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Abstract—Intelligent reflective surface (IRS) technologies help
mitigate undesirable effects in wireless links by steering the
communication signal between transmitters and receivers. IRS
elements are configured to adjust the phase of the reflected signal
for a user’s location and enhance the perceived signal-to-noise
ratio (SNR). In this way, an IRS improves the communication link
but inevitably introduces more communication overhead. This
occurs especially in mobile scenarios, where the user’s position
must be frequently estimated to re-adjust the IRS elements
periodically. Such an operation requires balancing the amount of
training versus the data time slots to optimize the communication
performance in the link. Aiming to study this balance with the
age of information (AoI) framework, we address the question of
how often an IRS needs to be updated with the lowest possible
overhead and the maximum of freshness of information. We
derive the corresponding analytical solution for a mobile scenario,
where the transmitter is static and the mobile user (MU) follows
a random waypoint mobility model. We provide a closed-form
expression for the average peak age of information (PAoI), as a
metric to evaluate the impact of the IRS update frequency. As
for the performance evaluation, we consider a realistic scenario
following the IEEE 802.11ad standard, targeting the mmWave
band. Our results reveal that the minimum achievable average
PAoI is in the microsecond range and the optimal IRS update
period is in the seconds range, causing 9% overhead in the link
when the MU moves at a velocity of 1m/s.

Index Terms—Age of information, intelligent reflecting surfaces,
mobility, mmWave, WiFi.

I. INTRODUCTION

REALIZING intelligent reflective surface (IRS)-assisted
communication links is considered a powerful paradigm

to enhance next-generation wireless communication. IRSs
allow reshaping the communication channel for improved
quality of service (QoS) through low-cost reflective patches
organized as planar arrays [1]. This technology allows steering
communication signals by tuning their phase to improve signal-
to-noise ratio (SNR) levels in selected areas. Such a solution
finds application in mmWave band networks, at scalable cost
and power consumption levels [2].

A low-complex approach to configure the IRS elements is
partitioning the array into multiple tiles [3]. Power-efficient
transmission modes are attainable using fast beam-tracking
schemes [4] and variable-size codebooks [5]. Nevertheless,
for the system to operate, the passive IRS elements must be
frequently updated with a training protocol and keep track
of the mobile users (MUs)’ position in the network [6]. For
instance, in the mobile scenario depicted in Fig. 1, an MU
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Fig. 1: Illustration of the mobility of the mobile user (MU)
and IRS coverage area.

moves around while communicating with an access point (AP)
through an IRS, as there is non-line-of-sight (NLOS) link to
the AP. To maintain communication, the IRS should illuminate
the MU and track its position. In this case, the update period
to re-configure the IRS significantly impacts the overhead
and the communication link quality. The more frequently the
IRS is updated, the fewer the opportunities for the users to
transmit data, i.e., increased overhead. On the contrary, the
less frequently it is updated, the lower the communication
link quality as the MU might leave the illuminated area and
experience a drop in SNR.

For this context, a training protocol can be designed
considering the mobility of the MUs [7]. The worst case
scenario assumes a fixed channel coherence time as in [8],
or the case when the MU deterministically moves to the edge
of the coverage area at a constant speed [9]. More accurate
designs consider the MU mobility pattern to update the IRS
elements. The estimated position of the MU is used to optimize
the IRS phase shift [10], or to link the MU to one IRS out of
multiple deployed ones [11].

These reported approaches attempt to minimize the overhead
while reducing the complexity of configuring the IRS. However,
these contributions do not consider the impact of overhead
due to the IRS reconfiguration frequency. A first approach to
address this problem is investigated in [12], where the time
interval for the IRS reconfiguration is evaluated to maximize
the link’s sum rate. The pilot interval to estimate the channel
is increased (reducing overhead) until the impact of channel
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variability starts decrementing the SNR. Although this study
directly evaluates time configuration periods, it includes the
impact of the MU mobility with the velocity component only,
without considering its mobility pattern.

In this paper, we resort to the age of information (AoI)
concept targeting the update frequency of the IRS elements.
The AoI concept yields a more comprehensive approach as
it allows us to integrate not only channel impairments and
delays at the physical layer but also to configure the upper
layers when designing, e.g., policies for packet scheduling [13],
[14]. AoI-based solutions for IRS-assisted links have been
previously reported to maximize information freshness. Existing
research targets packet scheduling mechanisms in various
network settings, e.g., in IRS-empowered unmanned aerial
vehicle (UAV) systems [15], [16], wireless information and
power transfer (SWIPT) [17], non-orthogonal multiple access
(NOMA) networks [18], and IRS-assisted secure commu-
nications [19]. However, these works overlook the direct
impact of the overhead caused by the reconfiguration packets,
especially when aiming to balance the impact of overhead and
communication performance in mobile scenarios.

Addressing these concerns, we target a representative mobile
scenario, where a MU does not have line-of-sight (LOS)
condition to an AP and communication occurs through the
IRS only, as depicted in Fig. 1. In this scenario, the IRS needs
to frequently update the MU’s position to optimally illuminate it
and to provide continuous connectivity to the AP. For this case,
we developed a reconfiguration concept for a low-overhead
transmission scheme focusing on minimizing the peak age of
information (PAoI) metric.

Our main contributions can be summarized as follows:
• We characterize the dynamic behavior of an IRS-assisted

link as a Markov regenerative process (MRGP), explicitly
accounting for MU mobility and the underlying transmis-
sion scheme.

• We formulate the trade-off between performance and
overhead in an AoI-based framework. The proposed AoI
framework encompasses the dynamics of the IRS-assisted
link and can be used to determine the optimal periodicity
for updating the IRS. 1

• We propose a three-step methodology to exploit this theo-
retical model in a practical communication scenario. We
examine the overhead for realistic WiFi communication
links in the mmWave band, however, this methodology
also applies to other communication scenarios.

The rest of this paper is organized as follows. We discuss
the reported research on the join topics IRS and AoI in
Section II. We sketch the system model in Section III detailing
the transmission setup. We model the link status model as
a semi-Markov regeneration process in Section IV. The AoI-
based problem formulation is presented in Section V, deriving
analytical expressions to evaluate the minimum of the average
PAoI metric. We assess the performance in Section VI using
the derived analytical expressions. In this section, we also
illustrate the impact of overhead and mobility on the average

1This framework establishes the basis for the formulation and solution of
optimization problems for the communication system design in future work.

PAoI metric for a realistic WiFi link.2 Finally, we provide
concluding remarks in Section VII.

II. RELATED WORK

AoI has been used in IRS-assisted networks to characterize
the freshness of monitored sensor data. Existing studies target
various scenarios like Internet of Things (IoT) networks in
urban environments [20], where power and latencies are
predominant restrictions, and also UAV-assisted scenarios [14],
[16], [21]. Furthermore, AoI has also been used to maximize the
freshness of data between two users in covert communication
links as in [19], [22].

The considered systems comprise links between nodes and
base stations (BSs) or APs in urban environments with one
[18], [19], [22], [23] or multiple IRSs [20]. More complex
scenarios also include energy transfer from APs to nodes
using simultaneous transmitting and reflecting IRSs [24], as
well as SWIPT mechanisms [17], [25]. Other reports consider
communication between UAVs and IoT nodes through a fixed
IRS [16]. Furthermore, towards enhancing flexibility during
deployment, existing solutions have integrated IRSs with UAV
to avoid the latency introduced by relay nodes at the UAV [14],
[21], [26].

The freshness of data is mostly optimized using the average
AoI metric (and less frequently using the average PAoI as,
e.g., in [18]). The AoI metric is used, e.g., in combination
with communication schemes like hybrid automatic repeat
request (HARQ) error-control protocols [20], channel access
mechanisms with NOMA [21], [24], and full-duplex com-
munication links [23]. Integrating UAV-assisted links, the
information freshness is evaluated readily with the average
AoI metric [14], using the average of AoI increase [16],
and also as a multi-objective function using an ultra-reliable
low-latency communication (URLLC)-based formulation, as
in [26].

