred but 2.1.1 will also work if a special switch
(COMPAT) is set on compilation that enables the definition of some data structures that are missing in
the include files of this library version.

TheMOMBASA SEwas developed with a Linux installation based on the S.u.S.E. Linux distribu-
tion, however, since only standard libraries and tools (GNU tools) are used, it should work with any
Linux distribution providing the necessary kernel and library versions.

Multicast support is provided by the standard Linux kernel (IGMPv2 and kernel support for a
PIM-SM Version 2 daemon) and a free multicast routing daemon for PIM-SM (pimd-2.1.0-alpha28)
by the University of Southern California’s Computer Networks and Distributed Systems Research
Laboratory (see [12]). Please note that the implementation of theMOMBASA SEdoes not depend on
a specific multicast routing daemon.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 7

TU BERLIN

Chapter 3

Design of Agents

3.1 Common Design

The three agents Mobile Agent, Mobility Enabling Proxy and Gateway Proxy have the same design.
However there is no inheritance relation between the agents. Only the design is reused not the im-
plementation. Inheritance will make only sense if either different classes have to be used in place
of each other and thus must have a common interface (this is called polymorphy) or if code shall be
reused. The first is not the case withMOMBASA SE. The agent classes are in different applications
on different hosts and thus need not be polymorphic. The second is only the case on a superficial look
at the implementations. On a closer look, most parts are only similar. To make them reusable for all
agents would have been the same work as implementing them for each agent.

For this reasons I decided to reuse only the design of the agents and not the implementation. More
about re-usage of design can be read in [8].

TheMOMBASA SEemploys mainly two design patterns or design concepts:
All agents are implemented as singletons, i.e. only one instance of the agent class may exist per

application. This is ensured by making the constructor protected, thus no instances can be constructed
from outside the scope of the agent. A protected static member variable holds a reference to the only
agent instance. The instance can be retrieved by a public static method.

The agents employ an event driven concept. Two types of events exist: external and internal
events. External events are the reception of protocol messages. Internal events are the expiration of
timers.

The design that is common to all agents can be seen in Fig.3.11. Members or classes that are set in
italics are placeholders for members and classes in the agents that have similar purposes but differ in
some details.

3.1.1 Data Fields

The following fields can be identified in the agents (field that are only specific to one agent are omitted
here and discussed later):

1The class diagrams in this chapter are UML class diagrams.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 8

TU BERLIN

Agent

+ init

$# instance: Agent

�

config
Agent::Config

�

sockets
MB2_SocketGroup

Agent, Agent::TimerData
MB2_Timers

�

timers

�

management_interface
Agent::ManagementInterface

+ ManagementInterface

MB2_TCP_Server_Socket MB2_TCP_Socket

MB2_TCP_Parser

�

database
DatabaseEntry

�

signalling
MB2_Signal

Agent, bool

+ run
+ cleanup

+ handle_IncomingMessage
+ handle_XXX
+ send_XXX

+ register_XXX_Handler
+ deregister_XXX_Handler

readCmdLine
readConfig
checkConfig
openSockets
closeSockets
initRouting
restoreRouting
initSignalHandler
resetDefaultValues

showHelp
exitHandler

xxxExpire
xxxTimeout

terminating: bool

+ handle_ManagementInterface
+ handle_ManagementServer
+ handle_ManagementSocket

+ ~ManagementInterface

0..1server 0..1 socket

parser 1

Figure 3.1:Class diagram: Design of agents

instance Static member holding the only instance of the agent class.
terminating Flag set by a signal handler2 or by critical errors to trigger a clean termination at

the next possible time.
config Structure holding configuration options from the configuration file and the com-

mand line. Holds also information about configured interfaces and possibly sockets
bound to this interfaces.

sockets Group of sockets that can generate external events. Note that a socket group is not
used as a container for sockets but only to group them for the purpose of being
watched. See Sec.3.5.2for details on how a socket group works.

timers Chronologically ordered list of timers. A timer encapsulates its expiration time
with a callback method that is called on expiration and data passed to this method.
See Sec.3.5.3for details.

2The term signal is used in the sense of a kind of software interrupts in UNIX-like operating systems here.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 9

TU BERLIN

database Each agent holds one or more databases. The Mobile Agent stores
the known access points, the MEPs store registered mobiles and ac-
cess points in the same MEP group and the Gateway Proxy stores the
pageable mobiles in a hash map that maps unicast IP addresses to the
administered objects.

signaling List that holds the handlers for UNIX signals. It has nothing to do with
the protocol signaling.

managementinterface The management interface is a TCP-socket-based interface used for
testing. With the management interface handover can be initiated and
internal state information can be retrieved.

3.1.2 Methods

The following methods are present in all agents:

Main Methods

init Does the initialization of the agent (e.g. reading of configuration file, opening of sockets
etc.). Calls some helper methods to do so. See below for details.

run Contains the main event loop. Waits until a message arrives at one of the watched
sockets (sockets in thesockets group) or a timer expires. This is done by waiting
for a socket to become ready to read from and setting the timeout to the expiration time
of the next timer. The main message handler (handle IncomingMessage) or the
handler of the expired timer is called respectively. If theterminating flag is set the
event loop will be canceled.

cleanup Does the cleanup of the agent (closing of sockets etc.). Calls the helper methods de-
scribed below.

Handling of Messages

handle IncomingMessage Main message handler and dispatcher. This method identifies the
type of message, reads the message, handles general errors like trun-
cated messages or read errors and dispatches the message to the ap-
propriate handler for this message type.

handle xxx Each message type has its own message handler that is called by the
main message handlerhandle IncomingMessage . This han-
dler usually is passed the message together with some context infor-
mation such as the receiving interface, signal quality, etc.
The signal quality is supposed to have a value between0 and100 or
−1 if not supported. The signal quality can be used as a criterion
of access point selection. To implement this a pre or post process-
ing policy handler for the message must be installed that is able to
retrieve the signal quality from the MAC layer.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 10

TU BERLIN

sendxxx Each message that can be sent by the agent has a corresponding send method. Message
fields that can not be filled in from internal fields of the agent are passed as arguments.

Handling of Timers Methods that are called on the expiration of a timer are set on the initialization
of the timer. One argument is passed to the timer method. This argument is also set with the timer.
This argument usually contains a pointer to an entity the timer is responsible for (e.g. a mobile host
entry).

xxxExpire/xxxTimeout/xxxTimer Timer methods either called in normal operation, usually to
maintain soft-state behavior or called in exceptional condi-
tions, e.g. when an expected message did not arrive in time.

3.1.3 Initialization and Cleanup Helper Methods

The following protected methods are called by eitherinit or cleanup :

readCmdLine Parses the command line and sets the appropriate flags inconfig . Initial-
ization method that is called byinit .

readConfig Parses the config file and sets the appropriate variables inconfig . Initial-
ization method that is called byinit .

checkConfig Checks if the configuration is consistent. The validity of single configu-
ration options is already checked inreadConfig . This method checks
only the inter-operation between several configuration options. Initializa-
tion method that is called byinit .

openSockets Creates and opens sockets that are necessary for the operation of the agent.
Initialization method that is called byinit .

closeSockets Closes sockets used by the agent. Cleanup method that is called by
cleanup .

initRouting Configures routing. Initialization method that is called byinit .
restoreRouting Restores routing to the state before start of the agent. Cleanup method that

is called bycleanup .
initSignalHandler Initializes the UNIX signal handlers. Initialization method that is called by

init .
resetDefaultValues Sets default values for all members. Method that is called by the constructor

and bycleanup .

3.1.4 Policies

The handling of messages, selection of access point in the Mobile Agent, buffering and flushing
buffers can be fine-tuned by policies. A policy is represented by a template class
(MB2PolicyHandler , see below) that has methods for pre- and post-processing. The argument
and return types of the processing methods are template parameters.

Registration and de-registration methods for each type of policy handler are provided by the agent
class.

The policy handlers are stored in ordered lists (implemented as maps). In most cases multiple
handlers can be registered for one message. Two phases exist for message processing. Pre-processing

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 11

TU BERLIN

handlers are called before the standard message processing, post-processors are called afterwards.
The handlers are executed in the order of their preference until one of them returns a non-zero return
code. If the return code is negative the messages processing will be aborted.

The only exceptions to this rule are the SelectBS policy in the Mobile Agent and the buffer and
flush policies. Of these handlers only one may be registered and they have only one phase. The latter
two policy handlers are not represented by theMB2PolicyHandler template but by own classes.

3.1.5 Management Interface

The management interface can be used to externally control handover and to retrieve internal state
information. This can be used for testing. The management interface provides a TCP server socket
on a configured port. This server accepts one single connection at a time. Text commands from
this connection are interpreted by a parser and replies are given in a text-based format. Commands
should be given to the interface in complete lines at a time. The connection should be closed only
with a close command. Valid commands are different for each agent and are discussed in the
corresponding agent specific sections.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 12

TU BERLIN

3.2 Design of Mobile Agent

The design of the Mobile Agent can be seen in Fig.3.2. Members that are common to the design of
all agents were already presented in the previous section. Access methods and the policy registry are
also omitted here.

3.2.1 Data Fields

state State of the mobile. Valid states are:

NONINITIALIZED The Mobile Agent has not been initialized, yet.

INITIALIZED,WAIT4MEP The Mobile Agent is initialized and is waiting
for aMEP Advertisement.

REGPENDING The Mobile Agent has no valid registration but has sent a reg-
istration message to a MEP for which a reply was not received, yet.

ACTIVE The Mobile Agent is active and has a valid registration with a MEP.

