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Abstract—Non-terrestrial networking is one of the core tech-
nologies for next generation communication networks due to
the achievable coverage and resilience. The number of LEO
satellites in orbit have increased due to cost reduction in cubesat
development and launch services. This grow in users can lead
to higher noise levels and increase interference among satellite
and terrestrial networks. Innovative space communications using
software defined radio (SDR) technology can solve the contention
between the LEO satellites and enables them to coexist with
terrestrial network. In this paper, we investigate the use of
cognitive radio concepts for LEO satellites. In particular, we focus
on interference detection and appropriate channel switching. The
key objective is to provide resilient communication for critical
infrastructure. Using both results from an already launched
cubesat system as well as from a testbed experiment, we
demonstrate the feasibility of our approach.

Index Terms—New space communication, interference detection,
cognitive radio, software defined radio.

I. INTRODUCTION

There are cases of emergency situation where the ground
infrastructure is damaged due to natural disasters such as
earthquakes, avalanches, and tsunamis. In these situations,
setting up a communication network within a short time is
essential. LEO satellites are considered to fill this gap, to receive
messages from inter-satellite communication and relay the
obtained message to the mobile receiver at the ground [1], [2].
In general, new space communication (NeSC) systems enable a
symbiotic relation between satellite and terrestrial communica-
tions. The increasing number of low earth orbit (LEO) satellite
constellations support the realization of resilient networks that
can provide redundant channels to the terrestrial networks
and mitigates jamming and interference effects. Further, in
6G communications, the satellite and terrestrial networks will
coexist to increase the global coverage [3]. This motivates
the satellite operators to use cognitive radio in high-altitude
platform station (HAPS) as well as LEO and medium earth
orbit (MEO) satellite communication systems. For example,
the offshore wind turbines are becoming ever more important
for our energy infrastructure. Acquiring data from remote
areas is challenging and there is a clear need for designing
communication networks to monitor critical infrastructures
reliably amidst interference scenarios. For this relaying from
these offshore locations, a number of challenges needs to
be addressed. This includes frequency allocation (including
channel selection), interference mitigation (concerning other

satellite links as well as noise spikes due to solar flares), power
consumption, and time synchronization [1], [4].

Software defined radios (SDRs) are widely used in today’s
cubesats as physical layer parameters and even the waveform
can be changed dynamically in NeSC systems [5], [6]. This
particularly also holds to improve physical layer resilience [7].
Also, SDRs provide the basic functionality for accurate
sensing of the environment [8]. Our approach to mitigate the
interference is developing a SDR-based cognitive radio system
at both the satellite and terrestrial nodes that communicate
with each other. The cognitive radio will perform spectrum
sensing and spectrum allocation techniques for efficient wireless
resource management [9]–[11]. In particular, we evaluate two
spectrum sensing techniques namely energy detection (ED)
and absolute value cumulating (AVC) [12].

In-orbit spectrum sensing and interference measurement are
carried out by very few missions [6], [13], [14]. Recently,
the publicly available database of global interference measure-
ment from the Spectrum AnaLysis SATellite (SALSAT) was
released.1 SALSAT is a nano satellite launched by the chair
of space technology at TU Berlin in September 2020. The
satellite is operating in a sun-synchronous orbit around Earth.
The mission features a SDR based payload SALSA with a
LMS7002 transceiver and analyzes amateur radio bands VHF,
UHF as well as S-band for investigation of spectrum usage.
The interference analysis of captured spectrum data in SALSAT
can be partially performed by a Linux-based processing system.
However, the analysis is mostly performed on ground [14].
In the follow-up project Robust And seCure post quantum
COmmunication fOr critical iNfrastructure (RACCOON)2 [15],
the on-board SDR will perform interference analysis and take
corrective actions if needed.

The research question we answer in this paper is how to
realize a satellite connection that is resilient to interference and
unexpected noise conditions. We present a spectrum sensing
approach and discuss some initial results from both a lab
experiment as well as an experiment using the SALSAT data.

Our main contributions can be summarized as follows:
• We present a cognitive radio-based algorithm for channel

allocation based on interference class assessment for each
subchannel in a band.

