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Abstract—Mission-critical systems (MCSs) have evolving la-
tency and reliability requirements, even under challenging con-
ditions such as node and link failures and cyberattacks. To
fulfill these requirements, emerging networking technologies like
the IEEE 802.1 Time-Sensitive Networking standards provide
several protocols for deterministic communication on top of off-
the-shelf Ethernet equipment. While Ethernet-based networks
offer better configurability than legacy fieldbus systems, they still
require the design of adequate topologies for MCSs that fulfill
various design objectives such as optimal quality of service and
increased resilience against challenges. In this paper, we propose
MITHRIL, a multi-objective topology synthesis model with
reinforcement learning. It leverages deep reinforcement learning
to optimize Ethernet-based topologies in terms of resilience
and effectiveness, while adhering to realistic MCS constraints.
Our evaluation indicates that MITHRIL enhances the failure
and attack tolerance of network topologies while reducing the
associated costs, compared to well-connected topologies and other
heuristics from the literature.

Index Terms—topology synthesis, resilience, Ethernet

I. INTRODUCTION

Modern mission-critical systems (MCSs), e.g., cars, avion-
ics, and industrial automation, comprise complex networks
of several interconnected components with strict latency and
reliability requirements. While legacy field buses cannot cope
with the increasing complexity of MCSs, proprietary network-
ing equipment and protocols cannot be used across differ-
ent domains and cause vendor lock-in. Accordingly, differ-
ent Ethernet-based standards such as Time-triggered Ethernet
(TTEthernet) and IEEE 802.1 Time Sensitive Networking
(TSN) have been designed to address these challenges [1].
Their deployment on top of Ethernet provides more flexibility
in network configuration, lowers design costs, and fosters
innovation across different domains [2].

When these new protocols are deployed in MCSs, the
underlying network topologies must satisfy additional require-
ments beyond those of typical Ethernet networks. Fig. 1
illustrates a network example with several endpoints (v1–v6)
transmitting time-sensitive streams (s1–s4) through Ethernet
switches (n1–n3), highlighting these requirements and asso-
ciated challenges ( 1 – 4 ). First, MCSs must be resilient to
failures and attacks. In the figure, 1 highlights n2 as a critical
node whose compromise can disconnect the entire network.
Likewise, 2 marks e2 as an overloaded link and a potential
single point of failure (SPoF). Second, satisfying quality of
service (QoS) requirements for mixed-criticality streams, such

Fig. 1: An example Ethernet-based network.

as time-sensitive and best-effort traffic, demands careful net-
work provisioning. A long network diameter complicates con-
figuration and increases the likelihood of unexpected delays.
For example, 3 shows a longer end-to-end path for s1, which
may lead to both latency issues and capacity bottlenecks.
Lastly, the overall cost of MCS network design is a major
concern for enterprises. As the network scales, underutilized
components (such as e1 indicated by 4 ) can significantly
increase both monetary costs and maintenance burdens.

Considering these design dimensions simultaneously for
critical Ethernet-based topologies is challenging. Resilient
topologies are not necessarily QoS-optimized nor cost-
efficient; thus, several trade-offs occur. Although related work
encompasses optimal scheduling and configuration of critical
streams, the design of Ethernet-based topologies with realistic
constraints is so far overlooked. Accordingly, the main contri-
bution of this paper is the Multi-objective Topology Synthesis
with Reinforcement Learning (MITHRIL) model to design
Ethernet-based topologies that are resilient against failures and
attacks, satisfy QoS constraints and minimize costs in MCSs.
In total, we make the following contributions:

• We characterize resilience and effectiveness as design
objectives composing several robustness metrics, QoS,
and cost metrics aligned with the MCS requirements.

• We propose MITHRIL, a Deep Reinforcement Learning
(DRL)-based topology synthesis model, to build resilient
topologies optimizing these characteristics.

• We evaluate MITHRIL and compare it with another
approach from the literature that considers fault tolerance
and QoS optimization in topology design [3].



Table I: Network elements and their properties.

