Poster: Cuckoo Filters for Two-Hop Neighbor
Management in Vehicular Networks

Simon Welzel*, Falko Dressler’ and Florian Klingler*
*Dept. of Computer Science, TU Ilmenau, Germany
fSchool of Electrical Engineering and Computer Science, TU Berlin, Germany

{welzel,

Abstract—Neighbor management in vehicular networks comes
with the risk of unnecessarily overloading the wireless channel,
particularly when two-hop neighbor information is required. A
possible solution to this challenge is the use of probabilistic data
structures. In our previous work, we explored the benefits of
using Bloom filters for maintaining this neighbor information
showing promising results. In this paper, we now evaluate the
usage of a additional probabilistic data structure, the Cuckoo
Filter, which is advertised as a superior alternative to Bloom
filter. We assess the performance of the Cuckoo approach in a
vehicular networking scenario and find that it does not meet
these expectations. In fact, it may lead to worse performance in
specific configurations.

I. INTRODUCTION AND RELATED WORK

The exchange and management of neighbor information is
important for many vehicular networking applications such
as cooperative awareness. This is commonly done in the
form of neighbor tables, which are filled and maintained by
utilizing beaconing [1]. However, not only the direct neighbors
(one-hop neighbors) are of interest, but also the neighbors
of my neighbors, the so-called two-hop neighbors [2]. A
naive approach would be to disseminate a list of my one-hop
neighbors with every transmitted beacon. However, this may
lead to a large amount of data to be exchanged periodically.

A potential solution to this problem is to use probabilistic
data structures, which allow for more space-efficient data
storage [3]. However, they introduce some challenges and risks:
As they are non-iterable, inserted data can only be queried,
which limits their usage for certain use cases. Additionally, they
often come with the risk of false positives, which is typically
happening due to hash collisions. Popular probabilistic data
structures for membership tests are the Bloom Filter [4] and the
Cuckoo Filter [5]. While both allow for the insertion and query
of elements, the Cuckoo Filter also allows for the deletion of
elements. The Cuckoo Filter is advertised as offering better
space efficiency in certain configurations [5].

Klingler et al. [3] showed that using Bloom Filters allow
for better performance, improving the two-hop neighbor set
in comparison to a naive approach transmitting raw neighbor
information. In this work, we study the question to which extent
the potentially better performing Cuckoo Filter plays out its
higher performance in a typical vehicular networking scenario
in comparison to the traditional Bloom Filter. Performance
metrics considered are the channel utilization, packet delivery

klingler}@wnc—-labs.org,

dressler@ccs—labs.org

ratio and the size of the two-hop neighbor set as well as the
quality of the two-hop neighbor set.

II. CuckoO FILTER APPROACH

The Cuckoo Filter is a set membership probabilistic data
structure [5]. It allows for insertion, query, and deletion of
items. The items are hashed, and a fingerprint of the hash is
saved in a so-called bucket. Buckets are stored in two lists, and
each fingerprint has two locations where it can be stored. If the
primary location, determined by the element’s hash, is already
fully occupied, a random element is kicked out of the bucket
and inserted into its alternative location. To query an element,
the filter looks for the fingerprint in the corresponding bucket
locations, which it determines by re-hashing the item. An
element can be deleted by removing its fingerprint, without the
risk of false negatives for future queries. From a performance
perspective, the Cuckoo Filter is supposed to require fewer
bits per element to maintain the same false positive rate [5].

On the other hand, a Bloom Filter uses a bit array to store
items. An inserted element is hashed by a set of hash functions.
The resulting hashes determine the indices of the bit array that
are set to one when inserting the element. To query an element,
the filter hashes it again and looks up the resulting indices
in the bit array; only if all of them return a one, the item is
contained in the filter [4]. Item deletion is not supported in
the initial version of a Bloom Filter.

We want to find out whether Cuckoo Filters can be a viable
or even preferred alternative over Bloom Filters for two-hop
neighbor management in a typical vehicular networking context.
Starting with ideas from Klingler et al. [3], a node broadcasts its
identifier, position and a representation of its current (one-hop)
neighbor table via beaconing — periodic one-hop broadcasts
transmitted using wireless communications. Whenever beacons
from nodes in reception range are received, the neighbor table
is populated: For every received beacon, a neighbor table entry
is created, containing identifier, position and the representation
of that node’s one-hop neighbors. Neighbor table entries are
removed if they are older than two seconds. Only neighbors
for which a symmetric communication link exists (symmetric
neighbors) are considered.

IIT1. EVALUATION

To assess the performance of our Cuckoo Filter approach,
we compare it against the Bloom Filter approach and a naive



approach. The naive approach sends its one-hop neighbors as
a plain list of neighbor entries. For the naive approach, each
neighbor entry is considered to be the size of a MAC address
(6 Byte). The total length of the beacons sent by the naive
approach is not fixed, but depends on the exact number of
identifiers stored. In contrast, the size of the beacons sent by
the Bloom and Cuckoo approaches is fixed, independent from
the exact amount of identifiers stored. The size of the Bloom
Filter is determined by capacity (element count) and desired
false positive ratio, whereas the size of the Cuckoo Filter is
determined by capacity and fingerprint length.