AoI-based solutions often come with certain restrictions.
The power level is typically part of the restriction due
to the limited battery capabilities of IoT nodes. Reported
research combines the communication reliability with the
outage probability [20], or the communication covertness
limiting the detection probabilities of unauthorized users [19],
[22]. Further constraints include successful packet reception
levels [18], SNR thresholds, the scheduling of the number of
nodes per time slot, and the mobility range of UAVs [14]–[17],
[21], [26].

Solutions using the AoI formulation are developed both
numerically and via machine learning (ML)-based methods,
aiming to control communication and mobility parameters
jointly. For instance, the alternating optimization algorithm
in [25] is used to find the beamforming vectors, configure
the IRS, and the scheduling of nodes. Genetic algorithms are
also reported to optimize the power and time scheduling of
nodes [24]. Successive convex approximation (SCA) [14], [19]
and the block coordinate descent (BCD) algorithms [21] are
reported to jointly control UAV mobility and the scheduling

2We provide open access to the code that evaluates the AoI metrics in
IRS-assisted link in https://github.com/tkn-tub/IRS_Rejuvenation

https://github.com/tkn-tub/IRS_Rejuvenation
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of IoT nodes [21], as well as to jointly configure the IRS
and the packet length [19]. Using deep reinforcement learning
(DRL), off-on policies have been reported for various joint
designs with reinforcement Q-learning, deep Q-network (DQN),
and proximal policy optimization (PPO) policies. For instance,
reinforcement Q-learning is reported to jointly find the location
of the UAV-IRS [26]. IRS and the packet service time are
also jointly configured with DQN [16]. DQNs has also been
proposed for the evaluation of the transmission scheduling only,
as in [26].

Despite the rich literature and the optimal configuration
of IRSs, there is no solution for the optimal periodicity
for reconfiguring the IRS elements. Analyzing the optimal
periodicity allows determining the right balance between
the overhead introduced for configuring the IRS and the
communication performance. As we continue in the following
sections, we will illustrate the relevancy of this concern in
mobile scenarios, where the IRS has to be frequently updated to
guarantee a good communication performance, i.e., a particular
QoS level.

III. SYSTEM MODEL

We study a communication downlink between an AP and
an MU that moves at walking speed. The communication link
is facilitated via the reflection of an IRS, where we assume
NLOS conditions between the AP and the MU, as depicted
in Fig. 1. The IRS provides coverage for a circular area of
radius rin, a shape that has also been considered in wireless
scenarios, as in [27].3 The achieved SNR is sufficiently high
in the illuminated area to realize error-free transmissions with
a certain data rate. Under this general model, three important
elements of the communication link include: i) the IRS-assisted
link abstracted with the SNR in the illuminated area, ii) the
transmission frame in the downlink delimiting the time slots
for communication, and iii) the communication-link dynamics
given the MU mobility model. We elaborate on these elements
in the following subsections.

A. IRS-assisted Link Model

We model the impact of the IRS-assisted link using the SNR
in the MU plane. At a given observation point in the xy plane,
denoted as pobs, the SNR is given by the relation

SNR(pobs) = |gIRS(pobs)|2
PTxPLAP,IRSPLIRS,pobs

PN
, (1)

which follows from [3, Eq. (2)], where PTx is the transmit
power, PN is the noise power, the variable PLAP,IRS is the
free-space pathloss AP-to-IRS link, given by

PLAP,IRS =

(
λ

2π||pIRS − pAP||

)2

, (2)

where λ = c/f is the wavelength of the transmitted signal, c is
the speed of light, and f the center frequency for transmission.

3We assume the circular geometry for the ease of evaluating the impact
of MU mobility, as introduced later in Section IV-C1. We remark that this
assumption does not limit the general model introduced in Section IV, which
is independent of the geometry of the illuminated area.

Besides, pIRS denotes the position of the IRS, pAP refers to
the position of the AP, and || · || is the norm of a vector.

In Eq. (1), PLIRS,pobs
is the free-space pathloss between the

IRS and the observation point pobs (within the MU mobility
plane), given by

PLIRS,pobs
=

(
λ

2π||pobs − pIRS||

)2

. (3)

Furthermore, gIRS(pobs) is the IRS gain, evaluated as the sum
of gains for each individual IRS-element, given by

gIRS(pobs) = g̃
∑
n

I{||pn−pIRS||<L
2 }× (4)

× ej
2π
λ (||pn−pAP||+||pobs−pn||)ejωIRS(n),

which follows from [28, Eq. (4)], where L is the radius of the
circumference inscribed in the IRS plane (the purpose of this
parameter is elaborated later in this section), ωIRS(n) is the
IRS phase shift corresponding to its n-th element, pn is the
position of the n-th IRS element, and g̃ denotes the maximum
gain of a given IRS element, evaluated as

g̃ =

√
4πdwdh
λ

; (5)

see [3, Eq. (12)], where dw and dh refer to the width and the
height of the unit cell, respectively.

In Eq. (1), the IRS phase shift coefficients are the primary
design variables, while the remaining parameters are predeter-
mined by the scenario setup, as illustrated in Fig. 1. The value
of ωIRS(n) is obtained based on the design proposed in [29,
Sec. III. B 2)] and [28, Sec. III A] to illuminate with a given
SNR the widest area possible. This coefficients design realizes
a linear mapping function; see [29, Eqs. (6) and (7)], which
focuses each radiation point from the IRS into an arbitrary
rectangular area in the xy plane. The size of the projected
rectangular area is adjusted with the beam-width parameters ∆x
and ∆y in [28, Eq. (6)] and [29, Eq. (7)]. However, to generate
a circular illuminated area, we programmatically disconnect
those IRS elements that are not contributing to the circular
shape; that is, the corresponding coefficients are set to zero
in (4) with the indicator function I. The indicator function is
equal to 1, whenever the position of the IRS element is within
the inscribed circle of the IRS, as follows from the condition
(||pn − pIRS|| < L

2 )
4. We provide an illustrative example for

this calculation in Section VI-A, where a WiFi scenario setup
is evaluated.5

B. Transmission frame

Transmissions between the AP and the MU take place
according to the frame structure depicted in Fig. 2, which
follows from [29]. Communication is performed in three

4Hence, the activated IRS-elements resemble an IRS with circular shape.
The indicator function is equal to 1, whenever the position of the IRS element
is within the inscribed circle of the IRS, as follows from the condition (||pn−
pIRS|| < L

2
). We note that we adopt this strategy to have a simple mapping

function. In principle, more sophisticated mapping functions or optimization-
based designs can be developed to exploit the disconnected IRS elements.

5The Matlab code for the IRS coefficient implementation is provided in
https://github.com/tkn-tub/IRS_Rejuvenation

https://github.com/tkn-tub/IRS_Rejuvenation
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Fig. 2: Frame structure for IRS-assisted downlink transmis-
sion [29].

phases. Firstly, the MU is localized by the AP along the time
interval Tloc, as depicted within the first slot in Fig. 2. Using
a given localization algorithm, the user is localized within
the outer circle in Fig. 1.6 Secondly, the IRS is configured
in the time interval TIRS to illuminate the MU. Thirdly, data
transmission occurs per packet, where each packet comprises a
preamble and a training field, as additional overhead along the
interval Tp_ovh, and the data in time interval Tdata. Following
this transmission scheme, the MU is localized, and the IRS
reconfigured with the period Tupd when the MU’s position is
again updated, and the IRS reconfigured. Implicitly, we also
assume there is always data to transmit in the available slots,
and queues are not included as we consider a point-to-point
link only.

Using this transmission scheme, the data communication
period increases with the overhead introduced in time slots Tloc,
TIRS, Tp_ovh and the idle time (Tidle). The resulting overhead
along the time interval Tupd can be evaluated as

Tovh = Tloc + TIRS + ch(Tp_ovh + TIdle), (6)

where
ch =

⌈
Tupd − (Tloc + TIRS)

Tp_ovh + Tdata + TIdle

⌉
, (7)

is the number of packets emitted during Tupd, and ⌈·⌉ denotes
the ceiling operation. Due to this overhead, the AP in the link
can perform transmissions with the equivalent time

TTx = Tdata +
Tdata

Tupd − Tovh
Tovh. (8)

The calculation in Eq. (8) accounts for the impact of overhead
on the effective data transmission time. The second term in
the sum above proportionally distributes the total overhead
(evaluated with Tupd) among the total of data packets fitting
within the time interval Tupd. This is evaluated as we divide
Tovh by the number of packets within Tupd, yielding Tupd−Tovh

Tdata
.