INACTIVE The Mobile Agent is inactive and is not waiting for aMEP Ad-
vertisement.

active Set when the mobile is active. Needed to distinguish between active and inac-
tive mobiles when in stateWAIT4MEP.

wakeup pipe UNIX pipe used as a communication channel between the main thread and the
idle thread. The idle thread writes a dummy value to the pipe on wakeup. The
wakeup trigger appears in the main thread like an external message.

waking up The Mobile Agent should wake up but a valid registration could not be estab-
lished, yet.

last id Identifier of the last sentMH Registration Request.
basestations Database of known access points hashed by their IP address.
registered bs Pointer to the entry of the access point we are registered at (if any). Only set in

stateACTIVE.
pending reg Information about aMH Registration Requestfor which a MH Registration

Reply is expected, but was not received, yet. May be set in statesACTIVE
andPENDINGREG. The info structure contains the message, a pointer to the
relatedBaseStationEntry and the sending timestamp.

reg retry count When a reply to a registration was not received in time, we retry sending of the
request. This counts how many retries are left.

regreq timeout Timeout, within which a reply to a registration request should be received,
expired.

rereg timer Timer expires when it is time to re-register at an access point to refresh state
information. Usually one third of the registration lifetime.

reg timer Timer expires when the lifetime of the current registration expires. Usually this
means that re-registrations failed.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 13

TU BERLIN

default route saved The default route was saved on initialization of the agent.
orig default route Saved default route.
default route Current default route.
last activity Timestamp (in microseconds) of the last sent or received data packet. Used

for the purpose of idle detection.
activity mutex Mutex3 that protectslast activity from concurrent access by main

and idle thread.
activity timeout Timer for checking of an idle condition.
idle thread Thread handle of the idle thread.
idle thread started The idle thread was started, i.e.idle thread contains a valid handle.

Configuration

iface Map of configured interfaces, indexed by the interface name.
paging enabled The Mobile Agent is pageable. Also used as a switch for inactive mode

support.
broadcast The mobile host wants to receive broadcast packets. This feature was not

implemented due to lack of time.
predictive The mobile host wants to be pre-registered at neighboring access points.
reg port UDP port used for registration messages.
idle timeout After how many seconds of no data activity should we go to idle mode?
managementport TCP port of the management interface (zero if turned off.).
dummy dev name Name of the dummy device.
dummy dev MB2Interface object of the dummy device.
foreground Agent should run in foreground.
config file Name of the configuration file.

Interface The Interface structure augments the abstraction of network interfaces (as repre-
sented by theMB2Interface class) with interface dependant configuration options. Note that the
preferred registration lifetime, timeout values and the sending of de-registrations are configured here,
as they may depend on the used technology (e.g. values optimal for wired connection via 100Mbps
Ethernet may be different than optimal values for GSM).

iface MB2Interface object of the network interface.
force addr IP address used for the interface. If none has been given this will be the first IP

address retrieved from the kernel.
preference Preference of the interface as set in the configuration file. Can be used by the

handover policy to select an access point.
active regtime Preferred registration lifetime in seconds for active registrations on this interface

(can be limited by the maximum lifetime advertised by access points).
idle regtime Preferred registration lifetime in seconds for inactive registrations on this inter-

face.
3Mutual exclusion device used in multithreded environments. Protects shared data from concurrent modifications.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 14

TU BERLIN

regreq timeout Timeout within which aMH Registration Replyto an active registration is ex-
pected. Otherwise theMH Registration Requestis resent.

senddereg Set if the agent should try to send de-registration messages to access points at
this interface.

adv socket ICMP socket for the reception ofMEP Advertisementsand the sending ofMEP
Solicitations. Bound only to this interface.

reg socket UDP socket for sending ofMH Registration Requestsand reception ofMH
Registration RepliesandPaging Requests. Bound only to this interface.

Access Point Database Known access point (called base stations within the implementation) are
stored in a hash table that hashes them by their IP address. They are stored in aBaseStationEn-
try .

addr IP address of the access point. Different interfaces of the access point (possibly
with different technologies) have different IP addresses and are thus treated as
different access points.

registered This is the access point we are registered at.
busy This access point had the busy flag set in its last advertisement and thus does not

want to receive new advertisements.
stale This access point reacted strange previously and thus should be avoided. An access

point with this flag will time out even if a refreshing advertisement is received.
quality Signal quality of the last received advertisement or−1 if not supported.
adv seqno Sequence number of the last received advertisement.
adv lifetime Lifetime of the last received advertisement.
maxregtime Maximum lifetime for registrations as advertised.
adv flags Flags in the last received advertisement.
timer Expiry timer for this entry.

3.2.2 Methods

Message Handlers

handle MEP Advert Handler forMEP Advertisements. This handler is passed an info struc-
ture that contains the raw packet, a pointer to the receiving interface and
the signal quality. On entry of the post-processing handlers it contains
also a pointer to the corresponding.BaseStationEntry . The signal
quality must be filled in by a policy handler. The handler updates the
access point (i.e. base station) database.

handle MH RegReply Handler forMH Registration Replies. The passed info structure con-
tains the message, the receiving interface, signal quality and access
point address and port.

handle PagingReq Handler forPaging Requeststhat is passed the message and the receiv-
ing interface. The handler triggers the wakeup procedure.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 15

TU BERLIN

Sending of Messages

sendMEP Solicit Sends aMEP Solicitationon the given interface.
sendMH RegReq Sends a registration or de-registration to the given access point.

Mobile-specific Methods

selectBS Returns the access point that should be used for the next registration. Calls either the
corresponding policy handler or returns the first feasible access point.

wakeup Wakes up from idle mode. Sends an active registration to a suitable access point.
goIdle Switches to idle mode. Send inactive registration, de-register and cancel pending reg-

istration if applicable.

Initialization and Cleanup

startIdleThread Starts the idle thread. The purpose of the idle thread is described below.
stopIdleThread Stops the idle thread.

Handling of Timers

baseExpire Called when an base station entry expires. A pointer to the entry is passed.
regreqTimeout Called when an expected registration reply did not arrive in time.
regTimeout Called when the registration at the current access point expires. Usually the

registration should be refreshed by the next timer.
reregExpire Called when it is time to refresh the current registration.
activityTimeout Called when it is time to check for an idle condition.

Idle Thread

idleThread Static method that constitutes the main method of the idle thread (see next
section).

idleThreadCleanup Cleanup for the idle thread.
getAddrFromIPH Function that extracts the destination address from the IP header when

flushing buffers.

3.2.3 Idle Detection

One essential property of the mobile host is the distinction between active and inactive mode. The
mobile host has to switch from active to inactive mode after a configurable idle period (no IP data
traffic). The idle detection works as follows:

A packet socket, which receives all incoming and outgoing packets of the host, is opened. A
socket filter, which only accepts IP data packets but rejects non-IP, signaling and broadcast packets,
is attached to the socket. In active mode the so-called idle thread does nothing than observing the
packet socket and recording the timestamp of the last data packet. The main thread sets a timer to
the duration of the activity timeout. When the timer expires, the timestamp of the last data packet is

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 16

TU BERLIN

checked. If it lies within the last timer period the timer will be prolongated, otherwise the mobile host
will switch to inactive mode. The change from inactive to active mode is triggered by the reception
of an incoming or outgoing packet by the idle thread or by aPAGINGREQUEST. In the case of
outgoing data the packets are buffered by the idle thread until a valid registration at an access point
can be obtained. To cause outgoing packets to appear on the idle socket but not be sent out on an
interface a dummy device is used, a software network device which discards any packets. In inactive
mode the default route points to this device.

3.2.4 Management Interface

The management interface of the Mobile Agent understands the following commands. For the syntax
see the paragraph onMB2Parser . Note that the management interface will collide with idle detec-
tion if TCP packets are fragmented. This will usually not be the case if client and server are on the
same link or if path MTU discovery is performed.

handover Triggers a handover. The optional argument denotes the address of the
access point to handover to.

getState Prints the current state as symbolic state name, value of the active and
wakeup flags (0/1).

getBaseStation Prints the access point with the given address or a table of all known ac-
cess points finished byend in the following format: IP address, registered
flag, busy flag, stale flag (0/1), quality, interface name, sequence number,
lifetime, maximum registration time, flags and expiry time in sec,usec.

getRegBaseStation Prints the access point we are registered at in the same format.
getPendingReg Prints the pending registration as a comma separated list of the follow-

ing fields: access point address, flags, lifetime, extended flags, identifier
(high,low), sending time (sec,usec).

getRegRetryCount Get the registration retry counter.
getRegTimer Get the expiry time ofregtimer as sec,usec.
getRegReqTimeout Get the expiry time ofregreqtimeout as sec,usec.
getReregTimer Get the expiry time of thereregtimer as sec,usec.
getActivityTimeout Get the expiry time of theactivitytimeout as sec,usec.
getLastActivity Get the timestamp of the last activity as sec,usec.
close Close the connection.
terminate Shutdown the agent.
reset Shutdown and restart the agent.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 17

TU BERLIN

state: State

MA_Mobile �

config

MB2_Interface

MA_Mobile::Interface

+ force_addr

+ Interface

MB2_ICMP_Socket MB2_UDP_Socket

�

wakeup_pipe
MB2_Pipe

MA_Mobile::Config

paging_enabled

+ Config

basestations

�

+ addr: uint32_t

MA_Mobile::BaseStationEntry

MB2_Route

+ handle_MEP_Advert
+ handle_MH_RegReply
+ handle_PagingReq

active: bool
waking_up: bool

+ send_MEP_Solicit
+ send_MH_RegReq

+ selectBS
+ wakeup
+ goIdle

startIdleThread
stopIdleThread

printBasestations

baseExpire
regreqTimeout
regTimeout
reregExpire
activityTimeout

$# idleThread
$# idleThreadCleanup
$# getAddrFromIPH

MA_Mobile
+ ~MA_Mobile

last_id: MH_RegIdent
pending_reg: MH_RegReqInfo
reg_retry_count: int
regreq_timeout: Timers::Handle
rereg_timer: Timers::Handle
reg_timer: Timers::Handle
default_route_saved: bool
last_activity: int64_t
activity_mutex: pthread_mutex_t
activity_timeout: Timers::Handle
idle_thread: pthread_t
idle_thread_started: bool

+ preference
+ active_regtime
+ idle_regtime
+ regreq_timeout
+ send_dereg

+ ~Interface
+ print

iface 1..*

dummy_dev 1

adv_socket 1 reg_socket 1

broadcast
predictive
reg_port
idle_timeout
management_port
dummy_dev_name

foreground
config_file

+ getXXX

iface 1

+ registered: bool
+ busy: bool
+ stale: bool
+ quality: int8_t
+ adv_seqno: uint16_t
+ adv_lifetime: uint16_t
+ maxregtime: uint16_t
+ adv_flags: uint16_t
+ timer: Timers::Handle