Component Property Description

Switch (n) ρn ∈ Z Number of ports
cn ∈ R Monetary cost

Link (e)
le ∈ R Propagation delay
ce ∈ R Monetary cost
he ∈ R Bandwidth capacity

Stream (s)
ls ∈ R Tolerable latency
hs ∈ R Data rate
αs ∈ Z Criticality level

II. RELATED WORK

Several works propose topology synthesis models focusing
on Ethernet-based TSN networks and their latency and fault
tolerance requirements. Lee et al. [4] use Demand-driven
Interconnecting-Tree to design TSN-based industrial networks.
Their objective is to minimize the network cost while ensuring
connectivity in case of a link failure, under additional geo-
graphical constraints subject to industrial systems. However,
their resulting topologies are limited to a tree structure. In [5],
the authors propose Joint Topology, Routing, and Schedule
Synthesis (JTRSS) to synthesize fault-tolerant topologies, en-
suring the feasible routing and scheduling of TSN streams. It
takes a fully connected topology and eliminates the redundant
components to obtain the network with minimum cost. The re-
silience countermeasure of JTRSS is limited to finding disjoint
redundant paths against (only single) link failures. Gavrilut et
al. [3] propose two heuristics and an optimization model to
synthesize fault-tolerant topologies with minimum design cost.
While their heuristics provide sub-optimal solutions within
minutes, the optimization model can achieve optimal results
only for small problem instances in a significantly longer time.

Similar to our approach, some studies leverage DRL for
topology synthesis. Li et al. [6] present a DRL- and Graph
Neural Network (GNN)-based approach to modify a network
topology regarding policy-based QoS, design cost, and link
utilization, excluding any resilience countermeasure. In [7],
the authors propose a DRL-based approach to optimize optical
networks regarding the number and capacity of fibre links,
transponders, and routers. Their key objective is to ensure
network reliability under different failure scenarios.

Although they address cost- and QoS-related objectives in-
depth, these works consider limited resilience measures that
are merely effective against random link failures. Besides,
they do not reflect several specific network constraints, such
as using Ethernet-based TSN equipment, optimizing switch
and link utilization, etc. Compared to combinatorial optimiza-
tion techniques typically used for topology building [3], [4],
MITHRIL leverages DRL to capture the complexity of multi-
dimensional topology synthesis including Ethernet-based de-
sign constraints and objectives. Our design objectives include
different topological metrics that increase resilience against
more complex failures and attacks than random ones. Finally,
we explore the trade-offs between those design objectives.

Table II: Different types of switches and links.

Component Property Value

type 3 2 1 0

Switch ρn 32 20 12 4
cn 20 12 5 3

type 1 0

Link he 1Gbit 10Gbit
ce 0.25 0.4
le 1.5ms 1ms

III. SYSTEM MODEL

In our system model, a network comprises two intercon-
nected parts: a physical topology and a communication model.
Here, we consider the architectural aspects of TSN, since it is
the most recent Ethernet-based technology, supporting traffic
scheduling and redundancy, required by MCSs. However, our
model can be adapted to any Ethernet-based topology with
varying protocol stacks as well. Table I shows the components
and their properties in the system model.

A. Topology Model

A network topology G consists of endpoints, switches (e.g.,
TSN bridges), and links, s.t., G = (V,N,E). An endpoint v ∈
V produces or consumes data, e.g., a sensor or computing unit.
An Ethernet switch n ∈ N interconnects endpoints and other
switches. It has a fixed number of ports ρn and a monetary cost
cn according to its port count. Note that an off-the-shelf switch
does not usually have an arbitrary size but is standardized
with a certain number of ports. To make our topology design
problem more realistic, we consider four tiers of switches as
shown in Table II. We define their monetary cost as an abstract
value aligned with our market research for TSN bridges.

Lastly, a link e ∈ E is an Ethernet cable that connects end-
points and switches. Links are characterized by their function,
monetary cost, bandwidth capacity, and induced propagation
delay. An access-link e ∈ Ea is deployed between an endpoint
and a switch, and a trunk-link e ∈ Et connects a switch to
another switch. Like Ethernet switches, off-the-shelf Ethernet
cables are manufactured in standard bandwidth capacity he.
Accordingly, we consider 1Gbit and 10Gbit links as shown
in Table II rather than assigning arbitrary link capacity. We
assign a fixed latency le to each link that does not only
reflect the propagation delay but also the potential processing
delay on the egress port that e is connected to. A link with
lower capacity is associated with higher latency since it can
cause more congestion compared to high-bandwidth links, thus
causing higher queueing and processing delays on a switch.
Links also have varying monetary costs ce aligned with their
actual market value. We approximate the ratio of switch and
link prices according to their respective market values.

B. Communication Model

The communication model consists of several data streams
s ∈ S. Each stream has specific QoS and reliability re-
quirements similar to the TSN-based networks. The QoS
requirements of s comprise its maximum allowed end-to-end
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Fig. 2: MITHRIL framework.

latency ls and its data rate hs. Besides, each stream has
a criticality level αs that specifies the required number of
redundant disjoint paths. In TSN context, redundant paths can
be configured against node and link failures [8]. Eventually,
it is possible to set these parameters per stream to specify
various communication models with different proportions of
critical and non-critical streams.