In practice, the AP performs a new packet transmission at
periods larger than Tdata and given by TTx.

6Localization algorithms that do not rely on IRS are surveyed in [30],
whereas IRS-assisted localization schemes are reviewed in [31]. The design
and analysis of the methodology proposed in this paper are independent of
the specific adopted localization scheme.

C. Mobility model for the MU

As for the user’s mobility, we assume the MU moves
according to the random waypoint (RWP) mobility model [32].
In this model, the MU repeatedly selects a random destination
point in a given area A (in our case, a circle of radius rout > rin,
as depicted in Fig. 1) and moves with constant speed on a
straight line between the departure and destination points. The
random selection of the destination point follows a uniform
probability distribution in the area. We also consider the case
where the MU stops for a random time interval when reaching
a destination and the case when the user moves at a random
speed to the destination as well. We provide further details
about the mobility models in Sections IV-C1 and IV-D.

IV. MODELING THE LINK STATUS AS A SEMI-MARKOV
REGENERATIVE PROCESS

Before formulating the average PAoI, we provide insights
into evaluating the fraction of time that the communication
link is in any of the following three states:

i) Error-free transmission: This occurs when the MU is
located in the illuminated area, i.e., inside the inner circle
in Fig. 1.

ii) Transmission with error: This happens when the MU
moves out of the illuminated region.

iii) Interruption of transmissions: Occurring when the IRS is
being reconfigured.

These three states define all possible link statuses between the
AP and the MU. We evaluate the fraction of time for each
given state as the ratio between the duration of a given state to
the update interval Tupd, yielding the portion of Tupd where
the link is error-free, transmission with errors, or interrupted.
Evaluating this fraction of time lets us to determine the average
amplitude of the peaks in the AoI curve and, accordingly, the
average PAoI that we formulate later in Section V.

The transition time instants between the above three states
are generally a result of a random process. The MU stays in
the illuminated area for a random amount of time as long
as its corresponding waypoints are inside the inner circle in
Fig. 1. However, depending on the periodicity of the IRS
reconfiguration (Tupd), the MU will reach the outside area
more or less quickly. It can also perform transitions between
both areas due to the random mobility.

These transition patterns between areas are repeatedly
generated during the MU localization phase, again starting
the process regularly. The communication link will remain in
a given state for a random time, except during the localization
and IRS reconfiguration, where the link is interrupted (third
state above) for a fixed amount of time (Tloc + TIRS); see the
transmission scheme in Fig. 2.

We model the dynamics of these three states by an MRGP
[33, Sec. 10.6], allowing us to evaluate the time intervals
of these states. In contrast to a pure Markov process, the
MRGP model introduces random durations among transitions
between states, allowing us to account for the random transition
between error-free transmission and transmission with errors
in the communication link. Besides, the MRGP model defines
regeneration points, defined as those time instants where the
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Fig. 3: Pictorial representation of the MRSPN.

random process replicates. In our case, the regeneration points
are determined by the IRS reconfiguration, which will place the
MU again inside the illuminated area, and the process repeats.7

With the MRGP model, we follow a similar procedure
as in [35], where a software system is periodically reset as
preventive maintenance to subside failures. Analogously, in
our case, the software components refer to the process running
at the AP to implement the transmission scheme with the MU,
i.e., localizing the MU, configuring the IRS, and performing
transmissions. Failures are identified whenever the MU is not
in the illuminated area, and maintenance corresponds with the
MU localization and the IRS reconfiguration, after which the
MU is again illuminated. This way, the communication process
resembles a fault-tolerant system as in [35].

To derive the MRGP model, we follow the procedure in [35],
where the evolution of the communication link is described
first with a Markov regenerative stochastic Petri net (MRSPN)
scheme. Then, we derive the reachability graph yielding the
MRGP model representation, see also [36]. Finally, we evaluate
the corresponding transition probabilities using the formulation
of local and global kernels.

A. Stochastic Petri Net Representation

As depicted in Fig. 3, the Petri net (PN) representation allows
for a graphical depiction of the flow of events [37] and also
identifies the transition probabilities and regeneration points of
the MRGP model [36]. As shown in Fig. 3, this representation
ecompases the following features:

• The link status: Denoted with the three circles, also refered
to as places, where Sin stands for the event when the node
is in the illuminated area (error-free transmissions), Sout

indicates that the node is outside the illuminated area
(transmissions with errors), and SIRS denotes the case
when the node is localized and the IRS is reconfigured
(no transmission happens).

• Transition between states: This is denoted with boxes,
where the empty ones represent the random transitions

7In contrast to a continuous-time Markov process, a Markov regenerative
process relaxes the requirement of time independence. This requirement states
that the waiting time for the next transition is independent of the time elapsed
in the current state, which does not apply to the three states of the considered
communication link; see [34, Eq. (12.1.13)]. In our current setup, the waiting
time during MU localization and IRS reconfiguration is deterministic, while
for the other two states (error-free transmission and transmission with error),
the waiting time is random.

between the states, while the filled boxes indicate the
deterministic transitions.

• Connections between states and transitions: These con-
nections are represented with directed arrows, providing
direction among states.

• The current state of the link: This is denoted with a token,
depicted with a dot. Fig. 3 depicts the initial condition in
the link with the dot in the circle Sin, i.e., the node is in
the illuminated area, and transmissions are error-free.

The boxes govern transitions between the circles (places)
through the firing of events.8 This firing refers to the boxes’
activation; upon activation, the token at the input is moved to
the box’s output, representing the dynamic transition from the
input to the output place. Furthermore, a box only enables the
token’s transition to the next state if a token is present at its
input; otherwise, the firing does not occur. This representation
also assumes that deterministic firing has priority over random
firing. Whenever Tupd occurs, the token transitions from place
Sin or Sout to SIRS.

As the transition is governed by the MU location, the firing
is accordingly defined with the following variables:

• Tout, a continuous stochastic variable indicating the MU
transition from the illuminated area to the outer area in
Fig. 1;

• Tin, a continuous stochastic variable indicating the MU
transition from the outer area to the illuminated area;

• Tupd, a deterministic variable indicating the MU’s position
is updated while using a given localization algorithm
(running at the AP); this firing occurs at regular time
intervals;

• TIRS, a deterministic variable indicating the IRS has been
reconfigured and transmissions start again.

Given the firing rules, the evolution of the PN is described
by the distribution of tokens at places Sin, Sout, and SIRS. This
distribution of tokens is defined by a vector, referred to as a
mark [38], where each vector component is an integer number
denoting the number of tokens at places Sin, Sout, and SIRS. In
the network in Fig. 3, there will be only three different marks
as there are only a single token and three places. These marks
are evaluated as follows: Departing from the initial mark, we
have the vector MIRS = [1, 0, 0], denoting a single token is
located at SIRS. This mark denotes the case when the node is
localized, and the IRS reconfigured. We evaluate the other two
marks as Min = [0, 1, 0], indicating a token is located at Sin,
and Mout = [0, 0, 1] indicating the token is located at Sout.
These two cases imply that the MU is within and outside the
illuminated area, respectively.

Furthermore, the transitions of the token from one place to
another can be represented by transitions between markers,
which define the reachability graph as depicted in Fig. 4.
This graph indicates which mark is reachable from the others
according to the random (Tin, Tout) and deterministic (Tupd,
TIRS) firing of events. As a result of the process dynamics, all
the marks are reachable from each other with a direct transition,
except for MIRS, which always transits to Min.

8Within the Petri Net representation places refers to states, i.e., Sin, Sout,
and SIRS in Fig. 3.
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Fig. 4: Reachability graph of the MRSPN.