A. Simulation Setup

We conduct simulations using Veins, which relies on
OMNeT++ and SUMO. A freeway scenario consisting of four
lanes in each direction of 5km length with bidirectional traffic is
used. The average vehicle density is 810 vehicles per kilometer.
As communication technology, IEEE 802.11p is used. We
configured an MCS of QPSK-1/2, which results in a PHY data
rate of 6 Mbit/s. As transmit power we chose 1 mW in order to
provoke challenging communication scenarios to better evaluate
the quality of our probabilistic neighbor approach. Further, we
use the free space path loss model with a path loss coefficient
a = 2.0 and for communication a center frequency of 5.89 GHz
at 10 MHz channel bandwidth. Beacons are transmitted at a
frequency of 2Hz. As the Cuckoo Filter does not allow to
set a desired false positive ratio, the filters are parameterized
in a way that they result in a very similar and comparable
beacon size. We then use the false positive ratio to measure
the information quality.

B. Results

The average beacon lengths for Naive, Bloom and Cuckoo
approach are 6980, 2347, and 2364 Bits, respectively. While
Bloom and Cuckoo approach achieved an average channel
utilization of around 37%, the naive approach resulted in a
channel utilization of 74%, as shown in Figure 1. This leads to
a substantially lower packet delivery ratio (results not shown
due to space constraints) for the Naive approach (76%) when
compared to Bloom and Cuckoo approaches (both 93%).

Figure 2 shows the achieved average false positive ratio
(FPR) across all filters. The false positive ratio is determined
by querying a filter with all vehicle identifiers in the simulation,
counting the number of false positive queries and dividing that
number by the number of vehicles in the simulation. While the
Bloom approach achieved a false positive ratio of only around
1.7%, the Cuckoo approach achieved 17.3%.

In an additional experiment (results not shown due to
space constraints) we evaluated a configuration of the Bloom
and Cuckoo approaches that uses severely undersized filters,
resulting in occupation ratios of up to 100%. We found that the
Bloom Filter showed a very high false positive ratio. This is
due to the fact that almost all entries in the bit table will be set
to binary one if the filter is fully occupied, not allowing for any
queries to be negative anymore. The Cuckoo Filter did not show
a comparably high false positive ratio. However, as the Cuckoo

100
80
60
40
20 -

i

Channel Util. in %

Bloom Cuckoo Naive

Figure 1. Average channel utilization for each protocol.

25
20 T
15 4 1
10 +
5,
O ’—:l:—‘

Bloom

FPR in %

Cuckoo

Figure 2. Average false positive ratio (FPR) for Bloom and Cuckoo approach.

Filter kicks out a fingerprint from a fully occupied bucket
when a new fingerprint is added to that bucket, fingerprints
got removed from the filter, resulting in negative queries even
though queried elements had been inserted in the first place.
Both approaches, Bloom and Cuckoo, proved to be unusable
if they are undersized.

IV. CONCLUSION AND FUTURE WORK

In this paper, we examined the usage of Cuckoo Filters
for two-hop neighbor management in the vehicular context.
Our results show that probabilistic data structures have the
potential to decrease the beacon size, reducing the channel
utilization and ultimately increasing the two-hop neighbor set
size. Summarizing our findings, the Cuckoo Filter approach
does not show an improvement in any of the performance
metrics in our configuration when compared to the Bloom
Filter approach in the context of vehicular two-hop neighbor
management. A possible explanation for this behaviour is that
the Cuckoo Filter could only show its superiority in larger
filter configurations.

To find out if and where there is a crossover point, we plan
to conduct a parameter study. Also, as traffic densities vary
temporally and position-based, a configuration algorithm that
calculates optimal parameters based on environmental factors
such as traffic density or location may further improve the
performance.

REFERENCES

[1] C. Sommer and F. Dressler, Vehicular Networking. Cambridge University
Press, 2014.

[2] K.C.Lee, U. Lee, and M. Gerla, “Geo-Opportunistic Routing for Vehicular
Networks,” IEEE Communications Magazine (COMMAG), vol. 48, no. 5,
pp. 164-170, May 2010.

[3] F. Klingler, R. Cohen, C. Sommer, and F. Dressler, “Bloom Hopping:
Bloom filter based 2-Hop Neighbor Management in VANETSs,” /IEEE
Transactions on Mobile Computing (TMC), vol. 18, no. 3, pp. 534-545,
Mar. 2019.

[4] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422426, Jul. 1970.

[S] B.Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher, “Cuckoo
Filter: Practically Better Than Bloom,” in /10th ACM International on
Conference on Emerging Networking Experiments and Technologies
(CoNEXT 2014), Sydney, Australia: ACM, Dec. 2014.