C. Problem Definition and Constraints

Given the topology and communication model, we can
define the overall topology synthesis problem based on the
example in Fig. 1. In the figure, six endpoints v1-v6 are
connected via the switches n1, n2, n3 and communicate via the
streams s1-s4. This imposes n1 and n3 having at least three,
and n2 having at least 4 available ports. While the streams are
assigned to end-to-end paths, the resources of each physical
link on the respective paths are allocated, e.g., the capacity
of the link between endpoint v1 and switch n1 is reduced
by the combined data rate hs1 + hs2 , such as 200Mbit/s
and 150Mbit/s for s1 and s2, respectively. Additionally, all
switches and links induce (fixed) processing, queueing, and
propagation delays, e.g., 1ms and 0.1ms, respectively, as
parts of an end-to-end path. Besides, critical streams, i.e.,
streams where αs ≥ 2, require redundant paths for seamless
fault tolerance against link failures. For instance, if we change
αs1 = 2 at least one additional switch must be added to the
network to route the required disjoint path.

Following this scenario, our main problem is to synthesize
resilient and effective Ethernet topologies that meet the given
communication requirements. As objectives, resilience mainly
targets failure and attack tolerance, and effectiveness includes
improving QoS and reducing design costs. This problem is fur-
ther subject to several structural (i-iii) and communication (iv-
vi) constraints such as:

i) The topology must be connected, where each endpoint is
connected to strictly one switch via an access link.

ii) All switches and links must be off-the-shelf equipment,
i.e., not arbitrary size or capacity.

iii) The number of links connected to a switch must not be
greater than the number of ports of the switch.

iv) The capacity of a link (he) must not be exceeded by the
total data volume of its associated data streams (hs).

v) For every stream s, the end-to-end delay between their
corresponding endpoints (i.e., induced by all links (le)
in-between) must be less than its tolerable (ls).

vi) For every stream s, the number of disjoint paths between
their corresponding endpoints must be greater or equal to
their criticality level (αs).

Overall, we approach topology synthesis as an augmentation
problem, in which we optimize a given network towards
the specified resilience and effectiveness metrics by adding,
removing, or altering links and switches. This problem quickly
becomes intractable, as the search space grows exponentially
with network size. As proven in [9], even optimizing a graph
towards a single objective by adding a specified number of
edges to the graph is NP-hard. This is additionally challeng-
ing when multiple and potentially conflicting objectives are
introduced. We propose MITHRIL for tackling this challenge.

IV. MULTI-OBJECTIVE TOPOLOGY SYNTHESIS MODEL

MITHRIL leverages DRL to improve a given topology
towards different design objectives targeting resilience and
effectiveness, comprised of cost-efficiency and high QoS. This
section describes its overall design artifacts.

A. General Overview

MITHRIL performs consecutive topology building actions
on an initial topology, evaluates the modified topology using
its topology rating function, and learns taking the best actions
by positive and negative rewarding as illustrated in Fig. 2.

In the figure, the initial state, i.e., topology Gt with t = 0
is an arbitrarily connected network (Section III-A) represented
as a heterogeneous graph [10]. For each topology building
action, MITHRIL first ensures their feasibility by masking the
invalid actions that can violate structural constraints ii)-iii) in
Section III-C. Then, it modifies Gt to Gt+1 by performing
a valid action at such as adding a link or reconnecting an
endpoint. After each action, it also verifies the validity of the
communication constraints (see iv)-vi) in Section III-C) for
the streams potentially impacted by this action. In case of a
violation, MITHRIL re-routes the respective streams to differ-
ent end-to-end paths. The next phase calculates the topology
rating, Ψ(Gt+1, S), using several objective metrics. If it ob-
serves a better rating s.t. Ψ(Gt+1, S) > Ψ(Gt, S), MITHRIL
gets a positive reward, rt. Otherwise, it is penalized because
of a diminishing action. Employing a DRL agent, MITHRIL
learns taking the best actions by making consecutive topology
modifications at for t = 0..T that achieve a continuously
increasing topology rating. The following sections introduce
these steps in more detail.



v0

v1

n0

n1

n2

(a) Initial Topology.

v0

v1

n0

n1

n2

(b) Deactivate n0 ↔ n2.

v0

v1

n0

n1

n2

(c) Swap v1 ↔ n1.

v0

v1

n0

n1

n2

(d) Deactivate n1.

Fig. 3: Illustration of different actions on a given topology.