+ BaseStationEntry
+ print

0..1
registered_bs

orig_default_route 0..1 default_route 1

1

iface

Figure 3.2:Class diagram: Design of the Mobile Agent

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 18

TU BERLIN

3.3 Design of Mobility Enabling Proxy

3.3.1 Data Fields

initialized The agent is initialized.
direct mobiles Number of directly registered mobiles. The total number of mobiles can be

retrieved from the mobile database. The number of indirectly registered can
be calculated from this.

predictive mobiles Number of directly registered mobiles that wish to be pre-registered at other
access points. Used for sending ofIMEP Advertisements

. nat route Network route that translates multicast addresses to unicast addresses of
mobile hosts.

blackhole Network route to the (sub)network of mobile hosts that prevent packets for
mobiles that are not directly registered from being forwarded. Each directly
registered mobile has its own host route.

old netroute saved The original route to the mobile network was saved.
old netroute The original network route.
mobiles Database of known mobiles hashed by their unicast IP address. The mo-

biles are either directly registered withMH Registration Requestsor pre-
registered withIMEP Advertisementsfrom other access points.

otherBaseStations Database of known other access points hashed by their IP address. Col-
lected throughIMEP Advertisements

Configuration

upstream Configuration of the upstream interface.
downstream Map of downstream interfaces, indexed by their names.
sendpaging updates Paging Updatesshould be sent to the gateway proxy.
paging proxy IP address and port of the gateway proxy.
mobile uc Unicast address range of the mobile hosts.
mobile mc Multicast address range of the mobile hosts.
mobile mask Address mask for the address ranges.
mobile mask len Length of the address mask.
tunnel type Is the data transported via NAT to/from multicast or via encapsulation in

multicast packets. Only NAT is implemented.
reg port Registration UDP port number.
imep port UDP port forIMEP Advertisements.
managementport TCP port of the management interface (zero if turned off).
paging area count Number of paging areas this MEP is member of.
paging area Multicast groups for paging areas. The first is the paging area we report

as location for directly registered mobiles to the gateway proxy.
mep group count Number of MEP groups this MEP belongs to including the one, we are

only sending to.
mep group Multicast groups for MEP groups. The first one is the group centered

around us, i.e. the one this MEP is only sending to.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 19

TU BERLIN

max direct mobiles Maximum allowed number of directly registered mobiles.
max indirect mobiles Maximum allowed number of indirectly registered mobiles.
mobile threshold Not used.
max regtime Maximum accepted registration time in seconds.
mobile buffer size Size of mobile buffers in bytes.
foreground Agent should run in foreground.
config file Name of the configuration file.

US Interface This structure augments the interface object for the upstream interface with configu-
ration data.

iface MB2Interface object of the network interface.
force addr IP address that should be used for the interface. If none has been given this

will be the first IP address retrieved from the kernel.
imep interval Interval betweenIMEP Advertisementsthis agent sends in seconds.
imep lifetime Lifetime of sentIMEP Advertisements.
imep adv timer Timer for the regular sending ofIMEP Advertisements.
imep seqno Sequence number of the nextIMEP Advertisements.
imep socket Socket for sending and receptionIMEP Advertisements.
shared imep socket Do we share theimep socket with a registration socket? Not supported

in this version.

Interface The Interface structure augments the abstraction of downstream network interfaces
(as represented by theMB2Interface class) with interface dependant configuration options. Note
that the advertisement interval and lifetime are configured here, as they may depend on the used
technology (e.g. values optimal for wired connection via 100Mbps Ethernet may be different than
optimal values for GSM).

iface MB2Interface object of the network interface.
force addr IP address that should be used for the interface. If none has been given this will be

the first IP address retrieved from the kernel.
adv interval Interval between sentMEP Advertisementsin microseconds.
adv lifetime Lifetime for sentMEP Advertisementsin microseconds.
adv timer Timer for the regular sending ofMEP Advertisements.
adv seqno Sequence number of the next advertisement.
adv socket Socket for sending ofMEP Advertisementsand reception ofMEP Solicitations.

Bound only to this interface.
reg socket Socket for reception ofMH Registration Requests, sending of replies andPaging

Requests. Bound only to this interface.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 20

TU BERLIN

MEP_BaseStation

initialized: bool

�

config

MEP_BaseStation::Config

send_paging_updates

+ Config

MB2_MC_Channel

MEP_BaseStation::Interface

MEP_BaseStation::MobileEntry

MB2_Route

+ force_addr

+ US_Interface

MEP_BaseStation::US_Interface

+ addr: uint32_t

MA_Mobile::BaseStationEntry

MB2_UDP_Socket

MB2_Interface

direct_mobiles: unsigned
predictive_mobiles: unsigned
old_netroute_saved

MEP_BaseStation
+ ~MEP_BaseStation

+ handle_MH_RegReq
+ handle_MEP_Solicit
+ handle_IMEP_Advert
+ handle_PagingReq

+ send_MEP_Advert
+ send_MH_RegReply
+ send_IMEP_Advert
+ send_PagingUpdate

+ insertMobileExpiry
+ bufferPolicy
+ flushPolicy

joinPermanentChannels
leavePermanentChannels
initAdvert

printMobiles

advertTimer
imepAdvTimer
mobileExpire
otherBaseExpire

paging_proxy
mobile_uc
mobile_mc
mobile_mask
mobile_mask_len
tunnel_type
reg_port
imep_port
management_port
paging_area_count
mep_group_count
max_direct_mobiles
max_indirect_mobiles
mobile_threshold
max_regtime
mobile_buffer_size

foreground
config_file

+ ~Config
+ getXXX

*
paging_area

mep_group
1..*

1..*
downstream

1
upstream

1
iface

1
imep_socket

* otherBaseStations

mobiles*

1 nat_route

+ imep_interval
+ imep_lifetime
+ imep_adv_timer
+ imep_seqno
+ shared_imep_socket

+ ~US_Interface
+ print+ seqno: uint16_t

+ holdtime: uint16_t
+ mobiles: set of uint32_t
+ timer: Timer::Handle

+ BaseStationEntry
+ ~BaseStationEntry
+ print

1 blackhole 1 old_netroute

Figure 3.3:Class diagram: Design of the Mobility Enabling Proxy (1)

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 21

TU BERLIN

MEP_BaseStation::MobileEntry

addr: uint32_t

buffer

0..1

mobiles
*MEP_BaseStation

MEP_BaseStation

+ buffer_thread: pthread_t

1

channel
MB2_MC_Channel

MB2_Buffer

MB2_RawIP_Socket

MB2_SocketGroup

1

route
MB2_Route

MEP_BaseStation::Interface

+ Interface

+ force_addr: uint32_t

0..1

iface

1

iface
MB2_Interface

MB2_UDP_Socket1

reg_socket

MB2_ICMP_Socket

is_direct: bool
registerer: uint32_t
buffer_mutex: pthread_mutex_t

hwaddr: HwAddr_t
lifetime: uint16_t
quality: int8_t
flags: uint8_t
ext_flags: uint32_t
id: MH_RegIdent
timer: Timers::Handle

+ MobileEntry
+ ~MobileEntry
+ isPredictive
+ print

+ startBufferThread
+ stopBufferThread

+ newDirectMobile
+ updateDirectMobile
+ newIndirectMobile
+ updateIndirectMobile
+ mobileIndirect2Direct
+ mobileDirect2Indirect
+ removeMobile

enableForwarding
disableForwarding

$# bufferThread
$# bufferThreadCleanup
$# flushThread
$# flushThreadCleanup

1

mh

bs

1

bs 1

::MobileEntry::BufferContext

+ flush_thread: pthread_t
+ flush_dest: uint32_t

1
group

0..1
data

socket
1

flush_socket
0..1

+ ~Interface
+ print

+ adv_interval: uint16_t
+ adv_lifetime: uint16_t
+ adv_timer: Timers::Handle
+ adv_seqno: uint16_t

1
adv_socket

Figure 3.4:Class diagram: Design of the Mobility Enabling Proxy (2)

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 22

TU BERLIN

Mobile Database The mobile database, unlike the access point database, contains active objects (of
classMobileEntry) not passive data structures. The updating of entries, buffering etc. is done by
the entry objects itself.

Data Fields

addr Unicast IP address of the mobile host.
bs Back pointer to the enclosing agent.
is direct This mobile is directly registered.
registerer If a valid indirect registration exists this will contain the IP address of the regis-

tering MEP.
buffer Context information (including the buffer itself) for the buffer thread.
buffer mutex Mutex for concurrent access to the buffer context.
channel Multicast group for this mobile.
route Host route to this mobile host.
hwaddr Hardware (i.e. MAC) address of the mobile host. Not implemented.
iface Interface from which a direct registration was received.
lifetime Lifetime of the direct registration in seconds.
quality Signal quality of the direct registration (if supported and set by a policy handler).
flags Flags of the last direct registration.
ext flags Extended flags of the last direct registration.
id Identifier of the last direct registration.
timer Expiry timer for this entry if the mobile has been directly registered. Otherwise

this entry will be controlled by the access point entry of the registering MEP.

Housekeeping Methods

is predictive Checks if the mobile is a directly registered one that wishes to be pre-
registered at other MEPs.

newDirectMobile Initializes the entry with data from theMH Registration Request, en-
ables forwarding to the last hop and subscribes to the mobile’s multicast
channel.

updateDirectMobile Updates the entry with data from theMH Registration Request
newIndirectMobile Initializes the entry for an indirectly registered mobile, starts the buffer

thread and joins the multicast group.
updateIndirectMobile Updates the registerer of this entry.
mobileIndirect2Direct Turns the indirect mobile into a direct one. Enables forwarding to the

last hop, stops buffering and starts flushing.
mobileDirect2Indirect Turns the direct mobile into an indirect one. Disables forwarding and

starts buffering.
removeMobile Prepares the removal of this mobile entry by disabling forwarding for

direct mobiles, stopping buffering for indirect ones and un-subscribing
from the multicast channel.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 23

TU BERLIN

Support Methods

enableForwarding Enables forwarding to the mobile host by setting a host route to the last hop
overriding the network blackhole route.

disableForwarding Disables forwarding by removing the host route. Thus the blackhole net-
work route for the mobile subnetwork causes the packets to vanish in this
host. However the raw sockets feeding the buffers still get the packets.