1https://salsat.raumfahrttechnik.tu-berlin.de/
2https://www.tu.berlin/en/raumfahrttechnik/research/current-

projects/raccoon/



• We present a backup channel prediction method based on
the data collected from the SDR transceiver located in
SALSAT satellite launched by TU Berlin that is in orbit
since 2020.

• We developed an SDR testbed to demonstrate the inter-
ference classification based on Kolmogrov-Smirnov test.

II. RELATED WORK

Cognitive radio allows to adapt parameters, such as fre-
quency, antenna, and time of transmission based on the current
situation on the radio channels. Cognitive radio techniques
are considered very mature in the literature, despite the
limited deployment in commercial applications [16]–[18]. In the
domain of satellite communication, cognitive radio faces new
challenges related to spectrum sensing in the presence of non-
Gaussian noise and insufficient time-synchronization between
ground station and satellites [19]. Here, correct interference
analysis is crucial to find a solution to these challenges. Uplink
radio interference in UHF band is considered by Quintana-Diaz
et al. [13]. The authors study dispersion and time variation of
the interference using an SDR on-board the LUME-I satellite.
They conclude that communication systems that are designed
for additive white Gaussian noise (AWGN) channels are not
able to communicate with their satellites in the presence of
space-tracking radars that causes high coefficient of variation
[13].

Spectrum sensing techniques that do not need prior knowl-
edge of the primary signal and channel model are easier to
implement [12], [20], [21]. These low complexity implementa-
tions translate to low power consumption on-board a satellite.
Simple concepts like ED do not work appropriately as their
performance decreases with low signal to interference and
noise ratio (SINR) scenarios and noise variance uncertainty
[22], [23]. Instead, we use the Kolmogrov-Smirnov (KS) based
goodness of fit test that is combination with ED for interference
classification.

As an alternative, Aghabeiki et al. [24] present a machine
learning (ML)-based spectrum sensing algorithm to improve
the primary signal detection under low SINR conditions.
The ML algorithm allows to learn signal properties and
propagation channel features. In addition, the authors use
principal component analysis to extract the uncorrelated data.
In our proposed work, ML algorithms are used to model the
joint distribution of probability of detection and probability of
false alarms from energy detection. Furthermore, we apply the
“Kolmogrov-Smirnov one class over rest of the class”, KSOvR

test to classify three interference classes.

III. SYSTEM MODEL

Figure 1 shows the orbital plane of a satellite S1 and the
reference plane. Satellite S2 is the interference source at the
receiver. The orbit of the satellite is represented by parameters
such as the semi-major axis of the orbit r, the inclination angle
of the satellite orbit with respect to the reference plane, i, and
the longitude angle, θ. The inclination angle, i of the satellite
orbit is 95 degree. The semi-major axis of the satellite orbit, r is
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Figure 1. The orbital plane and reference planes of the LEO satellites S1 and
S2 are defined by Keplerian elements shown in figure. The reference plane
considered is ECEF coordinate system.

575 km at the time of deployment. The primary purpose of this
satellite is collecting RF spectrum data over frequencies that are
often used in small satellite communications [6]. The coverage
probability for the LEO satellite with dynamic interference
scenario is calculated as [25], [26]

P (SINR > λ) = P

(
ptxHga||(X − l)||−α

σ2 + Il
> λ

)
(1)

where λ is the SINR threshold beyond which the satellite
coverage is stable. ptx is the transmit power of the LEO satellite.
H is the fading random variable modelled using Nagakami-m
small-scale fading that includes both the Line of Sight (LOS)
and the Non-Line of Sight (NLOS) scenarios and proved to be
an appropriate channel model for the satellite to ground links.
Nagakami-m distribution assumes that the LOS component
obeys the gamma distribution. When m = 1, then the Nagakami
reduces to Rayleigh fading and when m = (K+1)2