B. Topology Building Actions

MITHRIL can take five different topology building actions
illustrated in Fig. 3. These actions manipulate the network
elements and their connectivity for improving the overall
topology toward the desired objectives.

i) Deactivate trunk link: The target trunk-link e ∈ Et is
excluded from the topology (Fig. 3b).

ii) Activate trunk link: The target trunk-link e ∈ Et is
added or (re)included to the topology if deactivated.

iii) Swap access link: This action activates the target access-
link e ∈ Ea while deactivating all other access-links
originating from the corresponding endpoint (Fig. 3c). It
simply rewires an endpoint to a different switch.

iv) Downgrade switch: The type of a switch is decreased
to the lowest possible tier so that the number of ports
still satisfies the connected links. This affects its number
of ports and cost. For instance, a 32-port switch with 10
active links can be downgraded to a 12-port switch. If
the switch type is of the lowest tier (see Table II), it can
be completely deactivated, removing all its trunk-links as
long as no endpoint is attached to it (Fig. 3d).

v) Pass: This action does not modify the topology and the
current timestep is skipped without changes.

C. Stream Routing

MITHRIL allocates all streams on the available shortest
paths between their respective endpoints. It also finds disjoints
paths for critical streams. The model performs rerouting and/or
finds new disjoint paths after every topology modification.

We calculate the suitable paths between endpoints using
the Bellman-Ford shortest path algorithm [11]. The weight
of a link is defined by the delay it induces. The streams are
sequentially allocated, ordered by the lowest ls first, to ensure
that streams with more stringent requirements are routed with
reduced possibility of bandwidth restrictions. For every stream
s, MITHRIL selects a shortest path p, which induces less end-
to-end delay than ls. This path should have sufficient capacity
on all links e that it is composed of s.t. hs + h+

e ≤ he, where
h+
e is reserved capacity on e for other streams.

Table III: Metrics for the design objectives.

Objective Metric Description

Resilience (Ψres)
dn Active ports of switch n
βn Betweenness centrality of switch n
βe Betweenness centrality of link e

Effectiveness (Ψeff)
cn, ce Monetary cost of switches and links
uh(e) Bandwidth utilization rating for link e
σs Deviation in experienced latency

Redundant disjoint paths are calculated by the Edmonds-
Karp algorithm [12] for the streams with criticality level αs ≥
2. Redundant disjoint paths must satisfy the same latency and
capacity constraints as the shortest paths. If MITHRIL cannot
find at least αs routes that satisfy the delay and bandwidth
requirements of ∀s ∈ S, the modified topology is rendered
invalid, and the respective action is penalized.

D. Topology Rating

As its primary topology synthesis principle, MITHRIL
aims to increase the rating of a given topology in terms
of two design objectives: resilience and effectiveness, which
is a combined measure of the network cost and QoS of
the routed streams. These objectives induce several trade-
offs that eventually lead to a Pareto-optimal topology. For
instance, increasing resilience against failures via redundant
paths induces additional link cost. Similarly, distributing traffic
homogeneously over the network reduces the risk of a SPoF
but could result in QoS degradation compared to using the
shortest paths.

We formulate the topology rating function Ψ(G,S) as a
combination of two distinct objectives Ψres(G) and Ψeff(G,S):

Ψ = wres Ψres + weff Ψeff (1)

In Eq. (1), wres and weff are set to adjust the relative importance
of the individual objective dimensions s.t. wres + weff = 1.0.
When wres > weff, MITHRIL is expected to build more re-
silient topologies disregarding the cost and QoS characteristics
related to effectiveness. Each objective is measured by several
metrics summarized in Table III and further described below.

1) Resilience: MITHRIL considers two aspects for the
resilience objective: redundancy and network homogeneity.
Firstly, redundancy over disjoint paths provides fault tolerance
against node and link failures, as also the primary resilience
measure in TSN [8]. MITHRIL ensures the existence of at
least αs disjoint paths for ∀s ∈ S as a hard constraint
(Section III-C).

Secondly, MITHRIL aims to increase network homogeneity
to reduce the risk of SPoF in case of attacks and failures
on critical components. We utilize two graph metrics to
quantify homogeneity: node degree and betweenness central-
ity. A component with a high degree is an attractive target
for attackers since it interconnects many other components.
Besides, failures on such components usually have a destruc-
tive impact [13], [14]. Similarly, the betweenness centrality
of a network measures the tendency of a component, i.e.,
switch or link, to be more central than others [15]. Any
failed or attacked component with high centrality could induce



high damage [16]. Accordingly, MITHRIL flattens attack and
failure surfaces by homogenizing switches and links regarding
these metrics to avoid centralized hubs and bottleneck links.

We calculate the switch degree dn as the number of active
ports of a switch, i.e., utilized links connected to a switch.
Then, MITHRIL regards node degree in topology rating as:

fd(N) = 1− g

({
dn

∣∣∣∣ n ∈ N

})
(2)

In this function, g(·) ∈ [0, 1] represents the Gini coeffi-
cient [17]. It measures the similarity between the degrees of
all switches, i.e., dn ∀n ∈ N and N ∈ G. A lower coefficient
indicates less dispersion, which means no switch stands out
as a more appealing target. Thus, with Eq. (2), MITHRIL
assesses a higher topology rating for decreasing g(·).

Betweenness centrality of a switch βn and link βe is the
ratio of the number of shortest paths passing over those com-
ponents to all the shortest paths in the network. MITHRIL as-
sesses the centrality of the whole network and obtains a higher
rating for a decreasing value, which indicates fewer central
components. Accordingly, we formulate Eqs. (3) and (4)
following the definition in [15] to compute reverse centrality
of a graph regarding switches and links:

fβ(N) = 1−
∑

n∈N (β∗
n − βn)

|N | − 1
(3)

fβ(E) = 1−
∑

e∈E (β∗
e − βe)

|E| − 1
(4)

where β∗
n and β∗

e are the highest switch and link centrality in
the network, respectively.

Ψres = w1 fd(N
+) + w2 fβ(N

+) + w3 fβ(E
+) (5)

Finally, the objective Ψres is scalarized by weighting the
aforementioned metrics (s.t.,

∑
i=1 wi = 1.0) as shown above.

Note that N+ and E+ represent the set of active switches and
links, i.e., included in the modified topology by MITHRIL.

2) Effectiveness: The effectiveness objective entails design
cost, resource utilization, and QoS. Firstly, the monetary cost
of switches and links is dependent on their respective types
shown in Table II. We define fc to compute the total cost of a
given set of components, e.g., fc(N) returns the total switch
cost as follows:

fc(N) =
∑
n∈N

cn (6)

for the topology G = (V,N,E). Then, we compute the
monetary gain fc(N) as a normalized value:

fc(N) =
fc(N)− fc(N

+)

fc(N)
(7)

where, N and N+ represent the respective switches in the
initial topology G and only the active components in the (final)
modified topology. Accordingly, MITHRIL aims to maximize
monetary gains for switches by fc(N) (as formulated above)
and links by fc(E), which is formulated similarly to Eq. (7).

0.0 0.5 1.0
Bandwidth Utilization

0.0

0.5

1.0

uh

Fig. 4: Rating function for link utilization uh.

Secondly, MITHRIL aims to keep links under moderate
utilization to minimize the expenses induced by underutilized
resources but still ensures available resources to reconfigure
the network in case of any incidents. We formulate uh to
compute a high rating for links with moderate utilization:

uh (e) =

 1
2e
−24

(
h+
e

he
− δ

)2

+ 0.5, if h+
e > 0

0, otherwise

(8)

In Eq. (8), h+
e is the active bandwidth use of link e, calculated

by the total amount of data traffic for all streams s forwarded
through e. The targeted link utilization can be adjusted through
the parameter δ. We set δ = 0.7 so that the function gives
the highest topology rating for a link utilized around 70%,
as also shown in Fig. 4. This is set based on the observation
that a higher link utilization than 70% can worsen the end-
to-end latency under realistic queueing models [18]. Note
that Eq. (8) does not harshly penalize the underutilized links
but only the non-utilized links to deactivate the empty ones
more effectively. Finally, MITHRIL uses the rating function
fh(E

+) to calculate the average utilization for links. It is
defined as the average rating uh(e) of all active links e ∈ E+.

Thirdly, to improve QoS, MITHRIL activates the best access
links to connect endpoints to the edge switches that minimize
end-to-end latency for the streams initiated by the respective
endpoints. MITHRIL already guarantees that each stream is
assigned to a path fulfilling their latency requirement, s.t.
lsp ≤ ls, where lsp is the end-to-end latency on path p that
stream s is forwarded through. We further measure σs

p, the
normalized difference between experienced (lsp) and tolerable
(ls) latency, so that MITHRIL can find an available path p
with the highest deviation, i.e., achieving the lowest end-to-
end delay as follows:

σs
p =

ls − lsp
ls

(9)

Finally, we formulate fs(P, S) to rate the overall topology for
all streams by averaging σs

p as follows:

fs(P, S) =
1

|S|
∑
s∈S

σs
p ∃p ∈ P (10)

By weighting the metrics for monetary cost, resource effi-
ciency and QoS (s.t.,

∑
i=4 wi = 1.0), the effectiveness rating

Ψeff of a topology is calculated as follows:

Ψeff = w4fc(N) + w5fc(E) + w6fh(E
+) + w7fs(P, S) (11)



E. Action Rewarding

MITHRIL aims to gradually increase the topology rating for
modified topologies Gt after each topology building action at.
An increasing topology rating Ψt = Ψ(Gt+1, S)−Ψ(Gt, S) >
0 indicates an improvement in the topology towards the desired
design objectives, according to their priority set by the weights
defined in Eq. (1). Contrarily, a decrease in topology rating
means that MITHRIL has taken an action that diminishes
the topology. Accordingly, the action rewarding function rt
rewards the DRL agent of MITHRIL for an improving action
and penalizes it for a diminishing one at step t as follows:

rt =



1.00 if Ψt ≥ 0.025

0.75 if 0.025 > Ψt ≥ 0.010

0.50 if 0.010 > Ψt ≥ 0.001

0.10 if 0.001 > Ψt > 0

0.00 if Ψt = 0

−1.00 otherwise

(12)

For Ψt > 0, MITHRIL is rewarded proportional to the
degree of improvement in topology rating. Otherwise, it is
penalized by a fixed value of −1.00. Note that we have
experimented with different reward functions, such as simply
rewarding MITHRIL based on the topology rating, i.e., rt =
Ψ(Gt+1, S). However, we observe that the step function (12)
accelerates the learning significantly and a fixed high penalty
helps to avoid diminishing actions.

V. IMPLEMENTATION

We implemented MITHRIL using TensorFlow [19] and the
TensorFlow GNN library [20]. It is trained with the Advan-
tage Actor-Critic algorithm, derived from the Asynchronous
Advantage-Actor-Critic algorithm [21]. MITHRIL employs a
GNN with multi-head-attention [22] to encode a topology
G to a learned vector embedding G⃗, and two multi-layer
perceptrons as the actor and the critic. GNNs are used, since
they can utilize the structure of graphs in order to learn the
feature representations of the node and edge features, and
have shown outstanding performance in graph datasets across
different domains [22]. The actor represents the policy π
and returns the logarithmic probabilities P for sampling the
topology building actions in Section IV-B. The critic Vπ is an
approximation of the value function and estimates the expected
returns when following policy π. The structure of actor and
critic is: Input, ReLU (64), Dropout (0.5), ReLU (64), ReLU
(64), followed by Linear (5) and (1), respectively.

Starting with the initial topology G0, MITHRIL sequentially
performs actions, until t = T or an invalid state is reached due
to a violated constraint. For each step t, MITHRIL samples an
action at from Pt with the invalid actions masked as described
in Section IV. It then performs at to modify Gt into Gt+1 and
calculates the reward rt based on the topology rating change.
We calculate the discounted reward R with discount factor
γ = 0.99. If Gt is valid, the final value Rt = vt and otherwise

Rt = 0. Finally, the loss functions ℓπ and ℓV denoted in
Eqs. (13) and (14), are calculated. They are adopted from the
loss functions defined by [21], but we use the Generalized
Advantage Estimation (GAE) [23] ÂGAE(γ,λ) with the GAE-
lambda λ = 0.97. To improve exploration and discourage
premature convergence to a suboptimal policy, the entropy is
added in ℓπ [21], with Ht defined as the entropy of sampling
at from the logarithmic probabilities Pt, i.e., the average level
of uncertainty when selecting this particular action. Since the
GNN is shared by the actor π and the critic Vπ , its loss is
defined as ℓπ + δℓV with a weighting factor δ = 0.5.

ℓπ =
−1

n

n∑
i=1

−Pi × Â
GAE(γ,λ)
i + β

∑n
i=1 Hi

n
(13)

ℓV =
1

n

n∑
i=1

(Ri − νi)
2 (14)

We trained MITHRIL for 2000 episodes and T = 75 actions
per episode. We used a learning rate of 0.0003 for the actor
and GNN, and 0.001 for the critic.

VI. EVALUATION

In this section, we present our experimental setup, metrics,
and the numerical results of our evaluation. Our primary goal
is to demonstrate both the benefits and potential limitations of
MITHRIL to flexibly optimize Ethernet-based topologies with
configurable priorities on resilience and effectiveness.

A. Experimental Setup

For training and evaluation, we generated several Watts-
Strogatz networks [24] with |N | = 16 switches (all type 3) and
|V | = 16 endpoints, and links attached with 60% probability.
75% of all links are randomly selected as type 1 and the rest
is set as type 0 (see Table II). We input these graphs as initial
topology G0 to MITHRIL. They show small-world properties
reflecting typical characteristics of TSN networks that are not
highly connected but ensure network-wide reachability with
low latency. Note that MITHRIL is topology-agnostic and an
arbitrary initial topology can also be given.

We generated several instances for the described commu-
nication model with |S| = 32, assigning two streams per
endpoint. We set 20% of these streams as critical, requiring
at least two redundant paths (αs ≥ 2). Their latency and data
rate demands are assigned randomly between 4ms to 10ms
and 250Mbit/s to 750Mbit/s, respectively. We repeated
the experiments for 100 randomly generated topologies per
evaluation scenario. For the experimental results we only
consider the valid synthesized topologies (on average 70).
Table IV summarizes these parameters.

Lastly, we selected eleven weight sets w = (wres, weff) s.t.
w = (wres, 1−wres) for every wres in {0.0, 0.1, . . . , 1.0}. This
helps to evaluate the impact of objective prioritization, e.g.,
wres = 1.0 and weff = 0.0 focus purely on resilience without
cost or QoS concerns. In the remainder of this section, the
individual weight sets are denoted using only their respective
value of wres.



Table IV: Experiment parameters.

Parameter Value

Number of switches 16, all type 3
Number of endpoints 16
Link attachment probability 60%
Link type 75% type 1 and 25% type 0

Number of streams 32
Proportion of critical streams 20% with αs ≥ 2
Stream latency (ls) 4ms to 10ms
Stream data rate (hs) 250Mbit/s to 750Mbit/s

Repetitions per weight set 100

For benchmarking, we compute the evaluation metrics for
the initial topology G0 (Initial), and also compare our results
to the Topology Routing Heuristic (TRH) introduced in [3].
TRH starts with a fully connected network, iteratively routes
all streams sorted by their timing properties, and finally
changes the switch types to be of minimal cost with the
required ports. Unused links and switches are removed from
the topology. We modified TRH to utilize a shortest-path
algorithm instead of breadth-first-search as the links in our
topology have different weights, and we initialize with Watts-
Strogatz networks analogously to MITHRIL, instead of fully
connected networks. All experiments are conducted in parallel
on a server with 96 CPU cores and 128GB of memory.

B. Evaluation Metrics

We use the following metrics for our evaluation:

i) Ratio of surviving streams measures the percentage of
surviving streams in case of multiple attacks or failures,
to evaluate the impact of Ψres for the resilience objective.

ii) Relative cost is the ratio of the total cost of switches
and links in the final topology to the cost of the initial
topology. This measures the impact of fc(N) and fc(E)
for the effectiveness objective. We also consider the
deducted cost, where we additionally remove all unused
links and switches, and assign the switch types so that
they are of minimal cost with the required number of
ports. We further elaborate on this metric later.

iii) Average end-to-end latency is the mean latency of the
shortest paths forwarding at least one stream. It evaluates
the impact of the fs(P, S) on the effectiveness objective.

C. Experimental Results

In the following figures, we compare the topology synthesis
results of MITHRIL trained with different weight sets denoted
as wres = 0.0, 0.1, . . . , 1.0 (on the x-axis of the following
figures), with the respective evaluation metrics. We measure
these metrics for initial topologies at t = 0 (Initial, dashed
line), and the TRH results (TRH, solid line) to set a baseline
for the evaluation. Training MITHRIL takes on average 23 s
per episode (12.75 h for 2000 episodes). Inference with a
trained model takes on average 99ms for one action (7.4 s
for T = 75 actions). The results are categorized according to
two design objectives, resilience and effectiveness.
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Fig. 5: Surviving streams after n link failures/attacks.
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Fig. 6: Surviving streams after n switch failures/attacks.

1) Resilience: Firstly, we simulate calibrated attacks (or
worst-case failures) targeting critical links and switches in the
network to evaluate resilience. Fig. 5 illustrates the ratio of the
surviving streams after removing 2 (blue, diamond), 4 (orange,
circle), 8 (purple, triangle) and 16 (pink, square) links with the
highest centrality (max{βe | ∀e ∈ E}). Initial and TRH lines
with different colors also show the results for the respective
scenarios. The results show that training MITHRIL with a
focus on resilience (wres > 0.6) improves the survivability of
streams, compared to the baselines and the remaining models
(wres < 0.6). The reason is that MITHRIL reduces the number
of high-centrality links by homogenizing the network, and
eventually the impact of individual failures/attacks. Here, the
difference between MITHRIL and TRH goes up to 20% and
50% for 8 and 16 critical link removals, respectively.

Switch failures or compromises typically have a more severe
impact than individual link failures, as they can disconnect
multiple components simultaneously. In Fig. 6, we simulate
the removal of 2 to 8 switches with the highest active degree
(dn) and measure the resulting ratio of surviving streams.
Topologies generated by MITHRIL (wres > 0.6) are able to
sustain more streams (up to 20%) following 2 to 4 switch
failures (blue and orange), compared to the initial topology
and the TRH baseline, where most streams fail to be delivered.
Notably, the optimized topologies retain partial functionality
even after half of the switches (8 out of 16) are removed,
whereas baseline approaches result in total stream failure.

2) Effectiveness: For effectiveness objective, we focus on
the design cost and the resulting QoS for the synthesized
topologies. Note that, compared to the results in Fig. 5 and
Fig. 6, the MITHRIL models with wres < 0.6 provides better
results as they prioritize effectiveness over resilience.
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Fig. 7: Link cost.
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Fig. 8: Switch cost.
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Fig. 9: Average end-to-end latency.

Fig. 7 presents the relative link cost (fc(E)) of the synthe-
sized topologies. We observe that MITHRIL (blue, diamond)
can reduce link costs by up to 65% compared to the initial
topology for configurations where wres < 0.6. In contrast,
models emphasizing resilience (e.g., wres > 0.8) tend to
maintain a cost level similar to the initial topology, as they
retain additional (and sometimes unused) links to promote
structural homogeneity. TRH achieves lower costs by aggres-
sively removing all unused links, regardless of their potential
utility. MITHRIL’s deducted topologies (orange, circle), which
remove redundant links and switches similar to TRH, yield
comparable cost reductions. In this context, the gap between
the Full and Deducted costs for wres > 0.6 can be interpreted
as the cost of resilience, representing the overhead MITHRIL
incurs to enhance network homogeneity.

Similarly, Fig. 8 shows the relative switch cost (fc(N)) for
MITHRIL-generated topologies. Here, MITHRIL consistently
incurs higher switch costs than TRH in the original configura-
tion (blue, diamond). Although these costs can be reduced
through further switch removals or downgrades (deducted
cost), this highlights a limitation: MITHRIL does not neces-
sarily minimize cost, even in scenarios where wres = 0.0 and
weff = 1.0. This behavior stems from MITHRIL’s objective to
balance cost with QoS metrics under the effectiveness goal,
rather than exclusively optimizing for minimal design cost.

Fig. 9 measures QoS regarding the average end-to-end
latency. Except wres = 0.4, MITHRIL usually induces more
latency than the initial topology and TRH. In these results,
there is no clear correlation between wres and latency. There
are two potential reasons for this. First, the influence of QoS
metric (fs(P, S)) may remain limited in the compound rating
function quantifying the overall effectiveness. This can be
further adjusted by its respective weight, i.e., w7 in Ψeff.
Counterintuitively, wres = 1.0 results in the lowest latency be-
cause it keeps many links active for homogenizing the network
(see Fig. 7) and provides shorter alternative paths. Second,
MITHRIL utilizes a simplified routing approach, which fulfills
all QoS requirements without further optimization. It only has
an indirect control over routing by manipulating links, which
may remain limited for QoS optimization.

VII. DISCUSSION

MITHRIL utilizes a range of metrics for topology evaluation
and optimization. While all metrics are normalized to enable

fair comparison, each varies differently after topology modi-
fications. As a result, their influence on design objectives can
vary significantly. To account for this, MITHRIL incorporates
configurable weighting factors (w1 . . . w7, see Section IV-D)
that allow users to adjust the relative impact of each metric.
Although our results demonstrate that MITHRIL can success-
fully synthesize topologies aligned with specific objectives, the
choice of weights remains a key factor. With careful tuning,
the model’s performance can be further improved.

Moreover, assessing the individual impact of each metric
is challenging due to their overlapping influence on multiple
objectives. For instance, reducing path lengths can enhance
both resilience and QoS. Conversely, using lower-tier links
(e.g., 1Gbit) may introduce higher latency but can lower costs
and improve link utilization, potentially conflicting with the
goals of the effectiveness objective. Therefore, a deliberate
analysis is required to select orthogonal metrics that primarily
affect their respective design objectives, whether positively or
negatively. While we have carefully evaluated several metrics
based on their relevance, further study is needed to fully
understand their independence and interactions.

Lastly, we introduce MITHRIL as a framework for flexibly
optimizing topologies toward multiple objectives. Our goal
is not to prescribe a fixed set of objective weights for an
optimal network design. Nevertheless, as a final takeaway,
we show that setting 0.6 ≤ wres ≤ 0.8 achieves a balance
between resilience, cost, and QoS, outperforming even some
configurations that prioritize effectiveness alone.

VIII. CONCLUSION

The emerging IEEE 802.1 TSN standards enable the use
of Ethernet in MCSs, which require resilient, low-latency
communication. However, this necessitates the design of suit-
able Ethernet-based network topologies that meet the strin-
gent requirements and constraints of MCSs. In this paper,
we introduce MITHRIL, a multi-objective topology synthesis
framework based on reinforcement learning. It employs DRL
to generate Ethernet networks optimized for both resilience
and effectiveness, under realistic topological constraints. Our
evaluation demonstrates that MITHRIL can substantially re-
duce network design costs and enhance resilience against
multiple worst-case failures and attack scenarios, all while
satisfying the QoS requirements of the target systems.
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