B. Modeling the Link Dynamics using MRGP

The marks of the MRSPN readily define an MRGP; see
[36, Theorem 2]. The state space of the underlying MRGP is
directly given by the marks set as Ω = {MIRS,Min,Mout}.
The regenerative points are defined by the transitions to the
state MIRS, where the stochastic process restarts again with
the MU mobility pattern. Consequently, the regenerative set
comprises only a single element namely Ω′ = {MIRS}. The
MRGP is completely described by the local and global kernels
probabilities (see [36, Theorem 3]), which are defined as
follows [35, Definition 2].

Global kernel K(t): This is an m×m matrix, where m is
the cardinality of the regenerative set Ω′ (in our case m = 1).
The global kernel evaluates the process at the regeneration
points (given by Tupd) with the conditional probability

K(t) =[K11(t)] = [Pr{Z(Tupd) = MIRS, Tupd ≤ t |
|Z(T0) = MIRS}], (9)

= [u(t− Tupd)],

where the Kernel’s index “11” refers to state MIRS, Z indicates
the MU’s state, T0 denotes the initial time instant when the
stochastic process starts, and u(t) is the unit step function. We
evaluate this conditional probability with the step function in
(9), as the token is forced to return to place SIRS at Tupd, and
the condition Z(Tupd) = MIRS will occur with probability
one whenever t ≥ Tupd, see Fig. 3. In the meantime, the link
is transitioning between Sin and Sout.

Local kernel E(t): This is an m × n matrix, where n is
the cardinality of the state space Ω (in our case n = 3), that
evaluates the behavior of the marks between two consecutive
regenerative points. E(t) results in the 1× 3 vector

E(t) = [Eiq(t)] = [Pr{Z(t) = Zq, Tupd > t |Z(T0) = Zi}],
=

[
E11(t) E12(t) E13(t)

]
. (10)

where the lettered subscripts i and q denote the departing
and arriving states, respectively, i, q ∈ {1, 2, 3}, and the
corresponding Z’s are Z1 = MIRS, Z2 = Min, and Z3 = Mout.
In Eq. (10), the entry E11(t) refers to the probability that
the process running at the AP is in the localization and IRS
configuration phases (denoted as MIRS), given that the process
always initiates at the same state MIRS. This probability is
readily obtained as

E11(t) = 1− u(t− Tconf), (11)

with
Tconf = Tloc + TIRS. (12)

This formulation states that the MU will remain with probability
one in the MIRS state along time interval [0, Tconf ], whenever
Tupd triggers.

The term E12 evaluates the probability that the process con-
tinues to be in Min before the first regeneration point Tupd. We
recall that MIRS denotes the localization and IRS configuration
processes, after which the MU is again illuminated. Thereby,
the token will be at place Sin immediately after TIRS and
will stay within the illuminated area with probability Pin till
the next regeneration point. Evaluating these two conditions
together yields

E12 =

 0 when t ≤ Tconf

1 when Tconf < t ≤ rin
v

Pin(t− t0 < Tupd) when t > Tconf

(13)
where Pin(t < Tupd) denotes the probability that the MU
remains inside the inner circle till the next regeneration
point Tupd. In Section IV-C we evaluate the probability that
the MU leaves the illuminated circular area departing from
an arbitrary location within the circle, here denoted with
Pin(t < Tupd). As we assume that the localization phase
centers the circle of the illuminated area in the MU position, see
Fig. 1, we introduce the time shift t0 = Tconf − rin

v accounting
for the initial MU’s location in the circle center instead, where
rin
v accounts for the minimum time the MU takes to travel

from the the center of the illuminated area to the outside
area. This probability ultimately depends on the MU’s mobility
pattern. We illustrate the calculation and the validation of this
probability in Section IV-C for various RWP mobility models.

Similarly, E13 is evaluated as follows

E13(t) =Pout(t− Tconf < Tupd)u(t− Tconf), (14)

where Pout(t < Tupd) denotes the probability that the MU
stays in the outer area and assuming the MU’s initial position
is in the same outer area. In this equation, we introduce the
time shift Tconf as this event always occurs after the IRS is
reconfigured. We evaluate this probability in Section IV-E.

The two kernels in (9) and (10) allow us to evaluate the
steady-state transition probability, as [35, Eq. (5)]

πq =

∑
k∈Ω pkαkq∑

k∈Ω pk
∑

l∈Ω αkl
, (15)

where q ∈ {1, 2, 3} denotes three link states, namely IRS
reconfiguration, error-free transmission, and transmision with
errors, respectively. Moreover, αk,q is given by

αkq =

∫ ∞

0

Ekq(t)dt, (16)

and pk in Eq. (15) are the components of p as a 1× n vector,
which is the solution to the equation

p = pK(∞), (17)

under the condition
∑

i∈Ω′ pi = 1. As this condition states
that p1 = 1 (there is only a single regeneration state as MIRS),
and K(∞) = 1 (see Eq. (9)), the evaluation of (17) yields the
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Fig. 5: Fraction of time (see (18)) for the three states in the
link considering rin = 1.7m, rout = 3m, and mobility of
constant speed v = 1m/s without stop time.

trivial solution p = [1 0 0]. Replacing this solution into (15)
finally evaluates πj as

πq =
α1,q∑
l∈Ω α1,l

, (18)

By definition, πq in (18) provides the proportion of time
the token is on each place with respect to the time interval
between regeneration points (see [36, Theorem 6]). In our case,
it refers to the proportion of time the link is in either of the
above-mentioned states: transmitting error-free, transmitting
with errors, or non-transmitting. We will use this equation to
evaluate the average PAoI in Section V.

The proportion of time vector πq will ultimately depend on
the probability that the MU is inside the illuminated area (Pin),
outside (Pout), and the amount of time needed to localize
and reconfigure the IRS (Tconf ). To illustrate, Fig. 5 depicts
the fraction of time for the three communication link states
after numerically evaluating (18), and using the calculations
made in the next sections for the probabilities Pin and Pout.
We choose to illustrate assuming the RWP mobility model
with speed 1m/s for the MU and with the inner radius of the
illuminated area as 1.7m; this is the illuminated area where
the IRS-assisted link evaluates no packet errors (evaluated
later in Section VI). The link is with probability one (π1 =
1) in the localization and reconfiguration phases whenever
Tupd ≤ (Tloc + TIRS) and starts to decrease afterward. As
Tupd increases, the MU reduces its probability to stay inside
the illuminated area (π2). Eventually, the MU starts to spend
time in the outer area with increased probability, which follows
the curve π3. In the following, we provide the calculations for
Pin with the RWP mobility model. A similar procedure will
follow to evaluate Pout.

C. Evaluating the Probability forMU to Stay Inside the
Illuminated Area

We evaluate the probability for error-free transmissions as
the probability that the MU stays inside the illuminated area
(denoted as Pin in (13)). To evaluate this probability, we first
compute the first-hitting-time probability [39] that the MU

reaches the outer area in Fig. 1. Denoting this probability as
Pfh_out(t), we readily compute Pin(t) as

Pin(t) = 1− Pfh_out(t). (19)

Following the RWP mobility model, we decompose the
calculation of Pfh_out into two steps. In the first step, we
compute the probability for the MU to leave the inner circle,
see Fig. 1, with the first-hitting time probability. We evaluate
the probability for the number of consecutive waypoints inside
the inner circle before the MU transitions to the outer area. In
the second step, we evaluate the probability of the elapsed time
between waypoints in the inner circle and add those random
variables. The sum provides a close estimate of the total time
the MU spends within the illuminated area, resulting in Pin(t).
We illustrate this approximation later with Section IV-D and
graphically in Fig. 6.