2K+1 where K
is the Ricean factor that quantifies the ratio of power of the
direct signal and that of the scattered paths. The probability
density function (PDF) for H is given by [25]

fH(x) =
2mm

Wm(m− 1)!
x2m−1 exp

(
−mx2

W

)
(2)

where W is the average power of the envelope, ga is the
transmit antenna gain, X is the position of the LEO satellite,
l is the position of the receiver, σ2 is the noise variance, and
Il is the interference seen by the receiver located at l due to
other LEO and GEO satellites, HAPS, or terrestrial networks
and is given by [25]

Il =

n∑
i=1

ptxi
Higai

||Xi − l||−αi (3)

where ptxi
is the transmit power of ith interference source

located at position, and Hi, αi, gai are the fading random
variable, path loss exponent, and transmit antenna gain of the
ith interference source, respectively.

IV. INTERFERENCE ANALYSIS

Interference analysis helps in solving the spectrum contention
among the satellite and terrestrial networks. As a first step



towards interference analysis, we classify the interference
scenarios in each channel into three classes namely Least,
Medium, and Worst interference scenarios. This classification
aids in the assessment of the quality of the channel. Eventually
this plays a major factor in spectrum allocation.

We propose Algorithm 1 for the classification of interfer-
ence scenarios. γL, γM , and γW indicate the SINR at the
least, medium, and worst interference scenarios. For this,
the collective distribution of the probability of detection, Pd

and probability of false alarm, Pfa corresponding to every
γ measured at the receiver is considered. We then perform
the multi-class Kolmogrov-Smirnov test to differentiate One
class Over the Rest (OvR) of the classes. Here, KSOvR(nW ),
KSOvR(nM ), and KSOvR(nL) are the KS distance value of
the least, medium, and worst interference case for the nth

channel compared to other two classes, respectively. cchn and
bchn are the current and backup channels for the nth channel.
The main motivation to use KS test-based classification on
receiver operating characteristics (ROC) metrics is that the test
is effective even with small dataset [27].

Algorithm Walk-through: Algorithm has interference as-
sessment phase and channel assignment phase. The interference
assessment phase collects the spectrum sensing performance
metrics for each channel for three SINR values. After collecting
this data, split this data into training and test data. We perform
random forest and naive Bayes classifier to fit the data for
each class. Then KSOV R test is performed for each class over
rest of the class for the training data split and compute the
thresholds for every class.

Next, in the channel assignment phase, the KSOV R(nW ),
KSOV R(nM ), KSOV R(nL) are evaluated for the instanta-
neous unclassified tuple (Pn

d , Pn
fa) values from the test data

collection. Later we compare the values with thresholds to
make a channel usage decision for nth channel to stay idle,
transmit in current channel cchn, or move to a backup channel
bchn. The spectrum sensing and acquiring performance metrics
from the SDR based testbed is described in the next section.

V. TESTBED-BASED EVALUATION

For evaluation and to obtain further insights of the system
performance, we developed a SDR-based testbed as shown in
Figure 2 to evaluate the spectrum sensing module. The testbed
configurations are as detailed in Table I.

Figure 2. Spectrum sensing testbed to demonstrate interference classification

Algorithm 1: Interference assessment and channel
selection algorithm
Data: ch = {1, 2, ..., N}

// List of channels
Data: S={γW , γM , γL}

// SINR for three interference
classes
/* Interference Assessment Phase */
foreach n ∈ ch do

foreach γ ∈ S do
Pn,γ
d = P ((Tn > λ)|H1)

Pn,γ
fa = P ((Tn > λ)|H0)

Apply classifier model to fit the data
Perform KSOvR test
Compute thresholds thw, thm, thl based on
KSOvR test

end
end
/* KSOvR- KS test class over the rest

of the class */
/* Channel Assignment Phase */
foreach n ∈ ch do

if KSOvR(nl) ≥ thl then
TXCH = cchn // current channel

else
if thm ≥ (KSOvR(nM )) ≤ thl then

TXCH = null // idle

else
TXCH = bchn // backup channel

end
end

end

A. GNU Radio Framework for Spectrum Sensing

Figure 3 shows the implementation of two spectrum sensing
techniques in GNU Radio.3 We have used this software
framework to implement the following functionalities: (a)
generating a LEO satellite transmit signal with 600 KHz