Buffering When a mobile is registered indirectly by another MEP, packets for the mobile are
buffered by this MEP to reduce loss of packets when the mobile does a handover to this MEP. Each
mobile entry has its own buffer, its own raw socket and its own buffer thread. The socket is attached a
filter only accepting packets for this mobile. The buffer thread runs in an infinite loop and is canceled
from the main thread either when the mobile entry becomes invalid or the mobile becomes directly
registered. In the latter case a flush thread is started to forward buffered data to the mobile host.

BufferContext

bs Pointer to the agent instance.
mh Pointer to the embedding mobile entry.
group Socket group. Contains only one socket. This is a bug workaround.
socket Raw IP socket for the data to be buffered.
buffer thread Handle for the buffer thread.
data The ring buffer.
flush thread Handle for the flush thread.
flush dest Destination for the flushed packets (the mobile’s unicast IP address).
flush socket Raw IP socket for flushing the buffer to the mobile host.

Buffer related Methods

startBufferThread Starts buffering of data for the mobile host. The buffer context and the
buffer are allocated and a raw socket is opened.

stopBufferThread Stops the buffering for the mobile host. Either the flushing thread is started
(this is the case, when a pre-registered mobile registers directly) or the
buffer content is discarded and memory freed (this happens when the inac-
tive registration becomes invalid, because either the entry of the registering
MEP expires or the mobile does not appear in the IMEP Advertisements of
the registerer anymore).

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 24

TU BERLIN

bufferThread The buffer thread. This is a static method, however, a buffer thread
is created for each indirect mobile. It is passed aBufferContext
structure including a pointer to the mobile for which to buffer. Since it
works only on this structure it can be seen as a logical member of this
structure. Runs in an infinite loop unless canceled by the main thread.
Reads data for the mobile host from the raw IP socket and writes it to
the ring buffer. Whether a packet should be buffered can be controlled
by the buffer policy which operates on the IP header.

bufferThreadCleanup Cleanup method for the buffer thread called on its cancellation.
flushThread The flush thread. The same facts as for the buffer thread apply. The

flush thread translates the buffered packets to unicast, and forwards them
to the mobile. This can also be controlled by a policy e.g. to avoid
forwarding of aged packets. The flush thread terminates when flushing
is finished.

flushThreadCleanup Cleanup method for the flush thread.

Access Point Database

addr IP address of the access point.
seqno Sequence number of the last received IMEP advertisement.
holdtime Lifetime of the last received IMEP advertisement.
mobiles Set of the unicast IP addresses of the advertised mobiles in the last IMEP advertise-

ment. Used to check which mobiles to remove and to add on a new advertisement.
timer Expiry timer for this entry.

3.3.2 Methods

Message Handlers

handle MH RegReq Handler forMH Registration Requests. Creates or updates mobile en-
tries (or removes them in the case of de-registrations or inactive registra-
tions), joins the multicast group if appropriate, sends aPaging Update
for inactive mobiles. The handler is passed an info structure that contains
context information about the message, such as the receiving interface,
signal quality (if filled in by a policy handler) etc.

handle MEP Solicit Handler forMEP Solicitations. Schedule the sending of aMEP Ad-
vertisementon the receiving interface. The advertisement is not sent
instantly to avoid synchronizing effects with other MEPs.

handle IMEP Advert Handler for Inter-MEP Advertisements. Updates the access point
database, removes old mobiles from the mobile database and inserts new
ones. Calculates the difference set of the mobile addresses in the last ad-
vertisement and those in the current advertisements to do so.

handle PagingReq Handler forPaging Requests. Forwards the request to all downstream
interfaces.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 25

TU BERLIN

Sending of Messages

sendMEP Advert Sends aMEP Advertisementon the given interface.
sendMH RegReply Sends aMH Registration Replywith a given code that is a reply to the

passed request.
send IMEP Advert Sends anIMEP Advertisementwith the given holdtime (i.e. lifetime).
sendPagingUpdate Sends aPaging Updatefor the given mobile host to the gateway proxy.

The identifier of the triggeringMH Registration Requestand the lifetime
of this update are also passed as arguments.

MEP-specific Methods

insertMobileExpiry Inserts an expiry timer for a mobile entry into the timer list.
bufferPolicy Calls the buffer policy handler if one exists. The handler is passed the IP

header of the packet in question. It controls whether the packet should be
buffered. If no policy handler is installed, all packets will be accepted.

flushPolicy Calls the flush policy handler if one exists. The handler is passed the re-
ception timestamp and the IP header of the packet in question and controls
whether the packet should be forwarded to the mobile or discarded. All
packet will be forwarded if no policy handler is installed.

Initialization and Cleanup

joinPermanentChannels Joins the permanent multicast groups such as the paging areas and
the MEP groups.

leavePermanentChannels Leaves the permanent multicast groups.
initAdvert Schedule the sending of the firstMEP Advertisementson the down-

stream interfaces and of the firstIMEP Advertisement. The sending
times are randomized to avoid synchronization effects.

Handling of Timers

advertTimer It is time to send aMEP Advertisementon a certain interface. A new timer
is set. Although the advertisements are send frequently, the exact time is
randomized to avoid synchronization effects.

imepAdvTimer It is time to send a newIMEP Advertisement. A new timer is set which is also
randomized.

mobileExpire A direct mobile entry expired. The entry will either be removed or turned into
an indirect entry if there is an indirect registerer.

otherBaseExpire The entry of an access point expired. This entry and the mobile entries of all
mobiles indirectly registered by this access point are deleted.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 26

TU BERLIN

3.3.3 Management Interface

The management interface of the Mobility Enabling Proxy understands the following commands. For
the syntax see the paragraph onMB2Parser .

getState Prints whether the agent was initialized (0/1).
getMobile Prints the entry of the mobile with the given address or a table of all known

mobiles finished byend in the following format: unicast IP address, direct
flag, interface name, lifetime, quality, flags, extended flags, registration id
(high,low), expiration time (sec,usec) and IP address of registerer.

getBaseStation Prints the access point with the given address or a table of all known access
points finished byend in the following format: IP address, sequence number,
holdtime, number of advertised mobiles and expiry time in sec,usec.

getDirectMobiles Prints the number of directly registered mobiles.
getPredMobiles Prints the number of directly registered mobiles that want to be pre-registered

at other MEPs.
close Close the connection.
terminate Shutdown the agent.
reset Shutdown and restart the agent.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 27

TU BERLIN

3.4 Design of Gateway Proxy

3.4.1 Data Fields

initialized The agent is initialized.
paging socket Special raw IP socket that forms the connection of the agent to the kernel

support and used to control it. The packets that have to be buffered during
paging are sent up by the kernel through this socket.

flush socket Netlink socket that forms the connection to theEthertapdevice. Used for
flushing of buffers towards the mobile hosts and for sending ofPaging Re-
quests.

nat route Network route that translates unicast addresses to multicast addresses of
mobile hosts.

old netroute saved The original route to the mobile network was saved.
old netroute The original network route.
mobiles Database of known mobiles hashed by their unicast IP address. The mobiles

are reported by the MEPs withPaging Updates.
last paging seqno Sequence number used for the lastPaging Requests.

Configuration

upstream Configuration of the upstream interface.
downstream Map of downstream interfaces, indexed by their names.
mobile uc Unicast address range of the mobile hosts.
mobile mc Multicast address range of the mobile hosts.
mobile mask Address mask for the address ranges.
mobile mask len Length of the address mask.
tunnel type Is the data transported via NAT to/from multicast or via encapsulation

in multicast packets. Only NAT is implemented.
paging port UDP port number used for paging.
managementport TCP port of the management interface (zero if turned off).
paging source IP address used as the source forPaging Requests. Must be on theEther-

tapnetwork.
paging areas Multicast address range of paging areas.
paging areasmask IP Mask for paging areas.
paging areasmasklen Mask length for paging areas.
max mobiles Maximum number of mobile entries.
max cachetime Maximum time in seconds that a cache entry may exist without being

refreshed (i.e. the maximum lifetime of the paging table entries).
mobile buffer size Size of mobile buffers in bytes.
ethertap unit Unit number for the usedEthertapdevice (e.g. 1 for “tap1”).
ethertap name Name of the Ethertap device (e.g. “tap1”).
ethertap dev MB2Interface object for the Ethertap device.
foreground Agent should run in foreground.
config file Name of the configuration file.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 28

TU BERLIN

GWP_Gateway

initialized: bool

�

config

GWP_Gateway::Config

mobile_uc

+ Config

GWP_Gateway::MobileEntry

MB2_Interface

+ force_addr

GWP_Gateway::US_Interface

+ force_addr

GWP_Gateway::Interface

+ Interface

MB2_UDP_Socket

MB2_PagingSocket

MB2_Ethertap

MB2_Route

old_net_route_saved: bool
last_paging_seqno: uint16_t

GWP_Gateway
+ ~GWP_Gateway

+ handle_PagingSocket
+ handle_PagingUpdate

+ send_PagingReq

+ insertMobileExpiry
+ insertPagingExpiry
+ bufferPolicy
+ flushPolicy

printMobiles

mobileExpire
pagingExpire

mobile_mc
mobile_mask
mobile_mask_len
tunnel_type
paging_port
paging_source
management_port
paging_areas
paging_areas_mask
paging_areas_masklen
max_mobiles
max_cachetime
mobile_buffer_size
ethertap_unit
ethertap_name

foreground
config_file

+ getXXX

1
upstream

+ print

+ ~Interface
+ print

iface 1

1iface

upd_socket
1

*
downstream

ethertap_dev
1

mobiles *

1gw

1
old_netroute

1
paging
_socket

1
flush_socket

1
nat_route

Figure 3.5:Class diagram: Design of Gateway Proxy (1)

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 29

TU BERLIN

GWP_Gateway GWP_Gateway::MobileEntry

addr: uint32_t

GWP_Gateway::Interface

MB2_Buffer

gw
1

mobiles

*

location: uint32_t
lifetime: uint16_t
id: MH_RegIdent
timer: Timers::Handle
deleted: bool
paging: bool
paging_finish: bool
paging_timer: Timers::Handle
buffer_mutex: pthread_mutex_t
flush_thread: pthread_t
flushing: bool

+ MobileEntry
+ ~MobileEntry

+ updateMobile
+ newMobile
+ removeMobile

+ pagingAbort
+ handlePagingReport
+ startFlushThread
+ print

$# flushThread
$# flushThreadCleanup
$# insertEthertapHeader

iface
1

buffer
0..1

Figure 3.6:Class diagram: Design of Gateway Proxy (2)

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 30

TU BERLIN

US Interface This structure augments the interface object for the upstream interface with configu-
ration data.

iface MB2Interface object of the network interface.
force addr IP address that should be used for the interface. If none has been given this will be

the first IP address retrieved from the kernel.