1) First-hitting time probability: To evaluate this probability,
we need to compute the survival probability first; which
evaluates the probability for the MU to stay in the inner
circle for j-consecutive waypoints. Here denoted as Sj , this
evaluation introduces the impact of the particular geometry of
the illuminated area, in our case a circle of arbitrary radius rin.
The probability of selecting a waypoint in the inner circle of
area Ain is directly given as p = Ain

A , where A denotes the
area of the outer circle in Fig. 1.9 Consequently, the probability
that the MU selects j-consecutive waypoints within the inner
circle yields the survival probability Sj =

(
Ain

A

)j
, j ⩾ 0, as

each waypoint selection is independently performed. Given Sj ,
the first-hitting probability is readily evaluated as [39]

PJout(j) = SJ(j)− SJ(j + 1) =

(
Ain

A

)j (
1− Ain

A

)
,

(20)
Ain

A
∈(0,1), j ⩾ 0,

which represents the first-hitting time probability in the discrete
space of jumps, and Jout is a random variable denoting the
waypoint where the MU is for the first time outside the
illuminated area.

2) First-hitting time probability in the time-space: For each
performed jump, the MU moves a random distance lj with a
given speed v, where the probability density function (PDF)
for lj is given as [32, Eq. (23)]

fL(lj) =
8

πrin

lj
2rin

(
arccos

(
lj
2rin

)
(21)

− lj
2rin

√
1−

(
lj
2rin

)2)
.

We evaluate (21) considering the MU displaces in the inner
circle only, as we aim to evaluate the elapsed time interval
before the MU leaves it. For this case, we assume lj ∈ [0, 2rin],
where rin denotes the radius of the inner circle in Fig. 1.

Using the formulation in Eq. (21), we can consider three
different cases for the MU mobility pattern. In the first case,

9The value for p is computed in this way as there is an equal probability
of displacing to any point in A, as follows from the RWP model; see [32].
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(a) RWP mobility model when the MU dis-
places with constant speed 1m/s, without
stop time.
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(b) RWP mobility model with random
stop time following an exponential distribu-
tion fTp(τ) = µe−µτ and mean waiting
time µ = 2 s.
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(c) RWP mobility model when the MU
displaces with random speed based on the
uniform distribution between vmin and vmax,
where vmin = 0.5m/s and vmax = 1.5m/s.

Fig. 6: Validation for the Pin in (19) with simulation of the RWP mobility for inner circle radius 1m. The exponential
distribution in b) follows [32, Example in page 561], the uniform distribution in c) follows [32, Sec. 3.5.1].

the MU moves with constant speed v between waypoints along
the time interval τj = 1

v lj , where (see [32, Eq. (28)])

fτj ;rin = vfL(vτj), τj ∈
(
0,

2rin
v

)
(22)

In the second case, the MU performs a random pause time Tp

with PDF fTp
(tp), yielding [32, Eq. (39)]

fτ ′
j ;rin

=

∫ τ ′

0

fτj ;rin(τ)fTp
(τ ′ − τ)dτ . (23)

In the last case, the MU displaces at a random speed v following
fV (v) as the PDF, yielding [32, Eq. (39)]

fτ ′
j ;rin

=

∫ vmax

vmin

vfτj ;rin(τ)fV (v)dv. (24)

We approximate the total time elapsed till the MU displaces
out of the inner circle as the sum of the time intervals along
J-consecutive waypoints except for the last one as10

Tout ≈
Jout−1∑
j=1

τj , (25)

where Jout is a random variable denoting the waypoint when
the MU leaves the inner circle for the first time, see for instance
the case depicted in Fig. 1 where Jout = 3.

To provide a formula for the probability that the MU leaves
the inner circle for the first time before Tupd, we use the
formula for the total probability, yielding [40]

Pfh_out(t) =

∞∑
j=1

P (Tout|j)PJout(j), (26)

as (25) is the sum of an arbitrary amount of random variables τj ,
where P (Tout|j) denotes the probability for the total elapsed
time along j-jumps, evaluated through the corresponding PDF11

fTout
(tout|j) = fτj ;rin ∗ · · · ∗ fτj ;rin︸ ︷︷ ︸

j

∣∣
τj=tout

, (27)

10This approximation is a pessimistic calculation for the elapsing time inside
the illuminated area. The exact time is larger, and it evaluates the time interval
just when the MU intercepts the perimeter of the illuminated area.

11As the elapsing time is the sum of independent time intervals between
jumps (see (25)), its corresponding PDF can be evaluated using the N -fold
convolution of fτj ; see [40].

where fτj ;rin is obtained using Equations (22) to (24) depending
on the mobility model.12 This relation is evaluated numerically
as no closed-form expression exists for the N -fold convolution
of any of the functions in Eqs. (27). To summarize, we evaluate
the probability of the MU leaving the inner circle for the first
time with (26), where PJout(j) as given by (20) and P (Tout|j)
is evaluated numerically by integrating the PDF in Eq. (27).

D. Validating the Theoretical Expression for Pin(t)

We validated the theoretical expressions for the Pin(t) in (19)
through simulations. We evaluated the probability after 1000
realizations accounting for the time instant when the MU
leaves the inner circle for the first time. We simulated the
three mobility models tracking the position of the MU and
recorded the time when the MU leaves the inner area, giving
the results illustrated in Fig. 6 for the three different models
in Equations (22) to (24). The theoretical formulation for Pin

in (19) manifests a good correspondence with the simulation
of the three RWP mobility models as illustrated in Fig. 6.

E. Evaluating the Probability that the MU Stays Outside of
the Illuminated Area

To evaluate the probability that the MU stays outside
the illuminated area, we follow the same procedure as in
Section IV-C. We compute the first-hitting time at which the
MU reaches the inner circle Pfh_in when initially being in the
outer area, and evaluate the probability for the MU to remain
in the outer circle as

Pout(t) = 1− Pfh_in(t). (28)

To compute Pfh_in, we evaluate the survival probability as in
Eq. (20), just replacing Ain with (A−Ain). Then, to evaluate
Pfh_in(t), we use the same formulation for the total probability
as in (26), but replacing Tout with Tin. Besides, P (Tin|j) is

12Evaluating (27) as the convolution implicitly assumes the MU starts at a
random position inside the inner circle.
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Fig. 7: Illustration of the AoI of packets (dashed lines) and as
perceived on a given destination node (bold line).

evaluated with its corresponding PDF, similarly formulated as
in (27), after replacing rin with rout, to evaluate fτj ;rout .

13

V. AOI FRAMEWORK

In the following, we theoretically formulate the average
PAoI metric to balance the overhead and data transmission
time slots. We aim to evaluate the update period of the IRS,
with the value of Tupd in Fig. 2, and balance the trade-off
between overhead and transmission opportunities. The more
frequently we update the IRS (smaller Tupd), the higher the
chances of error-free transmissions, as the MU will be mostly
in the illuminated area. However, with the increased update
frequency, the overhead becomes larger, thereby limiting the
availability of time slots to transmit data. Conversely, reducing
the frequency of updates (increased Tupd) allows more time
slots for transmission. Yet, this is at the expense of more errors
and less throughput, as the MU will increasingly spend more
time outside the illuminated area between IRS updates. Such a
dynamic behavior evidences a trade-off between overhead and
throughput that we aim to balance with the AoI framework in
this section.

The PAoI metric results from the sequence of peaks in
the AoI curve, which is evaluated based on the generation
(ti+1 − ti) and system (t′i − ti) times, where ti denotes the
time instant when a packet is generated, and t′i is the time
when it is successfully received; see their representation in
Fig. 7.14 Following the illustration in this figure, the AoI curve
is the continuous line and the PAoI refers to the sequence
of peaks Ai. The AoI curve will linearly increase between
consecutive receptions (e.g., between t′1 and t′2) following
the increasing age of the most recent received packet (e.g.,
at t′1). As a result, the AoI is a sawtooth curve with peaks
{A0, A1, . . . } representing the highest age at the reception
time. The average PAoI, denoted as ∆(p), corresponds to the
average of the sequence of peaks and is evaluated as

∆(p) = E[Ai] = E[Tg] + E[Ts] (29)

as follows from [41, Def. 3.3.2], where Tg = ti+1− ti denotes
the generation time, and Ts = t′i − ti is the system time.

13Following these calculations, we implicitly assume the worst-case scenario,
avoiding calculating possible interceptions between the MU trajectory and the
illuminated area.