3https://www.gnuradio.org/

Table I
SPECTRUM SENSING TESTBED CONFIGURATIONS

Parameter Value

Center Frequency 863 MHz
Sensing bandwidth 10 MHz
Channel bandwidth 600 KHz
Maximum Transmit power 20 dBm
Spectrum sensing node LimeSDR mini v2
Interference nodes USRP B205 mini, LimeSDR mini v2
Software Ubuntu 22.04

GNU Radio 3.10.8.0



Figure 3. The ED and AVC spectrum sensing techniques to detect the
interference as seen by a LEO satellite.

bandwidth, (b) generating interference source with multiple
600 KHz bandwidth signals; the probability of occurrence of
interference sources PIi is derived from uniform distribution
at every iteration, (c) implementing two spectrum sensing
techniques namely ED and AVC [12], (d) computing probability
of detection Pd and probability of false alarm Pfa.

In our testbed, we have the option to incorporate various
channel losses such as antenna misalignment loss, polarization
loss, RF cable loss, atmospheric loss due to weather conditions,
multipath fading, and impact of Doppler effect. The receive
chain in onboard SDR performs spectrum sensing. At every
receive cycle a 10 MHz bandwidth channel is subdivided into
four channels. The ED and AVC spectrum sensing techniques
are semi-blind detection techniques where the knowledge of
noise variance and its standard deviation is used. Our testbed
is used to study the effect of each technique and the quality
of interference analysis in the desired spectrum.

B. Experiments

For the experiment, the interference node is switched on
and off with various transmit power levels. Based on the
transmit power level, the SINR value changes at the receiver.
At each transmit power level of the interference node, spectrum
sensing is performed for 1000 iterations. The sensing bandwidth
considered is 10 MHz and is subdivided into N channels. The
test statistic value Tn of the nth channel for ED is given by

Tn = (1/L)

L∑
i=1

|x(k)|2 (4)

The hypothesis H0 and H1 are described as

H0 : w(k) (5)
H1 : x(k) + w(k) (6)

where w(k) is the noise sample and x(k) is the interference
signal samples of the nth channel. The noise and signal samples
are obtained using an SDR and signal acquisition blocks in
the GNU Radio framework.
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Figure 4. Receiver operating characteristics of spectrum sensing module under
three interference scenarios.

• Step1: Compute the Pn,γ
d , probability of detection for nth

channel under SINR value γ by evaluating the probability
of the test statistic of the nth channel greater than the
threshold λ given the hypothesis H1.

• Step2: Compute Pn,γ
fa , the probability of false alarm

for nth channel under SINR value γ by evaluating the
probability of the test statistic of the nth channel greater
than the threshold λ given the hypothesis H0. Steps 1
and 2 are repeated around 500 times each.

We group joint distribution of Pn,γ
d , Pn,γ

fa corresponding to
every γ as an interference class. Then, we apply the algorithm 1
in section IV to classify the interference class in each channel.

C. Selected results

We demonstrate the interference classification through
experiments using the proposed testbed. We evaluated the
performance metrics under each interference class for several
thresholds. For every threshold, the moving average of 4000
iterations is performed to evaluate Pd and Pfa. Figure 4 shows
the spectrum sensing performance under different interference
scenarios using two different SDRs namely LimeSDR and
USRP B205 mini. The interference classification is done
offline using Python. LimeSDR has a good Receiver operating
characteristics at in Least interference scenario while the
Medium and Worse cases, USRP B205 mini has better operating
characteristics compared to LimeSDR mini. Table II shows
the KSOV R and p-value for Least, Medium, and Worst cases
for the considered channel. The KSOV R for the Least and
Worse have greater KS distance from other two classes. The
p-value quantifies the level of confidence in this KS distance
estimation. Figure 5 and Figure 6 shows the results of KSOV R

values for the test data using random forest and naive bayes
classifier respectively. We can see that classification of Least
interference from the other two classes are good. Whereas the
classification of Medium and Worst classes from the other two
classes is less useful.