Interface The Interface structure augments the abstraction of downstream network interfaces
(as represented by theMB2Interface class) with interface dependant configuration options.

iface MB2Interface object of the network interface.
force addr IP address that should be used for the interface. If none has been given this will be

the first IP address retrieved from the kernel.
upd socket Socket for the reception ofPaging Updates. Bound only to this interface.

Mobile Database The mobile database contains active objects not passive data structures. The
updating of entries, buffering, handling of paging messages from the kernel etc. is done by the entry
objects itself.

Data Fields

gw Back pointer to the enclosing agent.
addr Unicast IP address of the mobile host.
location Multicast address of the paging area reported in the lastPaging Updateas the

location of the mobile host.
iface Interface from which the lastPaging Updatewas received.
lifetime Lifetime of the lastPaging Update.
id Registration identifier of the lastPaging Update. Used to detect reordering.
timer Expiry timer of this entry.
deleted The entry is not valid anymore. The entry is not deleted instantly to detect re-

ordering ofPaging Updates.
paging Paging for this mobile is just in progress, i.e. aPaging Requestwas sent but a

Paging Updateswith lifetime zero was not received, yet.
paging finish We are in the finishing phase of the paging for this mobile, i.e. thePaging Updates

with lifetime zero was received and we are now waiting for a report by the kernel
that the multicast group corresponding to the mobile becomes existent.

paging timer Timer that is kept running during the paging process and expires when the kernel
does not send a refresh message.

buffer Buffer for packets for the mobile host that are buffered during the paging phase.
buffer mutex Mutex used to synchronize the flush thread with the main thread on destruction

of the mobile entry.
flush thread Thread handle of the corresponding flush thread.
flushing Just flushing the buffer. Only if this is true there will be a flush thread.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 31

TU BERLIN

Housekeeping Methods

newMobile Initializes the entry with data from thePaging Updateand potentially deletes the
corresponding entry in the kernel Multicast Forwarding Cache.

updateMobile Updates the entry with data from thePaging Update.
removeMobile Prepares the removal of this mobile entry.

Support Methods

pagingAbort Called when paging was aborted.
handlePagingReport Handler for kernel paging reports concerning this mobile. Starts and stops

paging, buffers data for this mobile and starts the flushing thread.

Buffering During paging of a mobile it is not yet reachable and its exact position is not yet
known. Thus the data for the mobile has to be buffered in the gateway proxy. Each mobile entry has
its own buffer but unless the MEP all data packets arrive through one special raw socket, the paging
socket. Moreover, buffering is done by the main thread. This is acceptable because the time period for
which buffering is necessary is relatively short and so buffering will not be necessary for a lot mobile
hosts at the same time. As in the MEP flushing is done by a separate thread to avoid interruption of
message processing.

Buffer related Methods

startFlushThread Starts the flushing thread for the buffered data packets.
flushThread The flush thread is a static method that is passed a pointer to the corre-

sponding mobile entry as an argument. Thus is can be logically treated
as a non-static method. The flush thread inserts anEthertapheader to
each packet and forwards it to the mobile host through the multicast
channel. Flushing can be controlled by a flush policy.

flushThreadCleanup Cleanup method for the flush thread.
insertEthertapHeader Static method that does the insertion ofEthertapheaders for the flush

thread. The necessary room for the header is reserved on the buffering
of the packet.

3.4.2 Methods

Message Handlers

handle PagingSocket Handler for kernel reports from the paging socket. Checks whether a
corresponding mobile entry exists and either dispatches the report to this
entry or reports failure to the kernel.

handle PagingUpdate Handler forPaging Updatemessages. Creates and updates the corre-
sponding mobile entry in the mobile database.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 32

TU BERLIN

Sending of Messages

sendPagingReq Sends a paging request for the given mobile host to the given paging area.

Gateway-Specific Methods

insertMobileExpiry Inserts an expiry timer for a mobile entry into the timer list.
insertPagingExpiry Inserts an expiry timer for the paging process of a mobile into the timer

list.
bufferPolicy Calls the buffer policy handler if one exists. The handler is passed the IP

header of the packet in question. It controls whether the packet should be
buffered. If no policy handler is installed, all packets will be accepted.

flushPolicy Calls the flush policy handler if one exists. The handler is passed the re-
ception timestamp and the IP header of the packet in question and controls
whether the packet should be forwarded to the mobile or discarded. All
packet will be forwarded if no policy handler is installed.

Handling of Timers

mobileExpire The lifetime of a mobile entry expired. The entry is removed unless we are paging
or flushing. In this case the entry is prolongated until paging or flushing finishes.

pagingExpire The paging process timed out.

3.4.3 Sending of Multicast Packets

PAGINGREQUESTsand buffered packets are multicast packets originating from the gateway, which
is also a multicast router. Under Linux, sending of multicast packets from a multicast router is treated
as if the router acted as a normal end system. On sending you have to specify a single interface on
which a multicast packet should leave the host. In our case it is however desired that multicast packets
are fed into the multicast routing mechanism the same way as forwarded packets are. This is achieved
by a trick:

TheEthertapdevice, a software network device simulating an Ethernet adapter, is used. Every-
thing that is written into a special socket from user space appears in the kernel as if it was received
from the Ethertapnetwork device. Everything that is sent to theEthertapdevice appears on the
socket. Only small modifications were necessary to allow an MTU of up to 65535 bytes (to avoid
useless fragmentation) and to enforce acceptance of packets fromEthertap, which were originally
expected from another interface.

This could better be achieved by divert sockets (see Sec.3.5.1 for details). Unfortunately when I
discovered the concept of divert sockets and their working implementation for Linux the agents had
already been implemented.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 33

TU BERLIN

3.4.4 Paging

Paging is done partly in the Gateway Proxy and partly in the kernel. The paging process from the
view of the kernel is described in Sec.4.3. This section discusses only the user space part:

1. The agent receives aMFCPAGINGCHECKreport through the paging socket.

(a) If a corresponding mobile entry exists it will do the further processing. It sends aPaging
Requestand notifies the kernel that paging has started.

(b) Otherwise this will be reported to the kernel and the packets will be treated like normal
multicast packets.

2. From now on packets for the mobile host are send up to the agent through the paging socket and
are buffered here. Packets to be buffered can be distinguished from kernel reports by having an
non-zero protocol field (unless the kernel reports).

3. When aPaging Updatewith lifetime zero is received for the mobile host the kernel is notified
that paging has finished. The kernel waits now for the corresponding multicast group to become
existent.

4. This (or the failure) is reported by the kernel.

(a) In the first case flushing is started.

(b) In the second case the buffer is freed.

3.4.5 Management Interface

The management interface of the Gateway Proxy understands the following commands. For the
syntax see the paragraph onMB2Parser .

getState Prints whether the agent was initialized (0/1).
getMobile Prints the entry of the mobile with the given address or a table of all known

mobiles finished byend in the following format: unicast IP address, deleted
flag, paging area address, interface name, lifetime, registration id (high,low),
expiration time (sec,usec), paging flag, pagingfinish flag and flushing flag.

getPagingSeqno Prints the last paging sequence number.
close Close the connection.
terminate Shutdown the agent.
reset Shutdown and restart the agent.

3.5 Support Code

3.5.1 MB2 Socket Hierarchy

The access to network sockets is encapsulated by socket classes. The different types of sockets
form a hierarchy of classes that inherit from the abstractMB2Socket class (see Fig.3.7). All
sockets provide methods for opening, closing, reading, writing and querying about the amount of

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 34

TU BERLIN

data available for reading. The most sockets can be passed certain flags on opening that depend on
the type of the socket. Some sockets provide additional type-specific operations. Special features or
implementation details of some socket types are discussed in the following paragraphs.

MB2_Socket

MB2_RealSocket

MB2_IP_Socket

MB2_RawIP_Socket MB2_UDP_Socket MB2_TCP_Socket

MB2_TCP_Server_SocketMB2_PagingSocketMB2_ICMP_Socket

MB2_NonSocket

MB2_Pipe MB2_Ethertap MB2_LinkSocket

Figure 3.7:Class diagram: Socket hierarchy

Socket Filter Linux allows a packet filter to be attached to a network socket. The Linux socket
filter model is essentially an in-kernel implementation of the Berkeley Packet Filter model[11]. The
possibility to attach filters to sockets is somewhat limited in this implementation. It provides only the
filtering by source, destination and protocol fields in the IP header and a special filter only accepting
data packet, thus filtering outMOMBASA SEsignaling, broadcast packets etc. The latter is used for
idle detection in the mobile host. The filter programs were mainly generated by the tcpdump program
and edited by hand afterwards.

Non-Sockets A subclass ofMB2Socket that does not represent a network socket is somewhat
astonishing. Limiting inheritance is generally considered a design error. However, I decided to do
just that in this case. The reason is the following: Some agents are multithreaded. It is necessary
to signal certain conditions from sub-threads to the main thread (e.g. the Mobile Agent’s idle thread
has to signal a wakeup condition to the main thread). However, the main event loop only handles
events from socket-like input channels and pre-scheduled timer events. The waiting for this kind
events can be implemented quite easy and efficiently (without the need for busy waiting) on the basis
of the UNIX select function (see the paragraph aboutMB2SocketGroup for details). To avoid
introduction of a third type of events the inter-thread communication is done via a pipe. To make the
pipe insertable into a socket group it was implemented as a subclass ofMB2Socket .

The cleanest solution would probably have been to make pipes and sockets subclasses of a common
base class (e.g.MB2CommChannel) and makeMB2SocketGroup a group of such communica-
tion channels. Since all these classes are implemented on the basis of file descriptors this would also
have been possible.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 35

TU BERLIN

Real Sockets Classes that represent real network sockets are derived from theMB2RealSocket
class. Besides the inherited methods it provides the possibility to peek for data without removing it
from the kernel buffers. It allows setting of a socket filter and retrieving the timestamp of received
packets. Some general socket options such as binding to devices and broadcast can be set.