14This definition follows [13] and [41, Def. 3.1].

A. Integrating the System Model within the AoI Concept

Although Eq. (29) is not that explicit per se, the height
of the peaks in the AoI directly reflects the dynamics in the
communication link. We substantiate this statement through
the following facts:

• The transmission time in the downlink (TTx in (8))
corresponds to the time interval between the generation
of two successive packets in the AoI formulation, i.e.,
the generation time (t(i+1) − ti) is equal to TTx; see the
illustration in Fig. 7. Besides, as TTx also accounts for
the communication overhead and the latency (due to the
packet size) in the link,15 the generation time also conveys
the same two components (overhead and latency).

• The two link conditions, error-free transmission and
transmission with errors, are included within the system
time (Ts = t′i − ti). When the link is error-free, the
system time is the minimum possible and equal to the
transmission delay, e.g., t′2−t2 = Td; see Fig. 2. However,
when the link causes errors, the system time increases
until the MU returns to the area illuminated by the IRS
or the IRS is again reconfigured to illuminate the MU.
In this regard, the system time is a random variable that
depends on the size of the illuminated area (defined by
the IRS), the mobility pattern of the MU, and the update
period of the IRS.

• As a result of the above interrelation of the generation
and system times with the system model parameters, the
impact of the transmission overhead, IRS reconfiguration,
and mobility is jointly evaluated within the amplitude
of the peaks in the AoI curve, as directly follows from
Eq. (29). In this way, the average PAoI metric accounts
for the overhead and the dynamics of the communication
link between interruption of transmissions, errors-free
transmission, and transmission with error.

• Finally, the average PAoI metric is minimized based on
the IRS update period (Tupd), allowing us to optimally
balance the impact of overhead and throughput in the link.

In the next section, we elaborate on a closed-form expression
for the average PAoI metric and illustrate the optimal IRS
update period.

B. Closed-form expression for the average PAoI

To obtain a closed-form expression for ∆(p), we consider the
temporal evolution of the AoI curve in Fig. 7. The evolution
of the AoI curve follows the dynamic of the communication
system according to the three states illustrated in Fig. 4. The
corresponding height of the peaks can be evaluated for these
three different cases as follows:

Case 1 (IRS is reconfigured): This is the initial state, where
the MU is localized and the IRS is reconfigured; see Fig. 2. In
this state, transmissions are interrupted along the time interval
Tconf = Tloc + TIRS. This case is already included within the
transmission time interval TTx in Eq. (8); see the dependency
of the Tovh term with (Tloc + TIRS) in Eq. (6).

15See its dependency on Tovh and Tdata in (8).
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Case 2 (MU is inside the illuminated area): In this case,
errors do not occur, and the height of the peaks can readily be
evaluated as

Ai,in = Td + TTx, (30)

along the time interval inside the illuminated area, where
Td = c

d is the communication delay between the MU and the
AP, c is the speed of light and d is the sum of the distances
between the MU and the IRS and between the IRS and the AP.
The relation in (30) computes the time elapsed between two
consecutive receptions [42]; see for example the reception at t′1
and t′2 in Fig. 7, where TTx = ti+1 − ti and Td = t′i − ti are
assumed to be deterministic variables. This event (amplitude of
the peaks) will occur with the steady state probability πj |j=2

as a result of evaluating (18).
Case 3 (MU is outside the illuminated area): In this case,

packets are not decoded and thereby dropped, leading to an
increase of the AoI. See the case depicted in Fig. 7, where
the packet at t3 is not received, and the age increases till the
reception of the next emitted packet at t′4. Specifically, the peak
AoI increases by the amount TTx, i.e., as (TTx + Tdata + TTx),
as the receiver must wait to create the next packet at t4. When
considering an arbitrary time interval for the MU to stay outside
the illuminated area, denoted as To, the waiting time before
the next packet arrives yields

⌈
To

TTx

⌉
× TTx. In this way, the

corresponding peak in the AoI curve is readily evaluated as

Ai,out = Td + TTx +

⌈
To

TTx

⌉
TTx, (31)

occurring with the steady state probability πj |j=3 as a result of
evaluating Eq. (18). This formulation implicitly assumes that
errors will happen independently of the time duration outside
the illuminated area, i.e., as long as To > 0.

We evaluate the average PAoI based on Cases 2 and 3, as we
consider the overhead from the first case already introduced in
the formulation for TTx as in (8). For this evaluation, we use the
fraction of time relative to the time interval for transmissions
only, i.e., after the localization and reconfiguration phases along
the time interval (Tupd − Tloc − TIRS); see Fig. 2. Accounting
for the inclusion of Tconf = Tloc + TIRS within the Cases 2
and 3, we proportionally increase both probabilities π2 and
π3 with (π2π1) and (1 − π2)π1, respectively, as these terms
evaluate the fraction of time (given by π2π1 in Case 2) of
transmissions that proportionally includes Tconf , as provided
by (π2 + π2π1)Tupd. These evaluations yield the following
probabilities

π′
2 = π2 + π2π1 (32)

π′
3 = π3 + (1− π2)π1,

complying with the relation π′
2+π′

3 = 1. Then, using (30) and
(31) and evaluating the average time that the MU is outside
the illuminated area as To = π3Tupd, we can calculate the

Fig. 8: Resulting average PAoI assuming the RWP mobility
model with v = 1m/s for the MU, rin = 1.7m, and outer
radius rout = 3m.

average PAoI as

∆(p) = Ain × π′
2 +Ai,out

∣∣
To=π3Tupd

× π′
3, (33)

= (Td + TTx)× (π′
2 + π′

3) +

⌈
π3Tupd

TTx

⌉
TTx × π′

3,

= (Td + TTx) +

⌈
π3Tupd

TTx

⌉
TTx × π′

3.

Eq. (33) jointly accounts for the impact of the overhead and
communication errors. The overhead is included in TTx (see
(8)), while the communication errors are accounted for in the
terms π3 and π′

3, as these two probabilities reflect the case
when the MU is outside the illuminated area. To illustrate these
two mechanisms, we depict the impact of the two mentioned
components in Fig. 8. Reducing Tupd will increase the AoI as
the overhead increases. Conversely, increasing Tupd will also
increase the age of information as the MU will spend time
outside the illuminated area with increasing probability. In the
next section, we provide more insights into this calculation
and its practical use to balance the overhead introduced by the
IRS in the communication link.

VI. RESULTS: BALANCING THE IMPACT OF THE OVERHEAD
AND PACKET LOSSES FOR A WIFI SCENARIO

This section illustrates the application of the above theoretical
formulation and studies the optimal reconfiguration periodicity
for the IRS. The optimal balance is attainable by minimizing
the expression in Eq. (33); however, its evaluation is not
straightforward as we need first to evaluate its dependency on
the probabilities π′

2, π
′
3 and π3 within the application scenario.

We also need to evaluate the dependency of the average PAoI
metric with Tupd, TTx and Td according to the communication
protocol and the communication distances. For this evaluation,
we choose a functional scenario where we implement a
communication link over WiFi in the mmWave band.16 We
illustrate the average PAoI metric for a communication system
compliant with the IEEE 802.11ad standard and provide
realistic performance values.

16Other particular communication scenarios (as in fifth generation (5G)) are
also applicable as long as they follow a packet-format scheme as illustrated
in Fig. 2.
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Fig. 9: Block diagram for the implemented transmission-
reception scheme according to the 802.11ad.

A. Scenario Setup

We follow the IEEE 802.11ad standard as it operates in
the mmWave band [43] through the schematic in Fig. 1. The
communication link consists of a single AP-MU link through
the IRS-assisted channel; where we assume NLOS conditions
between the AP and the MU. In this communication link, we
locate the AP at 2.5m height from the floor, and MU’s terminal
is located at 1.5m height. The communication between the AP
and the MU occurs through the IRS located in the ceiling at a
height of 3m, where the MU is within the near field region
of the IRS.