VI. INTERFERENCE ANALYSIS USING SALSAT DATA

The fast Fourier transform (FFT) data is measured using a
FPGA on board the Spectrum AnaLysis Satellite (SALSAT).
This data is sent to the ground station for further analysis. The
FFT message is sent with an id, frequency band, max hold



Table II
KS TEST RESULTS FOR INTERFERENCE CLASSIFICATION

Interference KSOvR p-value
class

Least(L) 0.75 0.8
Medium(M) 0.6 0.9
Worst(W) 0.05 1
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Figure 5. Kolmogrov-Smirnov one class over the rest (KSOV R) for three
interference classes using Random forest classifier.

duration, programmable gain settings of low noise amplifier,
and programmable gain amplifier. Max hold duration will
decide the number of time frames that are accumulated to
increase the reliability of spectrum occupancy measurement.
However, there is a trade-off between computational complexity
and reliability. The higher the max hold setting, the higher is
the computational complexity for an on-board SDR.

A. Kolmogrov-Smirnov test for backup channel prediction

The SALSAT data is preprocessed as each recording will
have a different dynamic range of power spectral density (PSD)
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Figure 6. Kolmogrov-Smirnov one class over the rest (KSOV R) for three
interference classes using Naive Bayes classifier.

Table III
IMPACT OF PRE-PROCESSING METHOD OF DATA IN DETECTING AN

UNCORRELATED DISTRIBUTION.

Pre-processing method day ks distance p-value

minmax 1 0.46 1.06 × 10−10

robust 1 0.1 0.20
minmax 2 0.37 9.35 × 10−6

robust 2 0.18 0.15
minmax 3 0.67 1.36 × 10−9

robust 3 0.37 0.02
minmax 4 0.99 6.22 × 10−84

robust 4 0.3 1.4 × 10−6

measured in dB. We considered two types of normalization
techniques for pre-processing before KS test: (1) minmax nor-
malization and (2) robust normalization. Robust normalization
is particularly beneficial when data has many outliers. An FFT
recording includes 4096 FFT bins which are equally divided
into four channels ch1, ch2, ch3, and ch4 with 1024 bins
each. The KS distance and p-value of the two channels aids
in quantifying the similarity in their power spectral density
distribution and is given by

Dn,m = sup
x

|F1,n(x)− F2,m(x)| (7)

Dn,m is a measure to quantify how likely the first sample of
size n with empirical CDF F1,n(x) and second sample of size
m with empirical CDF F2,m are similar. If samples from two
channels have dissimilar distribution, then one channel can be
used as a backup channel for the other channel. This method of
comparison of distribution of channels aid in a backup channel
prediction for the proposed cognitive radio.

B. Selected results

Figure 7 shows the cumulative distribution function (CDF)
of PSD of ch1 and ch2 that was acquired over the a duration of
3 to 7 minutes of each satellite pass over four days. Table III
shows that the p-value for robust normalization is greater than
the minmax normalization. Hence, we have considered the
robust normalization as the pre-processing step prior to train
and test cycles of data. We can observe that the CDF of ch1
and ch2 for day1 and day2 has p-values greater than 0.05 for
robust normalization case and shows that the distribution on
these days are similar. While on day3 and day4, the p-values
are smaller than 0.05 under both the normalization case and
the distributions are different in these days. Hence, one of the
channels can be used as a backup channel for the other on
day3 and day4. This interference analysis from SALSAT data
is a proof of concept that the backup channel can be predicted
from the previous satellite pass data.

VII. CONCLUSION

In this paper, we studied the use of a cognitive radio-
based interference analysis technique for use in satellite
communication. In general, coexistence between satellite and
terrestrial networks a very important aspect for next generation
communication networks. We implemented an interference
analysis algorithm for SDR for use in LEO satellites. Using both
data from a cubesat mission (SALSAT) and experiments in a
lab setup, we quantified the expected performance of the system.
Our results show that the use for resilient critical infrastructure
communication is possible. our insights will further be used
in our project RACCOON, where the interference analysis
can be performed by an on-board SDR to quickly adapt the
communication parameters.
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