Ethertap TheEthertapdevice is a software network device emulating a Ethernet device. Frames
can be sent to anetlinksocket associated with the device and appear in the kernel as if they had been
arriving from a network device. Frames sent by the kernel to theEthertapnetwork device appear at
thenetlinksocket in user space. Thus user space programs can make packets appear as coming from
outside. They can even emulate whole networks. The access to thenetlink socket corresponding to
theEthertapdevice is encapsulated in aMB2Ethertap which is a subclass ofMB2Socket .

Divert Sockets Another possibility to extract packets from the kernel are divert sockets. Packets can
be diverted from the kernel protocol stack to the divert socket in user space and can be re-injected into
the kernel via the divert socket. The concept comes from NetBSD but an experimental implementation
for Linux also exists [1]. Unfortunately this became to my knowledge after the implementation of the
MOMBASA SE. Divert sockets could have provided a uniform interface for buffering and flushing the
buffers in MEPs and Gateway Proxy and for sending ofPaging Requestsin the Gateway Proxy.

Raw IP Sockets Raw IP sockets in Linux will only allow receiving if they are bound to a cer-
tain IP protocol. A raw IP socket for all IP protocol (as is necessary for buffering in the MEP)
can only be used for sending. However the encapsulation of raw IP sockets as represented by the
MB2RawIP Socket class does allow reception of all IP protocols. This is implemented by using
a packet (i.e. link-layer) socket for receiving and a raw IP socket for sending. The packet socket is
bound to IP and configured to strip the link-layer header. For the clients ofMB2RawIP Socket
this is totally transparent and it appears for them as if they are reading from and writing to the same
socket.

Why not libpcap? The pcap library is a portable library used for capturing of network frames. This
is used by the tcpdump program for example. However, thelibpcapdoes its own buffering that is not
intended to keep packets permanently. So I would still have had to do my own buffering which would
have resulted in double-buffering. Thelibpcap reads the packets from the kernel into its own buffer
and these packets would have had to be copied into the permanent buffers. This would have resulted
in a unnecessary overhead.

3.5.2 MB2 SocketGroup

The socket group (which should better be a group of communication channels as mentioned in the
paragraph about non-sockets) is not designed as a container for sockets but as a class to group them
as a common source for events. Sockets can be members of multiple groups.MB2SocketGroup
is an object-oriented interface to the select function which allows a group of file descriptors to be
watched. The group is used to wait for any socket in the group to become ready to read from or to
write to. This waiting can be limited by a timeout. It is mainly used in the main event loops of the
agents. Members of the group are the sockets on which signaling messages arrive and the timeout is
set to the expiration of the next timer in the timer list.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 36

TU BERLIN

3.5.3 MB2 Timers

MB2Timers is a template class that is parameterized by the class of which the methods are called on
expiration of the timer and the type of the argument of these expiration methods. The class represents
a chronologically ordered list of timers. Each timer consists of the time at which it expires, the
method to be called, the object for which the method is to be called and auxiliary data to be passed to
the method. The timers are able to store times in microsecond precision, however the real precision
depends on the granularity of system clocks and timers (Linux on a x86 architecture usually has a 10
milliseconds precision, i.e. 100 timer ticks per second). Times can be specified relative to the current
time or absolute (which means relative to the “epoch” which begun on January 1, 1970). Methods
for insertion and changing of timers return a handle that is implemented internally as a pointer to the
corresponding list node.

sentinel

sentinel normal node normal node

Empty List

List with two real members

Figure 3.8:Linked list with sentinel

The list itself is implemented as a circular double-linked list that uses a sentinel as described in [2].
With a sentinel node, start and end of the list are not represented by NULL pointers but by a special
node, called the sentinel. This avoids special handling of boundary conditions such as deletion of the
first or last node. There are several reasons why a linked list and not a more complex data structure,
such as a binominal heap, is used. Although most operations of heaps have a better asymptotic
behavior than linked lists (see Table3.1) the involved factor is a lot bigger and the implementation a
lot more complicated. Thus the better asymptotic behavior would only become effective for timer lists
with a lot of timers. Moreover an operation often performed is the deletion which can be performed
in constant time with linked lists.

Operation Linked List Binomial Heap Fibonacci Heap
Key Insertion O(N) O(lg(N)) O(1)
Key Deletion O(1) O(lg(N)) O(lg(N))
Key Changing O(N) O(lg(N)) O(lg(N))

Table 3.1:Asymptotic behavior of several data structures

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 37

TU BERLIN

3.5.4 MB2 Interface

TheMB2Interface encapsulates the access to network interfaces such as the retrieval of interface
name, address, index, flags, etc. Data that usually remains constant is cached in the object instead of
retrieving it from the kernel with IO-controls every time.

3.5.5 MB2 PolicyHandler

Most policy handlers are derived from theMB2PolicyHandler template class. The template is
parameterized by the argument and return types of the pre- and post-processing method and by the
type of the property field. The agents provide type definitions of the handler with the correct argument
types. To implement a policy handler one derives from these defined types and overrides the virtual
pre and post methods.

The same module that provides theMB2PolicyHandler template class also provides template
functions and template classes for registering, de-registering and calling of policy handlers. The
implementation of policy handlers employs the strategy design pattern (also called policy pattern).

3.5.6 MB2 Buffer

MB2Buffer provides a ring buffer for variably-sized data objects such as IP packets.MB2Buffer
is not responsible for reading the data into buffer but only for reserving the memory space. Since the
buffer is a ring buffer, it may happen that a data object is split into two parts with the first part being
saved at the end of the buffer and the second part being saved at the beginning of the buffer (like
packet 4 in Fig.3.9). This depends on the ability to read from and write to gather/scatter arrays.
Data read from sockets can be split into multiple buffers (i.e. scattered) and written to sockets from
multiple buffers (i.e. gathered). The splitting point within the message is guaranteed to be aligned
to a given alignment. The last reservation can be canceled (e.g. if a read error has occurred). New
data can overwrite older data (remember that the buffer is cyclic), however, it is guaranteed that only
whole data objects are discarded. For example if a packet bigger than the unused space in Fig.3.9
is stored in the buffer packet 1 will be discarded. If the new packet is very big maybe even packet 2
will be removed from the buffer. To preserve the boundaries between data objects the size of the data
objects is stored in front of the data.

start

part 1
packet 4

packet 3packet 2packet 1
packet 4
part 2

end

packet 5 unused

Figure 3.9:Ring buffer

The buffer can flush all data objects to a given socket. Each data object is written in a single
operation (this will be important if the socket is datagram oriented). The flush method can be passed
operations that manipulate the data object and to retrieve the address to which the data object before
sending. These operations can also reject the data objects. The calling of flush policy handlers is
usually done in such an operation.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 38

TU BERLIN

3.5.7 MB2 BufferHandler and MB2 FlushHandler

MB2BufferHandler andMB2FlushHandler are the only policy handlers that are not derived
from theMB2PolicyHandler template. They only provide a virtual function operator that should
be overridden in real policy handlers. The buffer policy handler is passed the IP header of a packet
to buffer, the flush policy handler additionally gets the receiving timestamp of the packet. They will
returntrue if the packet shall be buffered/flushed respectively andfalse otherwise.

3.5.8 Multicast Channels

TheMOMBASA SEwas designed to work with any kind of IP multicast. It was designed especially
with Single Source Multicast in mind. However, since no free SSM implementation for Linux exists,
this is not implemented. TheMB2MCChannel class provides an interface to Single Source Mul-
ticast channels but discards silently the source address. It uses socket options provided by the Linux
kernel for joining and leaving multicast groups. The kernel maps these socket options to IGMPv2
messages and takes care of the multicast leaf signaling. To support SSM, which uses an extended
socket interface, the methods ofMB2MCChannel would have to be rewritten but the rest of the
MOMBASA SEcould stay the same.

3.5.9 MB2 Route

MB2Route represents a network route. It provides methods for setting, modifying and querying
of the correspondent routing table entry in the kernel. Access to the routing table in Linux is not
very well documented. TheMB2Route class is more or less an object-oriented variant of the cor-
responding support code of Dynamics Mobile IP [13] which is based on thelibnetlink by Alexey
Kuznetsov.

3.5.10 MB2Parser

MB2Parser implements a parser for simple configuration files or similar things (e.g. the manage-
ment interface). TheMB2Parser hierarchy (see Fig.3.10) employs the template method design
pattern. The reading of text lines is not implemented in the base class but delegated to the subclasses.
MB2FileParser implements reading from a text file and is used for the parsing of configuration
files in MOMBASA SE.MB2TCP Parser reads from a TCP socket. It is used for the management
interface.

MB2_Parser

MB2_FileParser MB2_TCP_Parser

Figure 3.10:Class diagram: Parser hierarchy

The parsed (very simple) language has the following properties:

• Empty lines and comments introduced by# are ignored.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 39

TU BERLIN

• Other lines contain a keyword and may contain up to 16 arguments. Starting and trailing whites-
paces and trailing comments are ignored.

• Keywords are case insensitive.

• The keyword is separated from the arguments by colon or an equal sign and/or one or multiple
whitespaces.

• Arguments are separated by commas and/or whitespaces.

The parser is passed a table that associates a numeric token and the minimum and maximum
number of arguments to each keyword. The client of the parser can advance line per line, read the
keyword token, the number of arguments and the arguments themselves in various formats (strings,
integers, boolean value, IP address, pair of IP addresses).

3.5.11 MB2Signal

MB2Signal implements a template class to enable object methods to be installed as UNIX signal
handlers. The template can be parameterized by the class of which the methods should be called and
the type of an auxiliary argument that can be passed to this method.

It must be guaranteed that only one instance of aMB2Signal class exist in an application. Thus
the template is implemented as a singleton. However, the scheme described in Sec.3.1is not sufficient
for a template class, since a static member would be created for each incarnation of the template. To
make it work nevertheless, I instantiated the template with dummy parameters (MB2Dummyas the
receiver class andbool as the data type). Only the static instance pointer of this class is used. The
constructor of aMB2Signal class checks that this pointer isNULLand assigns its own address to
the pointer. To make it assignable, the pointer to the instance is untyped (i.e.void).

The rest of the implementation is straightforward. Since the number of signals is constant and
quite small a static array of signal entries is sufficient. A static method of the template class is installed
as the signal handler for each signal for which a special handler is installed. This handler calls the
specified method of the specified object with the signal number and auxiliary data as arguments.