The AP generates a random data sequence and creates an
IEEE 802.11ad packet with the preamble and data field length,
as listed in Table I.17 We perform transmissions with the
modulation and coding scheme (MCS) 12.6, which corresponds
to a single-carrier 64-quadrature amplitude modulation (QAM),
encoded with a low-density parity-check (LDPC) code; see
[44, Table 20.19 and Sec. 20.6.3.1.4].18

As illustrated in Fig. 1, the signal travels from the AP to
the IRS, and from there, it is reflected to the ground plane
where the MU is located. We abstract the communication
link with the SNR parameters as evaluated in Eq. (1), where
λ = c

fc
≈ 5mm corresponds to the center frequency of

transmissions fc = 60.48GHz. This transmission frequency
is the selected carrier frequency for channel two within the
802.11ad standard and is available in all regions. The receiver
decodes the information bits in the data field after various signal
processing blocks accounting for packet detection, time and
frequency synchronization, and channel and noise estimation.
See details in the block diagram representation of the link and
the receiver in Fig. 9. The transmission and noise power levels
at the receiver are selected from the ETSI report in [46] and
listed in Table I.

17For details on the IEEE 802.11ad packet structure, we refer to the
directional multi-gigabit (DMG) PHY implementation, as given within the
standard in [44, Sec. 20]. A summary of these parameters is also listed in [45].

18MCS = 12.6 enables high throughput transmissions (8 Gbit/s) and large
data packets (≈ 262 kB per frame) supporting applications like 3D high-
definition video streams. This setting affords transmissions in long-lasting
channel coherence times; which is the case in our scenario where the MU
speed is not larger than 1m/s.

TABLE I: Simulation parameters.

Variable Description Value

Fr
am

e
pa

ra
m

et
er

s Preamble field length 4352 samples
Maximum data field length 456 768 samples

≈ 262 kB
Training field length 3712 samples
Idle time 20 µs

MCS Modulation and coding
scheme

12.6

N Total of IRS reflecting ele-
ments

160× 160

R
F

pa
ra

m
et

er
s

fs Sampling rate 1.76GHz
BW Receiver bandwidth 2640MHz
fc Carrier frequency, corre-

sponding to Channel 2
60.48GHz

PTx Transmitter peak power 30 dBm
Number of AP antennas 8
Number of AP beams 4
Gain per AP beam 9 dBi

NF Noise figure 7 dB
N0 Thermal noise density −174 dBm/Hz
Nint Receiver interference den-

sity
−165.7 dBm/Hz

PN Noise floor ≈ −70 dBm

pAP AP’s location [2, 0, 2.5] [m]
pIRS IRS’s location [2, 3, 3] [m]
pMU MU’s initial location [2, 3, 1.5] [m]
v MU’s speed 1m/s

The parameters for the length of the preamble, data field, and training subfield
follow the IEEE 802.11ad PHY frame parameters and are quantified within
the Matlab code in [47]. The preamble field encompasses the short training,
channel estimation; and header fields. The training subfields encompass the
automatic gain control and beamforming training fields; see [45].
We follow the ETSI report in [46, Table 5, entries (13) to (17)
pp. 51] to define the noise-related values. We evaluate the noise

floor as PN = 10 log(10
NF+No

10 + 10
Nint
10 ) + 10 log(BW). Regarding

the IRS, we choose 160 × 160 elements, equivalently to a size of
160× λ

2
= 160 c

2fc
≈ 40 cm, where c is the speed of light. We choose this

value as we observe a sufficiently high SNR in the center; see Fig. 10. An
example of fabricated solutions is 160× 160 in the 60GHz band [48].

We configure the IRS of 160× 160 elements as indicated
in Section III-A. We selected the IRS dimension as follows
from the fabricated module in [48]. To ensure seamless
communication for the MU, we configure the IRS to render an
SNR larger than 30 dB within the illuminated area. There, we
observe zero bit error rate (BER) for encoded transmissions.
Following this setup, the IRS projects a nearly circular SNR
pattern on the ground since it is installed in the ceiling; see
Fig. 10. The results presented in Fig. 10 assure the largest
illuminated area for the corresponding SNR value larger than
30 dB with a wide-beam parameter of ∆x = ∆y = 1.7 m. As
depicted in Fig. 10, outside the illuminated area, the MU
experiences lower SNR values, as the beam from the AP is
steered by the IRS mainly to inside the area.

B. Evaluating the Transmission Frame Parameters

We evaluate the variables TIRS, Tloc, Tp_ovh, and Tdata using
the parameters listed in Table I as follows:
IRS reconfiguration (TIRS): We assume the IRS is equipped
with a WiFi interface, and the AP sends the pre-calculated IRS
coefficients, as introduced in Section VI-A, through this inter-
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Fig. 10: Heat map of the SNR values for the IRS’s illuminated
area and the parameters given in Table I, following the
framework presented in [28].

face.19 In this setup, we also assume that the reconfiguration
time equals the transmission time of a WiFi packet, where the
data block within the frame is of the minimum length needed
to send the coefficients from the AP to the IRS. Assuming a
double point precision of 32 bits per coefficient, and that the
IRS comprises 160×160 coefficients (see Table I), the amount
of bytes needed is DataIRS =

⌈
32×1602

8

⌉
= 102.4 kB yielding

TIRS = TPPDU−IRS, (34)

=
1

fs
(Preamble field length + DataIRS

+ Training field length),
≈ 105.4 µs,

This calculation follows the physical layer protocol data unit
(PPDU) structure, according to the IEEE 802.11ad standard (see
details in [45]). The preamble, training lengths, and sampling
frequency fs are specified in Table I while DataIRS is evaluated
as already indicated above.20

Localization time (Tloc): We follow the solution reported in
[31] for localization, where an IRS is reconfigured to scan the
MU plane and look for its reflected signals in a WiFi scenario.21

The method performs once a coarse-grained measurement to
obtain the initial position of the MU and continues tracking
the user with fine-grained measurements. The fine-grained
measurement is the one we account for with the localization
time, as the coarse-grained measurement is performed only
once, yielding negligible associated overhead over time. For
the fine-grained measurement, a 1× 1 m2 area around the MU
location is divided into 11× 11 blocks; see [31, Sec. VI A].
The IRS is reconfigured once per block by the AP, and then

19Although the coefficients can be calculated at the IRS, we select to be
evaluated at the AP in favor of reduced computational complexity with the
IRS equipment.

20The corresponding field length is evaluated through the Matlab code
accessible in https://github.com/tkn-tub/IRS_Rejuvenation

21During the localization phase, the IRS is configured differently than for
data transmission as it renders a narrow beam instead of a wide beam (as
explained in Section III-A). We omit details on the IRS reconfiguration for
localization as this step is abstracted with the localization time variable; still,
information on this method is provided in [31, Algorithm 1].

measurements are performed with the AP sending two data
packets per block via the IRS. Adopting this approach and
setup, the localization time yields22

Tloc =(2 transmissions)× (112 blocks)× TPPDU−loc+
(35)

+ (112 blocks)× TPPDU−IRS

≈15ms,

where the first term accounts for the transmission of two packets
per block, and the second term for the IRS reconfiguration per
block. The parameter TPPDU−IRS is calculated similarly as in
(34) but with Dataloc = 1, which refers to the transmission of
a single byte within the data block in the frame.23

Preamble and training time (Tp_ovh): The preamble field of
the received packet is used to compensate for the channel effects
and equalize data (frequency correction, noise estimation,
synchronization), also for beamforming (training field), and
further parameter specification like the MCS within the header
block. We calculate the overhead within the packet as

Tp_ovh =
1

fs
(Preamble field length + Training field length),

(36)
≈ 5.3 µs.

Data time interval (Tdata): We compute this time interval
with the total of samples for the data sequence as

Tdata = Data Length/fs (37)
≈ 260 µs,

where we assume the largest packet possible (corresponding to
around 262 kB) within this standard, and in favor of the least
packet overhead.

C. Evaluating the Average PAoI

Using the IEEE 80211.ad transmission-reception scheme, we
balance the impact of overhead (due to MU localization and
IRS reconfiguration) and packet losses (due to MU mobility)
through the following steps

Step 1. (Evaluate the radius for the illuminated area):
We compute this radius to observe a zero BER as the criteria.24

The BER is evaluated using Monte Carlo simulations of
the transmission-reception scheme depicted in Fig. 9. We
performed a total of 50 × 104 packet emissions per radius
value, which correspond to more than 100Mbit emissions.
Fig. 11 illustrates the evaluation of the perceived SNR (mean
and variance) and BER at the receiver side as a function
of the radius.25 Based on the results in Fig. 11, we select

22We assume that the computation time required to run the localization
algorithm is negligible when compared to the transmission time, given that
the computational capabilities at the AP are sufficiently high.

23During localization, we assume a single transmitted byte per packet to
afford the lowest overhead possible.

24We choose this criteria as our formulation for the average PAoI in (33)
implicitly assumes free-of-errors transmissions in the illuminated area. To
consider cases allowing higher BER, a new formulation is needed to evaluate
the PAoI to consider communication errors.

25We remark that the MU will be located in the IRS’s near field and the
SNR calculations follow the near field evaluation in [28].

https://github.com/tkn-tub/IRS_Rejuvenation
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Fig. 11: Average SNR and BER as evaluated along the
perimeter of the circle with radius given in the horizontal
axis of this plot.

rin = 1.7m as the maximum radius to observe BER = 0 as
per simulation.26

Step 2. (Evaluate the fraction of time the MU is inside
and outside the illuminated area): For a given Tupd, we
evaluate the fraction of time the MU is inside (π′

2) and
outside (π′

3) the illuminated area using the formulation in
(32). We remark that these fraction of times already include
the overhead introduced by the MU localization and the IRS
reconfiguration phase. We show the results of this evaluation in
Fig. 12. As can be seen, if the IRS is updated more frequently
than every ≈ 4.6 s, the MU spends more time in the illuminated
area than outside it, and the average PAoI will be mostly
evaluated as in (30).

At this point, we highlight that these two steps capture the
influence of the IRS design on the communication link. For
instance, a larger IRS effectively expands the illuminated area,
thereby shifting and extending the intersection of the curves
for π′

2 and π′
3 in Fig. 10 in a way that is more favorable for

overall system performance.
Step 3. (Evaluate the average PAoI and select its min-

imum): We evaluate the average PAoI with (33) once the
radius of the illuminated area is selected (rin = 1.7m) and
the fraction of time has been calculated, see Fig. 12. As a
result, Fig. 13 depicts the average PAoI (for various radii) and
the optimal update period Tupd.27 With the plot in Fig. 13 the
average PAoI ranges in the hundreds of microseconds, and the
optimal update period results in the order of seconds.

Contextualizing these numbers, if we select the optimal
update period in Fig. 13 when rin = 1.7m, i.e., ev-
ery Tupd = 1.9 s (see Fig. 8 for more details), the data
transmissions between the AP and the MU are 6275 packets

26The evaluation of the BER in Fig. 11 accounts for the selected high-
throughput MCS parameter, i.e., 12.6 as in Table I. A less order for this
parameters yields a larger radius to observe a zero BER.

27For the purpose of illustration only, we evaluate the minimum of the
different curves in Fig. 13 by selecting the smallest sample in the time sampled
range. We obtain the samples by evaluating (33) in the time range 0.5 × 10−4

to 2.5 s with sampling interval 50 µs. This is an approximate value, and a
more accurate solution can be evaluated by derivative-free (e.g., bisection) or
gradient-based (e.g., Newton’s) methods.
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Fig. 12: Fraction of time in the inner and outer areas when
rin = 1.7m, rout = 3m, v = 1m/s.
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Fig. 13: Average PAoI with Tupd and various radius for the
illuminated area.

in a run before reconfiguring the IRS again.28 Reducing Tupd

generates a larger overhead, and increasing it yields a larger
BER. With this update time, the resulting overhead is around
Tovh

Tupd
≈ 9.6% of the update period, after using Eq. (6) to

evaluate Tovh. This relatively small overhead is the minimum
achievable one to balance the impact of the MU mobility.

Besides, visualizing the behavior for the average PAoI for
smaller radii of the illuminated area provides some compelling
insights. As depicted in Fig. 13, the optimal selection for Tupd

shifts to the left with the decreasing radius as expected; however,
the minimum average PAoI increases but not significantly. For
reduced radii, the selection of the optimal Tupd becomes crucial,
as the average PAoI increases dramatically for small deviations
out of the optimal point; see, for instance, the case rin = 30 cm
in Fig. 13.29

D. Extending the Evaluation of the Average PAoI

Following the above steps, we can evaluate the optimal
update periodicity for different mobility model configurations.
Fig. 14 comparatively depicts the Tupd versus the radius of the

28We do this calculation with the ratio Tupd/(Tppdu + Idle Time), where
the Idle time is 20 µs; see Table I.

29The case when rin = 30 cm becomes relevant for secure wireless
communications (see [49]) where smaller coverage areas are preferred and
the selection of the IRS configuration time becomes more relevant.
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Fig. 14: Optimum value of Tupd versus the inner circle radius
for various mobility models.

illuminated area and includes other mobility models such as
RWP with stop time and with random speed. For comparisons,
we also plot the case when the user moves straight from the
center to the perimeter of the illuminated area along the radius.
This represents the worst-case trajectory as the MU leaves
the illuminated area in the least time. As for the stop time,
we implemented a random variable following an exponential
distribution for various average times; see [32, Section 3.6].
As for the random speed, we consider the MU changes the
speed per waypoint randomly in the range 0.1 to 1.5m/s and
follows a uniform distribution; see [32, Section 3.5.1]. As
Fig. 14 illustrates, the relation between the update period and
the radius of the illuminated area is almost linear. In the RWP
model, Tupd is slightly larger than the time interval the MU
takes to travel from the center to the illuminated area’s border,
i.e., Tupd ≈ rin

v . However, this is not the case for RWP with
stop time where Tupd results larger (in this case in the range
0.25 to 1 s) than the traveling time from the center to the
perimeter of the illuminated area.

VII. CONCLUSIONS

We presented a methodology to evaluate the optimal update
period for the IRS elements in mobile scenarios using an
average PAoI framework. This methodology allowed us to
develop a reconfiguration design with low overhead. This
solution plays a significant role in reducing the communication
overhead while preserving the QoS of the link. Given the
geometry and the size of the area illuminated by the IRS, where
the QoS criteria are met, our approach evaluates the proportion
of time the MU will be in the illuminated area to determine later
the optimal IRS update period. This procedure minimizes the
average PAoI and helps jointly balance the impact of overhead
and MU mobility. We illustrated the applicability of these
calculations considering the practical case of a WiFi link in
the mmWave band. We find that the update period is in the
ms range and is almost linearly increasing with the radius of
the IRS illumination area. The resulting minimum information
freshness is in the order of the hundreds of µs.

This paper unlocks several new potential research directions.
One direction is to extend the AoI framework to a multi-
link scenario, that is, with multiple MUs and IRS. In the

case of multiple MUs, the IRS needs to be split among
the MUs, impacting the achieved SNR and the size of the
illuminated area. Another interesting research direction is
the optimization of other system parameters, such as the
number of IRS elements and the transmission policies. For
instance, finding the optimal transmission policy for the MU
is particularly relevant to avoid transmission while the MU is
outside the illuminated area, allowing it to extend its battery
lifetime. To this end, a Markov decision process (MDP) can
be formulated to determine the optimal transmission policy
that jointly maximizes the battery lifetime while minimizing
the average PAoI. Moreover, IRS splitting could be considered
for multiple MU scenarios. This would require finding the
optimal policy for jointly updating multiple segments of the
same IRS. Another relevant extension is the consideration of
more complex channel models for evaluating the average PAoI
metric. For instance, including multipath models or small-scale
fading will impact the perceived SNR, thereby impacting the
resulting average PAoI metric. Furthermore, an experimental
evaluation of the considered system would allow the validation
of the proposed theoretical framework. Measurement campaigns
can be conducted to evaluate the main metrics and correlate
their impact on information freshness.
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