3.6 Documentation

The declarations in the source code are commented in a format suitable for doxygen 1.2.10 (it works
also with 1.2.3). Doxygen is a tool that generates HTML and other documentation from the source
code. A configuration file is enclosed in theMOMBASA SEdistribution. To generate the documenta-
tion
doxygen doxygen.cfg must be called in the source directory ofMOMBASA SE.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 40

TU BERLIN

Chapter 4

Kernel Implementation

4.1 Navigating in the Kernel

Network Address Translation from and to multicast addresses and paging requires modifications to
the kernel. Navigating in the Linux kernel can be quite confusing. A useful tool for browsing the
Linux kernel is LXR [10]. Nevertheless, it is not an easy task to understand the operation of the
kernel. To avoid getting lost one should select a certain scenario one is interested in and follow the
control flow of only this scenario, ignoring exceptional cases at first. Even this is not as easy as it
sounds, as the Linux kernel is more or less object-oriented. However, it is not implemented in C++
but object-orientation is emulated in C by putting pointers to functions into data structures. Often
these functions are passed a pointer to just this structure as an argument. Note that this is equivalent
to virtual methods in C++ where it is hidden from the programmer that the methods are called through
pointers and the object is passed as an implicit argument (calledthis in C++).

In the case of function calls through pointers it is often easier to do an educated guess which
function is called and assert later that the variable really pointed to this function. For example suppose
we are looking at the functionsock recvmsg (taken from Linux 2.2.18):

int sock_recvmsg(struct socket *sock, struct msghdr *msg, int size,
int flags)

{
struct scm_cookie scm;

memset(&scm, 0, sizeof(scm));

size = sock->ops->recvmsg(sock, msg, size, flags, &scm);
if (size >= 0)

scm_recv(sock, msg, &scm, flags);

return size;
}

This call tosock->ops->recvmsg is really ugly. However, if you know that the socket for
which it is called is a UDP socket, it is most probable that the function called isudp recvmsg . Such

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 41

TU BERLIN

heuristics can be used in many cases. It also may be helpful to look at initialization code of certain
kernel parts to figure out how those pointers to functions are usually initialized.

4.2 Multicast Network Address Translation

To make the usage of multicast transparent to fixed and mobile host, packets must be translated from
unicast to multicast in the gateway and back in the access point. However, the Linux kernel only
supports network address translation between unicast addresses. Thus the standard kernel (2.2.18 in
our case) had to be modified.

Besides the configuration files, three files had to be modified: route.c, ipforward.c, ipmr.c and
fib frontend.c. All of them are in the net/ipv4 directory.

In this paragraph I describe the control flow in the unmodified kernel (see Fig.4.1(a)). Dur-
ing procession of an incoming packetip route input(route.c) is called for retrieval (or generation)
of a fitting route cache entry. First, this function tries to find an entry in the routing cache, which
matches the packet’s source, destination, input interface and type of service. If it finds one it will
return successfully, otherwise a cache entry must be generated. In the next step unicast and multi-
cast traffic is separated. For unicast trafficip route input slow(route.c) is called, for multicast traf-
fic ip route input mc(route.c). The former does a route lookup and creates an appropriate routing
cache entry taking translation of source and destination address into account. The latter does not
use the unicast routing tables and thus ignores NAT entries. The address translation itself happens
in ip forward(ip forward.c). If the NAT flag is set in the packet’s routing cache entryip do nat
(ip nat dumb.c) is called which changes the IP addresses in the IP header and recalculates checksums
for IP, TCP, UDP and ICMP.

When addresses can be translated between the multicast and the unicast realm, the major problem
is that we can’t tell from the original address if a packet has to be treated as unicast or multicast. So
the multicast recognition has to be deferred until we know the mapped address (or that the packet
doesn’t have to be mapped).

The following description assumes that both translation from multicast and to multicast addresses
is enabled: After routing cache lookupip route input slow is now called no matter if the destination
address is multicast or not. A lookup of the (unicast) routing table is done. If the destination address
is multicast and no fitting NAT entry has been foundip route input mc is called as before. If a NAT
entry exists the mapped address is checked whether it is multicast or unicast and depending on that
unicast or multicast routing is done.

Some minor change were applied toip route input mc to set the mapped addresses and the NAT
flag in the routing cache entry. Inip mr input(ipmr.c) a call ofip do nat was added since it ex-
isted only in the unicast branch before. Finally, the check inip forward that the packet type was
PACKETHOSThad to be relaxed since the original packed could also have been of type
PACKETMULTICASTbefore mapping.

In the unmodified kernel, for an incoming packet it is checked that a unicast route to the source of
the packet exists. This causes upstream packets from the mobile to be dropped in the gateway since
there is only a NAT entry from unicast to multicast. Thereforefib validatesource(fib frontend.c) was
modified to check whether a NAT entry to multicast exists for the checked packed. However if reverse
path checking is enabled (i.e. the check that a packet came from the interface replies woulde be sent
to) the packet will be dropped nevertheless.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 42

TU BERLIN

ip_route_input

multicast recognition

ip_route_input_mcip_route_input_slow

route lookup generation of routing
cache entry

NAT handling

generation of routing
cache entry

routing cache lookup

return

return
cache miss

multicastunicast

cache hit

(a) Unmodified kernel

ip_route_input

routing cache lookup

return
cache miss

ip_route_input_slow

route lookup

NAT handling

multicast recognition

unicast multicast

generation of routing
cache entry

ip_route_input_mc

generation of routing
cache entryreturn

cache hit

(b) Modified kernel

Figure 4.1:Input routing in the Linux kernel

Network Address Translation is only appropriate for classical IP multicast. For single-source-multicast
the source address would have to be changed to the address of the gateway. Since original source
address must be restored in the access point this could only be done by IP encapsulation. Some mod-
ifications to the tunneling code would be necessary to be able to tunnel packets through multicast
trees.

4.3 Paging Support

When data is sent to an inactive mobile host, it must be paged by the gateway. The paging itself is
done by the gateway proxy or paging daemon (see Chapter3.4.4). However paging is triggered by
the reception of packets for the mobile which requires some kernel support.

Since the unicast packets for the mobile host are translated to multicast packets in the gateway
the best place to insert paging support is the multicast forwarding cache (MFC) implemented in
net/ipv4/ipmr.c. In the following paragraphs routing of multicast packets in an unmodified router
will be described. After this the original paging support and why it wasn’t appropriate is discussed.
Finally the paging support as it is now is depicted.

In an unmodified multicast router (see Fig.4.2(a)and Fig.4.4(a)) when a multicast packet first arrives
(1) an unresolved entry for the combination of source and destination is inserted into the MFC (2) and
the cache miss is reported to the multicast routing daemon via themroutesocket(3). A timer is set for
the MFC entry (4). For a non-existent multicast group the timer will expire or the MFC entry will be

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 43

TU BERLIN

deleted explicitely by the multicast daemon through the socket optionMFCDEL (5a, 6a). Otherwise
the MFC entry will be resolved with the socket optionMFCADD(5b, 6b). As long as the entry is
not resolved (i.e. stateMFCQUEUED) arriving packets are queued in the unresolved entry as long as
there are no more than 4 packets in the queue. The resolution of the entry among other things sets the
output interfaces for this source/multicast group combination. The buffered and subsequent packets
are only treated by the kernel and sent to all outgoing interfaces stored in the MFC entry.

MFC lookup MFC delete

set
timer

delete
unresolved
MFC
entry

add
unresolved

MFC
entry

MFC add

MFC
entry

add or
resolve

delete
unresolved

MFC
entry

add
resolved

MFC
entry

multicast
routing
daemon

Mulicast Forwarding Cache (MFC)

Packet arrival
1

2

3
4

5a 5b

6a 6b

5a
report
cache
miss

KERNEL
USER SPACE

(a) without paging

Packet arrival

1

2

3

MFC lookup

send
report

start paging

paging
daemon

Mulicast Forwarding Cache (MFC)

add MFC
entry

PAGING
CHECK

4start
paging

buffer
packets

6

5

stop
paging

mark
MFC

entry as
PAGING

multicast
routing
daemon

MFC
entry

resolve

MFC
entry

resolve

MFC add

report
paging
success

mark
MFC

entry as
QUEUED

13

12

11

stop paging

report
cache

miss

9

7

buffer
packets

108

USER SPACE
KERNEL

(b) with paging

Figure 4.2:Interaction between kernel, multicast routing and paging daemon

When the mobile host is inactive, the corresponding multicast group should not exist. Originally, the
reception of a multicast packet for a non-existent group in the range of pageable groups was signaled
by the kernel to the gateway proxy via thepagingsocket. In the case that a paging cache entry existed
for the mobile, the gateway proxy sent a paging request to the last reported paging area otherwise it

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 44

TU BERLIN

deleted the MFC entry. During the paging phase the kernel sent all packets for the mobile up to the
gateway proxy for buffering. When the multicast group was created, this was again signaled to the
gateway proxy which flushed the buffer for the mobile and sent out all packets.

However under some circumstances a multicast group for an inactive mobile host could exist. This
happens in the following case (see Fig.4.3): When a mobile host sends its first inactive registration to
another access point than its last active registration and doesn’t send a deregistration to the old access
point the old access point doesn’t know about the inactive state of the mobile host and will stay in
the multicast group until the lifetime of the mobile registration will expire. With the just described
scheme, during this period paging would not be triggered and the mobile host would be unreachable.

1

2

4

3

Active
Registration

Intermediate
Router

Multicast group

still existing

Gateway

Mobile

Inactive
Registration

Old Access Point

New Access Point

Pag
ing U

pdate

Figure 4.3:Existing multicast group dilemma

With the new scheme we don’t depend on the existence or non-existence of the mobile-related mul-
ticast group but on the existence of a paging cache entry in the gateway proxy. Thus we have to
notify the proxy first. The paging for an inactive mobile is depicted in the following paragraph (see
Fig. 4.2(b)). Packets for multicast groups that don’t correspond to mobiles are treated like before.
Normal multicast routing is not affected by the paging patch. Entries of mobile-related (i.e. page-
able) groups are marked with theMFCPAGEABLEflag. This flag is ommitted in Fig.4.4(b)although
present in every shown state.

After the arrival of a multicast packet to a pageable group (1) a MFC entry with the flag
MFCPAGINGCHECKis created (2) and a timer is set. A report is sent to the gateway proxy via the
pagingsocket(3). If an entry exists in the daemon’s paging table it will start paging and signal this
condition to the kernel with theMFCSTARTPAGINGsocket option (4). The MFC entry is marked
as paging (5), data packets to the multicast group are now sent up to the gateway proxy for buffering
(6). When the paging cache entry in the daemon was deleted through a paging update with lifetime 0,
denoting that paging was successful, this is again signaled to the kernel with theMFCSTOPPAGING
socket option (7). The MFC entry is marked as unresolved (i.e.MFCQUEUED) (8) and a previously

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 45

TU BERLIN

saved cache miss report is sent to the multicast routing daemon (9). Data packets are still buffered in
the gateway proxy (10). The resolution of the MFC entry by the multicast routing (11/12) is signaled
to the paging daemon (13). Buffering is stopped and the buffers are flushed. The MFC entry is set to
MFCRESOLVED.

The real behavior is, however, even a bit more complicated since the previous description omitted
some exceptional cases (e.g. timeouts and retries). For all details please consult Fig.4.4(b).

MFC_QUEUED

not
cached

MFC_RESOLVED not
cached

packet arrival

MFC_ADD delete timer,
send buffered packets

timer expire
or MFC_DEL

delete cache entry

cache miss report to multicast routing daemon
set timer

(a) without paging

not
cached

MFC_PAGING_CHECK

not
cached

MFC_QUEUED
MFC_PAGING

set cache timer,
report to MRD

MFC_PAGING
MFC_QUEUED

send deletion report to GWP
delete cache entry

send deletion report to GWP
delete cache entry

and max. retries

(timer expire
or MFC_DEL)

MFC_RESOLVED

report to paging proxy
set paging-check timer

packet arrival

timer expire
or MFC_DEL

delete timer
set paging timer
start buffering
save report for MRD

delete timer
set paging-finish timer
report to MRD

and max. retries

(timer expire
or MFC_DEL)

set cache timer,
report to MRD

(timer expire
or MFC_DEL)

and not max. retries

(timer expire
or MFC_DEL)

and not max. retries

MFC_RESOLVED

send buffered packets
delete timer,

set timer,
report to MRD

MFC_START_PAGING

timer expire
delete cache entry MFC_STOP_PAGING

stop buffering
delete timer,MFC_ADD

send flush report to GWP

MFC_ADD

(b) with paging

Figure 4.4:State machines for Multicast Forwarding Cache entries

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 46

TU BERLIN

Chapter 5

Extensibility of the MOMBASA SE

5.1 Support of Generic Multicast

The actual version of theMOMBASA SEworks with IP multicast as it is defined by the standard
IP multicast service model in RFC 1112 [3]. The MEPs use IGMPv2 for multicast management.
Since IGMPv2 works with all multicast routing protocols according RFC 1112, theMOMBASA SEis
independent of the multicast routing protocol. However, there are multicast routing protocols which
are less suitable for mobility support (such as broadcast- and prune protocols, like DVMRP [14] and
some which are more suitable (such as PIM-SM [4, 5] which is based on a concept of rendezvous
points).

Recently, multicast has been subject of research efforts. There are several proposals for multicast
which break with the standard IP multicast service model. An example is single source multicast,
such as EXPRESS [9] and PIM-SSM [6]. We understand theMOMBASA SEas a generic platform
to investigate multicast-based mobility support. Hence, it is prepared forSingle-source multicast, its
usage requires only minor modifications of the implementation, i.e. of theMB2MCChannel class.

Moreover,MOMBASA SEhas been designed to be suitable for ageneric multicastwhich is based
on a group identifier1 and a member identifier2 For generic multicast, a number of basic operations
can be identified: Creation of group, subscribing to the group, un-subscribing from the group, de-
struction of group. The implementation ofMOMBASA SEhas been designed with respect to support
generic multicast, and hence it is expected to be extended easily.

5.2 Support of Policies

Policies are rules to control and fine-tune certain behavior of the MOMBASA SE system. The usage
of policies in the MOMBASA SE ensures a flexible and easy extensibility by certain functionality.
Typical examples of policies are to control in the mobile when to do handover and which access point
to select, to determine in MEP and Gateway Proxy which packets to buffer and which packets to flush
from the buffer, to pre- and post-process protocol messages. Hence, the MOMBASA SE provides
hooks for policy handlers

1With standard IP multicast this is aclass DIP address.
2With standard IP multicast the unicast IP address of the member.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 47

TU BERLIN

• that may select time and destination of handovers thus allowing evaluation of different handover
schemes including predictive handovers.

• that control buffering of packets and flushing of buffers allowing evaluation of various buffer
strategies.

• that may retrieve the signal quality of messages received from the last hop for use by other
policies, e.g. the handover decision.

• that may pre- or post-process any protocol message of the environment to achieve goals that
have not thought of.

5.3 Portability

In the MOMBASA SEonly standard libraries are used. This facilitates porting MOMBASA SE to
other architectures. In particular, it is feasible to port MOMBASA SE to handheld PC architectures
running with a Linux operating system. Since memory is a scarce resource of handheld computers, it
is important to have only a few dependencies.

5.4 Open Issues

There are still a few missing features:

1. The multicast routing daemon used in the testbed had the following limitation: Multicast
senders must be in the same IP network as the upstream interface of the gateway, since the
daemon does not support operation as a border router.

2. There are only a few policies implemented. The following policies are included in MOMBASA
SE: A SelectBS policy that does a regular ping-pong handover and also supports externally
triggered handovers (e.g. by the management interface) and a flush policy that only flushes
packets that are younger than a configured number of microseconds. Additional policies can
be easily implemented.

3. The current version of MOMBASA SE uses the standard ARP mechanism to resolve IP ad-
dresses to hardware addresses. This could be avoided by supplying the hardware address in
MOMBASA signaling messages.

4. In the current version of MOMBASA SE, the support for Single Source Multicast is only im-
plemented as stubs. The implementation ofMB2MCChannel would have to be modified and
a patch to the Linux kernel to support IP tunneling trough multicast tunnels would have to be
developed to achieve full support.

5. Support of generic multicast as discussed in the previous section.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 48

TU BERLIN

Bibliography

[1] Ilia Baldine. Divert Sockets for Linux.http://www.anr.mcnc.org/˜divert/index.shtml ,
2001.

[2] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.Introduction to Algorithms, chapter 11,
pages 204–208. The MIT Press, eighteenth printing edition, 1997.

[3] S. Deering. Host Extensions for IP Multicasting. RFC 1112, August 1989.http://www.ietf.org/
rfc/rfc1112.txt .

[4] S. Deering, D. Estrin, D. Farinacci, M. Handley, A. Helmy, V. Jacobson, L. Wei, P. Sharma, and D. Thaler.
Protocol Independent Multicast-Sparse Mode (PIM-SM): Motivation and Architecture. Internet Draft
work in progress, October 1994.http://citeseer.nj.nec.com/373495.html .

[5] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson, C. Liu, P. Sharma,
and L. Wei. Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification. RFC 2362,
June 1998.http://www.ietf.org/rfc/rfc2362.txt .

[6] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas. Protocol Independent Multicast - Sparse Mode
(PIM-SM): Protocol Specification (Revised). Internet Draft work in progress, March 2001.http:
//www.ietf.org/internet-drafts/draft-ietf-pim-sm-v2-new-03.txt .

[7] A. Festag and L. Westerhoff. Protocol Specification of the MOMBASA Software Environment. Tech-
nical Report TKN-01-014, TKN, TU Berlin, Berlin, Germany, May 2001.http://www-tkn.ee.
tu-berlin.de .

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Entwurfsmuster: Elemente wiederver-
wendbarer objektorientierter Software. Addison-Wesley, 1996. German translation.

[9] H.W. Holbrook and D.R. Cheriton. IP Multicast Channels: EXPRESS Support for Large-scale Single-
source Applications. InProceedings of ACM SIGCOMM 1999, pages 65–78, MA, USA, 1999.
gregorio.stanford.edu/holbrook/express/ .

[10] LXR - Cross-Referencing Linux.http://lxr.linux.no .

[11] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New Architecture for User-level Packet
Capture. InProceedings of the 1993 Winter USENIX Technical Conference (San Diego, CA, Jan. 1993),
USENIX. Lawrence Berkeley Laboratory, January 1993.

[12] University of Southern California. USC pimd.http://catarina.usc.edu/pim/ , 2000. PIM-SM
Version 2 Multicast routing daemon.

[13] Helsinki University of Technology Dynamics Group. Dynamics - HUT Mobile IP.http://www.cs.
hut.fi/Research/Dynamics/ .

[14] D. Waitzmann, C. Patridge, and S. Deering. Distance Vector Multicast Routing Protocol (DVMRP). RFC
1075, November 1988.http://www.ietf.org/rfc/rfc1075.txt .

[15] L. Westerhoff and A. Festag. Implementation of the MOMBASA Software Environment. Download
at http://www-tkn.ee.tu-berlin.de/research/mombasa/download/mombasa_se_
1.0.tgz .

Copyright at Technical University Berlin. All
Rights reserved.

TKN-01-017 Page 49

http://www.anr.mcnc.org/~divert/index.shtml�
http://www.ietf.org/rfc/rfc1112.txt�
http://www.ietf.org/rfc/rfc1112.txt�
http://citeseer.nj.nec.com/373495.html�
http://www.ietf.org/rfc/rfc2362.txt�
http://www.ietf.org/internet-drafts/draft-ietf-pim-sm-v2-new-03.txt�
http://www.ietf.org/internet-drafts/draft-ietf-pim-sm-v2-new-03.txt�
http://www-tkn.ee.tu-berlin.de�
http://www-tkn.ee.tu-berlin.de�
gregorio.stanford.edu/holbrook/express/�
http://lxr.linux.no�
http://catarina.usc.edu/pim/�
http://www.cs.hut.fi/Research/Dynamics/�
http://www.cs.hut.fi/Research/Dynamics/�
http://www.ietf.org/rfc/rfc1075.txt�
http://www-tkn.ee.tu-berlin.de/research/mombasa/download/mombasa_se_1.0. tgz�
http://www-tkn.ee.tu-berlin.de/research/mombasa/download/mombasa_se_1.0. tgz�

