
1

Communicating Smartly in Molecular
Communication Environments: Neural Networks in

the Internet of Bio-Nano Things
Jorge Torres Gómez, Senior Member, IEEE, Pit Hofmann, Graduate Student Member, IEEE,

Lisa Y. Debus, Graduate Student Member, IEEE, Osman Tugay Başaran, Graduate Student Member, IEEE,
Sebastian Lotter, Roya Khanzadeh, Stefan Angerbauer, Bige Deniz Unluturk, Member, IEEE,

Sergi Abadal, Werner Haselmayr, Frank H.P. Fitzek, Fellow, IEEE,
Robert Schober, Fellow, IEEE, and Falko Dressler, Fellow, IEEE

Abstract—Recent developments in the Internet of Bio-Nano
Things (IoBNT) are laying the groundwork for innovative
applications across the healthcare sector. Nanodevices designed to
operate within the body, managed remotely via the internet, are
envisioned to promptly detect and actuate on potential diseases.
In this vision, an inherent challenge arises due to the limited
capabilities of individual nanosensors; specifically, nanosensors
must communicate with one another to collaborate as a cluster.
Aiming to research the boundaries of the clustering capabilities,
this survey emphasizes data-driven communication strategies
in molecular communication (MC) channels as a means of
linking nanosensors. Due to the dynamics of MC environments,
communication at the nanoscale faces new challenges where
detailed modeling of the physical channel is often impractical.
Relying on the flexibility and robustness of machine learning (ML)
methods to tackle the dynamic nature of MC channels, the MC
research community frequently refers to neural network (NN)
architectures. This interdisciplinary research field encompasses
various aspects, including the use of NNs to facilitate communica-
tion in MC environments, their implementation at the nanoscale,
explainable approaches for NNs, and dataset generation for
training. Within this survey, we provide a comprehensive analysis
of fundamental perspectives on recent trends in NN architectures
for MC, the feasibility of their implementation at the nanoscale,

J. Torres Gómez, L. Debus, O. Tugay Başaran, and F. Dressler are with
the School of Electrical Engineering and Computer Science, TU Berlin,
Berlin, Germany, Emails: {torres-gomez,debus,basaran,dressler}@ccs-
labs.org. R. Khanzadeh, S. Angerbauer, and W. Haselmayr
are with the Johannes Kepler University Linz, Austria, Email:
{roya.khanzadeh,stefan.angerbauer,werner.haselmayr}@jku.at.

P. Hofmann and F. H.P. Fitzek are with the Deutsche Telekom Chair of
Communication Networks, Technische Universität Dresden, Dresden, Germany;
F. H.P. Fitzek is also with the Centre for Tactile Internet with Human-in-
the-Loop (CeTI), Dresden, Germany, Email: {pit.hofmann,frank.fitzek}@tu-
dresden.de.

B. D. Unluturk is with Michigan State University, 775 Woodlot Dr, East
Lansing, MI, USA, e-mail: unluturk@msu.edu.

S. Abadal is with Universitat Politècnica de Catalunya, Spain, Email:
abadal@ac.upc.edu.

S. Lotter and R. Schober are with the Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, Email:
{sebastian.g.lotter,robert.schober}@fau.de.

This work was supported by the German Federal Ministry of Education and
Research (BMBF) through the project IoBNT, grant numbers 16KIS1986K
& 16KIS1994, and the joint project 6G-life, grant number 16KISK001K.
This work was also supported by the German Research Foundation (DFG)
through the project NaBoCom, grant number DR 639/21-1, and as part of
Germany’s Excellence Strategy – EXC 2050/1 – Cluster of Excellence "Centre
for Tactile Internet with Human-in-the-Loop" (CeTI). Further support has
been given by the "University SAL Labs" initiative of Silicon Austria Labs
(SAL) and its Austrian partner universities for applied fundamental research
for electronic-based systems’

applied explainable artificial intelligence (XAI) techniques, and
the accessibility of datasets along with best practices for their
generation. Additionally, we offer open-source code repositories
that illustrate NN-based methods to support reproducible research
for key MC scenarios. Finally, we identify emerging research
challenges, such as robust NN architectures, biologically integrated
NN modules, and scalable training strategies.

Index Terms—Machine learning, neural networks, deep learn-
ing, molecular communication, Internet of Bio-Nano Things

I. INTRODUCTION

Inspired by Schrödinger’s thoughts about the question “What
is life?” [1], the physics community joined biology to describe
constituent components on the boundaries between inanimate
matter and life. Today, more communities are joining the
realm of biology, including electrical engineers and computer
scientists for functional purposes; frameworks like the Internet
of Bio-Nano Things (IoBNT) [2], [3], [4] can only be realized
through truly interdisciplinary research between engineering,
computer science, and life sciences. Focusing on recent
advancements in artificial intelligence (AI) to realize IoBNT
applications, this survey takes the journey one step further; we
explore the research progress at the intersection of computer
science and biology, specifically the use of neural networks
(NNs) to enable molecular communication (MC) links and
nanonetworks.

The constituent MC links of the IoBNT framework serve
as artificial tools with promising applications in healthcare
and industry but pose new challenges for practical deployment.
Similarly to wireless links, communication over MC channels
faces the lack of reliable connections as a consequence of
different effects, though: The intricacies of the mobility of
molecules in air or aqueous media,1 the chemical interactions
with surrounding reactants, or the geometry of transmitters,
channels, and receivers, make it infeasible to derive analytic
models in most of the practical cases.2 As such, accurate
estimators of MC channels are infeasible in practice, and

1See historical developments in describing the mobility of molecules in [5].
2In MC, “molecules” are generally the information carriers, although other

classes of carriers exist, such as calcium ions and magnetic nanoparticles [6].
In this paper, we indistinctively refer to “molecule” and “nanoparticle” as
information carriers.

2

Bio-implementation

Dataset generation

Explainability

PHY layer

MAC layer

Upper layers

Fig. 1: Trends in contributions related to NN research for IoBNT per area
and publication year. The areas refer to the communication layers, such as the
upper layers, MAC layer, PHY (detectors, encoders, and synchronizers), and
the bio-implementation of NN architectures.

receivers must be developed with self-learning mechanisms
that account for unknown parameters. This is where machine
learning (ML) plays a significant role, and specifically NN
architectures as universal approximators to learn the channel
characteristics along their training.

Such an approach is not entirely new in the bio realm, ML-
based methods have already been explored and provide valuable
inspiration for applying NNs to MC.3 The research community
is already investigating NN architectures as enablers of artificial
communication mechanisms in MC channels. Examples include
NNs as sequence decoders for air-based transmissions and
experimental testbeds as in [10], and MC channel modeling
in multiple-input multiple-output (MIMO) setups as in [11].
Furthermore, in large-scale links, i.e., transmission distances
larger than a meter, NNs have also been deployed in the IoBNT
framework to localize potential health conditions in the human
body as in [12].

A. Prelude

In contrast to the development of intelligent wireless net-
works, where ML tools were layered on only after the tech-
nology had matured, by contrast, IoBNT is being engineered
based on an already well-established ML foundation. Lessons
learned from the communication performance in wireless links
also apply to the IoBNT’s physical layer (PHY), e.g., modular
designs combining modulators, encoders, or channel estimation
blocks are generally suboptimal, and a similar situation arises
in MC links; see [13, Chap. 1]. The joint design of encoders
and decoders has been shown to outperform focused, isolated
blocks in MC links, as illustrated in [14].

Today, the research community contributes to the joint field
of ML and IoBNT networks in various directions. As indicated
in Fig. 1, a growing number of works focus on the PHY layer
of IoBNT; other contributions research solutions in the MAC
and higher layers, as well as dataset generation for training,

3Notably, ML has been proposed to model turbulent behavior [7] or to track
particles in diffusion trajectories [8]. Furthermore, ML for the modeling of
active matter, which includes processes such as swarming, chemotaxis, and
other individual and collective phenomena, has been studied [9].

the explainability of NN operation, and bio-compatible means
for NN deployment. These ongoing research activities lay the
groundwork for numerous new developments, as we unveil in
this survey.

B. Literature Review Strategy

The literature review strategy to prepare this survey involved
three stages: (i) Searching for the keywords “Neural Network”
AND (“Molecular Communication” OR “IoBNT”) in the papers’
abstracts, (ii) looking for the papers referenced by the ones
in stage (i) and for the papers referencing those as well, and
(iii) listing papers in our curated set, which mostly reference
topics on the biocompatible implementation of NNs and dataset
generation. For stage (i), we conducted a comprehensive search
in the leading databases IEEE Xplore, ACM Digital Library,
Science Direct (Elsevier), Springer, and Wiley Online Library.
In all cases, our inclusion criteria refer to: (i) The use of
NNs as enablers of communication over MC links, which
includes the communication design through all layers of the MC
channel, i.e., from the PHY layer to the application layer, (ii)
biocompatible implementation of NN models, (iii) explainable
methods for NNs as applied to MC, and (iv) dataset creation.
The search yielded a total of 260 papers for stage (i), and we
manually added another 124 references in stages (ii) and (iii),
yielding a total of 384 references. Adhering to the inclusion
criteria outlined above, we filtered these references to 144
published papers, which span from 2017 to early 2025.

C. Contributions

Focusing on NN architectures, this survey aims to outline
the potential of NNs in IoBNT applications from various facets:
Architecture, implementation, explainable approaches, and
dataset generation. Our main contributions can be summarized
as follows:

• Deployment of NN architectures for MC links: We
discuss in detail the NN architectures reported for the
various IoBNT layers. The need to introduce NNs is
clearly motivated for each layer based on the problem
definitions reported in the literature. This is discussed
taking into consideration various NN architectures, e.g.,
feedforward, recurrent, autoencoders, and convolutional.
We aim to provide readers with a holistic view of
problems, environments, and NN architectures in each
communication layer.

• Comparative discussion of performance versus complexity
of the state-of-the-art NN architectures: We thoroughly
discuss the performance and complexity of the reported
NN architectures as decoders in MC environments. We
evaluate the decoding performance in terms of bit error
rate (BER) and the complexity in terms of the number of
learnable parameters. We found that recurrent architectures
exhibit the highest performance while requiring the least
complexity.

• Code developments for NN-based designs in MC links:
We provide illustrative code examples for training and
using NNs. Training and testing of the modules are
based on synthetic and testbed-generated datasets in MC

3

Section VI
Datasets

Section III
NNs in MC

III.A
Channel

Estimation

III.B
Synchroni

zation

III.C
Detectors

III.E
Upper
Layers

III.D
Auto

encoders

Section IV
Biocomputing

IV.A
Trends

IV.B
Digital

Domain

IV.D
Feasibility

IV.C
Analog
Domain

Section V
XAI

V.B
Fundamentals

V.C
Research

V.D
Code

Example

V.A
Motivation

VI.A
Generals

VI.C
Synthetic
Datasets

VI.B
Synthetic
Datasets

VI.D
Discussion

Fig. 2: Mosaic representation of the survey content.

channels. This open-access code encompasses a range of
NN architectures in various MC environments, including
free diffusion, flow-based, and vessel-like channels.

• Review of potential implementations at the nanoscale: We
summarize state-of-the-art technologies for implementing
NN architectures in the nanoscale domain. We describe
bio-compatible technologies such as micro-fluidic circuits
and deoxyribonucleic acid (DNA) chemical reactions,
which provide means to run NN modules.

• Summary of explainable approaches to describe the
operation of NNs: We introduce some of the most recent
explainable methods with a focus on MC environments. In
light of the physical nature of MC channels, we summarize
means to interpret the operation of NNs.

• Comprehensive summary of synthetic and testbed-based
generation of datasets for training NNs: We elaborate in
detail on MC-related datasets for training NN modules.
We also review dataset accessibility, documentation, and
usability based on the published code and documentation
per dataset.

• New upcoming challenges: We finally summarize new
research directions related to the convergence of NN
architectures and MC. We identify open problems for
developing robust links, deployment, and training of NNs,
as well as challenges towards explaining their operation.

D. Reader’s Itinerary

This survey aims to give a detailed overview of NN
concepts for MC. We continue in Section II summarizing
recent developments in MC following the IoBNT framework.
Within the next sections, we structured the content to guide the
reader into the joint topic and help to dive deep into selected
aspects as follows: (1) NNs enabling MC communication
links, as the central theme in Section III; (2) Synthesis of NN
modules with bio-components in Section IV; (3) Explainability
approaches specific for AI in MC channels in Section V;
and (4) Synthetic and testbed-generated datasets for training
and testing NN modules in Section VI. The most extensive

part is Section III, which examines standard communication
components (supported by NNs) such as channel estimation,
synchronization, detection, and autoencoder mechanisms.4 We
also list a glossary of terms used throughout this survey in the
appendix for the reader’s convenience.

This survey can be read in various ways to benefit the
reader’s expertise.5 Fig. 2 shows a mosaic representation of
the paper’s content. As this figure illustrates, the paper can be
read section by section, but more experienced readers can also
jump directly to specific topics.

II. MOST RECENT DEVELOPMENTS IN MOLECULAR
COMMUNICATIONS: A SURVEY-BASED PERSPECTIVE

This section outlines the most recent developments in MC
and nanonetworks, building upon related surveys published
over the years 2019 to 2024. When integrating theoretical com-
munication aspects into MC schemes, the research community
is increasingly adopting AI-based approaches to overcome
the complexity of theoretical concepts and practical imple-
mentations. Tracing this trend, we can group the most recent
survey papers into four categories: i) IoBNT frameworks and
applications, a field that also integrates MC and electromag-
netics;, ii) Theoretical and technical developments in MC,
which links communication theory with MC schemes; iii)
Cross-disciplinary approaches between the life sciences and
communication-engineering communities, which discuss the
much-needed integration between the two communities, and iv)
Recent AI innovations in the MC field as summarized within
the first surveyed materials on the topic.

1) IoBNT/MC Frameworks and Applications: Grounded in
applications for the early detection and treatment of diseases
in the human body, surveys here elaborated on the IoBNT
architecture to fulfill a futuristic paradigm: To connect human
cells to the internet, as portrayed in [4]. The IoBNT architecture
comprises a nanonetwork within the human body, where nano-
biological functional devices are the main components, e.g.,
engineered bacteria, human cells, nano biosensors, that perform
sensing and actuating tasks in the MC domain [16]. The
nanonetwork is connected to wearables attached to the skin
surface, which are then linked to healthcare providers via the
internet; see an illustration in [17, Figures 7 and 9]. These
conceptual developments and early-stage technologies assess
IoBNT as a part of 6G beyond networks, see [18, Sec. XI], and
embody a symbiotic relationship with the collective intelligence
of the body [19].

Towards this vision, surveys have introduced a variety
of interfaces between nanodevices and the internet through
heterogeneous links in the biological [20], [21], electrical,
acoustic, and electromagnetic domains; see [22, Sec. VII], [23,
Sec. III], [24, Sec. 4], and [16], [25]. Such interfaces enable

4We provide the code on two platforms: (i) In the Ocean Code platform, we
provide access to the cell-to-cell example developed in Section III-A4 under
the link https://codeocean.com/capsule/6777864/tree/v1, and (ii) in the GitHub
platform we provide access to all code in this paper related to synchronization,
decoding, and autoencoding under the link https://github.com/tkn-tub/NN_
molecular_communications. Furthermore, we provide the database for training
and testing the reported NN modules in [15].

5Here, we invite the reader to follow the collage model for reading this
survey, as first proposed by Julio Cortázar within the novel Rayuela.

https://codeocean.com/capsule/6777864/tree/v1
https://github.com/tkn-tub/NN_molecular_communications
https://github.com/tkn-tub/NN_molecular_communications

4

groundbreaking healthcare applications, such as reducing the
detection time for bacterial infections, as illustrated in [4, Sec.
V] and discussed in [17], [20], [25]. Applications also span
smart agriculture and environmental monitoring to track the
health status of animals and plants, as summarized in [16], [26],
[27]. In industrial environments, nanodevices can be deployed
inside underground pipes to detect corrosion and damage [26,
Sec. III.b].

In the electromagnetic domain, surveys have addressed
analog front-end units in the terahertz (THz) band as the
interface between implanted nanosensors and the outside world,
see [22]. Due to the plasmonic effect observed in graphene
materials, the distinctive relevance of this particular frequency
band resides in the existence of signal generators (see [28])
and antennas (see [29], [30]) that can be miniaturized to a
few microns long and wide. Different from the THz band,
recent surveys also pointed to optics with nano-lasers and
nano-antennas, MHz system frequencies with magnetoelectric
antennas based on nano-electromechanical devices, or even to
non-radiative techniques, either coupling-based or wave-based,
such as galvanic coupling or ultrasound [31].

In particular, some surveys have focused on technological
advances in signal generation and antennas, which become en-
ablers of this approach [29], [31], while other survey materials
focused on protocol and system design aspects [32]. Further-
more, several works have summarized potential healthcare-
related applications of THz networks [29], [33], including
(i) ultra-precise detection and localization of diseases with
nanomachines flowing in the human blood system [32], [34],
and (ii) brain-computer interfaces enabled by a wireless
interaction with the human brain [35] even down to single
neurons [36]. Notably, however, none of the existing works on
the electromagnetic side of nanonetworks point to AI/ML as a
possible tool to aid in the modeling of communication or the
design of protocols.

Recent surveys on IoBNT also highlight the self-power
capabilities of nanodevices in maintaining the nanonetwork
in continuous operation. Micro-batteries built with micro-
electromechanical and nano-electromechanical devices are
powered by energy harvested from the environment or through
wireless power transfer, as described in [16], [23]. Besides,
due to the highly sensitive applications of IoBNT networks,
especially in healthcare, surveys also remark on the challenges
and risks of MC [37] and wireless channels, see [23, Sec. IV].
Likely attacks include eavesdropping, spoofing attacks, and
jamming, see a full description in [23, Table 6]. These attacks
exploit the limited computational capacities of nano nodes
to implement sophisticated protection algorithms. Mitigating
strategies use fingerprinting based on channel identification (a
domain well-suited for AI) or cryptographic mechanisms to
avoid eavesdropping.

2) Theoretical and Technical Developments Regarding MC
Channel Models: MC channel models are a widespread
research topic in the scientific community across different
scales: (i) Human vessels, organs, and tissues on a larger
scale; (ii) on the cellular scale, cell-to-cell communication and
information processing; and (iii) on the molecular scale-free
diffusion or junction MC channels between cells; see [20].

These theoretical models underpin the feasibility of applica-
tions such as drug delivery, disease monitoring (e.g., cancer
initiation and progression), and the deployment of body network
infrastructures [26].

Theoretical developments in [38] summarize the end-to-
end channel impulse response (CIR) derivation for various
MC geometries at the molecular scale. MC channels include
free diffusion, advection, and chemical degradation channels,
see [38, Table 1]. At the tissue scale, mobility models are
summarized in [39] for passive and active bionanomachines
that carry information. Passive mobility models include random
walks in a fluid and with external forces, whereas active
mobility models exhibit a bias towards a preferred direction, as
seen in the case of chemotaxis.6 Besides, theoretical works also
target more functional problems in MC links. Examples include
methods for channel parameter estimation [42], modulation
and demodulation [43], [44], coding [45], and the formulation
of spatial domain resources through MIMO schemes as in [46].
These works illustrate the capabilities of actual communication
schemes at the nanoscale.

Not only does theoretical work drive the study of MC links,
but also the development of simulators; see [38, Sec. V.A],
[26, Sec. II.5]). Surveys also illustrate experimental testbeds as
tracks of technological readiness in the near future, see [47],
[48], [49], [38, Sec. V.B], [22, IV B.2], and [20, Sec. IV].
This research field focuses on interfaces between the biological
and electrical domains, such as synaptic links in [50], optical
links in [51], electrical domain connections in [52], and radio
frequency (RF) signals in the THz domain, as described in
[22].

3) Recent AI Innovations in the MC Field: A prevalent
viewpoint expressed in some MC-related surveys is that data-
driven detectors may overcome the limitations of model-based
ones, which prevent them from performing optimally in real-
world MC channels, as seen in [18], [53], [54], and [38, Sec.
V.B.2.b].7 Advancing the field, the community is beginning
to embed feedforward NN models within DNA circuits in
a cell, as summarized in [55], [56], [57], and remark on
researching explainable methods for the operation of NN
modules, as indicated in [53]. However, only a few surveys,
such as [53], [58], [59] address ML methods suitable for
developing MC-based schemes. The work in [53] mostly
focuses on a performance comparison between model and
data-driven detectors, the work in [58] primarily centers on the
application layer, while the work in [59] succinctly summarizes
biocompatible technologies for running NN modules.

4) Cross-Disciplinary Routes: Towards the interdisciplinary
understanding among researchers in communication engineer-
ing, synthetic biology, and bioengineering, a hierarchy is
proposed in [60] to map communication concepts to the
biological behavior of cells. Unlike biologists, who study
natural system interactions guided by holistic views, the
engineering community is developing modular designs, i.e.,

6The chemotaxis process describes the mobility of bacteria towards the
higher concentration of attractant molecules, see models in [40], [41].

7See also [54] for a detailed explanation of ML architectures and their appli-
cation in other research areas such as therapy development and nanomaterial
designs.

5

defining communication functionalities by layers as application,
data abstraction, molecules-data interface, the interaction of
molecules, and their propagation. A second perspective toward
interdisciplinary research lies in the most recent application
of information semantic concepts, as presented in [61]. MC-
engineered systems, with a goal-oriented approach, may support
the design of biochemical applications, as goals can be mapped
to biological processes.

5) Summary Remarks: The variety of topics in the above-
related surveys introduces a joint appeal: Scenario awareness
must be part of MC deployments and dynamically adapt
to real-world environments; see, for instance, the channel
dependency of adaptive threshold detectors in [44, Eq. (17)],
adaptive coding strategies to reduce inter-symbol interference
(ISI) as in [45, Sec. IV.C], and the challenges to design high
data-rate transmissions due to the non-stationary nature of
MC noise, as discussed in [53]. A recent trend is that NN
architectures are becoming relevant for applications in channel
estimation, synchronization, detection, and related solutions
such as localization and disease detection, as illustrated in
Fig. 1. NNs are primarily implemented external to the MC
environment, as we discuss in Section III, although embedding
the NNs within the MC pipeline is very appealing, as we
consider later in Section IV. In the following sections, we
provide an overview of the literature groundwork on NN
architectures, MC environments, and comparative performance.

III. NEURAL NETWORKS AS ENABLERS OF IOBNT
NETWORKS

In the context of IoBNT, where communication and compu-
tation are deeply embedded into MC environments, this section
details the reported NN-based solutions for the various network
layers. We thoroughly discuss reported NN architectures,
deployments, and results for the PHY and upper layers. As
we will encounter in this section, early studies primarily focus
on the PHY layer. Although these studies do not directly
mention their application to IoBNT networks, they can be
easily adapted as techniques for facilitating node connectivity
within IoBNT. Within the PHY layer, we refer to the MC
model illustrated in Fig. 3, where the MC model is primarily
divided into three blocks for their separate study: transmitter,
physical channel, and receiver. This section is organized into
the following modules: Channel estimation, synchronization,
and detection (included within the Receiver block in Fig. 3), as
well as solutions in the MAC and upper layers. Each subsection
follows the same structure: (i) Problem description for MC
channels, where the demand of NN modules is discussed,
followed by (ii) the MC environments where NNs have been
deployed, (iii) description of reported NN architectures and
their performance, (iv) illustrative examples of implemented
code using NN modules, and (v) concluding remarks.

A. MC Channel Estimation

End-to-end MC channel estimators are essential for optimally
tuning the decoding tasks at nodes. In the literature, we find
the application of NN-based estimators for various purposes,
such as evaluating communication performance [62], designing

ReceiverTransmitter
Diffusion

Drift

Turbulences

Degradation

Molecular Communication Channel

Encoding
and

Modulation

Particle
Production

Transmitter

Demodulation
and

Decoding

Detector

Receiver

End-to-End Channel

𝑥𝑖 𝑦𝑖

Transmitted
symbols

Received
symbols

Channel Model

Physical
Channel

Fig. 3: Representation of a point-to-point MC link.

macro-scale receivers [63], and drug delivery for healthcare
applications, as discussed in [64]. In this section, we catego-
rize these reported estimators as solutions that contribute to
parameter estimation and modeling of MC channels separately.

1) Problem Definition: The CIR in MC links is defined
as the probability of finding a molecule at the receiver after
its release from the emitter; see [38, Def. 2]. It is given as a
function of time, here denoted as h(t) with given parameters
{h0, h1, . . . , hn}. Channel estimation and modeling are the
two main problems, referring to finding the set of parameters
{hi} and the sequence h(t) itself, respectively. For instance, in
the case of free-diffusion channels, where the transmitter node
is modeled as a point and the receiver node as an absorving
sphere, the CIR is given as h(t) = Vrx

(4πDt)
3
2
e−

d
4Dt [65, Eq. (6)],

where D is the diffusion coefficient of the particles, t denotes
time, d is the communication distance, and Vrx is the volume
of the receiver. In this case, h(t) is known, but parameters
such as the distance may be unknown in practical scenarios,
resulting in a channel estimation problem.

Besides, in many situations, evaluating the CIR sequence
is not feasible due to the complexity of the MC channel’s
geometry and topology. Examples include the channel illus-
trated in Fig. 4, where a reflector introduces a non-linearity
in the channel, preventing the development of a closed-form
expression for h(t). In that case, the CIR itself must be
estimated, which refers to the channel modeling problem.

Either of these two problems unfolds into a challenge due
to the unknown variables that need to be estimated, such
as the communication distance, the impact of the geometry
of the emitters and receivers, or the fluid velocity in vessel-
like media. Due to the difficulty of these problems, literature
reports NN-based solutions leveraging on their capacity as
universal approximators. NNs can be used either to estimate
the parameters for a given model or as a model-independent
method to estimate the CIR. In the following subsections,
we detail various MC scenarios and the reported NN-based
estimators.

6

Point transmitter

Absorbing
receiver

Spherical
transmitter

Reflector

Molecules

Fig. 4: Conceptual illustration of a free-diffusion channel for a complex
topology. This environment comprises absorbers, reflectors, and multiple
emitters.

2) Environments for MC Channel Estimation: In the liter-
ature, NN models for channel estimation and modeling have
been deployed in two main MC environments: In simulated
free-diffusion MC channels as in [62], [66], [67], [68], [69],
[70], [71], [72], within the network of the human circulatory
system (HCS) as in [64], and in realworld testbeds for open
air channels, as in [63].
Free-diffusion environments: The more commonplace en-
vironment of free diffusion poses challenges in evaluating
the channel model for complex topologies. Examples include
scenarios where multiple senders, reflectors, and absorbers are
situated between the emitter and the receiver, which hinder the
analytical development of closed-form solutions for the CIR;
see Fig. 4. The NN-related literature considers free-diffusion
environments on the (µm) scale, which include spherical
reflectors and absorbers placed at arbitrary locations between
a point emitter and a spherical absorbing receiver. This is the
case reported in [67], [71] in 2D and also extended to 3D
in [68]. A less complex topology is considered in [62] in a
3D environment, including a perfect spherical receiver and
point and spherical transmitters. MIMO links in MC are also
gaining increasing interest because of their potential to enhance
transmission rates. Examples are the 2× 2 MIMO scheme in
free-diffusion MC channels for [66], [70], 4×4 MIMO in [72],
and asymmetric MIMO channels comprising 2 emitters and 4
receivers in [69]. These MIMO channels lay out the geometries
of point transmitters alongside spherical absorbing receivers.

Literature also evaluated testbed measurements accounting
for realistic channel effects, which include the various sizes
of droplets, evaporation, and unsteady flows as in [63]. The
testbed deploys an air compressor sprayer to release ethyl
alcohol molecules and an MQ-3 alcohol sensor to detect the
droplets from distances of up to 200 cm. See a summary of
MC environments and their parameters in appendix, Table II,
specifically for the entries related to channel estimation.
Human vessel networks: For drug delivery applications within
the human body, the model reported in [64] includes three
main components. As depicted in Fig. 5, these components are:
1) A photo-triggered transducer interface (Gateway), which is
placed at the skin surface, 2) the human vessels network as the
information channel, and 3) a network of nanodevices located

Gateway

𝑐𝑣disp𝑐𝑣in

Remote
Command
Unit

Vessels Network

𝑘in 𝑘out

𝑘disp

𝑐cell

Nanodevice

Human cell

𝑐𝑣

Fig. 5: Two-compartmental model of the cardiovascular system from [64].
Parameters kin, kout, and kdisp denote molecule rates following the com-
partmental model. Variables cvin and cvdisp represent the concentration of
molecules at the input and output of the corresponding compartment, while
cv and ccell are those within the compartment.

at the target cell.8 The photo-triggered interface is attached to
the skin surface and injects specific molecules into the human
circulatory system. This release mechanism is activated upon
the wireless reception of a command from a remote unit, which
the care providers can directly access. The released molecules
travel through the vessel segments to the target cell, where a
nanonetwork is activated to release the corresponding drugs
upon detecting this particular molecule. Molecule concentration
levels are evaluated using a two-compartmental model, one for
the circulatory network and another for the target cell. The
evaluation of the concentration level is based on a system of
two differential equations, which incorporate the parameters
kin, kout, and kdisp; refer to [73, Eqs. (14) and (15)]. These
parameters refer to the rates of molecules flowing in and out
from the compartment, as represented in Fig. 5.

3) NN Models for MC Channel Estimation: Various models
are reported for free-diffusion channels aiming to estimate
CIR parameters, as in [63], [66], [69], [70], [71], and more
broadly, to estimate the CIR sequence as in [67], [68], [72].
These models implement the architectures feed forward NN
in [62], [63], [64], [66], [69], [70], [72], convolutional neural
network (CNN) in [67], and the renowned Transformer in [68],
[69], [71].9 The NN weights and bias coefficients are evaluated
using the backpropagation algorithm, as in [62], [66], [70],
and the Bayesian regularization approach, as in [62], [63],
[66], which implements the Levenberg-Marquardt optimization
algorithm [74], avoiding overfitting.
NN-based solutions for MC channel estimation: The afore-
mentioned NN architectures are used to estimate a variety of
MC channel parameters, including distances and the orientation
of emitters and receivers in the channel. For instance, a
feedforward NN model is developed in [63] to estimate the
distance between the emitter and the receiver. The model
employs a single hidden layer with a single node and is trained
on a predefined set of features, which includes the peak of the

8The sketches for the bio-components in Fig. 5 do not mean to be accurate
but are for concept illustration purposes only. The figures were generated
with the assistance of ChatGPT, utilizing a Da Vinci style for the drawing.
Similarly, we generated all illustrations of bio-components within this paper.

9Further details for the Transformer architecture are provided in Section C.

7

received sequence and the rise time from low to high amplitude
in the sequence of received molecules. Results exhibit relative
errors between the estimated and actual distances in the range
of 2 to 20% at communication distances of 100 to 200 cm.

NNs are also reported in [62], [66] to evaluate the parameters
of the first-hitting time probability; see [66, Eq. (2)]. The
deployment consists of single and two NN machines, trained
with the recorded number of molecules at the receiver. The
single NN is deployed through an fully connected (FC) hidden
layer and a total of 30 nodes. The two-machine model is
proposed in [66], where each NN estimates a separate set of
the CIR parameters. Both NNs are implemented with a single
FC layer and 15 nodes each. The results in [66] indicate that
the single-machine model performs better than the two-machine
model. The models achieve high accuracy with an absolute
error of less than 10−2.

In free diffusion MIMO environments, NNs are trained
to directly estimate the parameters of a given closed-form
expression for the CIR, as indicated in [66], [69], [70]; see
the model and the parameters in [66, Eqs. (2) and (3)]. These
solutions [66], [70] follow a two-stage approach to train the NN.
In the first stage, the authors fit a CIR model to a 2×2 MIMO
MC channel, utilizing the non-linear least square method and
with samples generated through simulations. Next, the NN
is trained to predict the fitted CIR, utilizing as inputs MC
channel parameters such as distance, the molecules’ diffusion
coefficient, and receiver radius. The trained NN is used later to
predict the BER performance from the MC channel parameters.

Continuing with MIMO channels, a more typical deployment
trains NN models using received molecule counts, as investi-
gated in [69], [72]. The work in [69] comparatively analyzes
the performance of Transformer (see appendix, Section C) and
feedforward NN architectures for channel estimation, where
the latter yields better performance. The feedforward NN
comprises one FC layer and 5 hidden layers of 10, 20, 40,
20, and 10 neurons. The encoder and decoder components
of the Transformer implement two FC layers and the same
number of hidden layers as the feedforward NN. The inputs
for both architectures are the number of received molecules,
and the outputs are the parameters of the theoretical CIR
expression. Particularly, the work in [72] estimates the distance
and the rotation angle between the emitter and the receiver
planes of a 4 × 4 MIMO setup, where the rotation refers to
the missalignment of the emitters and receivers location in the
range of 0 to 45◦, see [72, Fig. 2]. The solution deploys a
feedforward NN of 14 connected layers, where the inputs are
the numbers of molecules and the outputs are the coefficients.

Finally, in the environment of the human vessels network (see
Fig. 5, [64]), feedforward NN models are reported to estimate
the set of parameters {kin, kout, kdisp} for the compartmental
scheme, see Fig. 5. The model is trained with the concentration
of drugs at the nanodevice location, achieving an estimation
error of less than 30%.
NN-based solutions for MC channel modeling: NN models
are also trained to predict the CIR sequence in free diffusion
channels as researched in [67], [68]. The solution develops
two branches, one of which takes as input the RGB image of
the MC environment. Point transmitters in the MC channel are

depicted with dots, while absorbers, reflectors, and receivers
are depicted as circles of different colors and radii. A CNN
is used in [67], and a Transformer (without the positional
encoders) is used in [68] to extract the relevant image features.
A multilayer perceptron (MLP) block is included within the
architecture to normalize the sequence for the CIR. The second
branch of the design in [67] deploys an FC layer and an MLP
block to estimate the maximum amplitude of the number of
received molecules. The inputs to the FC layer are the diffusion
coefficient, the sampling time, and the spatial granularity. In this
two-branch design, the normalized mean square error (MSE)
between the ground truth and the estimated CIR sequence has
an order of magnitude of 10−2.

4) Illustrative Code Example to Estimate the Distance
Among Cells: This code example develops a distance estimator
between immune and cancer cells based on the recorded number
of vesicle molecules.10 Cancer and immune cells exchange
vesicles in the proximity of each other, and the concentration
level of vesicles recorded at the immune cell can be readily
used to estimate their distance to the cancer cell; see the
sketch in Fig. 6 and model details in [75].11 However, the
concentration level’s dependence on the distance parameter
hinders the derivation of a closed-form expression for the
inverse relation, i.e., distance versus concentration of vesicles.12

Resolving these intricate dependencies, a trained NN can model
the relation between the number of induced vesicle releases
by the immune cell and its distance to the tumor cell.

To model the environment, we utilize the code provided by
the authors in [75], which calculates the number of released
vesicles by the immune cell; see the various curves plotted
over time and for different distances in Fig. 6(a). We first
extract two features from the raw data to train the NN: (i)
The peak amplitude of the slope of the received vesicles;
and (ii) the time location of the peak; see the corresponding
slope curves in the embedded plot in Fig. 6(a), and the two
features in Fig. 6(b). We implemented in Matlab a feedforward
NN comprised of a single-layer and two nodes, using the
hyperparameters listed in appendix, Table IV.13 As depicted in
Fig. 6(c), the NN accurately estimates the distance to the tumor
cell in the range of 2 to 10 µm with a relative error of 3.3%.
In medical applications, the estimated distance can trigger the
release of drugs from engineered immune cells when they are
close enough for effective treatment; refer to the proposed
methodologies in [39, Section V].

5) Concluding Remarks: The use of NNs for MC channel
estimation has mostly focused on feedforward NN and CNN
architectures. Feedforward NNs are used to estimate specific
parameters in the channel, and CNN architectures are adopted
for the more ambitious goal of estimating the CIR. This subject
still requires further development of NNs to target more realistic
scenarios. Particularly in IoBNT contexts, both short-range
channels, such as cell-to-cell, and long-range channels, like

10See further details on cell-to-cell communications in appendix, Section H.
11We provide access to the evaluation of the number of vesicles based on

the distance and time in the dataset in [15].
12See the position-related terms rD and rT in [75, Eqs. (21) to (24)].
13We provide the distance estimator code at https://github.com/tkn-tub/NN_

molecular_communications/tree/main/Section_III_A_distance_estimator.

https://github.com/tkn-tub/NN_molecular_communications/tree/main/Section_III_A_distance_estimator
https://github.com/tkn-tub/NN_molecular_communications/tree/main/Section_III_A_distance_estimator

8

Immune cell

Tumor cell

Vesicles

(a) Dataset

(c) Estimated distance

Neural
Network

Feature
Extraction

(b) Features

Fig. 6: Overview of the schematic and findings for calculating the distance
between cells using a feedforward NN as an estimator.

those through the human circulatory system, are lacking from
modeling with NNs.

B. Synchronization

Successful communication among nodes relies on all partic-
ipants being aware of the timing of the other entities involved;
they have to be synchronized. In many works related to
MC, synchronization is assumed to exist by default, allowing
for the separate study of receiver sensitivity to noise or
the optimization of detection parameters. Yet, in real-world
systems, the communicating nodes must explicitly synchronize
with each other to achieve successful communication. The
following sections will define the problem, summarize reported
approaches, and describe an example implementation.

1) Problem Definition for Synchronization: The problem
of symbol synchronization concerns the question of when a
symbol is considered to start at the different communication
participants. In the simplest case, i.e., one transmitter and one
receiver, the transmitter sends out the symbols, and according
to the delay produced by the MC channel, they arrive on the
receiver side. It is the receiver’s challenge to determine the
start of the transmitted symbol.

Traditionally, symbol synchronization in MC is often ad-
dressed using the maximum likelihood estimation (MLE) as
an optimal method; see [76]. Due to the high computational
requirements for implementing MLE, it is often not a viable
option for implementation in experimental MC systems. Out
of this need, low-complexity versions of MLE that rely on the
use of separate signaling molecules for data transmission and
synchronization were proposed in [76]. Additionally, based on
the use of two different signaling molecule types, the solution
in [77] creates an artificial synchronization clock by exploiting
the differences in diffusion coefficients. Due to their higher
diffusion coefficient, the synchronization signaling molecules
arrive at the receiver first and signal the start of a transmission
for the slower data signaling molecules. A blind synchronization
approach, based on MLE, was proposed in [78], where a
predefined sequence of molecules is transmitted beforehand
for MLE calibration.

In most synchronization approaches reported above, one
problem is ignored: The variability of the MC setup. The

system is assumed to be static and well-known. However,
this assumption does not hold for real-world scenarios where
transmitter-receiver distances, background flow, and the behav-
ior of signaling molecules change over time. This variability
triggers the need for synchronization to enable adaptation to the
system’s changing state. These problems, often untackled in the
current literature, are well-suited for ML-based synchronizers
because they can adapt continually to the fast-changing MC
channel.

2) Relevant Environments for Synchronization: The reported
ML-based solutions to synchronization constitute a first step
towards including more complex environments in their setup
and evaluating two different types of dynamic transmission
scenarios. In the reported implementations, two extensions to
the simple static MC channel were evaluated:
Mobile Setup: In many expected MC applications, the commu-
nication participants move around a more or less defined space
and must be able to communicate with each other from different
positions. The synchronization strategy must, therefore, be able
to adapt to a changing number of molecules being received
over time as a result of the varying CIR.
Relay Setup: Depending on the environment, the senders may
need to extend each other’s communication ranges by relaying
messages. In this case, a single receiver will likely detect
molecules sent for transmission by the last relay, together
with the interference from previous relays. Combined with the
possible mobility of communication participants, a synchronizer
must be able to synchronize reliably in dynamically changing
interference scenarios.

Still, these scenarios do not fully describe all expected
application environments of MC. Synchronization strategies
for MC must additionally consider more realistic setups like
multiple transmitters and receivers or multi-path propagation.
Here, again, the synchronization method must be able to adjust
to the resulting dynamic environments, and ML could be highly
beneficial.

3) NN Models for Synchronization: As synchronization in a
dynamic MC setup relies on continuous adaptation to an ever-
changing environment, reinforcement learning (RL), which is
based on interaction with the environment, is especially fitting.
With its ability to estimate complex mathematical models [79],
RL offers the possibility of solving the synchronization problem
in MC with little a priori knowledge.

Synchronization with the help of ML was first approached
in [80]. An RL agent was designed for a simulated mobile
MC setup of an air-based MC testbed [81]. Rewarded on the
correctness of the decoded bit, the agent learned to adjust
the decoding threshold to detect the synchronization sequence
[11001]. While the agent showed potential, the necessity
of knowing the correct bit value during training significantly
impacted the applicability of the approach in a real-world
setting. The synchronizer has also been integrated into a
relayed mobile setup consisting of a transmitter, a relay,
and a receiver, as described in [82]. The new RL agent’s
reward was based on the difference between the counted
number of molecules and the threshold set by the agent.
The synchronizer was reported to achieve a true positive
rate (TPR) of over 80% and a false positive rate (FPR) of

9

below 5% for all transmitted synchronization frames. The
results compared particularly well to the filter-based maximum
likelihood estimation (FBMLE) synchronizer [76], which
struggled to cope with the additional interference caused by
the original transmission on the link between the relay and the
receiver. In both RL-based synchronizers, a proximal policy
optimization (PPO) agent was used. Their actor and critic
networks included long short-term memory (LSTM) layers to
enable the consideration of past observations and actions in
the evaluation of the current step.

Synchronization and detection via deep neural networks
(DNNs) is implemented in [83]. Two setups, featuring a one-
dimensional CNN and a gated recurrent unit (GRU) recurrent
neural network (RNN), are evaluated for their synchronization
and decoding performance, using a padded Barker code as a
synchronization frame. The first setup uses one NN for both
synchronization and decoding, and the second uses separate
NNs for the two tasks. In the evaluation, different static signal-
to-noise ratio (SNR) scenarios are considered in an unbounded
free-diffusion channel. Both setups successfully synchronize
the transmissions at SNRs of 45 dB or higher.

While the reported results demonstrate the usability of ML
to synchronize MC systems, they only scratch the surface
of the approach’s advantages. Especially in more complex
environments that might include multi-path and multiple
transmissions simultaneously, significant benefits are expected
from employing an inherently reactive ML-based synchronizer.

4) Illustrative Code Example to Synchronize the Receiver
and Emitter Symbol Time: Following the example in [82],
we implemented an RL-based synchronizer in Matlab and
Simulink.14 For our implementation, we utilized a particle
simulation of the media modulation (MM) testbed introduced
in [84], demonstrating that the reported approach can be trans-
ferred to liquid-based closed-loop MC scenarios. In the testbed,
the traditional transmitter and receiver structure of an MC
testbed is extended by adding an eraser positioned in the loop
after the receiver and also before the transmitter. Switchable
signaling molecules [85] are used for communication in this
setup. The transmitter can turn the molecules "on"; after they
pass the receiver, the eraser turns them "off" again.

Our synchronizer follows the structure displayed in Fig. 7a.
A loop through the environment consists of: (i) Sampling
the current number of molecules (Molecule Sample Loop), (ii)
decoding the current bit value (Threshold Decoder), (iii) having
the RL agent adapt the threshold according to the observed
state and the reward, and (iv) synchronizing the sampling
offset if the synchronization frame was detected (Correlator
and Sample Time Offset Shifter blocks). The presented system
uses a PPO agent [86] with a single LSTM layer in both
the actor and critic networks. We evaluated several different
network and layer sizes and found that the agent performed best
with 128 cells per LSTM layer. Additionally, we performed
hyperparameter tuning for the actor and critic learning rates,
mini-batch size, experience horizon, entropy loss rate, discount
factor, and reward scaling factor, as described in [87]. For the

14We provide the synchronizer code at https://github.com/tkn-tub/NN_
molecular_communications/tree/main/Section_III_B_synchronizer.

(a) RL-based synchronizer [80]. (b) True positive rate, false positive
rate, and symbol time offset met-
rics [82].

Fig. 7: System model of the RL-based synchronizer and its performance.

other parameters, we found that their influence on the agent’s
performance was best left at the default parameter settings.

We produce data for our implementation with a particle
simulator of the testbed. To vary the repeating data slightly
while not distorting the simulated channel behavior too much,
additive white Gaussian noise was added to create an SNR of
30 dB, as described in [43]. The RL-based synchronizer was
then trained with a time series dataset for 245 000 5-bit-frames
in 35 000 episodes.

We evaluate our synchronizer by comparing it to the FBMLE
synchronizer [76]. Both synchronizers ran 100 times 1000 5-
bit-frames taken from the evaluation dataset. To judge the
synchronizer’s accuracy in detecting the transmitted synchro-
nization frame [11001], we evaluate the TPR, the FPR, and
the symbol time offset with regard to the synchronization
frames for both synchronizers. The results in Fig. 7b reveal
that the RL-based synchronizer achieves a higher TPR than the
FBMLE synchronizer. At the same time, it also detects more
synchronization frames wrong, which causes it to have a higher
FPR than the FBMLE approach. Taking both detection rates
together, the RL-based synchronizer performs better. Regarding
the absolute value of the symbol time offset, both synchronizers
accurately detect the symbol’s start.

5) Concluding Remarks: The reported solutions show the
potential of using ML-based approaches for synchronization in
MC. Their ability to adapt to the highly dynamic environments
of MC channels allows smart synchronizers to outperform
other synchronization approaches in real-world settings. While
existing solutions employ only RL approaches and RNN
structures, research integrating different network structures and
attention models is rife with opportunities. As we integrate MC
into the HCS for precision medicine applications, ML-based
approaches offer the next step in synchronizing the workflow
of different parts of the application within the ever-changing
environment of the human body.

C. Detectors

This section examines NN architectures used for information
decoding at the receiver nodes, which is the most studied

https://github.com/tkn-tub/NN_molecular_communications/tree/main/Section_III_B_synchronizer
https://github.com/tkn-tub/NN_molecular_communications/tree/main/Section_III_B_synchronizer

10

topic in the literature. A key benefit of NNs is their ability
as universal approximators, enabling adaptable tuning of
decoder parameters in unknown environments. In the form
of Occam’s razor, NN models are conceived to operate by
learning the minimum possible MC parameters of the CIR.
Architectures using feedforward NN, RNN, and CNN, as well
as incorporating attention models, are combined to learn from
past and future samples when decoding the current symbol.
In the following, we provide details on the detection problem
definition, environments, deployed NN architectures, and an
illustrative code example.

1) Problem Definition to Decode Incoming Symbols: Decod-
ing digital transmissions directly refers to a detection problem,
where each transmitted symbol is identified in comparison to a
given alphabet of possible symbols. Introducing our notation,
we represent the transmitted symbols as {xi}, as illustrated in
Fig. 3. These symbols are distorted and contaminated by noise
within the physical channel, yielding {yi}. Decoding aims to
retrieve the original transmission xi from the observed data
yi.15

Similarly to wireless communications, the problem of
decoding is formulated based on a probabilistic description
of the MC channel. MC channels are abstracted with the
conditional probability Pch(yk|x;H), where H refers to the
set of channel parameters. Having a known probability density
function for the transmitted symbols, denoted as PX(x), the
optimal estimation of the emitted symbol follows the maximum
a posteriori (MAP) principle as [10, Eq. (2)]

xk = argmax
x

Pch(yk|x;H)× PX(x), (1)

which requires the a priori knowledge of both the end-to-end
channel model, i.e., Pch(yk|x;H), and the set of parameters
H to decode sequence yk.

Solving Eq. (1) is typically infeasible due to the unknown
distribution of Pch(yk|x;H) and its parameters H . For instance,
time-variant channels, such as those found in drift fluidic
environments of human vessels, make it challenging to conceive
an estimator based on the formulation in (1). Furthermore, the
problem becomes more complex in experimental testbeds, as
the end-to-end channel model also encompasses the particular
geometry of emitter and receiver, which is infeasible to detail
in practice. Tackling these impediments, data-driven methods
using NN models are reported to learn the channel probability
distribution, thereby sidestepping the prior knowledge of the
end-to-end MC channel model as a requisite.

Decoding may also require determining the optimal detection
thresholds (λi) for concentration shift keying (CSK) transmis-
sions, which is a second problem formulation stated in the
literature; see [88, Eq. (26)]. For optimal performance, the λi’s
must be adjusted to the MC channel parameters, such as the
distance between emitter and receiver, and the emission pattern.
Evaluating all these parameters is not a trivial problem, and a
closed-form expression of the optimal λi does not exist, see,
for instance, the formulation in [88, Eq. (13)] for the simplest

15Within this section, we assume that emitter and receiver are already
synchronized.

case of a zero-bit memory receiver. Following the threshold-
based detection mode, this second problem formulation is
stated to find the optimal set of threshold values to maximize
performance, e.g., minimize the BER metric, as follows (see
[88, Eq. (26)])

λi = argmin
λ

BER, (2)

which is also solved through NN models due to the lack of
suitable closed-form expressions.

2) Environments for NN Detectors: NN models as detectors
are trained in MC free diffusion environments, and the
literature introduces multiple instances of these geometries.
The training sequence is constructed in MC channels where the
emitter follows a point transmitter and the receiver a spherical
absorbing geometry as in [89], [90], [91] or a ligand receptor
setup as in [92], [93]. More complex environments follow
multi-hop links as in [94], 5× 5 MIMO channels with ligand
receptors in [93], and a 8 × 1 multiple-input single-output
(MISO) channel as described in [95]. The mobility of the
transmitters and receivers is also modeled in [96], [97], [98],
[99] as a component that shapes the receiver sequence.

The randomness of the MC channels is primarily modeled
using the Poisson distribution, as in [10], [88], [89], [96],
[97], [100], [101], and it is less frequently modeled with the
Gaussian distribution as in [95], [102]. More realistic MC
models also incorporate the degradation of molecules due to
chemical reactions, as evaluated in [90], [96], [97].

Training sequences are also recorded from experimental
testbeds in vessel-like channels where binary emissions are
performed with acid and base signals in water in [10], [11],
[102], [103], [104], [105], and using magnetic nanoparticles in
[106], [107]. Pulses for binary transmissions are also shaped
using E. Coli bacteria as generators, as reported in the in vivo
testbed in [108], [109]. E. Coli bacteria are stimulated with
light to release protons and increase the medium’s pH level.
A pH sensor is used to record the pH level, serving as the
receiver [108]. As another example, binary transmission is
also performed with the release of flagellated bacteria, which
are guided by a magnetic field towards a spherical receiver,
as described in [109]. The receiver, which was previously
filled with luminescent non-motile bacteria, starts to collect
the quorum sensing (QS) molecules released by the arriving
ones and produce light in response. The observed intensity
and the number of collected bacteria are used to decode the
transmitted sequence later.

To summarize, the communication methods outlined above
utilize pulse-based modulation techniques, i.e., on-off keying
(OOK); refer to the Modulation column in appendix, Table II.
The one bits are encoded with the number of released molecules
or bacteria, and the zero bits are encoded by their absence.
Additionally, emissions occur with bit durations in the millisec-
ond (ms) range and the channel noise varies significantly from
a considerable level (SNR = 0dB) to a nearly negligible one
(SNR = 60dB).

3) NN Architectures to Detect Incoming Symbols: Literature
presents various NN network architectures used as detectors,
primarily aimed at dynamically learning the MC channel param-
eters. Examples include feedforward NNs, a general-purpose

11

network that takes slight advantage of a priori knowledge, such
as channel memory. CNN architectures are also reported, which
are more robust to channel delays. Moreover, the bidirectional
recurrent neural network (BiRNN) architecture, which is more
advantageous concerning the ISI in MC channels, is also
discussed in the literature. This architecture utilizes past and
future samples to decode the current symbol, aiming to recover
knowledge from the channel’s ISI. Additionally, more recently,
popular attention models (see [110]) have been incorporated
into the architecture to learn dependencies in the received
sequence over more extended periods.

These architectures are reported to perform detection either
on a symbol-by-symbol basis or in a sequence fashion. Symbol-
by-symbol is the simplest one, where the NN is trained with
samples corresponding to a single symbol only, like in [88],
[91], [92], [100], [103], [111]. More robustly, in the sequence
detection mode, the NN is trained with several symbols, where
detection of the current symbol develops from observing past
and future ones, like in [88], [105], [111]. The architectures
that follow these two approaches, as developed in the literature,
are described next, and a detailed summary of their achieved
performance is provided in the appendix, Table II.

a) Symbol-by-symbol detection mode: In the symbol-
by-symbol detection mode, feedforward NNs are employed
to solve the MAP formulation in (1); see [90], [91], [92],
[96], [103], [108], [109], [111], [112] and to find the optimal
decoding threshold, as in Eq. (2); see [88], [100]. RNNs and
CNNs are also reported to solve the MAP formulation as
described in [108] and [95], respectively. Symbol-by-symbol
detectors are also trained more efficiently using distinctive
features from the input sequence. Features are evaluated based
on the concentration difference of received molecules [10],
[90], [96], [103], [108] or by taking the coefficients of a fitted
polynomial curve to the incoming symbol, see [108]. Other
examples extract features from the received sequence using
one [103], [108], [109] and three [106], [107] hidden layers
CNN architectures.

b) Sequence detection mode: The reported NN architec-
tures are more diverse in the sequence detection mode. Reported
methods not only develop feedforward NNs models [88], [100],
but also CNNs [93], RNNs encompassing LSTM cells [93],
[103], and BiRNNs [10]. Following the feedforward NN
architecture, the authors in [88] develop a cascade connection
as threshold decoders aimed at solving the decoding problem
in (2). As depicted in Fig. 8a, decoding the current bit (bk)
accounts for the previous decoded ones (bk−1 and bk−2). In
this way, the NN inherently learns the impact of ISI in the MC
channel.

The long-term dependencies in the input sequence are more
efficiently learned using LSTM cells within RNN architectures,
as described in [10], [103].16 The schematic of these decoders
is depicted in Fig. 8b, where three layers are connected in
cascade, each layer is of length 40 and trained with 120-bit
sequences; see [103, Fig. 1 b)]. Besides, using LSTM networks,
bidirectional architectures can be more effectively deployed to

16The major advantage of LSTM over RNN is avoiding the vanishing
gradient problem, allowing to learn longer data dependencies; see details in
appendix, Fig. 15.

exploit the correlation of past and future samples for decoding;
see [103, Fig. 1 c)]. As past emissions are the source of ISI,
their knowledge can be used to cancel out their impact in the
current detection. Meanwhile, as the current emission leaks into
the next ones, future samples also carry helpful information to
decode the current one. Using the available input information
of past and future samples, the implemented BiRNN model in
[103], [111] reduces the impact of ISI and is also reported to
be more computationally efficient than the Viterbi decoder for
long memory channels.

The above BiRNN architecture is further enhanced by adding
a learning mechanism that merges the forward and backward
pathways, as reported in [105, Fig. 1b]. As depicted in Fig. 8c,
a feedforward NN adjusts the coefficients of the weighted sum
for the merging layer. The model is trained using the Adam
optimization algorithm (see [113]) and reports a lower BER
(one order of magnitude lower) compared to detectors utilizing
feedforward NNs or CNN architectures.

The above architectures can also be integrated into the
sliding window architecture to further improve performance;
see the schematic in Fig. 8d. Three detection units decode
overlapped symbols within a sliding window, aiming to find
larger correlation lags within the input sequence. For instance,
in deciding the bit sequence within the symbol y3 in Fig. 8d,
not only the neighbor samples y2 and y4 are processed (within
the Dectection Unit 2) but also y1 and y5 (within the detection
units 1 and 3, respectively). In this way, the Merge Layer
block in Fig. 8d is fed with a more extensive sequence. As
reported in the literature, the detection units are implemented
using BiRNNs and a Merge Layer block, which calculates the
average of the RNNs outputs; see [10, Eq. (10)].

c) Attention models in the loop: There is an increasing
reference to attention models aiming to enhance the learning
capabilities of NN architectures in MC channels; see recent
examples in [94], [98], [99], [102], [114]. As their main feature,
attention models estimate the relevance of data within the input
sequence, which enhances the decoding phase later; see further
details in the appendix, Section C. Although the previous
architectures, such as BiRNN, inherently include this feature,
they are typically limited to small-range dependencies, while
attention models achieve more extensive ranges within the
input sequence; see [115].

The literature in the MC field reports the implementation
of various architectures based on Transformers (see appendix,
Fig. 17). Seeking to reduce complexity, the encoder component
of the Transformer is implemented with a single self-attention
unit, and the decoder component comprises only the NN unit,
as described in [94], [99, Fig. 2]. Additionally, the authors
in [114] further research the reduction of the Transformer
hyperparameters (such as encoding vector length and input
size) and components, resulting in a more compact architecture
while maintaining standard operation. As an alternative variant,
the encoder component of the Transformer can be replaced with
a three-layer CNN module, which is connected to the input of
the decoder component. Moreover, in search of a more robust
architecture, the sliding window scheme in Fig. 8d is developed
by implementing the Detection Units with a Transformer, as
in [99].

12

𝑦𝑘−1

NN

bit𝑘−2

NN

bit𝑘−1

NN

bit𝑘

𝐶
𝑡

𝑡

⋯

𝑦𝑘−2 𝑦𝑘

(a) Cascade connection of feedforward NNs.

𝑦𝑘+1𝑦𝑘 𝑦𝑘+𝑗

RNN Layer 1

…

Softmax
layer

Bit sequence

𝑡

⋯

RNN Layer 2

RNN Layer 3

𝐶(𝑡)

(b) Cascade connection of RNNs.

Forward
component

Backward
component

Merge Layer

NN

𝑡

⋯

𝐶(𝑡)

BiLSTM Layer 1

BiLSTM Layer 2

𝑦𝑘+1𝑦𝑘 𝑦𝑘+𝑗

…

Bit sequence

Softmax
layer

(c) Cascade connection of BiRNNs.

𝐶
𝑡

𝑡

Bi
t s

eq
ue

nc
e

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 ⋯

Detection Unit 3

Detection Unit 2

Detection Unit 1

⋯

M
er

ge
 L

ay
er

(d) Sliding window detector.

Fig. 8: Feedforward and recurrent NN architectures as sequence decoders. The RNN modules implement LSTM cells; see [10], [103].

4) Illustrative Code Example for Symbol Detection: This
section demonstrates the performance of the sliding BiRNN
architecture using samples from the experimental testbed
illustrated in Fig. 9a. The testbed sets a communication link
over the distance of 1m between the emitter sprayer and the
receiver sensor. Using ethanol molecules as carriers, OOK
emissions are performed with binary pulses of Tb = 4 s
duration each; see further details in [81, Sec. II]. We use
the recorded received pulse as the expected sequence for the
emissions of ones, and we modeled the randomness of the
received sequence with the Poisson channel model; see [38, Eq.
(87)]. Besides, we programmatically added noise molecules of
concentration 10mg/L yielding an SNR of 27.5 dB. At the
receiver, the observed sequence of pulses is sampled using the
synchronization signal, which is assumed to be known.17

Due to channel memory, consecutive emissions result in ISI,
which hinders the use of low-complexity schemes, such as the
threshold decoder. For the decoder, we train the sliding BiRNN
scheme reported in [10], [104] as a sequence detector. With the
measured pulse duration from the experimental testbed (28.6 s
in total), we evaluate the channel memory as L = ⌊ 28.6 s

Tb
⌋ = 7,

which also defines the number of hidden states of the BiRNN
model.18 For training, we use the Adam algorithm [113] with
a learning rate of 10−3, along with 10 epochs of a batch size
of 10, and with the emission of 105 bits.

The training loss decreases in value with increasing epochs
and bit duration, as illustrated in Fig. 9b. Specifically, we
observe stability after the second epoch, and losses decrease as
the bit duration increases. The resulting BER falls within the
range 10−2 to 2 × 10−6, where the higher errors occur in the
lower bit duration range of the plot (Tb < 2 s). Besides, as the
peak of received pulses lasts for around 4 s, the resulting BER

17The dataset for the sequence of pulses is accessible in [116].
18The number of hidden states in the BiRNN corresponds with the amount

of information to be retained; which in this case is not larger than the channel
memory.

dramatically decreases when transmissions are performed with
a bit duration of 5 s or longer, i.e., the impact of ISI becomes
negligible.

5) Concluding Remarks: NN models have proven to suc-
cessfully cope with the challenging nature of MC channels
as detectors, achieving BERs of less than 10−4 in testbed
environments, see a detailed summary in appendix, Table II.
The variety of environments and NN architectures is rich in
the literature: Feedforward, recurrent neural networks, and
attention models have been researched to decode sequences.
These architectures have been tested in diffusion and drift
channels, using molecules and bacteria as information carriers.
However, upon reviewing the literature, little is found regarding
realistic environments for precision medicine applications; the
considered MC channels have mostly simplified geometries,
such as free diffusion or point-to-point links, in testbeds. In
future work, diffusion models can be extended to target cell-
to-cell communications, including extracellular and intracel-
lular channel models. Mobility models can be enhanced to
replicate the complex communication environment in human
vessels, presenting valuable opportunities for further NN-
model research. Besides, the integration of these decoders with
MC channel models, as introduced in the previous section,
and noise suppressors, as in [117] will lead to improved
performance. Although a balance between the complexity
of a larger architecture, resulting from this integration, and
performance should be the focus for further research.

D. Autoencoders

End-to-end learning using autoencoder (AEC) is an innova-
tive approach in MC, which, on the one hand, mitigates the
challenges associated with molecular channel modeling, and
on the other hand, optimizes the entire MC system, including
both the transmitter and receiver. Traditional MC systems
typically divide the transceiver chain into distinct blocks such as
modulation, channel estimation, synchronization, equalization,

13

(a) Experimental testbed; adapted from [82]. (b) Training loss.

1 2 3 4 5 6
10

-6

10
-4

10
-2

(c) Resulting BER.

Fig. 9: Experimental testbed used for MC and measurements, as developed in [81].

M
o
le

c
u
la

r
C

h
a
n
n
e
l

E
n
c
o
d
e
r

H
id

d
e
n
 L

a
ye

rs

D
e
c
o
d
e
r

H
id

d
e
n
 L

a
ye

rs

In
p
u
t

B
it
 S

e
q
u
e
n
c
e

E
s
ti
m

a
te

d
 B

it
 S

e
q
u
e
n
c
e

T
ra

n
s
m

it
te

d
 S

ig
n
a
l

R
e
c
e
iv

e
d
 S

ig
n
a
l

Transmitter

L
o
s
s
 C

a
lc

u
la

ti
o
n

Updating Trainable Parameters

Receiver

Fig. 10: AEC architecture for end-to-end learning of MC.

and demodulation. However, greater advantages can be achieved
from a design that integrates the entire communication system
(end-to-end), and AEC serves as the prime architecture to
optimize the entire process.

An AEC consists of two NNs, known as the encoder
and decoder, which are trained together in an unsupervised
fashion. The encoder and decoder replace the transmitter and
receiver parts of the communication system, and the entire
communication pathway is optimized simultaneously in an end-
to-end manner [13, Sec. 1.3.2 pp. 11]. This section summarizes
the reported literature on AEC for MC, defines the end-to-
end learning problem in MC, describes the deployed NN
architectures, and finally, provides an illustrative code example.

1) Problem Definition for Autoencoders: The encoder and
the decoder parts of the AEC are implemented as DNNs,
with trainable parameters; see a representation in Fig. 10. The
problem is defined as finding these trainable parameters so that
the transmitted information from the emitter is restored at the
receiver. Within the MC environment, the encoder generates an
optimal number of emitted molecules (referred to as symbol
generation or constellation design), ensuring that it can be
accurately detected at the receiver side with minimal error,
despite the stochastic nature and variations of the molecular
channel. Therefore, the ultimate goal is to train the AEC in
such a way as to minimize a desired loss function; see the
corresponding block (rightmost) in Fig. 10.

As for the loss function, an AEC adopts the cross-entropy as
an effective metric for the end-to-end learning of systems. This
metric measures the difference between the predicted and the
actual probability distributions of the transmitted information.
For symbol-based transmission, where data is encoded as
individual symbols from a predefined alphabet, categorical

cross-entropy is appropriate [118]. In contrast, binary cross-
entropy is more effective for block-based transmission, which
processes data in the form of larger binary sequences, as
reported in [119].

2) Environments for Autoencoders: Advection-diffusion
channels are the main type of MC channel considered in
the literature for studying AECs, where a trained point-
transmitter encodes information bits into the concentration of
molecules and manages the release of molecules accordingly.
The molecules are detected by a passive receiver, which decodes
the signal and extracts the information using its trained NN,
as reported in [14], [119], [120].

3) NN Models for Autoencoders: The AEC model must
first undergo training before being deployed in a practical MC
system. The literature presents several approaches for training
AECs to facilitate end-to-end learning in MC environments,
including:

a) Model-assumed training: Model-assumed training re-
lies on full knowledge of the CIR in MC. Both transmitter and
receiver are trained jointly using the estimated CIR from the
testbed, which is modeled as a convolutional layer with fixed
and non-trainable parameters placed between the encoder and
the decoder parts of the AEC. An example is given in [14],
where the CIR is obtained from an experimental salinity-based
testbed as reported in [121]. This approach assumes that if
the model from the testbed remains stable during runtime,
with minimal variations, the transmitter will identify effective
strategies for encoding input during training. Then, in the online
phase, when actual transmission occurs in the experimental
system, the receiver can be retrained to adapt to the slightly
changed channel conditions. At the same time, the transmitter
will maintain its previously established strategies. Thus, if the
assumed model in the training phase is sufficiently accurate,
the trained AEC will also work perfectly for transmission over
the experimental channel.

Two CNNs are employed as encoder and decoder. The
encoder consists of three convolutional layers, with 16, 32, and
one filter respectively, each using a kernel size of 3 elements.
Each convolutional layer is followed by batch normalization
and an rectified linear unit (ReLU) activation function. A final
normalization layer ensures a controlled number of transmitted
molecules. The decoder begins with a convolutional layer
featuring 16 filters and a kernel size proportional to the channel
memory, effectively mitigating ISI. This is followed by an
adaptive average pooling layer, a fully connected linear layer,
and another convolutional layer, all of which, except the last

14

(a) Experimental testbed for salinity-based
communication on a microfluidic chip.

(b) Training loss for the AEC.

0 2 4 6 8 10
10

-6

10
-4

10
-2

AEC Ideal

AEC

(c) Resulting BER for the AEC when symbol duration is 300ms.

Fig. 11: Experimental testbed developed in [121] and the results of the trained AEC in [119].

layer, incorporate batch normalization and ReLU activation.
The final layer employs a sigmoid activation function. Having
a differentiable channel model, the AEC is trained using the
backpropagation technique (see appendix, Sections E and F).

b) Training via data-driven channel identification: The
AEC can also be trained on a data-driven molecular channel
representation, as proposed in [119]. The proposed training
procedure involves three steps to (i) model the MC channel
through an RNN, (ii) train the emitter and receiver components
of the AEC, and (iii) fine-tune the trained model. A data-
driven ML method is used in the first step to obtain a
differentiable molecular channel representation. A specific type
of linear regression, a so-called auto-regressive exogenous
(ARX) method, is utilized as a promising alternative to the
channel representation using NNs. This method models the
channel function as an infinite impulse response (IIR) filter
implemented by a trainable RNN, which is differentiable.
In the second step, both the encoder and decoder parts of
the AEC are jointly trained using backpropagation, while
the RNN representing the channel remains fixed. Lastly, the
AEC undergoes fine-tuning to address mismatches between
the approximation of the channel model and the real model.
The decoder parameters are adjusted using transmissions over
the real channel model, while the encoder parameters remain
unchanged.

c) Model-free training: In this mode, the AEC is trained
without relying on any model (analytic or data-driven). To
illustrate the methodology, let’s consider the deep reinforcement
learning (DRL) system with fully connected NNs, as proposed
in [118], where information is transmitted through a stochastic,
unknown channel. During each training iteration, the decoder
is optimized while keeping the encoder parameters fixed,
followed by the optimization of the encoder with the decoder
parameters fixed. This iterative process enhances the overall
system performance. Updating the decoder parameters is
straightforward as it is a supervised task, and does not require
backpropagation through the channel. However, updating the
encoder relies on backpropagation through the channel, which
requires a channel model to be available. To circumvent this
challenge, the authors in [118] employ an RL model, treating
the transmitter as an agent that receives the loss calculated at
the receiver via an ideal separate feedback channel.

d) Transmitter-exclusive training: Transmitter-exclusive
approaches perform the training on the transmitter side only,
This training mode is well-suited for the IoBNT scenario,
where the transmitter is usually easily accessible, as it is
located outside the body, and the receiver is of low complexity
and located inside, as seen in [120], [122]. The proposed
asymmetric autoencoder (AAEC) in [120], [122] employs a
CNN as the encoder for binary symbol transmission with
adjustable transmission concentration levels, along with a
simple threshold detector as the decoder, which is implemented
by a single convolutional layer for training purposes. This
approach seeks to mitigate the impact of residual molecules
from prior transmissions by encoding symbols to counteract
lingering interference, thereby reducing ISI.

Moreover, a DNN-based approach for optimizing the number
of molecules released by each transmitter in a mobile molecular
MIMO system is presented in [123]. While AEC is not
utilized in the proposed structure, this DNN-based method
can be integrated into transmitter-exclusive training for MC.
The optimization is performed based on different transmitter-
receiver distances to minimize the inter-link interference (ILI),
thereby reducing the BER. The DNN is trained with constraints
on the molecule release count, ensuring compliance with
lower and upper bounds. The results demonstrate that the
DNN-based approach outperforms the genetic algorithm (GA)-
based approach as it achieves a lower average BER and a
significantly reduced computation time. Additionally, the DNN-
based optimization achieves a BER comparable to that of an
exhaustive search while significantly reducing computational
time.

Adaptive modulation and coding are other critical tasks
to dynamically adjust transmission parameters in response to
changing channel conditions. Adaptive modulation is essential
for maintaining reliable and efficient communication in MC,
where factors like diffusion and advection highly influence
the channel. In this context, an RL-module has been proposed
to optimize real-time transmission parameters, such as the
modulation order and symbol duration, [124]. A gateway device
connected to the RL model estimates the channel conditions
based on heart rate data by leveraging a digital twin model
of the human circulatory system. This solution improves the
achievable raw bit rate and error performance. Additionally,
to address the restricted capabilities at the nanoscale, this

15

architecture alleviates the computational burden on resource-
limited nanodevices by offloading complexity to an external
gateway.

4) Illustrative Example for Autoencoders: Here, we illustrate
the performance of the AEC proposed in [119] for the salinity-
based testbed in [121]. In this testbed, information bits are
encoded as varying salinity levels, which are subsequently
detected through corresponding electrical conductivity levels in
water. Fig. 11a shows the overall setup for the testbed, where
the distance from the release of the impulsive excitation is
set to 3.6 cm. During the channel identification step, we use
real measurements from salinity-based communication in a
microfluidic channel to train an RNN.19

The AEC comprises three convolutional layers, each followed
by a batch normalization and a non-linear ReLU activation
function at the encoder side. The decoder consists of a
convolutional layer that mimics a linear equalizer, aiming to
reduce ISI and noise. Two pooling layers (average and max) and
a linear fully connected layer are included to downsample the
features and match the size of the transmitted bit sequence. The
final layer employs a sigmoid activation function to produce
outputs in the range of zero to one, which is suitable for
soft-input decoding. Training is conducted via simulations
and over 2000 epochs, each with a batch size of 40 and a
transmission sequence of 100 bit; see the evolution in Fig. 11b.
Each emission consists of binary pulses at the levels the
encoder determines, with each pulse lasting 500ms. The Adam
algorithm is used with a learning rate of 0.009 and a learning
rate decay of 0.99 applied every 1000 iterations. As a result,
the obtained BER ranges from 9×10−2 to 9×10−6 when the
SNR is in the interval 0 to 10 dB, which is also rather similar
to the ideal case of full MC channel knowledge; labeled as
AEC Ideal in Fig. 11c.

5) Concluding Remarks: AEC can inherently enhance the
performance of MC by jointly optimizing the transmitter
and receiver operations. Besides, this architecture effectively
addresses the complexities of dynamic and stochastic MC
channels. However, several practical challenges remain unre-
solved. For example, real-world molecular channels are time-
varying, requiring continuous fine-tuning of NN parameters
to adapt to unseen conditions. How to efficiently update the
transmitter parameters during deployment without incurring
high computational or energy costs remains an open question.
Additionally, deploying resource-intensive NNs on small, bio-
compatible, and resource-constrained devices poses significant
technical hurdles.

E. Higher Layers

So far, most of the summarized works in this section
focus on point-to-point communication links. Fewer studies
address higher layers, such as resource allocation (MAC layer)
and localization (application layer). This section provides
an overview of the reported research on integrating NN
architectures into the higher layers of IoBNT networks.

19We provide the autoencoder code at https://github.com/tkn-tub/NN_
molecular_communications/tree/main/Section_III_D_autoencoders

1) Resource Allocation: Resource allocation problems arise
when multiple users attempt to communicate using the same
resource. Such a scenario is examined in free diffusion
channels in [125], which investigates a transmission policy
that minimizes the BER. The scenario considers an arbitrary
number of emitters placed at arbitrary locations in a free-
diffusion channel, and restricted to a maximum number of
released molecules.

The transmission policy is devised by a feedforward NN
with three hidden layers, each containing twice the number
of neurons as there are transmitters, except for the first layer,
which has two additional neurons. The NN is trained using
the distances from the emitters to the receiver as inputs, and
the model outputs the number of molecules released by each
transmitter. As activation functions, the first layer uses the
hyperbolic tangent sigmoid, the “purelin” (linear) in the second
hidden layer, and the ReLU for the third hidden layer. This
architecture achieves a BER on the order of magnitude 10−3

with three to five emitters positioned between 12.5 to 14.5 µm
from the receiver. The network operates on a symbol time
of 100ms, a total of 6 × 104 realeased molecules and a noisy
source modeled with the a Gaussian distribution of variance
1000 units.

2) Localization: Localizing diseases and self-localizing
nanosensors are two of the most expected applications of the
IoBNT networks in precision medicine. Scenarios have been
developed within the dynamic environment of blood vessels
as in [12], [126], [127], [128], [129], [130] and in the less
restrictive case of free diffusion environments as in [131].

Within the blood vessels, reported work assumes that
the blood flow passively drives existing nanosensors within
the vessels. In the HCS environment, the self-localization
capabilities of nanosensors are particularly challenging to
develop due to the absence of a reference system. A reference
system for self-localizing nanosensors within the bloodstream
can be anchored to the concentration level of nanosensors
and their traveling time, as proposed in [126]. This work
assumes that nanosensors contain an internal counter and an
external device capable of resetting the internal counter of the
nanosensor to zero when it travels through the heart. Then, as
the nanosensor’s traveling time increases as it flows through
the blood vessels, the recorded traveling time per nanosensor
can be used to distinguish shorter (central body) from longer
(lower body) paths, thereby self-distinguishing the body region.
Additionally, as the concentration of nanosensors is dependent
on the particular vessel path (see the Markov model formulation
in [127], [132]), it can be used as a second metric for self-
localization. As such, a feed-forward NN can be trained to
distinguish the traveling path of nanosensors based on these
two metrics, i.e., traveling time and concentration level, as
proposed in [12]. The NN is trained on data generated by
the BloodVoyagerS (BVS) simulator, achieving approximately
85% positive predictions.20

Localization is also based on establishing a communication
link among nanonodes, as developed in [129]. This research

20The BVS has been a popular option for data generation for localization;
see [133], [134]. Access to the documented data generated with BVS and its
processing is given in https://github.com/jorge-torresgomez/BVS_data.

https://github.com/tkn-tub/NN_molecular_communications/tree/main/Section_III_D_autoencoders
https://github.com/tkn-tub/NN_molecular_communications/tree/main/Section_III_D_autoencoders
https://github.com/jorge-torresgomez/BVS_data

16

assumes transmitter nodes with fixed positions within the
human vessel and a receiver node, which is the intended one to
be localized. Using the Transformer architecture, the prediction
accuracy of the receiver coordinates ranges as 78 to 96%,
depending on the blood speed and the Transformer complexity.

Localization is also reported using graph neural networks
(GNNs) in [130], which relies on the modeling of the HCS as
a graph. This model is theoretically more expressive, leading
to higher accuracies than the feedforward NN approaches. It
also has the advantage of being able to generalize better to
multiple anchors and their locations without having to retrain
the NN [130].

Localization of nanonodes is also achieved in short-range
free diffusion MC links, as developed in [131] for security
applications. In a free-diffusion environment, molecules travel
in all directions, and a communication link can be eavesdropped
on just by passively recording the molecules in the surroundings.
A trained NN can detect the presence of non-intended entities
in the vicinity of the receiver by comparing the number of
received molecules with the position of the eavesdropper node.
The model is developed for a 2D free-diffusion environment
and localizes an entity with an error of less than 4 µm.

3) Data Fusion: The reported literature targets data fusion
techniques in tasks related to detecting potential abnormalities.
Applications include health-condition monitoring, environmen-
tal sensing, and the detection of toxic agents. Commonly
implemented fusion rules are the OR, AND, or MAJORITY
rules; see for instance [12, Sec. IV B]. However, these rules are
complex to apply in practice, as they require evaluating channel-
dependent parameters such as noise and interference levels,
which are typically unknown. Overcoming this impediment,
NNs are trained and deployed to effectively fuse data from
various sensor nodes, utilizing feedforward NNs in [135]
and RNN as developed by the same authors in [136]. These
two architectures are developed in free-diffusion channels,
where the achieved performance corresponds to a detection
probability larger than 0.9 and a false alarm probability of
5 × 10−2. Furthermore, the robustness of data fusion techniques
is investigated in [137], where an RL agent is trained to
optimize the observation window for collecting samples at
the fusion node. The RL agent adjusts the duration of the
time slot to ensure a detection probability within a confidence
interval and minimize noise levels. This work reports the fusion
of binary emissions from 100 nodes in free diffusion channels,
utilizing the OR rule at the fusion node.

F. Concluding Remarks and Outlook
Within the reported literature, the deployment of NNs

follows two main directions: (i) The most popular models
are feedforward NNs, and (ii) deployment focuses primarily on
point-to-point data communication. The comparative summary,
illustrated in Fig. 15, identifies these two main directions, where
we display the NNs per communication layer and MC scenario,
and the size of the bubbles refers to the number of reports in the
literature. This figure also identifies ways to research progress
towards enabling IoBNT networks, highlighting that multipoint-
to-multipoint links require additional solutions, while develop-
ments in the upper layers require more research work. Only

Feedforward
NN

RNN

BiRNN

Autoencoder

Transformer

CNN

Reinforcement Learning

D
at

a
C

o
m

m
.

Drifted channels

Open air

C
h

an
n

el

Es
ti

m
at

io
n

Sy
n

ch
.

D
at

a
Fu

si
o

n

Lo
ca

liz
at

io
n

Vessel-like
channels

Human vessels

in-vivo
bacteria colony

Ex
p

er
im

en
ta

l
Te

st
b

ed
s

C
h

an
n

el
ac

ce
ss

PHY
layer

MAC
layer

Upper
layers

Free diffusion
channels

Fig. 12: Bubble plot for the number of NN architectures per application and
environment as reported in the literature. The amount of reported research is
reflected in the size of the bubbles.

a few works address resource allocation, localization, and
disease detection, which makes this field an area for further
contributions. From this figure, we also identify potential
research opportunities across MC experimental environments;
most of the research focuses on vessel-like channels, while
less attention is given to in-vivo or open-air environments.

Furthermore, when examining the trade-off between per-
formance and complexity for the various NN architectures,
we provide a comparative summary in Fig. 13. This figure
illustrates the performance of the architectures feedforward
NN, RNN, BiRNN, and temporal convolutional neural network
(TCN), those evaluated with the BER versus the transmission
speed (bit time Tb).21 The various bit times correspond to high
and moderate ISI levels, as measured by the interference-to-
total received molecule ratio (ITR) parameter and illustrated in
Fig. 13, see [43]. This figure reveals an expected result: The
BiRNN performs similarly to the other architectures, with fewer
learnable parameters, including the coefficients and biases. As
such, the BiRNN model captures a more accurate interrelation
among samples, yielding improved decoding performance.

21In this evaluation, we developed the NN architectures following the
complexity of the BiRNN, with five LSTM cells in the forward and backward
directions to fairly cope with the channel memory. We implemented the NN
architectures as decoders of pulses recorded with the experimental testbed in
Fig. 9a (OOK emissions), as introduced in Section III-C4, and implemented
a channel memory of 5 samples. We did not implement the autoencoder
architecture since it produces amplitude shift keying (ASK)-like emissions,
which are not feasible within the experimental testbed shown in Fig. 9a. We
also avoid introducing the Transformer models due to the poor performance
we observed in simulations when implemented with the same number of
parameters as the other NN architectures, i.e., around 300 learnable coefficients
and biases. We provide open access code to the comparative analysis of the
NN architectures in https://github.com/tkn-tub/NN_molecular_communications/
tree/main/Section_III_Conclusions

https://github.com/tkn-tub/NN_molecular_communications/tree/main/Section_III_Conclusions
https://github.com/tkn-tub/NN_molecular_communications/tree/main/Section_III_Conclusions

17

Besides, this figure also displays an inferred approximation
of magnitude orders regarding the NNs’ performance and
complexity. NN architectures with hundreds of learnable
parameters are required in MC channels with low ISI, i.e.,
low-channel memory (two to five samples).

In the following, we identify various research directions
regarding the application of NNs in IoBNT networks.

1) Alternative NN Architectures: Recent literature has con-
sidered mainly feedforward NNs and RNNs for MC; see Fig. 12.
However, other architectures are attracting recent attention
within the general literature on NN: Transformers and physics-
informed architectures. Despite the examples introduced for the
Transformers in Section III-C3, they are agnostically applied
in MC channels. Attention models are reported in language
processing for joint alignment and decoding with application
to translation and text generation. This model processes time
series to capture long-term dependencies. However, in the MC
field, this architecture is still not fully configured to address
the interdependencies in the received sequence produced by
ISI. Transformer-based architectures, when applied to MC
channels, require a thorough revision to fully leverage the
effects of ISI channels in decoding the received sequence; refer
to a comparable assertion in [138].

Furthermore, NNs are still ill-suited to non-linear scenarios
(e.g., turbulent fluids) and require vast amounts of data to
converge, often with poor accuracy. Nevertheless, given that
the underlying equations governing the system are known,
physics-informed NN models arise as a promising approach.
This architecture can include turbulence models by integrating
Reynolds-averaged Navier-Stokes or Fokker-Planck equations
into the learning algorithm; refer to examples in this area in
[139], [140]. A suitable balance of accuracy and computational
complexity can be attained through physics-informed NNs, a
topic for additional investigation.

2) Hyperparameter Tunning: Avoiding the manual selection
of the NN hyperparameters, a group of techniques called
hyperparameter optimization performs the automatic tuning of
these; see [141]. Yet, when applying NNs to MC problems,
there are no reported methods for optimizing hyperparameters
such as the number of nodes, hidden layers, or the learning rate.
Reported methods in the literature just selected these without
further discussion; the impact of such hyperparameters and
their optimization (see appendix, Section G) remains an open
topic.

3) Channel Access in MC-based IoBNT Networks: Channel
access strategies face the problem of the unknown number of
nodes in the link, which is the case in nanonetwork formation
in MC scenarios. Coordination of the nodes is pivotal to
treating potential diseases effectively. Nanosensors are expected
to combine their actions to simultaneously release the right
amount of drugs at potential targets, such as cancer cells [142].
Protocols have been designed to develop these applications,
as seen in [143]; however, the dynamics of MC channels in
fluidic environments hinder their straightforward deployment.
NN-based strategies developed in computer networks for node
clustering, such as those in [144], can be repurposed in MC
environments for nanosensors cluster formation as well.

4) Leveraging Cognitive Radio Concepts: Cognitive radio
is a thoroughly explored subject in wireless environments,
primarily focusing on creating intelligent communication
systems that adjust their transmission methods, see [145]
for details. This paradigm seamlessly integrates into MC
environments; research introduced in Section III already leans
toward this integration but is far from being complete. Further
work on cross-layer designs and cooperative communication
strategies is needed, to mention two fields where MC-schemes
would benefit. Furthermore, from a system-level perspective, a
cognitive unit can adapt its sensing and transmission strategies
for goal-oriented applications, such as remotely mimicking a
bioprocess. For example, in the development of digital twins
at the cellular scale (see some developments in [146]), the
interior of living cells and the interactions among them need to
be reproduced, a challenge that inevitably demands a cognitive
engine to integrate all levels of MC schemes.

IV. ENABLING BIOCOMPUTING IN IOBNT NETWORKS

One particular challenge in nanoscale computing is the devel-
opment of biocompatible nanoprocessing nodes.22 Nanonodes
are projected to perform the needed computation and host
smart processing modules with biocompatible premises, as
needed in IoBNT networks; see [27]. Bio-inspired micro/nano
computer design is a relatively young research field; therefore,
the literature reflects varying readiness levels of individual
concepts, which we summarize in this section. Developments
in this area lay the foundation to support the intelligent
capabilities of the nanocomponents of the IoBNT networks.
This section summarizes the most recent trends in technological
development and identifies one of the most promising research
areas for further advancements.

A. Trends in Biocomputing

Researchers have explored various approaches to enhance the
intelligence of nanodevices and improve their computational
capabilities, adhering to biocompatible premises. Adders,
multipliers, and non-linear functions are the fundamental
building blocks for developing NN components; see appendix,
Fig. 15. Conceiving these arithmetic operations at the nanoscale
will enable the integration of the aforementioned NN-based
transmission and reception architectures within the operational
nanodevices.

Already published solutions are developed along three
main directions: (i) Extend the biological role of DNA-based
chemical reactions within the cell for computing; see the
evolution in [56, Fig. 2a] and [55, Fig. 1], (ii) develop
chemical reaction networks (CRN) as in [149], and (iii) build
microfluidic chips for computing as in [150]. Towards the
development of NN models, a major trend in the literature
is the use of engineered gene regulatory networks (GRNs)
(see Section IV-C1) due to their programmability for complex
calculations; see [55, Sec. 4.3]. Primarily developed within
the communication-engineering community, a second trend

22Although this is a hardware-like requisite, much focus is also on new
theoretical developments of computability, see [147], [148].

18

Input Layer (1 C)

Conv 1D_1 (6 C)

Layer Norm_1 (6 C)

Layer Dropout_1 (6 C)

Conv 1D_2 (6 C)

Layer Norm_2 (6 C)

ReLU (6 C)

Layer Dropout_2 (6 C)

Add (6 C)

Conv_skip (6 C)

Fully Connected

(2 C)

Softmax (2 C)

Classification Output (2C)

TCN (314 parameters)

Input Layer (1 C)

RNN (8 C)

Fully Connected (2 C)

Softmax (2 C)

Classification Output (2 C)

RNN (338 parameters)

Feedforward NN

(306 parameters)

Input Layer (5 C)

Hidden Layer (38 C)

ReLU (38 C)

Output Layer (2 C)

Classification Output (2 C)

Sigmoid (2 C)

Input Layer (1 C)

BiRNN (10 C)

Fully Connected (2 C)

Softmax (2 C)

Classification Output (2 C)

BiRNN (302 parameters)

ITR =
𝐴ISI

𝐴ISI + 𝐴SYM

NN Architectures

Fig. 13: Graph representation and performance of various NNs architectures with a similar number of learnable parameters (coefficients and biases). The “C”
denotes the number of input channels per layer.

involves integrating chemical reactions within microfluidic
chips, see Section IV-B2. Following these research streams,
we trace the early developments of digital logic and digital
signal processing (DSP) operations for NNs in the following
sections.

B. Biocomputing in the Digital Domain

Logic gates and registers are the constituent elements to
perform arithmetic operations in the digital domain; see [151,
Sec. 5.2.1]. The adders and multiplier blocks needed to
implement NNs can be digitally implemented as a combination
of AND, OR, and XOR gates. Following this thought, we describe
the early developments of logic and DSP operations in the
digital domain in the following sections.

1) Logic gates and NNs with CRNs: The first description of
CRNs realizing neuron components of NNs dates to the work
in [152], where a neuron was prototyped through an enzyme
reaction system.23 Subsequent work develops neurons through
the connection of logic gates, where a 2-neuron feedforward
NN is realized in [149] to perform as a classifier of black
and white images. The linear neuron operation, as shown in
appendix, Fig. 15, results from mixing encoded bit-1s and
bit-0s, analogous to acid and base compounds. The non-linear
component of the neuron is realized by thresholding with the
pH indicator. The classifier identifies 8× 8 resolution images
of handwritten digits with an accuracy larger than 95%.24

2) Digital signal processing in microfluidic chips: The
literature also reports models for DSP operations in microfluidic
channels, which can be also used for implementing NNs, see

23CRN is an abstraction of the dynamics of a system of chemical reactions
given by a finite set of differential equations; see [55, Sec. 3.1].

24The handwritten images are taken from the modified national institue of
standards and technology (MNIST) database [153].

this trend within the fifth level in [154]. A finite impulse
response (FIR) filter is modeled in [155, Sec. V] to implement
lowpass, stopband, and bandpass filtering of molecule concen-
tration levels. The impulse response (in the time domain) and
transfer function (in the frequency domain) are derived for
combining microfluidic straight channels of arbitrary length,
turns, bifurcations, and junctions, and in drifted fluids where
convection dominates diffusion. The filter coefficients are
constructed by equating the transfer function of the microfluidic
channel to a desired FIR impulse response equation. Then,
the filter coefficients are determined using the least-squares
formulation, see [155].25 In this way, a multitap microfluidic
circuit performs equivalent to a FIR filter having non-negative
coefficients; see [155, Fig. 6].

The FIR design of the microfluidic circuit can also be
extended to implement the neurons of an NN architecture.
The linear components of a neuron can be evaluated with
an FIR structure considering its coefficients as the learnable
parameters (see appendix, Fig. 15).26 The non-linear component
of the neuron, i.e., the activation function, can be implemented
through chemical reactions integrated to the microfluidic
channel. Examples are given in [157], [158], where a CRN
is attached to the output gate of a microfluidic channel, and
similarly in [159] with a bacterial colony.

Notably, DSP operations can also be implemented using
graphene biofield-effect transistors integrated with microfluidic
channels. These transistors are functionalized to detect DNA
strands flowing in liquid channels (see [160], [161]), thereby
providing an interface between the molecular and electrical

25The microfluidic channel parameters can also be equated to an equivalent
FIR block using numerical results from fluid simulators, see [156].

26Although the coefficients of the microfluidic FIR filter are non-negative,
the linear component of the neuron can be implemented after scaling the input
and the coefficients.

19

domains. Once within the electric domain, additional transistors
can be integrated to develop the DSP components of NNs such
as adders, multipliers, and non-linear functions.

C. Biocomputing in the Analog Domain

Unlike the in silico technologies, where NNs are deployed
digitally, the integration of NNs with chemical-based tech-
nologies is developed more effectively in the analog domain.
This is primarily due to the difficulties of chemically wiring
arithmetic blocks and the possibilities of engineering the already
in place analog arithmetic blocks within cells. The following
sections summarize several reported NN implementations,
which are based on biological in-vivo systems, compartment-
based models, and chemical reactions.

1) Wet Neuromorphic Computing: Computing can be re-
alized in the analog domain using the already in place
neuromorphic capabilities of biological systems [162]. For
instance, within the cell, memory and computation are inher-
ently integrated within the GRN (which refers to neuromorphic
computing). Unlike traditional von Neumann computers, where
memory and computation run separately, the integrated ca-
pabilities within the cells result in a computational platform
with lower energy consumption. The concept also extends
to offloading computation into tissues and entire organisms.
The most vivid examples are the brain organoids, where NN
modules are developed in a culture of neuron cells as in [163],
[164].

Within the cell, arithmetic can be realized in the analog
domain by engineering DNA circuits, as summarized in [55],
[165], [166]. Additionally, arithmetic can be achieved through
the assembly of different DNA tiles, as described in [167,
Sec. 4.3] and [168]. Examples include adders, multipliers,
subtractors, power-laws, and dividers realized by combining
DNA circuits, as illustrated in the early work in [169]. To a
greater extent in the literature, feedforward NNs are the focus
within the natural interaction among the network of genes that
naturally resides within the cell. For instance, NNs are identified
with genes as the computing units, transcription factors as the
stimulus, and the degree of influence of transcription factors
in the genes as the weights, see [170], [171] and the early
work in [172]. Using these analogies between DNA-chemical
components and NN functions, the potential of operating
NN structures already within the gene regulatory circuits is
extensive; as a result of mining the connection in the gene
regulatory network more than a hundred single-layer NNs have
been identified [166, Fig. 3].

The first work demonstrating the potential of DNA-based
engineering relied on the DNA strand-displacement technique,
as developed in [173].27 In this technique, neurons are realized
through the reaction of input strands and toeholds (DNA
segment) with three gates. The multiplier gates output a total
number of DNA strands in proportion to the weight, i.e., the
operation ωi × xi, where ωi is the weight and xi is the input.
The integration gate is chemically related to the output strands
from the multiplier gates in a way that a reaction product

27DNA strand displacement regulates the gene expression and is capable of
creating universal computation [174].

reflects a strand as the sum of the inputs, i.e.,
∑

ωi × xi.
Finally, thresholding is realized through a chemical reaction at
the last gate.

Instances of concrete developments synthesize NNs in the
logarithmic domain for a more natural replication within gene
regulatory systems. In the logarithmic domain, coefficient
multiplication is transformed to exponentiation, and summation
to multiplication, both operations implemented using two gene
circuits, as illustrated in [175, Fig. 1a)]. These gene circuits
are later connected to a third one to implement the non-linear
function of the neuron, as illustrated in [175, Fig. 1j)]. Other
examples for gene circuits develop single-layer NNs as: 2
inputs and 2 neurons in [175], 3 inputs and 3 neurons in [176],
[177], [178], 2 layers with 2 inputs in [179], and a more
complex CNN architecture in [180]. Testing their powerful
computational capabilities, these DNA-based NNs are reported
for imaging messenger ribonucleic acid (RNA) molecules and
for regulating cell behavior such as cell-to-cell communication
and adhesion; see [57, Sec. 4].

On a larger scale, other examples include combining multiple
engineered cells as in [181] and the striking performance of
brain organoids cultured cells [182]. A single-layer NN is
conceived through cell-to-cell communications in a diffusive
medium. The weights of the NN are set by the diffusive
properties of the information molecules in the medium. The
required non-linearity is realized by the gene expression inside
the E. Coli cell. A different approach is developed in [183],
where multiple bacteria serve as senders, and they release a
number of molecules in proportion to the magnitude of the
learnable coefficients of the NN. Another bacterium serves as
a receiver and implements the nonlinear function. Altogether,
the sender and receiver bacteria perform as a single-layer NN.
The concept’s applicability to ML-tasks was demonstrated in
[183], where a classification task was solved using the proposed
approach.

Brain organoids, which develop in cultures of human stem
cells, are known to perform complex tasks in real-time. For
instance, the work in [164] illustrates the training of living
neuron cells to play the game Pong, and the work in [163]
illustrates the prediction capacity of spatio-temporal data from
hundreds of thousands of neural cells. The learning capability of
these networks relies on the neuroplasticity of the neuron cells.
The experimental work illustrates the response of surrounding
cells to an input stimulus, accompanied by the development of
new connections. This technology offers two key advantages
related to scalability: Reduced energy consumption (the human
brain uses approximately 20W) and faster training (it takes
about 4 epochs to match the performance of LSTM cells, which
require 50 epochs).

2) Analog computation with CRNs: DNA regulatory circuits
are also in the domain of CRN, as they provide the substrate
for the reaction pathways.28 However, other chemical solu-
tions implement the computation without engineering DNA
molecules. These solutions look to overcome limitations such
as temperature sensitivity, long computation times, and a
large number of chemical components, as stated in [184]. For

28Substrates refer to reactant compounds in a chemical reaction.

20

instance, the metabolic circuits of cells are engineered in [185]
to implement 2 and 4 input NNs of a single layer. This work
realized positive weights with the concentration level in a
cell-free framework, and negative weights were identified with
attenuating reactions. However, due to the large number of
required reactions, these techniques are often combined with
DNA-computing [186], [187], [188] for ease of implementation.
Notably, CRN was used to implement a chemical NN that even
allows backpropagation [189] and, thus, online in-situ NN
training.

3) Compartment-based models: Nanoscale computing units
can also be developed based on the propagation of molecules
between various connected compartments and chemical reac-
tions within these compartments, as in [190]. Matrix weights
can be mapped to a nanoscale computing unit by adjusting
the compartment volume [190]. While the work in [190]
especially focuses on a mathematical theory of a compartment-
based reaction-diffusion computer, a proof of concept has been
provided in [191]. This work presents three chemical processes
for implementing a matrix multiplication in a nanoscale
computing unit: phase transition, precipitation, and acid-to-base
reaction. Experimentally obtained measurements in a lab-scale
implementation demonstrate a “reasonable accuracy” for all
three proposed chemical reactions, providing a path towards
a realization at the microscale level in future work. Further
theoretical work in [192] extends the concept to molecular
nano NNs and outlines practical applications. For instance,
compartments are connected to realize a molecular nano NN,
which mimics an artificial NN [192]. This work also validates
the proposed molecular nano NN by applying classification
and regression tasks.

4) Reservoir computing in MC channels: In pursuit of more
powerful NN architectures, reservoir computing has also been
reported in the MC domain to realize RNN models [193].
Reservoir computing utilizes a static RNN structure, placing
the network’s intelligent component in the output layer in-
stead [194]. The solution in [193] implements the reservoir
using the MC geometry: Point transmitter-free diffusion MC
channel-ligand spherical receptor. This end-to-end MC channel
implements the state update equation of the RNN architecture;
see [193, Eq. (1)]. The output layer is designed as a vector
comprising samples of the number of bound molecules at the
receptor, collected over a time window; see [193, Eq. (9)]. The
training of this model involves adjusting the vector component
as weights in the output layer, and it is implemented in a silicon
interface. The research in [193] also discusses the impact of
MC channel parameters on network performance, illustrating
ranges of preferred values for distances, diffusion coefficients,
and binding coefficients; see [193, Fig. 4].

D. Resource Demand and Feasibility of Bio-AI Unit Implemen-
tation

The required arithmetic operations for NN operation, such
as adders, multipliers, and non-linear functions, are highly
resource-demanding to be implemented by logic units within
cells or microfluidic devices. For instance, an eight-bit adder
would require 16 AND, 8 OR and 8 XOR two-input gates;

see [151, Sec. 5.2.1]. The NN-based decoder architectures
require around 300 learnable parameters, see Fig. 13, thereby
nearly the same number of adders, yielding a total of
300 × (16 + 8 + 8) = 9600 logic gates to be implemented.
Implementing a gate per cell or microfluidic circuit yields a
circuit physical dimension on the millimeter scale, preventing
low-dimensional developments on the micrometer or nanometer
scale.29 Furthermore, hundreds of learnable parameters also
lead to a high number of connections, which imposes a more
significant challenge regarding the chemical wiring of the
corresponding logic units.

By contrast, gene regulatory networks within the cell allow
a larger space density of calculations. Following the entries
in [166, Fig. 3] related to feedforward NN implementation,
we can find networks of 26 learnable parameters maximum.30

Therefore, 14 connected cells can reach the complexity reported
for decoders, i.e., approximately 300 in Fig. 13, and still fit
within the micrometer range. Furthermore, reported examples
of brain organoids [182] and reservoir computing [193] are
also candidate technologies for developing NN architectures
at the micrometer scale. Reported research illustrates designs
in the range of 10 to 100 µm, although not limited to further
scaling down their dimension. These advancements demonstrate
the practicality of NN architectures for IoBNT applications;
however, a design for NN module interfaces (both bio and
electric) is still not available.

E. Concluding Remarks and Future Outlook

In summary, there are numerous approaches for implement-
ing NNs in a biological and/or chemical manner. Current
challenges can be summarized as follows: The scalability
of NNs is limited in all concepts due to geometrical [191],
chemical [189], or biological [175] constraints. While numerous
concepts have been shown to work in practice, a unified
framework for the design and standardization of molecular NNs
is currently missing. The development of such a unified scheme
is anticipated as current research in the field is increasingly
progressing.

Besides, we identify the following research directions related
to the implementation of NNs in the biological domain:

1) MC Networks as ML Platforms: Inspired by paradigms in
WiFi and ML joint development [197], MC networks can also
constitute a running platform for ML development (see [13,
Chap. 12]). Various examples exist in wireless networks where
intelligence is distributed among nodes. Such ideas can be
extended to MC networks for deploying large NN architectures
challenging to fit on a single node.

2) Deployment at the Nanoscale Level: The current in-
tegration of MC and ML relies on macro-scale external
computers hosting the NN deployment; see the examples

29We assume the dimension of a cell is in the range of 1 to 2 µm as for E.
coli [195] and for microfluidic circuits in the range of 1 to 10 µm [196].

30We perform this calculation assuming the number of hidden nodes follows
the number of inputs. For instance, a network of 4 inputs and 3 outputs
comprises 4 nodes in the hidden layer. As the total number of weights
corresponds to the total number of connections among nodes, and the biases
the total number of nodes, the calculation yields 4× 2+ 4× 3+ 3× 2 = 26
learnable parameters.

21

in Section III. Examples of calculations at the micro-scale
are already accessible, as introduced in Section IV; yet, little
research has been published on integrating such solutions with
NNs. An approach to develop NNs in the digital domain can be
attained by the digital representation of the molecular signals
and the arithmetic operations performed at the bit level, as
standard electronic circuits work. In this way, a digital-like
biocomputer can be implemented by integrating a molecular
analog-to-digital converter; see developments in [198], [199],
[200], [201] for digital adders and multipliers, as well as
examples in [167]. This integration would require developing a
bio-framework to interface the components. On the other hand,
this development would require low-precision logic within the
circuit due to the limited capacities at the nanoscale level,
i.e., adders and multipliers with a low-bit representation of
less than a byte. This restriction leads us to another challenge:
The impact of quantization errors also increases. The impact
of these errors needs to be investigated, and mechanisms to
mitigate them must also be implemented; see, for instance, the
delta-sigma modulation in [202, Sec. 12.3] as used to decode
single-bit encoded transmissions.

V. EARLY WORK ON EXPLAINABLE NEURAL NETWORKS

Over the past few decades, MC has evolved from theoretical
concepts to practical implementations, leveraging advances
in nanotechnology and bioengineering. Concurrently, the inte-
gration of AI has transformed molecular communication by
enhancing the efficiency and robustness of signal processing,
encoding, transmission, and decoding processes, as discussed in
[53]. Despite these advancements, the complexity and opacity
of AI models present a significant barrier to their full realization
in MC systems. The solutions reported in this section tackle
these challenges, introducing methods to make the application
of NNs transparent. This section outlines the motivation behind
this research direction, followed by a brief description of the
fundamental tools, a summary of the reported research, and
an illustrative code example.

A. Motivation
The application of NNs in MC has traditionally focused

on optimizing various aspects of the communication process,
see examples in Section III. However, the "black-box" nature
of these models often leads to a lack of transparency and
interpretability, which is problematic in critical applications
where understanding the decision-making process is crucial.
This is where explainable artificial intelligence (XAI) comes
into play, offering a suite of techniques designed to elucidate the
inner workings of AI models, making them more transparent
and comprehensible.

The motivation behind XAI research in MC is twofold.
Firstly, there is a pressing need to bridge the gap between the
sophisticated NN algorithms used in MC and the requirement
for transparency and explainability. XAI can help identify
and mitigate biases and errors within NN models, leading to
more accurate and reliable communication. Moreover, XAI can
facilitate interdisciplinary collaboration by making NN models
more accessible to researchers and practitioners from various
fields, including biology, chemistry, and engineering.

B. Explainable and Interpretable Molecular Communication

The interpretability of a model is a combination of factors
related to its complexity and transparency. Models with fewer
parameters and near-linearity become more interpretable, albeit
with limited performance. Performance and explainability are
counteracting; balancing these two aspects poses significant
challenges for designing high-performance methods for sensi-
tive use cases. Within the scope of this challenge, several critical
metrics help in evaluating the effectiveness of explanations.

1) Explainability Metrics: The following metrics evaluate
to what degree NN-driven predictions can be trusted and under-
stood within the intricate dynamics of nanoscale interactions
[203]:

a) Fidelity: Fidelity quantifies how accurately an explana-
tion with a surrogate model reflects the behavior of the original
model. A surrogate model serves to explain the predictions
of the primary model, and fidelity measures the alignment
between the two. A high-fidelity explanation implies that the
surrogate model accurately captures the core decision-making
processes of the original model. This is particularly crucial in
MC, where understanding the molecular mechanisms that drive
predictions can shed light on the interactions at the nanoscale.

b) Sparsity: Sparsity reflects the simplicity of an expla-
nation by quantifying the number of features involved. Higher
sparsity corresponds to fewer features being included, leading
to more concise and interpretable explanations. In the realm of
MC, where interactions at the nanoscale are inherently complex
and multifaceted, sparse explanations are particularly valuable
to identify the most relevant physical processes that influence
predictions.

c) Stability: Stability measures the consistency of an
explanation when the input is subject to small perturbations. In
MC, where environmental factors and molecular interactions are
dynamic, stable explanations ensure that the insights provided
by the NN model are reliable and robust across different
scenarios.

d) Causality: Causality assesses whether the features
identified in the explanation are genuinely responsible for
the model’s output. In the context of MC, this involves
identifying whether specific signaling molecules or interactions
directly influence the predicted cellular responses. This metric
is particularly valuable for validating experimental designs
and ensuring the reliability of insights in complex molecular
networks.

e) Comprehensibility: Comprehensibility reflects how
easily a human can interpret the explanation. Although difficult
to quantify directly, it can be associated with the simplicity of
the explanation. For example, a shorter rule-based explanation
with fewer conditions is generally easier to understand than a
complex one.

2) Explainability Techniques: Benefiting from these men-
tioned metrics, there are several key techniques for providing
explanations in NN models, as summarized below:

a) Feature Attribution Methods: These methods assign an
importance score to each feature. The most common techniques
include local interpretable model-agnostic explanation (LIME),
shapley additive explanation (SHAP), layer-wise relevance

22

propagation (LRP), and deep learning important features
(DeepLIFT).

LIME works by perturbing the input data and observing the
changes in prediction to create a local, interpretable model. A
weighted linear model is then trained with the perturbed data,
aiming to approximate the original model; see details in [204].

SHAP values are derived from cooperative game theory,
providing a unique solution that allocates payoffs to players in
the fairest manner (features). The SHAP value for a given
feature is evaluated as in [205, Eq. (4)]. This evaluation
considers all possible combinations of input features, computing
the marginal contribution of each feature to the model’s
prediction. In essence, SHAP estimates how much a particular
feature, when added to different subsets of features, changes
the prediction, and then averages these effects to yield a global
contribution score. This mechanism allows for a consistent and
locally accurate explanation of feature influence. We develop
an illustrative example for this method in Section V-D.

LRP is a method designed to attribute an NN’s prediction
back to its input features [206]. This is achieved by backpropa-
gating the relevance from the output layer through the network
to the input features, where the relevance is determined by
distributing the contributions proportionally to the weighted
connections between neurons. In the context of MC, LRP helps
identify which nanoscale signals or features play the most
critical roles in the prediction, enabling better interpretability
of complex NN models.

DeepLIFT extends LRP by comparing the actual input to
a reference input or baseline, quantifying the difference in
model outputs; see further details in [207]. By explicitly
accounting for deviations from a baseline, DeepLIFT is
particularly useful in scenarios where the relative importance
of nanoscale molecular changes can provide crucial insights
into the system’s dynamics. For instance, in MC systems
where slight variations in vesicle concentration, timing, or
signal shape may signify different biological states or disease
progressions, DeepLIFT can highlight which input perturbations
most significantly influence the model’s prediction. This enables
researchers to trace back model decisions to specific molecular
behaviors—such as an unexpected peak in molecule release rate
or a delay in arrival time—thereby improving interpretability
and fostering trust in AI-driven diagnostics or monitoring
systems. Unlike gradient-based methods that may suffer from
vanishing signals, DeepLIFT preserves contribution scores
even in saturated or nonlinear regions, which are common
in biochemical signaling cascades.

b) Saliency Maps: Saliency maps, commonly used in
computer vision, highlight regions of an input image that are
most important for a model’s prediction [208]. However, this
can be helpful in MC as they visually highlight the most
influential features in the NN model’s decision-making process.
This technique generates visual representations that show which
areas of input data contribute most to the model’s output,
allowing researchers to quickly identify key molecular factors
or patterns driving the communication process.

c) Counterfactual Explanations: These provide insights
by answering "what-if" questions [209]. For a given input, a
counterfactual explanation identifies the smallest input change

such that the model output changes to a target value. Where
molecular interactions dictate system responses, counterfactual
explanations can help researchers understand the causal relation-
ships between molecular signals and communication outcomes.
For instance, counterfactual explanations can reveal how these
changes would affect the model’s prediction of system behavior
by modifying the concentration of a particular molecule or
altering a specific signaling pathway. This technique enhances
the interpretability of AI models by providing actionable
insights into the conditions under which MC might behave
differently, helping researchers better understand and control
nanoscale interactions.

d) Manual Permutation Importance: The manual permu-
tation importance (MPI) method is a model-agnostic technique
used to quantify the contribution of individual features to a
machine learning model’s predictive accuracy. It measures
feature importance by randomly shuffling the values of a
specific feature and observing the resulting increase in model
error, effectively disrupting its relationship with the target
variable. This approach was first introduced in the context
of Random Forests [210], where it was utilized to evaluate
the significance of variables by assessing the impact of their
permutation on prediction accuracy. For MC, where factors like
vesicle diffusion, receptor binding, and molecular degradation
introduce stochastic variability, explainability methods like
MPI ensure that AI-driven models remain not only accurate
but also biologically meaningful. By identifying which features
most significantly affect model performance, MPI aids in
understanding the underlying biological processes and enhances
the interpretability of complex MC models. We develop an
illustrative example for this method in Section V-D.

C. Reported Research

In recent advancements within MC, traditional methods often
struggle with evaluating complex end-to-end channel models
and minimizing the BER. Although these NN models are a
promising alternative to conventional detection methods, a
critical limitation is their inherent lack of transparency. As
summarized below, research studies have begun to address these
limitations, with a primary focus on feature attribution methods
for improving interpretability. These examples motivate further
research.

XAI methods have been applied to elucidate the inner
workings of NN-based symbol detectors for a 2×2 MIMO MC
channel in [211]. To interpret the NN’s behavior, the authors
employed XAI techniques such as LIME, partial dependence
plot (PDP), and the individual conditional expectation (ICE)
method. Their application revealed that the trained NN effec-
tively operates as a threshold detector in the low ISI regime.
This association of the NN with a threshold detector or a slope
detector is the interpretation of the model, which also allows
for providing proof of the correctness of the NN-based detector.

In a similar direction, researchers generated synthetic data
based on MC channel models and real testbed measurements
to train an NN for binary symbol detection in [212]. The key
objective was to demystify the "black box" nature of NNs and
provide assurance of their correctness in symbol detection tasks.

23

To achieve this, they employed XAI techniques, such as LIME
and ICE plots. The analysis revealed that the trained NN’s
decision-making process closely mirrored that of standard peak
and slope detectors in low and high ISI regimes, respectively.
The NN behaved similarly to traditional methods used in MC
for symbol detection based on signal features such as amplitude
peaks and signal slopes.

Another notable development in MC involves the integration
of the IoBNT, which aims to create a network connecting
both artificial and biological units to the internet. In this
context, a common scenario features an external transmitter
with substantial computational resources and an internal
receiver with limited computational capabilities. To address
the computational asymmetry between the transmitter and
the receiver, the authors in [122] introduced an innovative
AAEC architecture for end-to-end learning in MC systems.
The researchers explored the explainability of the NN-based
transmitter with a surrogate model. They demonstrated that
the NN-based transmitter could be approximated by a zero-
forcing precoder for low and moderate ISI. This allows us
to anticipate the NN’s performance with the well-known
formulation of linear precoders. Additionally, the research
addresses concerns about the transparency and trustworthiness
of NN-based systems, which often function as a "black box".
By investigating the explainability of the AAEC through
XAI methods, the study contributes to building trust in AI-
driven communication systems—a vital factor for sensitive
applications envisioned in the IoBNT.

By integrating SHAP into MC detector design, the authors in
[213] identified crucial feature points in the received molecular
signal. SHAP-driven analysis highlights the most informative
segments of molecular signal waveforms, providing a system-
atic explanation of how different NN models arrive at detection
decisions. Previous work in MC has demonstrated the potential
of combining model-based methods with ML to compensate
for unknown channel parameters; however, the inherent opacity
of deep neural networks remains a persistent barrier to practical
deployment. By applying SHAP, this approach maintains the
adaptability and high accuracy of data-driven detectors while
enhancing explainability, ultimately facilitating safer and more
reliable MC applications in areas such as targeted drug delivery
and in vivo biochemical monitoring.

D. Illustrative Code Example and Results
As a code example, we take the model already developed

in Section III-A4, which deploys a 2 node-NN as a distance
estimator between immune and cancer cells. The model first
extracts two features from the number of vesicles in immune
cells; these two features are the amplitude and the time
coordinate (peak time) of the minimum of the slope of this
sequence; see Fig. 6 a) and b). The NN inputs are these two
features, and the output is the predicted distance, as illustrated
in Fig. 6 c). Following the work in [214], we implemented the
MPI method to evaluate the significance of each feature for
the NN’s output, and also included the SHAP value for further
illustration.

The results depicted in Fig. 14 underline the importance
of the peak position. Feature 2 (peak time) demonstrates a

(a) Permutation importance.

0

0.5

1

(b) Shapley summary.

Fig. 14: Feature importance analysis using manual permutation importance.

significantly higher performance loss increase compared to Fea-
ture 1 (peak amplitude) in both methods, suggesting a stronger
correlation between the peak time and the distance. Thereby,
the peak time likely encodes key characteristics of vesicle-
mediated communication. In addition to permutation-based
analysis, SHAP values provide a more nuanced view of feature
contributions across individual predictions. As illustrated in
Fig. 14 b), the x-axis denotes the SHAP values, reflecting how
much each feature influences the predicted distance, while the
color gradient indicates the actual feature value (ranging from
low in blue to high in yellow). Notably, the peak time spans a
wider SHAP value distribution, showing it has both a stronger
and more diverse influence on predictions compared to peak
amplitude, whose SHAP values are centered tightly around
zero. The consistently increasing SHAP values for higher
peak time values imply a monotonic positive relationship with
distance, confirming its dominant and biologically plausible
role in vesicle timing as an informative signal of cell-to-
cell proximity.31 This consistency highlights its resilience and
importance in predictions.

The results in Fig. 14 are in direct correspondence with the
expected properties of the CIR in free diffusion channels. There
exists a direct correlation between the travel time (here encoded
within peak time) and the square of the distance, expressed
as tpeak ∝ d2

D , as referred to in [215, below Eq. (2.8)]. The
NN architecture effectively filters the input associated with the
peak and assesses the direct relationship between peak time
and distance.

E. Concluding Remarks and Outlook

The transparent operation of technical products is crucial in
sensitive applications such as healthcare, where understanding
the inner workings of deployed NNs may determine their
adoption within the IoBNT framework. Currently, this aspect
of NNs in IoBNT is explored less than their functional
applications, see Fig. 12. Research in this area is still in
its early stages and primarily focuses on the PHY layer.
Preliminary research interprets the operation of NNs in terms of
classical methods, including threshold detectors, slope detectors,
and zero-forcing precoders. This literature reports explainable
methods in specific ISI regimes, although an interpretation of
the switching of the same NN model between low and high
ISI regimes is still missing; this is a topic for further research.

More work is needed in this field due to the relevance
of explainability methods for healthcare applications and the
small number of contributions. Explainability in the context

31We provide this code at https://github.com/tkn-tub/NN_molecular_
communications/tree/main/Section_V_XAI.

https://github.com/tkn-tub/NN_molecular_communications/tree/main/Section_V_XAI
https://github.com/tkn-tub/NN_molecular_communications/tree/main/Section_V_XAI

24

of MC networks is still nascent, and more research is needed
to understand the inner workings of the models and to ensure
their reliability in real-world applications; see all examples of
NN models reported in Section III, where most of them miss
a proper interpretation of their inner functioning.

Lastly, a promising frontier in MC research involves inte-
grating physical laws directly into the NN training pipeline,
commonly referred to as physics-informed neural networks
(PINNs). Unlike purely data-driven approaches, PINNs embed
the governing partial differential equations (PDEs) of molecular
transport (e.g., Fick’s diffusion law, reaction-diffusion kinetics,
or fluid dynamics in vesicle-mediated signaling) as additional
loss terms in their training objective. In MC, these constraints
capture the evolution of molecules in nanoscale environments,
improving data efficiency and enforcing consistent behavior
despite limited observations. Not only do these models exhibit
better generalization to previously unseen conditions, but they
also offer greater interpretability of the solution space, as latent
layers must satisfy fundamental conservation laws and boundary
conditions intrinsic to molecular transport.

VI. THE BACKBONE OF NEURAL NETWORKS: TRAINING
DATA

Data is the backbone of NN training, and this section
provides an overview of existing datasets for MC. We include
data sets that have not yet been exploited in the context of
NNs. Furthermore, the datasets are discussed in terms of
their generation and accessibility, and some remarks are made
regarding the documentation of the datasets. Finally, current
limitations and future perspectives on synthetic data generation
are outlined.

Many datasets, particularly those derived from simulations
and published in papers, i.e., data used for plotting, are not
publicly available. This lack of accessibility influences the
reproducibility and validation of the corresponding findings,
limiting the research community’s ability to build upon existing
research. The appendix, Table V, provides a comprehensive
overview of existing publicly available datasets. By focusing
on publicly available and accessible datasets, we aim to provide
a comprehensive summary that researchers from different
domains can utilize.

A. General Considerations

Data can be generated based on observations of physical
or virtual processes, such as wet-lab experiments or computer
simulations. Data generation can be time-consuming and
resource-intensive. Avoiding repeating the process, datasets
shared among different research groups can (i) facilitate
reproducible research and (ii) provide an abstraction layer for
the actual process of interest, e.g., MC between synthetic cells,
that allows other researchers to develop models and algorithms
without the need to (re-)run and observe the process.

Both these goals hinge on the availability and the usability
of the datasets. Also, a thorough documentation of the shared
data is required. These aspects, which relate primarily to data
and metadata handling, will be covered later in this section.
However, for determining which data to collect in the first place,

the properties of the process from which data is generated and
the primary purpose of data collection play a key role.

The purpose of collecting data can be to validate a specific
theoretical model. In this case, it is essential to control the
experimental conditions as best as possible and obtain a
representative set of data samples under these conditions. The
main focus of data collection, in this case, is to confirm or reject
a specific, often quantitative, hypothesis on the process, e.g.,
the average received SNR, that originates from the theoretical
model.32 On the other hand, as is the case, e.g., for NN training,
data can also be used to build a model. In this case, data should
be collected to avoid training set imbalances and overfitting the
model on a specific narrow subset of experimental conditions.

Training data can be distinguished into two types: (i) Syn-
thetic and (ii) experimental data. In this survey, synthetic data
refers to artificially generated data created through algorithms or
simulations mimicking real-world scenarios. Experimental data
is associated with collecting experimental samples, alongside
the challenges of building controlled environments where
various parameters can be precisely changed.

B. Synthetic Data Generation
1) Existing Datasets: Existing datasets refer mainly to two

environments: Pipe-like and free-diffusion channels in fluid and
air-based media. For pipe-like channels, the authors in [156]
introduce a cylindrical water-filled duct designed to study
steady-state flow conditions across various channel lengths.
The molecules are released uniformly distributed over the
channel’s cross-section, propagate through the channel in a flow-
dominated regime, and are counted by a cylindrical observing
receiver. The authors benchmark their simulation results against
particle-based simulation (PBS) and an analytical channel
modeling approach. This dataset is accessible in [216] and also
includes a template configuration for the OpenFOAM [217]
environment, making it easier to get started with the simulation
tool.

The above dataset has also been extended in [218] to cover
not only the flow-dominated regime but also the dispersion
and the mixed regimes [219]. Furthermore, targeting healthcare
applications for advanced plaque modeling [220], the work
in [221] develops a dataset accessible in [222], using the
computational fluid dynamics (CFD) solver OpenFOAM. A
previously published dataset in [216] provides a framework for
MC specific post-processing, i.e., utilizing Python to analyze
the OpenFOAM simulation output, for example, in terms of
the CIR.

The dataset in [223] includes results from CFD simulations
performed in the proprietary ANSYS software to study the
transmission of airborne pathogens in turbulent airflow environ-
ments. The simulations examine the spread of pathogen-laden
droplets and aerosols, “mimicking scenarios such as coughing-
induced flows” [223].33 An overview and summary of all
simulation results, along with a detailed explanation, can be
found in [225].

32The theoretical model can also be an NN, in which case the hypothesis
results from the inference step.

33The corresponding code for modeling MC scenarios is available as a
GitHub repository in [224].

25

While the datasets discussed so far mostly contain data from
fluid dynamics simulations, some other datasets reproduce time
sequences as a result of processing algorithms. This is the
case within the dataset in [226], where the estimated distance
in a macroscale MC system, consisting of an electric sprayer
containing alcohol in a reservoir without an additional fan and
an alcohol sensor, is reproduced as Matlab files and raw data.
The estimated distance is produced by ML-based methods,
see [63], and the Fluid Dynamics-based Distance Estimation
(FDDE) algorithm, see [227].

The dataset in [228] contains, in addition to the dataset
itself, the code for creating the dataset using Matlab, which
is published on a university server, making the results from
[229], [230] accessible to other researchers. The authors
of [229], [230] address the development of multiple-access
schemes and detection strategies for diffusion-based MC,
focusing on mitigating ISI and multiple-access interference
(MAI). Furthermore, [229] and [230] introduce the type-spread
molecule shift keying (MoSK) modulation technique, which
uses additional molecule types to reduce the ISI effect. Type-
spread MoSK is expanded for a multiple-access system to
support multiple nanomachines. In addition, a molecular code-
division multiple-access scheme is proposed in [229], [230],
relying on two molecule types.

Published datasets can also describe the parameters used in
a publication (here: csv file) [231]. For example, in [232], an
improved channel model for MC with a partially absorbing
receiver is proposed. The partially absorbing receiver has four
parameters determined by particle swarm optimization (PSO).
The optimum of the determined parameters, as mentioned
in [232], can be found in the corresponding dataset in [231].

MCFormer, a Transformer-based MC detector which adapts
natural language processing methods to MC, is documented in
[114].34 Moreover, an optimized PBS algorithm that leverages
matrix operations to efficiently generate training data with
reduced complexity compared to conventional approaches is
presented. The results in [114] demonstrate that MCFormer
delivers near-optimal accuracy in noise-free conditions, outper-
forming DNN.

2) Dataset Generation Tools: In addition to the published
datasets, simulators and software tools are also available to
generate synthetic datasets based on users’ requirements and
system model parameters. Generally, in some MC simulators,
the medium flow is simulated explicitly, while other tools
utilize analytical models or approximations for the medium
flow or neglect the medium flow entirely [234]. The latter
set of tools focuses mainly on Monte Carlo simulation and
is referred to as flow-agnostic simulators. In contrast, the
physical fluid flow characteristics are considered in the former
one, referred to as flow-aware simulators. The Table VI in
the appendix provides an overview of the various simulators
used to generate the datasets. Most of the tools in appendix,
Table VI, are publicly available, except for the commercial
simulators COMSOL Multiphysics, ANSYS Fluent, and Matlab,
for which a license is required to utilize the full range of

34MCFormer’s Python code and dataset are provided in the GitHub repository
in [233].

available functions. Further requirements also arise for the
MC graphical processing unit (GPU) simulator (also known
as “parallel simulation framework for nanonetworking” [235]),
as it requires an Nvidia GPU supporting the Nvidia compute
unified device architecture (CUDA) [235].

The flow-agnostic simulators encompass tools designed for
various applications, such as bacterial MC (nanoNS3 [236],
BNSim [237]), reaction-transport modeling (URDME [238]),
and Brownian motion-based simulations (Smoldyn [239],
[240], N3Sim [241], [242], AcCoRD [243]). Diverse computa-
tional frameworks support these simulators, including Matlab,
COMSOL, and NS3. In contrast, fluid dynamics simulators
used in the context of MC, such as OpenFOAM, COMSOL
Multiphysics, and ANSYS Fluent, are primarily based on
the concept of CFD and numerical solutions of the Navier-
Stokes equation in general. Availability varies significantly, with
several simulators offering freely accessible source codes (e.g.,
OpenFOAM, Munich microfluidic toolkit, and NS3). In contrast,
others, like ANSYS Fluent and COMSOL Multiphysics, are
commercially licensed. This highlights the trade-off between
cost and accessibility across the simulators, with open-source
tools typically targeting niche research applications and com-
mercially available software catering to broader engineering
applications.

In addition to the simulators, other existing analytical
simulation codes, data generation codes, and models have been
published on GitHub as repositories for code development.
The projects include files for artificial neural network (ANN)
models, analytical simulation codes, data generation codes, and
LSTM codes published, including Jupyter Notebook, Python,
and Matlab files.35 Three other GitHub projects have been
created as part of a lecture series in which the results in [88]
were reproduced.36 Furthermore, a trained ANN model is
published on Matlab Central [248] to evaluate the number
of received molecules for a spherical reflecting transmitter and
a spherical absorbing receiver using an ANN approach [62].

Matlab code is also developed to simulate the random walk
and the signal reconstruction process at the receiver in free-
diffusion channels [249], [250]. Introducing the mobile human
ad hoc network (MoHANET) concept in which MC principles
and analysis are applied to pathogen-laden droplets, code
developments also encompass airborne pathogen transmission,
integrating insights from epidemiology, biology, medicine, and
fluid dynamics [251], [252]. These code files represent proof-
of-concept results validated using empirical COVID-19 data
from [253]. Finally, the published code also accounts for the
modeling of a stochastic biofilm formation model based on
bacterial QS [254], [255], [256], [257].

The code in [258] includes an NN model to realize a
signal sequence detector for a mobile MC system based
on the Informer model in [99]. Considering a diffusion-
based environment, the mobile MC system comprises a point
transmitter and a spherical passive receiver [99]. The signal

35This is the case in [244], which models a free-diffusion MC channel and
implements an NN-based detector.

36These code projects are (i) Sangani [245], (ii) Patel [246] (also improved
the code in terms of the CIR of a passive receiver or enzymatic degradation),
and (iii) Shastri in [247].

26

sequence detector computes the autocorrelation coefficient of
the input sequence to determine the optimal sequence length.
Numerically obtained results in [99] demonstrate that the
performance of the Informer-based model is better than that
of the Transformer-based model in terms of detection ability.
However, the dataset is not publicly available.

In [259], a “model for generating synthetic data for a
biological MC” for training an NN for the discrimination
of transmitted bits is presented. Testbed measurement data
from [260] is used as a benchmark for the synthetically
generated data. However, the dataset is not publicly available
but will be made available upon request.

C. Experimental Data Generation
Experimental data generation from testbeds can generally be

distinguished into air-based [116], [261] and liquid-based [262],
[263], [264], [265], [266], [267], [268], [269], [270], [271],
[272] data. As listed in [47], there are more testbeds than those
mentioned here, but, to the best of the authors’ knowledge, no
data were made publicly available for other testbeds.

The datasets published on IEEE Dataport [262] and Zen-
odo [263] include fluorescence signal measurements (emission
wavelength and intensities) of MoSK transmissions in a liquid-
based testbed, which was proposed in the related publication
in [273]. In the testbed setup, graphene quantum dots (GQDs),
soluble in water and fluorescent, serves as a signaling molecule.
The transmitter infuses the GQDs using injection valves,
and a fluorescence-based receiver detects and decodes the
fluorescence signals from blue-GQDs and cyan-GQDs, which
serve as the molecules to shift. The testbed’s performance is
assessed based on synchronization, detection thresholds, and
symbol recognition through a principal component analysis
(PCA), which requires a broad dataset.

The dataset in [116] provides experimental measurements
from a macroscale, single-input, single-output, air-based MC
testbed. It also includes the Matlab processing code of the
dataset-related publication in [212]. The dataset has been
reported in various research studies in the literature, including
XAI in MC channels [212], RL-based synchronization mech-
anisms [80], [82], and adaptive detectors [81]. The dataset
in [116] was extended as a result of the research in [274].
The new associated repository, accessible in [261], records the
experimental measurement data for ethanol molecules in the
air. It also provides data sheets of the testbed components and
the Python code for controlling the sprayer, reading the sensor
output, and implementing communication protocols.

The dataset in [264] publishes a biocompatible MC testbed
that utilizes magnetic nanoparticles as information carriers, so-
called superparamagnetic iron oxide nanoparticless (SPIONs).
The SPIONs are injected into a constant background flow
using an injection pump, cf. [275, Fig. 1]. The receiver detects
the SPIONs by a change in the inductance of the nearby
fluid caused by the presence of the SPIONs. This testbed
is utilized to investigate channel parameters such as (among
others) background flow, channel length, and channel diameter.
It should be emphasized that [275] discusses the dataset in
detail and explains its structure, which is a limitation in other
published datasets.

The received sequence of interfacial shift keying (ISK)
transmissions in a liquid-based testbed is accessible on IEEE
DataPort [265] and Zenodo [266]. In ISK, the modulation
of the signal exploits the effect of viscosity fingering, i.e.,
two miscible fluids form a (temporary) interface, given that
they differ in either their viscosity or density [276]. The
testbed for experimental evaluation consists of a transmitter
containing an infusion pump, a six-way injection valve, and
a 10-way selection valve, which allows the injection of up to
ten solutions [276, Fig 1]. Fluorescent carbon nanoparticles
are used as information carriers. On the receiver side, a
fluorescence detector measures the system’s fluorescence output,
demodulating and decoding the transmitted signal.

Images obtained from the particle image velocimetry (PIV)
and planar laser-induced fluorescence (PLIF) tools, which are
referred to for tracking and detecting fluorescent tracers in
liquid, are accessible in [267], [268]. The dataset results from
the research in [277], which develops two methodologies for
particle tracking and detection in liquids. Both methods are
based on a laser sheet illuminating a planar section of the
medium [277, Figs. 2 and 3], where fluorescent tracers, captured
by a camera, serve as information carriers. The repository also
includes Matlab code for further image processing to track and
detect the fluorescent tracers on the obtained camera snapshots.

The open-access dataset in [269] contains experimental
measurements from a biological MC testbed [278]. The
testbed utilizes Escherichia coli bacteria, which “express the
light-driven proton pump gloeorhodopsin from Gloeobacter
violaceus.” Stimulating the bacteria by external light, the
bacteria act as a transmitter and release protons into a liquid
channel. The protons serve as signaling molecules, changing the
pH value in the system, which is later detected. The repository
also provides a detailed description of the dataset and comprises
two zip files containing the data and a Matlab code example
for processing it.

In [158], a liquid-based microfluidic MC testbed is presented.
The source files for [158] are accessible in [270], [279]. For
transmitting the information, CSK is used; in particular, infor-
mation is encoded in the concentration of sodium hydroxide
in that testbed. In addition, the testbed design accounts for
the chemical reactions in the channel and the microfluidic
geometry such that the transmitter can shape the signal to
be transmitted while the receiver can threshold, amplify, and
detect the sent chemical signal after the propagation through the
channel [158]. Therefore, the chemical reactions are based on
well-known pH-based reactants, such as hydrochloric acid and
sodium chloride [158]. A phosphate-buffered saline solution
is used for dilutions, and a spectrometer on the receiver side
detects the transmitted information. The raw data (mainly as
csv files) in [270] refers to the plotted results in [158] as well
as in the appendix of the main paper. The GitHub repository
in [279] contains the software for the complete automation of
the testbed, including timed chemical injection using syringe
pumps, measurement of the flow rate, and control of the flow
rate using a proportional–integral—derivative controller, and
measurement of the UV-visible spectrum.

The freely accessible dataset in [272] contains experimental
measurements from long-term experiments using the closed-

27

loop MC testbed described in [280]. The experiment was run
for 125 hours, obtaining more than 250 kbit of transmitted data
via MC. The testbed utilizes a green fluorescent protein variant
“Dreiklang” (GFPD), as the information carrier. Using light
of a specific wavelength, GFPD can be switched reversibly
between two different states [281]. The testbed differs from
other liquid-based testbeds because it is a closed-loop structure,
not an end-to-end structure, e.g., by pumping a liquid from one
reservoir to another. Therefore, GFPD is only injected once. The
testbed contains an optical transmitter for writing information,
an optical eraser for erasing information, and a receiver for
reading the fluorescence state of the GFPD [280]. In [272], the
raw measurement dataset (as a zip folder containing csv and
json files and as a SQLite database) is published, related to
the corresponding publication plots in [282]. In addition, the
Python code for synchronization and detection is published in
a GitHub repository [271], which provides instructions on how
to read the SQLite database.

D. Discussion
The datasets mentioned above exhibit different levels of

accessibility, completeness, and documentation. As a reader’s
guide, we develop a traffic-light system in Table I in which
green represents the highest level of dataset completeness and
red represents the least along the following dimensions:

• Reproducibility (only considered for synthetic datasets):
Green dots indicate that the source code and its docu-
mentation are fully accessible. Yellow dots indicate that
the dataset documentation is missing or that access to the
source code is unavailable. The red dots indicate that all
of the above are missing.

• Representativeness (only for experimental datasets): Eval-
uated by comparing the number of replicates (N) of
single experiments to the maximum number of repetitions
over all experimental datasets. For the considered set of
experimental datasets, a maximum number of N = 50
replicates applies so that for the ranges between N = 1
and N = 17 replicates a red dot, between N = 18 and
N = 33 replicates a yellow dot, and between N = 34
and N = 50 replicates a green dot was assigned. The
dataset in [271], [272] is an exception here, as it is the
first long-term experimental MC system of its kind. The
dataset size clearly stands out from the other datasets and
is consequently rated green.

• Usability: Encompasses the cases “the dataset is available”,
“the dataset processing code is available”, and “the code for
plotting is available”. If all three criteria are met, green
follows; for two criteria (regardless of which), yellow
follows; otherwise, red is applied.

• Availability: Here, we consider only two cases, either
yellow (data record restricted availability, for example,
behind an account wall) or green (data record freely
available). Datasets that are not available are not listed,
so no red is assigned here.

• Documentation: Considers the completeness of the param-
eters’ metadata and the dataset’s documentation. Green:
Both aspects are fulfilled; Yellow: Only one of them is
fulfilled; Red: None of them are fulfilled.

TABLE I: 4D dataset clustering for synthetic and experimental data.

Reference Reproducibility Representativeness Usability Availability Documentation

[222] ● - ● ● ●

[262], [263] - ● ● ● ●

[216] ● - ● ● ●

[261] - ● ● ● ●

[116] - ● ● ● ●

[264] - ● ● ● ●

[265], [266] - ● ● ● ●

[267], [268] - ● ● ● ●

[269] - ● ● ● ●

[228] ● - ● ● ●

[270] - ● ● ● ●

[223] ● - ● ● ●

[231] ● - ● ● ●

[283] ● - ● ● ●

[284] ● ● ● ●

[226] ● - ● ● ●

[233] ● - ● ● ●

[272], [282] - ● ● ● ●

Available datasets for MC research are diverse and accessible
through multiple platforms, cf. appendix, Table V; however,
several limitations hinder a broad use, cf. Table I. One limitation
is the lack of standardization in data formats and annotations,
which complicates integration and comparative analysis across
datasets. Additionally, some datasets lack detailed metadata or
related publications, reducing the transparency and reproducibil-
ity of the research outcomes, cf. Table I. The sizes of certain
datasets are disproportionately small, limiting their applicability
for machine learning or extensive simulation studies. Another
issue is platform dependence. While IEEE DataPort, GitHub,
and Zenodo are widely used, access to some university-hosted
datasets may be restricted or not well-documented.

For the data generation tools, one limitation is compatibility,
as many depend on specific software frameworks (e.g., Matlab
or NS3), which can introduce compatibility issues when
replicating results across different versions. Additionally, the
assumptions inherent in a simulator’s modeling approach
constrain the representativeness of the datasets it generates. For
example, tools like Smoldyn and MesoRD are optimized for
reaction-diffusion systems but may fail to capture complex envi-
ronmental heterogeneities. Similarly, simulators like nanoNS3
or N3Sim, although effective for nanoscale communication,
may need to generalize more effectively to macroscopic systems.
Availability is also an issue, as some tools have restricted access,
e.g., requiring licenses for Matlab or COMSOL, outdated links,
or lack of active maintenance, thereby reducing their reliability
for long-term use. Finally, documentation quality varies widely.
Some simulators offer less guidance to novice users than others,
making it difficult for new users to adopt and effectively utilize
them.

E. Concluding Remarks and Outlook

To summarize, in recent years, data generation, documenta-
tion, and publication have received attention, addressing the
need for robust training datasets and reliable research outcomes.
Our survey of existing datasets also shows that eight datasets
are derived from experimental testbeds. The use case for sharing
experimental data is stronger than that for synthetic data,
primarily because wet lab experiments are more challenging to
reproduce than simulations. Additionally, dataset publication

28

still requires more extensive and comprehensive documentation
practices. Recommendations, e.g., as published in [285], are
in the direction of standardizing dataset publication but still
require a broader practice within the research community.

We also identify further research directions towards the
connections between testbeds and the training and deployment
of NNs as follows.

1) Training in Body-like Testbeds: The pharmaceutical in-
dustry is today looking closer to experimental results developed
in organs-on-chip; see [286]. As a proven tool for drug testing
[287], this technology mimics the operation of organs and
the dynamics of the fluids. As these devices are expected to
become a daily occurrence in laboratories, we expect them to
be used as testbeds to generate data and integrate NN-models
within them.

2) Transferring from Simulators to Real-World Testbeds:
Following appendix, Table VI, a broad range of simulation
tools exists for MC. On the one hand, these simulation tools
are often open-source and easy to install, so researchers use
them to implement their NN/ML approaches and benchmark
them against analytical approaches, such as in [134]. On
the other hand, the components of experimental testbeds are
often limited in their computational capabilities, as seen in
the testbed presented in [81], making the implementation of
computationally intensive NN and ML approaches challenging.
However, as the MC community moves towards practical
applications, NN and ML tools applied to MC simulation
tools should be transferred to experimental testbeds, enabling
benchmarking, at least in pre-defined real-world scenarios, due
to the targeted parameter control of experimental testbed setups.

VII. CONCLUSION

This survey examines the variety of NN architectures for
the functional development of IoBNT networks, provisioning
with the most recent methods towards their integration in MC
links. A thorough evaluation of reported research concludes that
NN architectures become essential for handling the complex
nature of MC connections, where closed-form expressions for
model-based solutions are frequently impractical to develop.
As such, NN are the de facto model for devising practical
solutions within the various layers of IoBNT networks. A
closer look at the reported literature reveals that most of
the reported developments primarily focus on the PHY layer
for decoding tasks, where the BiRNN achieves the highest
performance in ISI channels and with less complexity compared
to RNNs, feedforward NNs, and CNNs. Conversely, fewer
works target solutions in the upper layers, and only a few
methods explore the much-needed localization and detection
applications in IoBNT networks. We expect more developments
of NN-based methods towards application-oriented solutions
of IoBNT networks. This survey also outlines existing datasets
for training and testing NN modules, as well as tools for their
generation, both synthetically and experimentally. The literature
is maturing in supplying the necessary datasets for NN training;
however, we anticipate further progress in the usability and
reproducibility dimension of datasets, along with increased
data generation for in-body environments.

Furthermore, studies in the interconnected areas of NN and
IoBNT underline long-term research topics: Biocompatible de-
ployments of NNs at the nanoscale are still in their early phases,
nanoscale architectures beyond feedforward NNs also demand
consideration to realize the IoBNT’s full potential, and physics-
informed architectures, grounded in domain knowledge, can
be utilized to develop self-explainable solutions. We conclude
with a thought-provoking remark: AI can be a common ground
between biology and engineering to facilitate interdisciplinary
approaches. AI methods can serve as a common framework
that converges the two disciplines of biology and engineering.

APPENDIX

This material provides a brief background on various topics
related to NN architectures, training, and databases, supporting
the primary document. The NN architecture description primar-
ily supports the evaluation of its complexity, as discussed in
Section III of the primary document. To that end, we present
a detailed evaluation in this material, presented in a table
format, which conveys performance in Table II and complexity
in Table III. The entries in this table are also anchored in
the MC geometry, architecture, and application scenario. We
also provide more details on the guidelines for rendering and
maintaining databases for training NN modules. We also include
Tables V and VI, which list the datasets and simulators used
for the synthetic generation of data. Finally, we also describe
cell-to-cell MC links from a biological perspective, which
supports the illustrative code examples in Section III.A.4 and
V.D. The cited references in this paper are printed in the primary
document.

To support the reading of the primary document, we print
below a list, in alphabetical order, of the abbreviations included
within the paper.

AAEC asymmetric autoencoder
AEC autoencoder
AI artificial intelligence
ANN artificial neural network
ARX auto-regressive exogenous
ASK amplitude shift keying
BCE binary cross entropy
BER bit error rate
BiRNN bidirectional recurrent neural network
BVS BloodVoyagerS
CFD computational fluid dynamics
CIR channel impulse response
CNN convolutional neural network
CRN chemical reaction networks
CSK concentration shift keying
CUDA compute unified device architecture
DeepLIFT deep learning important features
DNA deoxyribonucleic acid
DNN deep neural network
DRL deep reinforcement learning
DSP digital signal processing
FBMLE filter-based maximum likelihood estimation

29

FC fully connected
FIR finite impulse response
FPR false positive rate
GA genetic algorithm
GNN graph neural network
GPU graphical processing unit
GQD graphene quantum dot
GRN gene regulatory network
GRU gated recurrent unit
HCS human circulatory system
ICE individual conditional expectation
IIR infinite impulse response
ILI inter-link interference
IoBNT Internet of Bio-Nano Things
ISI inter-symbol interference
ISK interfacial shift keying
ITR interference-to-total received molecule ratio
LIME local interpretable model-agnostic explanation
LRP layer-wise relevance propagation
LSTM long short-term memory
MAC medium access control
MAI multiple-access interference
MAP maximum a posteriori
MC molecular communication
MIMO multiple-input multiple-output
MIP manual permutation importance
MISO multiple-input single-output
ML machine learning
MLE maximum likelihood estimation
MLP multilayer perceptron
MM media modulation
MNIST modified national institue of standards and

technology
MoHANET mobile human ad hoc network
MoSK molecule shift keying
MPI manual permutation importance
MSE mean square error
NN neural network
OOK on-off keying
PBS particle-based simulation
PCA principal component analysis
PDE partial differential equation
PDP partial dependence plot
PHY physical layer
PINN physics-informed neural network
PIV particle image velocimetry
PLIF planar laser-induced fluorescence
PPO proximal policy optimization
PSO particle swarm optimization
QS quorum sensing
ReLU rectified linear unit
RF radio frequency
RL reinforcement learning
RMSE root mean squared error
RMSprop root mean square propagation
RNA ribonucleic acid
RNN recurrent neural network
SGD stochastic gradient descent

Hidden
Fully Connected

Layer

Inputs
(features)

…
Input
Layer

…
+

𝜔2𝜔1

𝑥1

𝜔𝑁

𝑥𝑁𝑥2⋯ 𝑏

𝑦 =

𝑖

𝜔𝑖𝑥𝑖 + 𝑏

Output
Fully Connected

Layer

Outputs

…

𝑧 = 𝜎(𝑦)

Activation
Function

Fig. 15: Architecture of a feedforward NN.

SHAP shapley additive explanation
SNR signal-to-noise ratio
SPION superparamagnetic iron oxide nanoparticles
STO symbol time offset
TCN temporal convolutional neural network
TPR true positive rate
XAI explainable artificial intelligence
Deep NNs in MC schemes have been employed in various

architectures, including feedforward NN, BiRNN with LSTM
cells, Autoencoders, and Transformers. This section provides
a brief overview of these architectures, offering insights into
their applications in MC channels.

A. Feedforward NNs as a Universal Approximator

This architecture is the most information-agnostic one used in
communication. Due to its universal approximation, it has been
primarily reported for channel estimation rather than decoding;
see Sec. III.A in the primary document. The feedforward deep
NN architecture consists of fully connected layers in cascade, as
represented in Fig. 15. This architecture follows the pioneering
work in [288], which describes the calculus running in the
nervous system. The fully connected layer produces an arbitrary
number of outputs, equal to the number of deployed nodes.
These outputs are straightforwardly connected to the inputs
of the following fully connected layer. In its simplest form, a
deep NN consists of two fully connected layers, referred to as
the hidden and output layers.

On each layer, each node operates independently of neighbor
nodes and transforms the inputs through a linear combination;
see the weighted sum yielding y in Fig. 15, and a non-linear
calculation through a so-called activation function of y. Each
neuron encompasses as many coefficients as inputs into the
layer, providing the flexibility to approximate a given output
sequence from the inputs. Examples of activation functions
are the sigmoid, ReLU, and the tanh function (see [289, Sec.
3.4]). These two operations (linear combination and non-linear

30

𝐶𝑘

×
ℎ𝑘

ou
tp

ut
ga

te
ℎ𝑘−1

𝑦𝑘

+

sigmoid

cell state

tanhsigmoid

𝑟i

sigmoid

in
pu

t
ga

te

fo
rg

et
ga

te
𝐶𝑘−1

tanh

×

×

𝑟f

𝑤f + 𝑤i

𝑏f

+

𝑏i

+ 𝑤c

𝑏c
𝑟c +

𝑏o𝑟o

𝑤o

Fig. 16: Architecture of the LSTM unit.

activation function) entail deep NNs as a universal approximator.
The weighted sum accounts for the linear transformation of the
input set, encompassing operations such as translation, rotation,
and contraction. The non-linear activation function accounts for
operations like transforming axes and boundaries into arbitrary
shapes.

B. Accounting for Data Relevancy within LSTM Networks

This architecture is the most reported one in MC channels
for decoding. The LSTM architecture follows a more complex
structure. Cells are interconnected bidirectionally to decode
symbols, leveraging on previous and future time slots. This
architecture implements three different gates to control the
relevancy of the input data in the calculation of the cell’s
output.37 The input data to the unit cell consists not only of the
raw data (yk) and hidden state (hk−1), but also the previous
cell state (Ck−1), which accounts for the data relevancy in the
hidden state. This is a form of a focus mechanism to highlight
the most relevant content of the cell state.

The cell state is realized with a multiplier and an adder. The
multiplier filters the previous cell state (Ck) with the calculated
amount to forget, as determined by the forget gate. The adder
accounts for including the new information from the inputs
hk−1 and yk, as determined by the input gate. The amount to
forget is implemented with the coefficient wf and the sigmoid
function (output ranging between 0 and 1). In contrast, the
amount to add is implemented with the hyperbolic tangent
function (tanh), where the output ranges between −1 and 1,
and using the coefficient wc. The input gate also uses another
forget gate, but through a different coefficient (wc).

37Details on LSTM cells are given in the Olah’s blog, accessible in
http://colah.github.io/posts/2015-08-Understanding-LSTMs and also within
the diagram in the link
https://ch.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.lstmlayer.
html#mw_9f7c5f93-4bf2-4ddb-b922-b1c122668b9a_sep_mw_
8cad7fee-7610-4134-9354-b7ed3a45204d_head

Input
sequence

En
co

de
r

Shifted output
sequence

Attention
Mechanism

D
ec

od
er NN

NN

Output
probabilities

Self-attention
Mechanism

Self-attention
Mechanism

Fig. 17: Transformers architecture (reduced schematic) [110].

C. Attention in the Loop with the Transformer Architecture

The Transformer architecture performs exceptionally well in
language translation and generation. As the major distinction,
this architecture overcomes the sequential processing of LSTM
networks,38 and forwards parallel capabilities by getting rid
of recurrent structures as previous standard developments
as in [115], [290], [291], [292].39 Besides, the Transformer
architecture integrates attention models within two feedforwards
NNs, those for encoding and decoding[110]; see a reduced
schematic representation in Fig. 17.40 The attention model
evaluates a context vector to support the decoder component
in predicting the most likely next symbol, a concept under
development in [115], [294], [295], [296], [297], which has
been shown to significantly enhance the alignment capabilities
of neural machine translators.41

The encoder and decoder in the Transformer architecture, as
shown in Fig. 17, implement a self-attention mechanism using
the scaled dot product operation. This architecture’s second
significant distinction is realized as a more efficient mechanism
than the implementation with additive attention; see [298, Sec.
4.5]. The self-attention mechanism evaluates the product of
matrices of queries, keys, and values (see [110, Eq. (1)]).
These matrices are solely based on the input sequence and a
pre-multiplicative learned matrix, adjusted during training.42

Additionally, the decoder employs an attention mechanism,

38LSTM completes the processing sequentially due to the cascade connection
of cells like the ones in Fig. 16.

39See a perspective introduction to main core development for the Trans-
former architecture in the interview [293].

40We remark that a similar direction to remove recurrent structures is given
in [294] but using the CNN architecture instead.

41Although we refer to symbols in the context of MC channel, the attention
model in [115] and the Transformer architecture in [110] are developed as
language translators and symbols are instead referring to words.

42The self-attention mechanism differs from the recursive architecture, where
these matrices are calculated based on the LSTM hidden states.

http://colah.github.io/posts/2015-08-Understanding-LSTMs
https://ch.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.lstmlayer.html#mw_9f7c5f93-4bf2-4ddb-b922-b1c122668b9a_sep_mw_8cad7fee-7610-4134-9354-b7ed3a45204d_head
https://ch.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.lstmlayer.html#mw_9f7c5f93-4bf2-4ddb-b922-b1c122668b9a_sep_mw_8cad7fee-7610-4134-9354-b7ed3a45204d_head
https://ch.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.lstmlayer.html#mw_9f7c5f93-4bf2-4ddb-b922-b1c122668b9a_sep_mw_8cad7fee-7610-4134-9354-b7ed3a45204d_head

31

where the query is evaluated based on the input sequence,
while the keys and values are evaluated based on the output
sequence. While the self-attention block extracts information
from the input sequence, the attention block produces its output
using what is relevant within the encoder’s output. Although
this architecture discards RNNs, inherently, the attention model
is a form of recurrence, as its output is used to evaluate the
internal coefficients.

D. Reinforcement Learning: Smartly Actuating on the Environ-
ment

While the traditional ML approaches, i.e., supervised and
unsupervised learning, detect a type in the data set presented to
them, Reinforcement Learning optimizes its decisions via trial-
and-error interaction with an environment without the need for
an a priori data set [299]. This approach can be used to actuate
the communication scheme parameters, such as the threshold
for detecting incoming symbols. RL in general consists of an
RL agent and an attached environment. The environment is
typically defined as a (partially observable) Markov decision
process consisting of

• a set of states S,
• a set of actions A,
• a distribution of initial states p(s0),
• a reward function r : S ×A → R,
• transition probabilities p(st + 1|st, at),
• termination probabilities T (st, at), and
• a discount factor gamma element [0, 1] [87].

The agent optimizes a policy function that maps the state to a
distribution over actions. Given an environment state st, the
agent acts at according to its policy function and is given
a reward based on the result of the applied action. During
the training, the policy function is optimized to maximize the
expected future rewards [87].

The RL agent learns the impact of its actions, their causes,
and effects, within the environment in steps, imitating the
natural human learning process [300]. The learning process
itself is supported by two different functions, the policy and the
value functions. The policy determines how the agent behaves at
each new step, while the value function estimates the goodness
of a state in terms of the expected reward. The networks used
to approximate the two functions can also employ different
types of DNNs, such as ANNs, CNN, or RNNs. With the
inclusion of these types of network layers, RL then becomes
DRL [299]. The type of network used depends on the task the
RL agent needs to solve.

E. Training a Neural Network

NNs usually represents a type of supervised learning model,
where the correct output for each input observation is known
during training. In other words, similar to all other supervised
learning models, NNs are also trained based on labelled datasets,
and try to learn how to generate an estimate of the true outputs
during the training process. The process of training a NN
involves adjusting the trainable parameters of all the layers
to make accurate predictions based on the input data. This
process can be done in three main steps [301]:

• Defining the objective: The network is trained using a
dataset where each input has a known correct output. The
goal is to make the network’s predictions as close as
possible to these true outputs. A loss function is used
to measure the discrepancy between the predictions and
the actual values. This function calculates the difference
between the network’s predictions and the true outputs,
giving a single number that represents the model’s
performance. The ultimate goal is to minimize the chosen
loss function, with mean squared error and cross-entropy
being among the most widely used loss functions in
training NNs.

• Defining the optimization method: An optimization al-
gorithm, such as gradient descent, is used to find the
network’s parameters that minimize the defined loss
function. This method systematically adjusts the network’s
parameters to minimize the loss function. gradient descent
relies on determining how each parameter influences the
loss, a process known as calculating the gradient.

• Initializing the network’s parameters: The network’s
parameters must be initialized before the training begins.
Proper initialization is crucial for ensuring stable and
efficient training. Common strategies include random
initialization, where weights are assigned small random
values.

• Updating the network’s parameters: gradient descent relies
on the gradient of the loss function, a vector of partial
derivatives that quantifies how the loss changes with
respect to each network parameter. NNs often consists
of multiple layers, making it challenging to trace how a
parameter in an early layer affects the final loss. This
is where backpropagation comes in. Backpropagation
is a robust algorithm that calculates these influences
layer by layer, starting from the output and moving
backwards. It ensures that all network parameters are
updated appropriately to improve the model’s prediction
accuracy.

F. Training an Autoencoder

Autoencoders follow a similar training process to standard
NNs but are distinct in their objective and structure. Autoen-
coders are unlike traditional supervised learning models, which
map inputs to predefined target outputs. Autoencoders aim to
learn an efficient representation of the input data by encoding
it into a lower-dimensional latent space and reconstructing it
back to its original form.

Unlike supervised learning, which aims to predict external
labels, an Autoencoders is trained to minimize the difference
between its input and output, where the loss function measures
reconstruction error. Similar to supervised learning, commonly
used loss functions for training Autoencoders are MSE or
binary cross entropy (BCE), with BCE being the most relevant
in communication system design.

Analogous to supervised learning, optimization algorithms
like gradient descent are used to find Autoencoders ’s pa-
rameters; however, unlike supervised learning, the gradients
must propagate back to the encoder, requiring all the layers

32

between the encoder and decoder, including the channel, to
be differentiable. If such a differentiable channel model is
available, it can be incorporated as non-trainable layers for
end-to-end training [302].

Real-world channels are often non-differentiable or even
unknown, making direct training challenging and leading
to performance losses when relying on inaccurate models.
Another workaround involves training Autoencoders on an
inaccurate but differentiable channel model and then fine-
tuning the decoder using real measurements, yet this limits
encoder optimization. Alternative approaches include learning
a differentiable channel model using an NN which mimics the
channel [303] or employing iterative training methods, where
the decoder is updated with true gradients while the transmitter
is trained using approximated gradients [304].

G. NN’s Hyperparameters

Hyperparameters refer to those components of the NN whose
numerical values can not be derived from the dataset, as they
define the architecture per se. Consequently, they are not part
of the training process [141]. These are components related to

• the architecture, such as the number of nodes and hidden
layers, drop-out rate,

• the selection of the loss function type, such as binary
cross-entropy, multiclass cross-entropy, root mean square
propagation (RMSprop),

• the selection of the activation functions, such as sigmoid,
rectified linear unit (ReLU), ’softmax’, ’tanh’, ’softsign’,

• the training parameters such as the batch size [101],
learning rate [305], momentum [306], number of epochs),
or

• the selection of the optimizer, such as stochastic gradient
descent (SGD), Adam, RMSprop.

These are parameters set by experience and by validating the
operation of the NN.
A rule of thumb to manually set these parameters is to tune
them during the training and validation phases; see [307, Sec.
5.3]. The dataset can be divided into 80 % for training, 10 %
for validation, and 10 % for testing. The NN is trained with
the given set of hyperparameters and adjusted till verifying
performance within the validation test. If good performance
is also obtained within the testing set, then this is a good
candidate for the NN hyperparameters.

The hyperparameters can also be automatically tuned, and
various tuning methods exist in the literature. Examples of
implemented algorithms include the grid search (a brute-force
approach) and random search (a less computationally costly
approach). More elaborate algorithms, such as the popular SGD
or Bayesian optimization, exploit the impact of hyperparameter
variability on NN performance; see further details in [141].

H. Deployment of NNs in MC Environments

The above-mentioned NNs architectures enable communica-
tion links in MC environments such as free diffusion, drifted
channels, and within experimental testbeds. Table II summa-
rizes the deployed NNs architectures per MC environment

and application. In free-diffusion environments, the reported
literature refers to receiver size and communication range in
the cell scale, i.e., operating in the µm range (mostly less than
10 µm). Besides, the literature reports particles with relatively
fast mobility in free diffusion channels if we consider the
value of the diffusion coefficient, D-column in Table II.43 To
have a point of comparison, the diffusion coefficient of vesicle
molecules, as exchanged by cells in the human tissues, is in the
order of 10−4 nm2/ns (see [75]), while most of the particles
reflected in the literature are larger than 10−1 nm2/ns.44 The
communication range for deployed NNs increases within
experimental testbeds and the human vessels in the meter
range.

The deployed NNs apply in various applications such as
channel estimation, synchronization, data communication, and
detection. For this application, the second right half of Table II
summarizes communication-related parameters, including the
number of released molecules, symbol duration, SNR ranges,
and performance metrics. In free-diffusion channels, assump-
tions about the number of released particles (over thousands)
are quite large compared to the cell-to-cell natural process,
where the number of vesicles exchanged is typically below a
hundred, as seen in the work in [75]. For data communication,
the achieved BER is quite favorable, most of the reported
values are in the 10−1 to 10−4 range when the SNR ranges
0 to 10 dB.

We also include a second table in Table III that summarizes
the complexity of the proposed architectures. We list the number
of nodes per fully connected layer, RNN layers (which develop
LSTM cells), and within the CNN layer. These calculations
are accomplished as follows:

• Feedforward NNs: We compute the total of parameters by
adding the number of coefficients and bias per layer. Per
layer, the total of coefficients is nin × nout, and the total
of biases is nout, where nin is the number of inputs, nout

is the number of outputs for the given layer. The number
of nodes in the output layer is one, except for the entry
in [90], where the nodes in the output layer are two.

• RNN and BiRNN architectures: We compute the number
of parameters according to the gates within the LSTM
cells, as all the reported methods deploy those. The LSTM
cell comprises four gates: input, forget, cell, and output;
see Fig. 16. Each gate implements a separate set of weights
for the input, hidden states, and biases, with eight weights
and four biases, totaling 12 parameters per cell. In total,
the amount of parameters for ncells cells will be ncells ×
(12). In the case of the BiRNN, calculations are twice the
number as for the RNN, as each layer implements both a
backward and forward direction.

• CNN architecture: The filter size gives the number of
parameters. A filter of size K will implement K weights
and a single bias. Additionally, the total number of filters
is determined by the comparative sizes of the input and
output. For instance, if the input is a 1D vector as 128×1

43The diffusion coefficient reflects the variability of the position of the
particle with time. See its definition in [215, page 10].

44Diffusion coefficients in the units of nm2/ns refer to molecules of the
size of Potassium atoms while diffusing in water, see [308, Sec. V]

33

and the output is a 2D matrix as 128× 64, the number of
filters is 64. As another example, if the input and output
are 2D matrices given by 64× 64 and 64× 128, then two
filters would be needed as the dimension of the output is
twice in the rows than the dimension in the input.

• Transformer architecture: The complexity for this archi-
tecture is evaluated based on the code published by the
authors in [99].45 In this entry, the number of nodes per
hidden layer, as 200, refers to the six fully connected
layers implemented by the transformer architecture, while
the other amounts, 5 and 1, refer to the remaining fully
connected layers implemented within the decoder. This
architecture also deploys three CNN placed at the input
of the Transformer for feature extraction.

Communication among cells is a crucial mechanism for their
survival and creation. In the process, an animal cell produces a
molecule that is later detected by a receptor protein at a target
cell, triggering a chain of intracellular signals. Within the cell’s
interior, a signaling cascade occurs, targeting the activation
of metabolic enzymes, gene expression, or changes to the
cytoskeleton. Communication among cells occurs on a long
range, such as endocrine cells releasing hormone molecules
into the bloodstream, and on a short range through diffusion
in the extracellular medium, known as paracrine signaling; see
[309, Chap. 15].

Examples of molecules include proteins, peptides, amino
acids, and hormones, which, upon detection at the target cell,
produce receptors that relay signals into the cellular interior.
The metabolism of these proteins directs processes such as
shape, movement, or gene expression, for instance. A cell
typically possesses a few dozen receptors to distinguish specific
molecules from thousands of possibilities. These receptors are
located in the cell membrane for large extracellular molecules
that are too large or too hydrophilic to cross the membrane, or
in the interior of the cell for molecules (like steroid and thyroid
hormones) that can traverse the cell membrane. Examples of
receptors inside the cell are those that activate gene expression
in response to cortisol, a process that takes many minutes or
hours to produce a response.

Examples of receptors in the cell membrane (the vast
majority) are of three kinds: ion-channels-linked, G-protein-
linked, and enzyme-linked. Their main distinction is related to
the intracellular signal they produce. The ion-channel-linked
receptors produce an electrical effect through a flow of ions. G-
protein-linked receptors produce a protein that diffuses into the
plasma membrane, whereas enzyme-linked receptors produce
a cascade of signals that travel to the cell’s interior. These
three receptor types may detect different incoming extracellular
molecules; they are not specialized in a single type and depend
on cell specialization. For instance, a G-linked receptor detects
acetylcholine signaling molecules in a heart muscle, while
an ion-channel-linked receptor detects the same molecule in
skeletal muscle cells; both receptors trigger different responses.

In this section, we list recommended practices for preparing
datasets, as introduced in Section VI of the primary document.

45We completed the calculation for complexity analyzing the file
git_Transfomer as accessible in https://github.com/Zhichao-Zhang-Zjut/
Informer-based/tree/main

The following “rules for the care and feeding of scientific data”
are published by Goodman et al. [310] and modified for this
work.

1) Sharing is Caring: The first rule is the most important
- publish the dataset and convince other researchers to
publish their datasets. Furthermore, request a publicly
available dataset, following the subsequent rules when
reviewing papers.

2) Making the Data Set Publicly Available: Share and
provide a dataset as early as possible. Store the dataset
in a well-known, easily accessible, and long-lasting data
archive, ideally tagging it with a digital object identifier
(DOI). Following Goodman et al. [310], a proper data
archive contains (i) a DOI, (ii) a documentation of the
dataset, as well as metadata, and (ii) a “good curation
practice”.

3) Thinking About Re-Use: While preparing the dataset
and corresponding documentation, remember the in-
tended re-use. Prepare the dataset and documentation
accordingly, using standard formats, or ensure easy access
to the dataset. Also, track the versions of the dataset.

4) Publishing the Workflow: Include at least a description
of the data flow showing how data (intermediate and final)
is generated. Consider encapsulating your workflow for
more complex scenarios, such as using an online service.

5) Linking the Publications: Link the dataset in your
publications as a standard reference (including DOI) and
link the publication in your dataset documentation.

6) Publishing the Code: Publish the code, if available, e.g.,
for simulators and plots.

7) Getting Credit: State how to acknowledge or publish
the published dataset using a bib item or a license,
respectively, in the documentation. Provide all necessary
information for the intended acknowledgment.

8) Targeting Data Storage: Use the intended research
community’s standard repository to make the dataset
publicly available.

9) Rewarding Data Share: Acknowledge researchers who
share their data and/or code. Cite the datasets and show
best practices. Engage the community by giving feedback
on the quality of datasets.

An overview of existing datasets on MC, ordered by platform,
can be found in Table V. Besides the reference for the
dataset itself and the platform on which it is published, the
properties year, size, dataset type, and the related research
are listed. As datasets are also created using simulators,
Table VI lists existing simulators alphabetically, along with
their corresponding application areas. Furthermore, references
to the published source code are provided for the reader.

https://github.com/Zhichao-Zhang-Zjut/Informer-based/tree/main
https://github.com/Zhichao-Zhang-Zjut/Informer-based/tree/main

34

TABLE II: Summary of NN architectures, applications, and parameters related to the MC channel and communication.

End-to-end channel-related parameters Communication-related parameters

MC Geometry NNs arch. Application
Comm.
range

Receiver
radius D [nm2/ns]

Released
molecules

Symbol
duration SNR [dB] Performance metrics Ref.

Po
in

t
tr

an
sm

itt
er

-F
re

e
di

ff
us

io
n-

Sp
he

ri
ca

l
ab

so
rb

in
g

re
ce

iv
er

Fe
ed

fo
rw

ar
d

N
N

s

Channel est.

2 to 10 µm 4 µm 33 × 10−4, 66 × 10−4 200 Error 3.3% Sec.
III.A.4

2 to 11 µm 3 to 7 µm
5 × 10−1, 10−1 3 × 103 RMSE

≤ 0.3 [66]

2 to 11 µm 4 to 10 µm ≤ 1molecule [62]

Data
comm.

500 nm 45 nm 4.2 × 10−1
270ms −5 to 80

BER

4 × 10−1 to 2 × 10−2

[100]
450ms −5 to 35 5 × 10−1 to 2 × 10−5

5 µm 50 nm 1.01 4 × 104 to 4.5 × 104 100ms 30 to 56 2 × 10−1 to 10−4 [90], [96], [97]

14 µm 1 µm 0.06 103 and 2 × 103 3 s 2 to 14 3 × 10−1 to 2 × 10−5 [91]

Localization 10 µm 4 µm 0.79 104 2 and 5 s Error < 50% [131]

Fusion
data

4 to 9 µm 4 µm 5 × 10−1, 7.9 × 10−1 70ms 2 to 5
Pd > 0.94

[135]
Pfa ≤ 7.5 × 10−2

RNN 4 to 9 µm 4 µm 5 × 10−1, 7.9 × 10−1 70ms 2 to 5
Pd > 0.94

[135]
Pfa ≤ 7.5 × 10−2

Autoencoder

Data
comm.

1 to 10 µm 10 µm 0.79 103

BER

5 × 10−2 to 10−6 [118]

BiRNN 1 to 50 µm 1 104 to 5 × 104 10ms 0 to 60 10−1 to 10−5 [89]

Transformer
7 to 12 µm 5 µm 5 6 × 103 to 18 × 103 35 and 100ms 0 to 40 2 × 10−1 to 4 × 10−3 [94], [99]

Drifted channels
10 µm 1.5 µm 0.79 4 × 103 200ms 10 to 40 10−1 to 4 × 10−3 [114]

Autoencoder 38mm 1.24 × 105 100 to 600ms 0 to 10 2 × 10−2 to 2 × 10−6 [119]

E
xp

er
im

en
ta

l
te

st
be

ds

Vessel-like
channels

RNN Synch. 40 cm 0.1 104 20 s 30
Pd 0.6

Sec. III.B.4
STO 3.4 s

Transformer

Data
comm.

< 1m 1.2 s
BER

8 × 10−2 to 9 × 10−2 [102]

BiRNN
7.4 × 10−2 [105]

< 1m 250 to 500ms < 10−4 [103], [104]

CNN 5 cm 0.25, 0.5, 1 s Accuracy ≥ 33% [106]

Feedforward
NN

0.5, 1, 2, 3 s BER 0.19 to 0.4 [112]

Open air
Channel est. 1 to 2m 250, 500, 750 ms RMSE < 0.2 [63]

BiRNN

Data
comm.

1m 0.84 4.9 × 1023 1 to 6 s 27.5

BER

10−2 to 10−6 Sec. III.C.4

in-vivo bacteria
colony

CNN
100 µm 6.7 µm 0.75 105 bacteria 4 s 10 to 35 3 × 10−1 to 10−4 [109]

1min < 10−2 [108]

Human vessels
Feedforward
NN

Channel est. RMSE < 5 × 10−2 [64]

Detection ≈ 2.5m 103 Accuracy < 85% [12]

Notes:
• In the Ref. column of the table, the entries referring to section are pointing to the section in the primary document.

35

• Missing entries in the tables are not specified in the corresponding reference.
• The column D Molecule refers to the diffusion coefficient of molecules.
• The column Released molecules refers to the number of molecules released at the emitter.
• Few contributions report the channel length. The work in [100] reports a channel length of 6 units. The work in [102] reports 3, 5, and 13. The work in [112] reports 1. Our solution in Sec. III.C.4 reports a channel length of 7.
• All reported Data comm. schemes uses the OOK modulation except for [106] which report multilevel modulation as well.
• The acronyms RMSE and FF NNs in the table refers to root mean squared error and feedforward neural networtk, respectively.
• The entry table for reference in [62] also develop a MC geometry comprised of a volumetric transmitter. Besides, we evaluated the RMSE metric by inspecting the printed Fig. 3 on the same paper.
• The flow velocity corresponding to the entry in the Table "Drifted channel" is 30 µm/s as follows from reference [114], 5.5 cm/s as in [119], and 10 cm/s as in the entry for Sec.III.B.4. Additionally, the entry table Open air also specifies a
flow velocity of 3.5m/s for Sec. III.C.4 in the primary document.
• The RNN and BiRNN entries in the table implement LSTM cells.
• The entry table for the references [90], [96], [97] refer to a mobile scenario where the diffusion coefficient of the emitter is 4.74 × 10−5 nm2/ns and for the receiver is 2.31 × 10−3 nm2/ns. Similarly, the entry table for the reference in
[94], [98], [99] define a diffusion coefficient of the receiver as 10−5 nm2/ns.
• The length of the channel in the entry table corresponding to references [103], [104], [105] is evaluated according to the pictures printed in the papers.
• The number of released molecules refers to the nanosensor instead of the entry table with reference [12].

36

TABLE III: Complexity of reported NNs architectures, see Section H for details on the calculation of the number of parameters.

MC
Geometry

NNs arch.

Application
Input
length

Fully connected layers RNN layers CNN layers

Number of
parameters Ref.

Number of
FC layers

Number of
hidden
layers

Nodes per
hidden
layer

Number
of layers

Number of
LSTM cells
per layers

Number
of layers

Number of
filters

Filter
size

Po
in

t
tr

an
sm

itt
er

-F
re

e
di

ff
us

io
n-

Sp
he

ri
ca

l
ab

so
rb

in
g

re
ce

iv
er

Fe
ed

fo
rw

ar
d

N
N

s

Channel est. 2 1 1 2 6 Sec.
III.A.4

Localization 103 1 5 400 1 041 603 [131]

Detection 16 1 1 16 272 [135]

Data comm.

6 5 10 4 837 [88]

11 1 2 20 722 [96], [97]

11 1 12 10 1242 [90]

120 1 2 70 and 10 9111 [91]

Transformer 12 8 1 200, 5, and 1 3 3 10, 3, and 1 15 688 [99]

RNN Detection 32 1 1 32 1 32 417 [136]

E
xp

er
im

en
ta

l
te

st
be

ds

Open air

BiRNN Data comm.

8 6 8 576 Sec. III.C.4

V
es

se
l-

lik
e

ch
an

ne
ls

5 2 1 and 1 25 2 5 540 [105]

40 32 40 2880 [104]

RNN Synch. 1 2 1 and 1 256 and 256 1 128 35 328 Sec. III.B.4

CNN Data comm.

128 3 1 4096, 4096, and 6 3 64, 2, and 2 7, 5, and 3 33 587 738 [106]

in-vivo bacteria colony
15 × 60 × 2 2 1 32 and 2 1 16 15 462 144 [108]

5 2 2 3 30 [109]

Human vessels Feedforward NN Detection 2 1 1 6 18 [12]

Drifted channels Autoencoder Data comm. 1 Enc: 3
Dec: 5

Enc: 1
Dec: 1

244 [119]

Notes:
• In the column “Ref.” of the table, the entries referring to “Sec.” point to the section in the main document.
• Missing entries in the table are not specified in the corresponding reference.
• The number of parameters in the table entries for [96], [97] are already given within these references.
• The RNN and BiRNN entries in the table implement LSTM cells.
• We assume output length as 1 for the entry in the table referring to [135], 2 for [88], [100], and 3 for [90].
• The column table labeled ’Number of parameters’ refers to the total number of weights and biases.
• The column table labeled ’Number of layers’ refers to the number of hidden layers in the feedforward NN architecture.

37

TABLE IV: Summary of NNs architectures, applications, and hyperparameters related to their training.

MC
Geometry

NNs
arch.

Application Optimizer
algorithm

Learning
rate

Number
of samples
training

Number
of epochs

Batch
size Ref.

Po
in

t
tr

an
sm

itt
er

-F
re

e
di

ff
us

io
n-

Sp
he

ri
ca

l
ab

so
rb

in
g

re
ce

iv
er

Fe
ed

fo
rw

ar
d

N
N

s

Channel est. BFGS 481 15 Sec.
III.A.4

Localization
Adam

10−2 100 256 [131]

Detection 10−3 105 samples 100 10 [135]

Data comm.

LM
10−2

103 bit
200

50 [100]

5 ×
104 bit

1 × 103 [88]

10−3 5 × 104 bit

50, 55, and 125
[96], [97]

BFGS
184, 188, and 215

104 bit [90]

10−3 500 [91]

RNN Detection Gradient
descent

10−3 8 ×
103 samples

100 10 [136]

Experimental
testbeds

Open air

BiRNN Data comm. Adam

10−3 106 samples 10 10 Sec. III.C.4

Vessel-like
channels

8 × 104 bit 2 × 104 [105]

10−3 120 bit 200 10 [104]

RNN Synch BFGS 2 × 10−4 1.2 × 106 35 × 103 Sec. III.B.4

CNN
Data comm.

Adam 10−3 20 64 [106]

in-vivo bacteria colony CNN SGDM [108]

Human vessels Feedforward
NN

Detection 4 × 104 [12]

Drifted channels Autoencoder Data comm. 9 × 10−3 2 × 103 40 [119]

Notes:
• In the Ref. column of the table, the entries referring to “Sec.” are pointing to the corresponding section in the main document.
• The abbreviations LM, BFGS, and SGDM introduced in the column “Optimizer algorithm” refer to Lavenberg-Marquardt, Broyden-Fletcher-Goldfarb-Shanno (see [311]), and
stochastic gradient descent with momentum.

38

TABLE V: Existing datasets on MC, ordered by platform.

Name of the dataset Reference Year Size Data type Related work Platform

(1) Dataset for Advanced Plaque Modeling for Atherosclerosis Detection using Molecular Communication [222] 2024 ∼1.5 GB Synthetic [312] IEEE DataPort
(2) Dataset of "Experimental Implementation of Molecule Shift Keying for Enhanced Molecular Communication" [262], [263] 2023 ∼300 MB Experimental [273] IEEE DataPort [262], Zenodo [263]
(3) Dataset for the Simulation of Microfluidic Molecular Communication using OpenFOAM [216] 2023 ∼40 GB Synthetic [156] IEEE DataPort
(4) Dataset for Analog Network Coding in Molecular Communications: A Practical Implementation [261] 2023 ∼0.8 MB Experimental [274] IEEE DataPort
(5) Dataset for Macroscale Molecular Communication Testbed [116] 2023 ∼0.2 MB Experimental [80], [81], [82], [212] IEEE DataPort
(6) Channel Parameter Studies with a Biocompatible Testbed for Molecular Communication [264] 2023 ∼2 MB Experimental [275] IEEE DataPort
(7) The Data Related to Interfacial Shift Keying Allows a High Information Rate in Molecular Communication [265], [266] 2022 ∼0.6 MB Experimental [276], [313] IEEE DataPort [265], Zenodo [266]
(8) Molecular Signal Tracking and Detection Methods in Fluid Dynamic Channels (+ Method and Data) [267], [268] 2019, 2020 ∼26.8 GB Experimental [277] IEEE DataPort
(9) A Molecular Communication Testbed Based on Proton Pumping Bacteria [269] 2019 ∼0.6 MB Experimental [278] IEEE DataPort

(10) Dataset in Support of the Southampton Doctoral Thesis "Type-Spread and Multiple-Access Molecular Communications" [228] 2023 ∼25 MB Synthetic [230] University server
(11) Real-Time Signal Processing via Chemical Reactions for a Microfluidic Molecular Communication System [270] 2023 ∼2.4 GB Experimental [158], [279] Zenodo
(12) Closed-Loop Long-Term Experimental Molecular Communication System 2025 [271], [272] ∼667 MB Experimental [84], [280], [281], [282] Zenodo [272], GitHub [271]
(13) CFD Simulation Dataset for Airborne Pathogen Transmission in Turbulent Channels [223] 2024 ∼506.3 MB Synthetic [224], [225] Zenodo
(14) Received Signal Modeling and BER Analysis for Molecular SISO Communications [231] 2022 ∼3.1 kB Synthetic [232] Zenodo
(15) Channel Estimation and Performance Analysis of SISO Molecular Communications [283], [314] 2021 ∼3.3 kB Synthetic Not specified Zenodo
(16) "molecular_communication" [284] 2020 ∼1.5 kB Not specified Not specified Kaggle
(17) "Distance-Estimation-in-Molecular-Communication" [226] 2020 ∼620 kB Synthetic [63], [227] GitHub
(18) "MCFormer: A Transformer-Based Detector for Molecular Communication with Accelerated Particle-Based Solution" [233] 2023 ∼41.8 MB Synthetic [114] GitHub

39

TABLE VI: Overview of data-generating simulators, alphabetically sorted. URDME and MMFT denote the Unstructured Reaction-Diffusion Master Equation and the Munich MicroFluidic Toolkit, respectively.

Category Simulator and dependence Application area Source code

Flow-agnostic

AcCoRD [243] Microscopic and mesoscopic diffusion-based MC GitHub [315]
BiNS [316] & BiNS2 [317] Diffusion-based MC in blood vessels -
BioNetGen [318] Biochemical systems Website/manual (https://bionetgen.org/)
blood-voyager-s [319], BVS-Vis [320], MEHLISSA [321], Moving objects in human body GitHub (blood-voyager-s [322], BVS-Vis [323], MEHLISSA [324],
BVS-Net [325] (ns-3 extensions) BVS-Net [326])
BNSim [237] Bacterial networks Website (https://radum.ece.utexas.edu/bnsim-bacteria-network-simulator/)*

MC GPU Simulator (Nvidia GPU supporting CUDA) Diffusion-based MC GitHub [235]
MesoRD [327] (visualising results in Matlab) Reaction-diffusion simulations SourceForge [328]
MolComSim Simple active and passive MC GitHub [329]
MUCIN [330] (Matlab extension) Diffusion-based MC with drift Matlab Central File Exchange [331]
Multicellular MC Simulator [332], [333] (Large scale) multicellular MC scenarios GitHub [334]
nanoNS3 [236] (ns-3 extension) Bacterial MC networks Download (http://gnan.ece.gatech.edu/ns-allinone-3.24.zip)
N3Sim [241], [242] Diffusion-based MC Website (http://www.n3cat.upc.edu/n3sim)*

N4Sim [335] Nervous systems and synaptic MC GitHub [336]
Smartcell [337] Cellular processes Available upon email request; initial download link not available
Smoldyn [239] Diffusion, membrane interactions, and molecule reactions Website https://www.smoldyn.org/
URDME [238] (including Matlab and COMSOL interface) Reaction-transport simulation and modeling GitHub [338]

Flow-aware

ANSYS Fluent Wide range of fluidic scenarios (CFD) Commercially available
COMSOL Multiphysics Wide range of fluidic scenarios (CFD) Commercially available
Droplet-Based Microfluidic Simulator [339], [340] Droplet-based fluidic MC Github [341]
(MMFT extension)
Matlab PDEs, CFD, and particle tracking for MC and fluidic scenarios Commercially available
OpenFOAM (Pogona [342], [343]) Wide range of fluidic scenarios (CFD) freely available (Pogona - GitHub [344])

* Download not available anymore

https://bionetgen.org/
https://radum.ece.utexas.edu/bnsim-bacteria-network-simulator/
http://gnan.ece.gatech.edu/ns-allinone-3.24.zip
http://www.n3cat.upc.edu/n3sim
https://www.smoldyn.org/

40

REFERENCES
[1] E. Schrödinger, What is Life? The Physical Aspect of the Living Cell.

Cambridge University Press, 1944, p. 196.
[2] I. F. Akyildiz, M. Pierobon, S. Balasubramaniam, and Y. Koucheryavy,

“The Internet of Bio-Nano Things,” IEEE Communications Magazine,
vol. 53, no. 3, pp. 32–40, Mar. 2015. DOI: 10.1109/MCOM.2015.
7060516.

[3] F. Dressler and S. Fischer, “Connecting In-Body Nano Communication
with Body Area Networks: Challenges and Opportunities of the
Internet of Nano Things,” Elsevier Nano Communication Networks,
vol. 6, pp. 29–38, Jun. 2015. DOI: 10.1016/j.nancom.2015.01.006.

[4] I. F. Akyildiz, M. Ghovanloo, U. Guler, T. Ozkaya-Ahmadov, A. F.
Sarioglu, and B. D. Unluturk, “PANACEA: An Internet of Bio-
NanoThings Application for Early Detection and Mitigation of
Infectious Diseases,” IEEE Access, vol. 8, pp. 140 512–140 523, Jan.
2020. DOI: 10.1109/access.2020.3012139.

[5] J. Philibert, “One and a Half Century of Diffusion: Fick, Einstein,
Before and Beyond,” Diffusion Fundamentals, vol. 4, pp. 1–19, Nov.
2006. DOI: 10.62721/diffusion-fundamentals.4.39.

[6] H. Xiao, K. Dokaj, and O. B. Akan, “What Really is “Molecule” in
Molecular Communications? The Quest for Physics of Particle-Based
Information Carriers,” IEEE Transactions on Molecular, Biological
and Multi-Scale Communications, vol. 10, no. 1, pp. 43–74, Mar.
2024. DOI: 10.1109/TMBMC.2023.3338950.

[7] A. Beck and M. Kurz, “A perspective on machine learning methods in
turbulence modeling,” GAMM-Mitteilungen, vol. 44, no. 1, pp. 1–27,
Mar. 2021. DOI: 10.1002/gamm.202100002.

[8] H. Seckler, J. Szwabiński, and R. Metzler, “Machine-Learning Solu-
tions for the Analysis of Single-Particle Diffusion Trajectories,” The
Journal of Physical Chemistry Letters, vol. 14, no. 35, pp. 7910–7923,
Aug. 2023. DOI: 10.1021/acs.jpclett.3c01351.

[9] F. Cichos, K. Gustavsson, B. Mehlig, and G. Volpe, “Machine learning
for active matter,” Nature Machine Intelligence, vol. 2, no. 2, pp. 94–
103, Feb. 2020. DOI: 10.1038/s42256-020-0146-9.

[10] N. Farsad and A. Goldsmith, “Neural Network Detection of Data
Sequences in Communication Systems,” IEEE Transactions on Signal
Processing, vol. 66, no. 21, pp. 5663–5678, Nov. 2018. DOI: 10.1109/
tsp.2018.2868322.

[11] B. H. Koo, C. Lee, H. B. Yilmaz, N. Farsad, A. W. Eckford, and C. B.
Chae, “Molecular MIMO: From Theory to Prototype,” IEEE Journal
on Selected Areas in Communications, vol. 34, no. 3, pp. 600–614,
Mar. 2016. DOI: 10.1109/JSAC.2016.2525538.

[12] J. Torres Gómez et al., “DNA-Based Nanonetwork for Abnormality
Detection and Localization in the Human Body,” IEEE Transactions
on Nanotechnology, vol. 23, pp. 794–808, Nov. 2024. DOI: 10.1109/
TNANO.2024.3495541.

[13] Y. C. Eldar, A. Goldsmith, D. Gündüz, and H. V. Poor, Machine
Learning and Wireless Communications. Cambridge University Press,
2022. DOI: 10.1017/9781108966559.

[14] R. Khanzadeh, S. Angerbauer, F. Enzenhofer, A. Springer, and
W. Haselmayr, “Towards End-to-End Learning for Salinity-based
Molecular Communication,” in 7th Workshop on Molecular Com-
munications (WMC 2023), Erlangen, Germany, Apr. 2023, pp. 1–2.

[15] J. Torres Gómez et al., Dataset for Cell-to-Cell Communications, 2024.
DOI: 10.21227/vv2r-qn28.

[16] M. Kuscu and B. D. Unluturk, “Internet of Bio-Nano Things: A
review of applications, enabling technologies and key challenges,”
ITU Journal on Future and Evolving Technologies, vol. 2, no. 3,
pp. 1–24, Dec. 2021. DOI: 10.52953/chbb9821.

[17] N. Etemadi, M. Farahnak-Ghazani, H. Arjmandi, M. Mirmohseni, and
M. Nasiri-Kenari, “Abnormality Detection and Localization Schemes
Using Molecular Communication Systems: A Survey,” IEEE Access,
vol. 11, pp. 1761–1792, 2023. DOI: 10.1109/access.2022.3228618.

[18] I. F. Akyildiz, A. Kak, and S. Nie, “6G and Beyond: The Future of
Wireless Communications Systems,” IEEE Access, vol. 8, pp. 133 995–
134 030, 2020. DOI: 10.1109/access.2020.3010896.

[19] E. Lagasse and M. Levin, “Future medicine: from molecular pathways
to the collective intelligence of the body,” Trends in Molecular
Medicine, vol. 29, no. 9, pp. 687–710, Sep. 2023. DOI: 10.1016/
j.molmed.2023.06.007.

[20] I. F. Akyildiz, M. Pierobon, and S. Balasubramaniam, “Moving
forward with molecular communication: from theory to human health
applications [point of view],” Proceedings of the IEEE, vol. 107, no. 5,
pp. 858–865, May 2019. DOI: 10.1109/jproc.2019.2913890.

[21] D. Aktas et al., “Odor-Based Molecular Communications: State-of-
the-Art, Vision, Challenges, and Frontier Directions,” IEEE Commu-

nications Surveys & Tutorials, pp. 1–34, 2024. DOI: 10.1109/comst.
2024.3487472.

[22] K. Yang et al., “A Comprehensive Survey on Hybrid Communication
in Context of Molecular Communication and Terahertz Communication
for Body-Centric Nanonetworks,” IEEE Transactions on Molecular,
Biological and Multi-Scale Communications, vol. 6, no. 2, pp. 107–133,
Nov. 2020. DOI: 10.1109/tmbmc.2020.3017146.

[23] S. Zafar et al., “A Systematic Review of Bio-Cyber Interface
Technologies and Security Issues for Internet of Bio-Nano Things,”
IEEE Access, vol. 9, pp. 93 529–93 566, 2021. DOI: 10.1109/access.
2021.3093442.

[24] Y. Koucheryavy, A. Yastrebova, D. P. Martins, and S. Balasubrama-
niam, “A Review on Bio-Cyber Interfaces for Intrabody Molecular
Communications Systems,” arXiv, eess.SY, Apr. 2021. DOI: 10.48550/
arXiv.2104.14944.

[25] P. Kulakowski, K. Turbic, and L. M. Correia, “From Nano-
Communications to Body Area Networks: A Perspective on Truly
Personal Communications,” IEEE Access, vol. 8, pp. 159 839–159 853,
Jan. 2020. DOI: 10.1109/access.2020.3015825.

[26] Y. Lu, R. Ni, and Q. Zhu, “Wireless Communication in Nanonetworks:
Current Status, Prospect and Challenges,” IEEE Transactions on
Molecular, Biological and Multi-Scale Communications, vol. 6, no. 2,
pp. 71–80, Nov. 2020. DOI: 10.1109/tmbmc.2020.3004304.

[27] J. L. Marzo, J. M. Jornet, and M. Pierobon, “Nanonetworks in
Biomedical Applications,” Current Drug Targets, vol. 20, no. 8,
pp. 800–807, May 2019. DOI: 10.2174/1389450120666190115152613.

[28] B. Dong, Y. Ma, Z. Ren, and C. Lee, “Recent progress in
nanoplasmonics-based integrated optical micro/nano-systems,” Journal
of Physics D: Applied Physics, vol. 53, no. 21, Mar. 2020. DOI:
10.1088/1361-6463/ab77db.

[29] N. Saeed, M. H. Loukil, H. Sarieddeen, T. Y. Al-Naffouri, and
M. S. Alouini, “Body-Centric Terahertz Networks: Prospects and
Challenges,” IEEE Transactions on Molecular, Biological and Multi-
Scale Communications, vol. 8, no. 3, pp. 138–157, Sep. 2022. DOI:
10.1109/tmbmc.2021.3135198.

[30] S. Abadal et al., “Graphene-Based Antenna Design for Commu-
nications in the Terahertz Band,” in Nanoscale Networking and
Communications Handbook, J. R. Vacca, Ed., 1st ed., Boca Raton,
FL: CRC Press, 2019, pp. 25–45.

[31] S. Abadal, C. Han, V. Petrov, L. Galluccio, I. F. Akyildiz, and J. M.
Jornet, “Electromagnetic Nanonetworks Beyond 6G: From Wearable
and Implantable Networks to On-Chip and Quantum Communication,”
IEEE Journal on Selected Areas in Communications, vol. 42, no. 8,
pp. 2122–2142, Aug. 2024. DOI: 10.1109/jsac.2024.3399253.

[32] F. Lemic et al., “Survey on Terahertz Nanocommunication and
Networking: A Top-Down Perspective,” IEEE Journal on Selected
Areas in Communications, vol. 39, no. 6, pp. 1506–1543, Jun. 2021.
DOI: 10.1109/jsac.2021.3071837.

[33] X.-X. Yin, A. Baghai-Wadji, and Y. Zhang, “A Biomedical Perspective
in Terahertz Nano-Communications—A Review,” IEEE Sensors
Journal, vol. 22, no. 10, pp. 9215–9227, May 2022. DOI: 10.1109/
jsen.2022.3161013.

[34] S. Canovas-Carrasco, R. Asorey-Cacheda, A.-J. Garcia-Sanchez, J.
Garcia-Haro, K. Wojcik, and P. Kulakowski, “Understanding the
Applicability of Terahertz Flow-Guided Nano-Networks for Medical
Applications,” IEEE Access, vol. 8, pp. 214 224–214 239, 2020. DOI:
10.1109/access.2020.3041187.

[35] R. C. Moioli et al., “Neurosciences and Wireless Networks: The
Potential of Brain-Type Communications and Their Applications,”
IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1599–
1621, 2021. DOI: 10.1109/comst.2021.3090778.

[36] J. M. Jornet and A. Sangwan, “Nanonetworking in the Terahertz
Band and Beyond,” IEEE Nanotechnology Magazine, vol. 17, no. 3,
pp. 21–31, Jun. 2023. DOI: 10.1109/mnano.2023.3262105.

[37] S. Qiu et al., “Review of Physical Layer Security in Molecular Internet
of Nano-Things,” IEEE Transactions on NanoBioscience, vol. 23, no. 1,
pp. 91–100, Jan. 2024. DOI: 10.1109/tnb.2023.3285973.

[38] V. Jamali, A. Ahmadzadeh, W. Wicke, A. Noel, and R. Schober,
“Channel Modeling for Diffusive Molecular Communication - A Tuto-
rial Review,” Proceedings of the IEEE, vol. 107, no. 7, pp. 1256–1301,
Jul. 2019. DOI: 10.1109/jproc.2019.2919455.

[39] T. Nakano, Y. Okaie, S. Kobayashi, T. Hara, Y. Hiraoka, and T.
Haraguchi, “Methods and Applications of Mobile Molecular Commu-
nication,” Proceedings of the IEEE, vol. 107, no. 7, pp. 1442–1456,
Jul. 2019. DOI: 10.1109/jproc.2019.2917625.

https://doi.org/10.1109/MCOM.2015.7060516
https://doi.org/10.1109/MCOM.2015.7060516
https://doi.org/10.1016/j.nancom.2015.01.006
https://doi.org/10.1109/access.2020.3012139
https://doi.org/10.62721/diffusion-fundamentals.4.39
https://doi.org/10.1109/TMBMC.2023.3338950
https://doi.org/10.1002/gamm.202100002
https://doi.org/10.1021/acs.jpclett.3c01351
https://doi.org/10.1038/s42256-020-0146-9
https://doi.org/10.1109/tsp.2018.2868322
https://doi.org/10.1109/tsp.2018.2868322
https://doi.org/10.1109/JSAC.2016.2525538
https://doi.org/10.1109/TNANO.2024.3495541
https://doi.org/10.1109/TNANO.2024.3495541
https://doi.org/10.1017/9781108966559
https://doi.org/10.21227/vv2r-qn28
https://doi.org/10.52953/chbb9821
https://doi.org/10.1109/access.2022.3228618
https://doi.org/10.1109/access.2020.3010896
https://doi.org/10.1016/j.molmed.2023.06.007
https://doi.org/10.1016/j.molmed.2023.06.007
https://doi.org/10.1109/jproc.2019.2913890
https://doi.org/10.1109/comst.2024.3487472
https://doi.org/10.1109/comst.2024.3487472
https://doi.org/10.1109/tmbmc.2020.3017146
https://doi.org/10.1109/access.2021.3093442
https://doi.org/10.1109/access.2021.3093442
https://doi.org/10.48550/arXiv.2104.14944
https://doi.org/10.48550/arXiv.2104.14944
https://doi.org/10.1109/access.2020.3015825
https://doi.org/10.1109/tmbmc.2020.3004304
https://doi.org/10.2174/1389450120666190115152613
https://doi.org/10.1088/1361-6463/ab77db
https://doi.org/10.1109/tmbmc.2021.3135198
https://doi.org/10.1109/jsac.2024.3399253
https://doi.org/10.1109/jsac.2021.3071837
https://doi.org/10.1109/jsen.2022.3161013
https://doi.org/10.1109/jsen.2022.3161013
https://doi.org/10.1109/access.2020.3041187
https://doi.org/10.1109/comst.2021.3090778
https://doi.org/10.1109/mnano.2023.3262105
https://doi.org/10.1109/tnb.2023.3285973
https://doi.org/10.1109/jproc.2019.2919455
https://doi.org/10.1109/jproc.2019.2917625

41

[40] E. Caferzade, “Modeling and Simulating Chemotaxis Bacteria Net-
works with Drift in MATLAB,” Master’s Thesis, School of Electrical
Engineering and Computer Science, Berlin, Germany, Sep. 2023.

[41] J. S. Burggraf, “Modeling and Simulating Chemotaxis Bacteria
Networks in MATLAB,” Bachelor Thesis, School of Electrical
Engineering and Computer Science, Berlin, Germany, Jul. 2022.

[42] X. Huang, Y. Fang, and N. Yang, “A survey on estimation schemes
in molecular communications,” Elsevier Digital Signal Processing,
vol. 124, pp. 1–13, May 2022. DOI: 10.1016/j.dsp.2021.103163.

[43] M. S. Kuran, H. B. Yilmaz, I. Demirkol, N. Farsad, and A. Goldsmith,
“A Survey on Modulation Techniques in Molecular Communication
via Diffusion,” IEEE Communications Surveys & Tutorials, vol. 23,
no. 1, pp. 7–28, Jan. 2021. DOI: 10.1109/comst.2020.3048099.

[44] M. C. Gursoy, M. Nasiri-Kenari, and S. Mitra, “Towards high data-
rate diffusive molecular communications: A review on performance
enhancement strategies,” Elsevier Digital Signal Processing, vol. 124,
pp. 1–17, May 2022. DOI: 10.1016/j.dsp.2021.103161.

[45] P. Hofmann, J. A. Cabrera, R. Bassoli, M. Reisslein, and F. H. P.
Fitzek, “Coding in Diffusion-Based Molecular Nanonetworks: A
Comprehensive Survey,” IEEE Access, vol. 11, pp. 16 411–16 465,
2023. DOI: 10.1109/access.2023.3243797.

[46] B.-H. Koo, C. Lee, A. E. Pusane, T. Tugcu, and C.-B. Chae, “MIMO
Operations in Molecular Communications: Theory, Prototypes, and
Open Challenges,” IEEE Communications Magazine, vol. 59, no. 9,
pp. 98–104, Sep. 2021. DOI: 10.1109/mcom.110.2000984.

[47] S. Lotter et al., “Experimental Research in Synthetic Molecular
Communications – Part I,” IEEE Nanotechnology Magazine, vol. 17,
no. 3, pp. 42–53, Jun. 2023. DOI: 10.1109/mnano.2023.3262100.

[48] S. Lotter et al., “Experimental Research in Synthetic Molecular
Communications – Part II,” IEEE Nanotechnology Magazine, vol. 17,
no. 3, pp. 54–65, Jun. 2023. DOI: 10.1109/mnano.2023.3262377.

[49] M. Kuscu, E. Dinc, B. A. Bilgin, H. Ramezani, and O. B. Akan,
“Transmitter and Receiver Architectures for Molecular Communica-
tions: A Survey on Physical Design With Modulation, Coding, and
Detection Techniques,” Proceedings of the IEEE, vol. 107, no. 7,
pp. 1302–1341, Jul. 2019. DOI: 10.1109/jproc.2019.2916081.

[50] M. Veletic and I. Balasingham, “Synaptic Communication Engineering
for Future Cognitive Brain–Machine Interfaces,” Proceedings of the
IEEE, vol. 107, no. 7, pp. 1425–1441, Jul. 2019. DOI: 10.1109/jproc.
2019.2915199.

[51] J. M. Jornet et al., “Optogenomic Interfaces: Bridging Biological
Networks With the Electronic Digital World,” Proceedings of the
IEEE, vol. 107, no. 7, pp. 1387–1401, Jul. 2019. DOI: 10.1109/jproc.
2019.2916055.

[52] E. Kim et al., “Redox Is a Global Biodevice Information Processing
Modality,” Proceedings of the IEEE, vol. 107, no. 7, pp. 1402–1424,
Jul. 2019. DOI: 10.1109/jproc.2019.2908582.

[53] Y. Huang, F. Ji, Z. Wei, M. Wen, and W. Guo, “Signal Detection for
Molecular Communication: Model-Based vs. Data-Driven Methods,”
IEEE Communications Magazine, vol. 59, no. 5, pp. 47–53, May 2021.
DOI: 10.1109/mcom.001.2000957.

[54] A.-A. A. Boulogeorgos, S. E. Trevlakis, S. A. Tegos, V. K. Papaniko-
laou, and G. K. Karagiannidis, “Machine Learning in Nano-Scale
Biomedical Engineering,” IEEE Transactions on Molecular, Biological
and Multi-Scale Communications, vol. 7, no. 1, pp. 10–39, Mar. 2021.
DOI: 10.1109/tmbmc.2020.3035383.

[55] R. T. Nagipogu, D. Fu, and J. H. Reif, “A survey on molecular-
scale learning systems with relevance to DNA computing,” Nanoscale,
vol. 15, no. 17, pp. 7676–7694, 2023. DOI: 10.1039/d2nr06202j.

[56] A. Halužan Vasle and M. Moškon, “Synthetic biological neural
networks: From current implementations to future perspectives,”
Biosystems, vol. 237, pp. 1–11, Mar. 2024. DOI: 10.1016/j.biosystems.
2024.105164.

[57] M. Cao, X. Xiong, Y. Zhu, M. Xiao, L. Li, and H. Pei, “DNA
computational device-based smart biosensors,” Trends in Analytical
Chemistry (TrAC), vol. 159, pp. 1–10, Feb. 2023. DOI: 10.1016/j.trac.
2022.116911.

[58] A. Rizwan et al., “A Review on the Role of Nano-Communication in
Future Healthcare Systems: A Big Data Analytics Perspective,” IEEE
Access, vol. 6, pp. 41 903–41 920, May 2018. DOI: 10.1109/ACCESS.
2018.2859340.

[59] P. L. Gentili, M. P. Zurlo, and P. Stano, “Neuromorphic engineering
in wetware: the state of the art and its perspectives,” Frontiers in
Neuroscience, vol. 18, pp. 1–6, Sep. 2024. DOI: 10.3389/fnins.2024.
1443121.

[60] D. Bi, A. Almpanis, A. Noel, Y. Deng, and R. Schober, “A Survey
of Molecular Communication in Cell Biology: Establishing a New

Hierarchy for Interdisciplinary Applications,” IEEE Communications
Surveys & Tutorials, vol. 23, no. 3, pp. 1494–1545, 2021. DOI: 10.
1109/comst.2021.3066117.

[61] M. Egan et al., “Toward Interdisciplinary Synergies in Molecular
Communications: Perspectives from Synthetic Biology, Nanotechnol-
ogy, Communications Engineering and Philosophy of Science,” Life,
vol. 13, no. 1, pp. 1–14, Jan. 2023. DOI: 10.3390/life13010208.

[62] H. B. Yilmaz, C. Lee, Y. J. Cho, and C.-B. Chae, “A machine learning
approach to model the received signal in molecular communications,”
in IEEE International Black Sea Conference on Communications and
Networking (BlackSeaCom 2017), Istanbul, Turkey: IEEE, Jun. 2017,
pp. 1–5. DOI: 10.1109/blackseacom.2017.8277667.

[63] F. Güleç and B. Atakan, “Distance estimation methods for a practical
macroscale molecular communication system,” Elsevier Nano Com-
munication Networks, vol. 24, pp. 1–15, May 2020. DOI: 10.1016/j.
nancom.2020.100300.

[64] S. Mohamed, J. Dong, S. M. A. El-Atty, and M. A. Eissa, “Bio-
Cyber Interface Parameter Estimation with Neural Network for the
Internet of Bio-Nano Things,” Wireless Personal Communications:
An International Journal, vol. 123, no. 2, pp. 1245–1263, Sep. 2021.
DOI: 10.1007/s11277-021-09177-6.

[65] N. Farsad, H. B. Yilmaz, A. W. Eckford, C.-B. Chae, and W. Guo,
“A Comprehensive Survey of Recent Advancements in Molecular
Communication,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 3, pp. 1887–1919, 2016. DOI: 10.1109/comst.2016.2527741.

[66] C. Lee, H. B. Yilmaz, C.-B. Chae, N. Farsad, and A. Goldsmith,
“Machine learning based channel modeling for molecular MIMO
communications,” in 18th IEEE International Workshop on Signal
Processing Advances in Wireless Communications (SPAWC 2017),
Sapporo, Japan: IEEE, Jul. 2017, pp. 1–5. DOI: 10.1109/spawc.2017.
8227765.

[67] H. U. Ozdemir, H. I. Orhan, M. Turan, B. Buyuktas, and H. B. Yilmaz,
“Estimating Capture Probabilities for Complex Topologies in 2D
Molecular Communication via Diffusion Channel using Artificial
Neural Networks,” in 9th IEEE International Black Sea Conference
on Communications and Networking (BlackSeaCom 2021), Bucharest,
Romania: IEEE, May 2021, pp. 1–6. DOI: 10.1109/blackseacom52164.
2021.9527790.

[68] H. U. Ozdemir, H. I. Orhan, M. Turan, B. Büyüktaş, and H. B.
Yilmaz, “Estimating channel coefficients for complex topologies in
3D diffusion channel using artificial neural networks,” Elsevier Nano
Communication Networks, vol. 42, pp. 1–12, Dec. 2024. DOI: 10.
1016/j.nancom.2024.100549.

[69] Z. Cheng, M. Chen, H. Liu, M. Xia, and W. Gong, “Channel modeling
for diffusion-based molecular MIMO communications using deep
learning,” Elsevier Nano Communication Networks, vol. 42, pp. 1–9,
Dec. 2024. DOI: 10.1016/j.nancom.2024.100543.

[70] M. Damrath, B. Yilmaz, C.-B. Chae, and P. A. Hoeher, “Array Gain
Analysis in Molecular MIMO Communications,” IEEE Access, vol. 6,
pp. 61 091–61 102, 2018. DOI: 10.1109/access.2018.2875925.

[71] Z. Cheng, H. Liu, Z. Xu, J. Li, and K. Chi, “Deep Learning-Based
Estimation of Emission Time and Arrival Time in Diffusive Multi-
Receiver Molecular Communication,” IEEE Transactions on Molecular,
Biological and Multi-Scale Communications, vol. 11, no. 2, pp. 257–
268, Jun. 2025. DOI: 10.1109/tmbmc.2025.3546503.

[72] E. Ozbey, Y. K. Cicekdag, and H. B. Yilmaz, “Artificial neural network
based misorientation correction in molecular 4x4 MIMO systems,”
Elsevier Nano Communication Networks, vol. 42, pp. 1–9, Dec. 2024.
DOI: 10.1016/j.nancom.2024.100544.

[73] S. Dhillon and A. Kostrzewski, Clinical Pharmacokinetics. London,
United Kingdom: Pharmaceutical Press, 2006, p. 280.

[74] M. Hagan and M. Menhaj, “Training feedforward networks with the
Marquardt algorithm,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 5, no. 6, pp. 989–993, 1994. DOI: 10.1109/72.
329697.

[75] M. Zoofaghari, F. Pappalardo, M. Damrath, and I. Balasingham,
“Modeling Extracellular Vesicles-Mediated Interactions of Cells in the
Tumor Microenvironment,” IEEE Transactions on NanoBioscience,
vol. 23, no. 1, pp. 71–80, Jan. 2024. DOI: 10.1109/tnb.2023.3284090.

[76] V. Jamali, A. Ahmadzadeh, and R. Schober, “Symbol Synchronization
for Diffusion-Based Molecular Communications,” IEEE Transactions
on NanoBioscience, vol. 16, no. 8, pp. 873–887, Dec. 2017. DOI:
10.1109/tnb.2017.2782761.

[77] M. Mukherjee, H. B. Yilmaz, B. B. Bhowmik, J. Lloret, and Y.
Lv, “Synchronization for Diffusion-Based Molecular Communication
Systems via Faster Molecules,” in IEEE International Conference

https://doi.org/10.1016/j.dsp.2021.103163
https://doi.org/10.1109/comst.2020.3048099
https://doi.org/10.1016/j.dsp.2021.103161
https://doi.org/10.1109/access.2023.3243797
https://doi.org/10.1109/mcom.110.2000984
https://doi.org/10.1109/mnano.2023.3262100
https://doi.org/10.1109/mnano.2023.3262377
https://doi.org/10.1109/jproc.2019.2916081
https://doi.org/10.1109/jproc.2019.2915199
https://doi.org/10.1109/jproc.2019.2915199
https://doi.org/10.1109/jproc.2019.2916055
https://doi.org/10.1109/jproc.2019.2916055
https://doi.org/10.1109/jproc.2019.2908582
https://doi.org/10.1109/mcom.001.2000957
https://doi.org/10.1109/tmbmc.2020.3035383
https://doi.org/10.1039/d2nr06202j
https://doi.org/10.1016/j.biosystems.2024.105164
https://doi.org/10.1016/j.biosystems.2024.105164
https://doi.org/10.1016/j.trac.2022.116911
https://doi.org/10.1016/j.trac.2022.116911
https://doi.org/10.1109/ACCESS.2018.2859340
https://doi.org/10.1109/ACCESS.2018.2859340
https://doi.org/10.3389/fnins.2024.1443121
https://doi.org/10.3389/fnins.2024.1443121
https://doi.org/10.1109/comst.2021.3066117
https://doi.org/10.1109/comst.2021.3066117
https://doi.org/10.3390/life13010208
https://doi.org/10.1109/blackseacom.2017.8277667
https://doi.org/10.1016/j.nancom.2020.100300
https://doi.org/10.1016/j.nancom.2020.100300
https://doi.org/10.1007/s11277-021-09177-6
https://doi.org/10.1109/comst.2016.2527741
https://doi.org/10.1109/spawc.2017.8227765
https://doi.org/10.1109/spawc.2017.8227765
https://doi.org/10.1109/blackseacom52164.2021.9527790
https://doi.org/10.1109/blackseacom52164.2021.9527790
https://doi.org/10.1016/j.nancom.2024.100549
https://doi.org/10.1016/j.nancom.2024.100549
https://doi.org/10.1016/j.nancom.2024.100543
https://doi.org/10.1109/access.2018.2875925
https://doi.org/10.1109/tmbmc.2025.3546503
https://doi.org/10.1016/j.nancom.2024.100544
https://doi.org/10.1109/72.329697
https://doi.org/10.1109/72.329697
https://doi.org/10.1109/tnb.2023.3284090
https://doi.org/10.1109/tnb.2017.2782761

42

on Communications (ICC 2019), Shanghai, China: IEEE, May 2019,
pp. 1–5. DOI: 10.1109/ICC.2019.8761827.

[78] H. ShahMohammadian, G. G. Messier, and S. Magierowski, “Blind
Synchronization in Diffusion-Based Molecular Communication Chan-
nels,” IEEE Communications Letters, vol. 17, no. 11, pp. 2156–2159,
Nov. 2013. DOI: 10.1109/lcomm.2013.100713.131727.

[79] N. C. Luong et al., “Applications of Deep Reinforcement Learning in
Communications and Networking: A Survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019. DOI: 10.
1109/comst.2019.2916583.

[80] L. Y. Debus, P. Hofmann, J. Torres Gómez, F. H. P. Fitzek, and
F. Dressler, “Reinforcement Learning-based Receiver for Molecular
Communication with Mobility,” in IEEE Global Communications
Conference (GLOBECOM 2023), Kuala Lumpur, Malaysia: IEEE, Dec.
2023, pp. 558–564. DOI: 10.1109/GLOBECOM54140.2023.10436754.

[81] P. Hofmann, J. Torres Gómez, F. Dressler, and F. H. P. Fitzek,
“Testbed-based Receiver Optimization for SISO Molecular Commu-
nication Channels,” in 5th IEEE International Balkan Conference
Communications and Networking (BalkanCom 2022), Sarajevo, Bosnia
and Herzegovina: IEEE, Aug. 2022, pp. 120–125. DOI: 10 .1109/
BalkanCom55633.2022.9900720.

[82] L. Y. Debus, P. Hofmann, J. Torres Gómez, and F. Dressler,
“Synchronized Relaying in Molecular Communication: An AI-based
Approach using a Mobile Testbed Setup,” IEEE Transactions on
Molecular, Biological and Multi-Scale Communications, vol. 10, no. 3,
pp. 470–475, Sep. 2024. DOI: 10.1109/TMBMC.2024.3420792.

[83] D. Casaleiro, N. Souto, and J. C. Silva, “Synchronisation and Detection
in Molecular Communication using a Deep-Learning-based Approach,”
IEEE Access, pp. 192 539–192 553, 2024. DOI: 10.1109/access.2024.
3519310.

[84] L. Brand et al., “Media Modulation Based Molecular Communication,”
IEEE Transactions on Communications, vol. 70, no. 11, pp. 7207–7223,
Nov. 2022. DOI: 10.1109/TCOMM.2022.3205949.

[85] T. Brakemann et al., “A Reversibly Photoswitchable GFP-like Protein
with Fluorescence Excitation Decoupled from Switching,” Nature
Biotechnology, vol. 29, no. 10, pp. 942–947, Oct. 2011. DOI: 10.1038/
nbt.1952.

[86] J. Schulman, R. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” arXiv, cs.LG, Jul. 2017,
pp. 1–12. DOI: 10.48550/ARXIV.1707.06347.

[87] M. Andrychowicz et al., “What Matters In On-Policy Reinforcement
Learning? A Large-Scale Empirical Study,” arXiv, cs.LG, Jun. 2020,
pp. 1–48. DOI: 10.48550/ARXIV.2006.05990.

[88] X. Qian, M. D. Renzo, and A. W. Eckford, “Molecular Com-
munications: Model-Based and Data-Driven Receiver Design and
Optimization,” IEEE Access, vol. 7, pp. 53 555–53 565, Jan. 2019.
DOI: 10.1109/access.2019.2912600.

[89] G. H. Alshammri, W. K. M. Ahmed, and V. B. Lawrence, “Adaptive
Batch Training Rule-Based Detection Scheme for On-OFF-Keying
Diffusion-Based Molecular Communications,” in 13th IEEE Nanotech-
nology Materials and Devices Conference (NMDC 2018), Portland,
OR: IEEE, Oct. 2018, pp. 1–4. DOI: 10.1109/nmdc.2018.8605873.

[90] U. K. Agrawal, A. K. Shrivastava, D. Das, and R. Mahapatra, “Neural
Network Detector in Mobile Molecular Communication for Fast
Varying Channels,” in International Conference on Connected Systems
and Intelligence (CSI 2022), Trivandrum, India: IEEE, Aug. 2022,
pp. 1–5. DOI: 10.1109/csi54720.2022.9924143.

[91] S. Sharma, D. Dixit, and K. Deka, “Deep Learning based Symbol
Detection for Molecular Communications,” in IEEE International
Conference on Advanced Networks and Telecommunications Systems
(ANTS 2020), New Delhi, India: IEEE, Dec. 2020, pp. 1–6. DOI:
10.1109/ants50601.2020.9342782.

[92] S.-J. Kim, P. Singh, and S.-Y. Jung, “A machine learning-based
concentration-encoded molecular communication system,” Elsevier
Nano Communication Networks, vol. 35, pp. 1–12, Mar. 2023. DOI:
10.1016/j.nancom.2022.100433.

[93] O. T. Baydas, O. Cetinkaya, and O. B. Akan, “Estimation and
Detection for Molecular MIMO Communications in the Internet of
Bio-Nano Things,” IEEE Transactions on Molecular, Biological and
Multi-Scale Communications, vol. 9, no. 1, pp. 106–110, Mar. 2023.
DOI: 10.1109/tmbmc.2023.3252943.

[94] Z. Cheng, Z. Zhang, and J. Sun, “Signal Detection of Cooperative
Multi-Hop Mobile Molecular Communication via Diffusion,” IEEE
Transactions on Molecular, Biological and Multi-Scale Communica-
tions, vol. 10, no. 1, pp. 101–111, Mar. 2024. DOI: 10.1109/tmbmc.
2024.3360341.

[95] O. Kara, G. Yaylali, A. E. Pusane, and T. Tugcu, “Molecular index
modulation using convolutional neural networks,” Elsevier Nano
Communication Networks, vol. 34, pp. 1–8, Dec. 2022. DOI: 10 .
1016/j.nancom.2022.100420.

[96] A. K. Shrivastava, D. Das, and R. Mahapatra, “Performance Evaluation
of Mobile Molecular Communication System Using Neural Network
Detector,” IEEE Wireless Communications Letters, vol. 10, no. 8,
pp. 1776–1779, Aug. 2021. DOI: 10.1109/lwc.2021.3079522.

[97] A. K. Shrivastava, D. Das, R. Mahapatra, and N. Varshney, “Scaled
Conjugate Gradient Algorithm for Neural Network Detector in
Mobile Molecular Communication,” in IEEE Global Communications
Conference (GLOBECOM 2021), Madrid, Spain: IEEE, Dec. 2021,
pp. 1–6. DOI: 10.1109/globecom46510.2021.9685034.

[98] Z. Cheng, Z. Zhang, J. Jiang, and J. Sun, “Signal Detection of Mobile
Multi-user Molecular Communication System Using Transformer-
Based Model,” in 8th International Conference on Computer and
Communication Systems (ICCCS 2023), Guangzhou, China: IEEE,
Apr. 2023, pp. 85–90. DOI: 10.1109/icccs57501.2023.10151419.

[99] Z. Cheng, Z. Zhang, X. Jin, W. Gong, and K. Chi, “An Informer-Based
Signal Sequence Detector for Mobile Molecular Communication,”
IEEE Communications Letters, vol. 28, no. 6, pp. 1397–1401, Jun.
2024. DOI: 10.1109/lcomm.2024.3381600.

[100] X. Qian and M. Di Renzo, “Receiver Design in Molecular Communi-
cations: An Approach Based on Artificial Neural Networks,” in 15th
IEEE International Symposium on Wireless Communication Systems
(ISWCS 2018), Lisbon, Portugal: IEEE, Aug. 2018, pp. 1–5. DOI:
10.1109/iswcs.2018.8491088.

[101] T. Agrawal, Hyperparameter Optimization in Machine Learning: Make
Your Machine Learning and Deep Learning Models More Efficient.
Apress, 2021, p. 177. DOI: 10.1007/978-1-4842-6579-6.

[102] L. Chen and L. Sun, “Self-Attention-Based Real-Time Signal Detector
for Communication Systems With Unknown Channel Models,” IEEE
Communications Letters, vol. 25, no. 8, pp. 2639–2643, Aug. 2021.
DOI: 10.1109/lcomm.2021.3082708.

[103] N. Farsad and A. Goldsmith, “Detection Algorithms for Communica-
tion Systems Using Deep Learning,” arXiv, cs.LG, Jul. 2017, pp. 1–10.
DOI: 10.48550/arXiv.1705.08044.

[104] N. Farsad and A. Goldsmith, “Sliding Bidirectional Recurrent Neural
Networks for Sequence Detection in Communication Systems,” in
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP 2018), Calgary, Canada: IEEE, Apr. 2018,
pp. 2331–2335. DOI: 10.1109/icassp.2018.8462140.

[105] L. Sun and Y. Wang, “CTBRNN: A Novel Deep-Learning Based
Signal Sequence Detector for Communications Systems,” IEEE Signal
Processing Letters, vol. 27, pp. 21–25, 2020. DOI: 10.1109/lsp.2019.
2953673.

[106] M. Bartunik, O. Keszocze, B. Schiller, and J. Kirchner, “Using Deep
Learning to Demodulate Transmissions in Molecular Communication,”
in 16th IEEE International Symposium on Medical Information and
Communication Technology (ISMICT 2022), Lincoln, NE: IEEE, May
2022, pp. 1–6. DOI: 10.1109/ismict56646.2022.9828263.

[107] M. Bartunik, J. Kirchner, and O. Keszocze, “Artificial intelligence for
molecular communication,” it - Information Technology (itIT), vol. 65,
no. 4-5, pp. 155–163, Aug. 2023. DOI: 10.1515/itit-2023-0029.

[108] F. Vakilipoor, D. Scazzoli, F. Ratti, G. Scalia, and M. Magarini,
“Hybrid deep learning-based feature-augmented detection for molecular
communication systems,” in 9th ACM International Conference
on Nanoscale Computing and Communication (NANOCOM 2022),
Barcelona, Spain: ACM, Oct. 2022, pp. 1–6. DOI: 10.1145/3558583.
3558859.

[109] C. Bai, A. Zhu, X. Lu, Y. Zhu, and K. Wang, “Temporal Convolutional
Network-Based Signal Detection for Magnetotactic Bacteria Com-
munication System,” IEEE Transactions on NanoBioscience, vol. 22,
no. 4, pp. 943–955, Oct. 2023. DOI: 10.1109/tnb.2023.3262555.

[110] A. Vaswani et al., “Attention is all you need,” in 31st International
Conference on Neural Information Processing Systems (NIPS 2017),
Long Beach, CA: Curran Associates Inc., Dec. 2017, pp. 6000–6010.

[111] N. Farsad and A. Goldsmith, “Detection Over Rapidly Changing
Communication Channels Using Deep Learning,” in 52nd Asilomar
Conference on Signals, Systems, and Computers, Pacific Grove, CA:
IEEE, Oct. 2018, pp. 1–5. DOI: 10.1109/acssc.2018.8645187.

[112] B.-H. Koo, H. J. Kim, J.-Y. Kwon, and C.-B. Chae, “Deep Learning-
based Human Implantable Nano Molecular Communications,” in IEEE
International Conference on Communications (ICC 2020), Virtual
Conference: IEEE, Jun. 2020, pp. 1–7. DOI: 10.1109/icc40277.2020.
9148818.

https://doi.org/10.1109/ICC.2019.8761827
https://doi.org/10.1109/lcomm.2013.100713.131727
https://doi.org/10.1109/comst.2019.2916583
https://doi.org/10.1109/comst.2019.2916583
https://doi.org/10.1109/GLOBECOM54140.2023.10436754
https://doi.org/10.1109/BalkanCom55633.2022.9900720
https://doi.org/10.1109/BalkanCom55633.2022.9900720
https://doi.org/10.1109/TMBMC.2024.3420792
https://doi.org/10.1109/access.2024.3519310
https://doi.org/10.1109/access.2024.3519310
https://doi.org/10.1109/TCOMM.2022.3205949
https://doi.org/10.1038/nbt.1952
https://doi.org/10.1038/nbt.1952
https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.48550/ARXIV.2006.05990
https://doi.org/10.1109/access.2019.2912600
https://doi.org/10.1109/nmdc.2018.8605873
https://doi.org/10.1109/csi54720.2022.9924143
https://doi.org/10.1109/ants50601.2020.9342782
https://doi.org/10.1016/j.nancom.2022.100433
https://doi.org/10.1109/tmbmc.2023.3252943
https://doi.org/10.1109/tmbmc.2024.3360341
https://doi.org/10.1109/tmbmc.2024.3360341
https://doi.org/10.1016/j.nancom.2022.100420
https://doi.org/10.1016/j.nancom.2022.100420
https://doi.org/10.1109/lwc.2021.3079522
https://doi.org/10.1109/globecom46510.2021.9685034
https://doi.org/10.1109/icccs57501.2023.10151419
https://doi.org/10.1109/lcomm.2024.3381600
https://doi.org/10.1109/iswcs.2018.8491088
https://doi.org/10.1007/978-1-4842-6579-6
https://doi.org/10.1109/lcomm.2021.3082708
https://doi.org/10.48550/arXiv.1705.08044
https://doi.org/10.1109/icassp.2018.8462140
https://doi.org/10.1109/lsp.2019.2953673
https://doi.org/10.1109/lsp.2019.2953673
https://doi.org/10.1109/ismict56646.2022.9828263
https://doi.org/10.1515/itit-2023-0029
https://doi.org/10.1145/3558583.3558859
https://doi.org/10.1145/3558583.3558859
https://doi.org/10.1109/tnb.2023.3262555
https://doi.org/10.1109/acssc.2018.8645187
https://doi.org/10.1109/icc40277.2020.9148818
https://doi.org/10.1109/icc40277.2020.9148818

43

[113] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” arXiv, cs.LG 1412.6980, Dec. 2014, pp. 1–15. DOI: 10.48550/
arXiv.1412.6980.

[114] X. Lu, C. Bai, A. Zhu, Y. Zhu, and K. Wang, “MCFormer: A
Transformer-Based Detector for Molecular Communication With
Accelerated Particle-Based Solution,” IEEE Communications Letters,
vol. 27, no. 10, pp. 2837–2841, Oct. 2023. DOI: 10.1109/lcomm.2023.
3303091.

[115] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation
by Jointly Learning to Align and Translate,” arXiv, cs.CL, May 2014,
pp. 1–15. DOI: 10.48550/ARXIV.1409.0473.

[116] P. Hofmann, J. Torres Gómez, F. H. Frank H.P., and F. Dressler,
Dataset for Macroscale Molecular Communication Testbed, 2023.
DOI: 10.21227/ytkm-xp81.

[117] C. Xiang, Y. Zhang, Y. Huang, W. Tan, X. Chen, and M. Wen,
“Hybrid Recurrent Neural Network for Signal-Dependent Noise
Suppression in Molecular Communication,” IEEE Transactions on
Molecular, Biological and Multi-Scale Communications, vol. 11, no. 2,
pp. 283–291, Jun. 2025. DOI: 10.1109/tmbmc.2025.3546208.

[118] S. Mohamed, D. Jiang, A. R. Junejo, and D. C. Zuo, “Model-
Based: End-to-End Molecular Communication System Through
Deep Reinforcement Learning Auto Encoder,” IEEE Access, vol. 7,
pp. 70 279–70 286, 2019. DOI: 10.1109/access.2019.2916701.

[119] R. Khanzadeh, S. Angerbauer, A. Springer, and W. Haselmayr, “End-
to-End Learning of Communication Systems with Novel Data-Efficient
IIR Channel Identification,” in 57th Asilomar Conference on Signals,
Systems, and Computers, Pacific Grove, CA: IEEE, Oct. 2023, pp. 40–
46. DOI: 10.1109/ieeeconf59524.2023.10476924.

[120] S. Angerbauer, R. Khanzadeh, F. Enzenhofer, A. Springer, and W.
Haselmayr, “Towards Asymmetric Auto-Encoders for the IoBNT,”
in 10th ACM International Conference on Nanoscale Computing and
Communication (NANOCOM 2023), Coventry, United Kingdom: ACM,
Sep. 2023, pp. 166–167. DOI: 10.1145/3576781.3608733.

[121] S. Angerbauer et al., “Salinity-Based Molecular Communication in
Microfluidic Channels,” IEEE Transactions on Molecular, Biological
and Multi-Scale Communications, vol. 9, no. 2, pp. 191–206, Jun.
2023. DOI: 10.1109/tmbmc.2023.3277391.

[122] R. Khanzadeh et al., “Explainable Asymmetric Auto-Encoder for End-
to-End Learning of IoBNT Communications,” in IEEE International
Conference on Machine Learning for Communication and Networking
(ICMLCN 2024), Stockholm, Sweden: IEEE, May 2024, pp. 412–418.
DOI: 10.1109/ICMLCN59089.2024.10624774.

[123] Z. Cheng, J. Sun, Z. Zhang, P. Hu, and K. Chi, “Channel Modeling
and Optimal Released Molecules for Mobile Molecular MIMO
Communications Among Bionanosensors,” IEEE Sensors Journal,
vol. 23, no. 19, pp. 22 139–22 152, Oct. 2023. DOI: 10.1109/jsen.2023.
3304971.

[124] R. Khanzadeh, S. Angerbauer, J. Torres Gómez, A. Springer, F.
Dressler, and W. Haselmayr, “QL-based Adaptive Transceivers for the
IoBNT Communications,” IEEE Transactions on Molecular, Biological
and Multi-Scale Communications, vol. 10, no. 3, pp. 476–480, Sep.
2024. DOI: 10.1109/TMBMC.2024.3420749.

[125] Z. Cheng, J. Yan, J. Sun, S. Zhang, and K. Chi, “Resource Allocation
Optimization in Mobile Multiuser Molecular Communication by Deep
Neural Network,” IEEE Transactions on Molecular, Biological and
Multi-Scale Communications, vol. 10, no. 3, pp. 409–421, Sep. 2024.
DOI: 10.1109/tmbmc.2024.3412669.

[126] J. Torres Gómez, A. Kuestner, J. Simonjan, B. D. Unluturk, and
F. Dressler, “Nanosensor Location Estimation in the Human Cir-
culatory System using Machine Learning,” IEEE Transactions on
Nanotechnology, vol. 21, pp. 663–673, Oct. 2022. DOI: 10.1109/
TNANO.2022.3217653.

[127] J. Torres Gómez, A. Kuestner, K. Pitke, J. Simonjan, B. D. Unluturk,
and F. Dressler, “A Machine Learning Approach for Abnormality
Detection in Blood Vessels via Mobile Nanosensors,” in 19th ACM
Conference on Embedded Networked Sensor Systems (SenSys 2021),
2nd ACM International Workshop on Nanoscale Computing, Commu-
nication, and Applications (NanoCoCoA 2021), Coimbra, Portugal:
ACM, Nov. 2021, pp. 596–602. DOI: 10.1145/3485730.3494037.

[128] P. Galván, F. Lemic, G. Calvo, S. Abadal, and X. Costa-Pérez,
“Tailoring Graph Neural Network-based Flow-guided Localization
to Individual Bloodstreams and Activities,” in 11th ACM Interna-
tional Conference on Nanoscale Computing and Communication
(NANOCOM 2024), Milan, Italy: ACM, Oct. 2024, pp. 109–115.
DOI: 10.1145/3686015.3689356.

[129] X. Jin, Z. Cheng, M. Chen, H. Liu, W. Gong, and K. Chi, “Transformer-
Based Receiver Localization in Vessel-Like and Flow-Induced Molec-

ular Communication via Diffusion,” IEEE Communications Letters,
vol. 28, no. 10, pp. 2283–2287, Oct. 2024. DOI: 10.1109/lcomm.2024.
3432146.

[130] G. C. Bartra et al., “Graph Neural Networks as an Enabler of Terahertz-
Based Flow-Guided Nanoscale Localization Over Highly Erroneous
Raw Data,” IEEE Journal on Selected Areas in Communications,
vol. 42, no. 8, pp. 1992–2008, Aug. 2024. DOI: 10.1109/jsac.2024.
3399257.

[131] O. D. Kose, M. C. Gursoy, M. Saraclar, A. E. Pusane, and T. Tugcu,
“Machine Learning-Based Silent Entity Localization Using Molecular
Diffusion,” IEEE Communications Letters, vol. 24, no. 4, pp. 807–810,
Apr. 2020. DOI: 10.1109/lcomm.2020.2968319.

[132] J. Torres Gómez, R. Wendt, A. Kuestner, K. Pitke, L. Stratmann,
and F. Dressler, “Markov Model for the Flow of Nanobots in the
Human Circulatory System,” in 8th ACM International Conference
on Nanoscale Computing and Communication (NANOCOM 2021),
Virtual Conference: ACM, Sep. 2021, pp. 1–7. DOI: 10.1145/3477206.
3477477.

[133] A. B. López et al., “Toward Standardized Performance Evaluation
of Flow-guided Nanoscale Localization,” IEEE Transactions on
Molecular, Biological and Multi-Scale Communications, vol. 11, no. 1,
pp. 116–127, Mar. 2025. DOI: 10.1109/TMBMC.2024.3523428.

[134] G. Pascual, F. Lemic, C. Delgado, and X. Costa-Pérez, “Analytical
Modelling of Raw Data for Flow-Guided In-body Nanoscale Local-
ization,” in IEEE International Conference on Machine Learning for
Communication and Networking (ICMLCN 2024), Stockholm, Sweden:
IEEE, May 2024, pp. 428–433. DOI: 10.1109/icmlcn59089.2024.
10625169.

[135] S. N. Solak and M. Oner, “Neural Network Based Decision Fusion
for Abnormality Detection via Molecular Communications,” in IEEE
Workshop on Signal Processing Systems (SiPS), Coimbra, Portugal:
IEEE, Oct. 2020, pp. 1–5. DOI: 10.1109/sips50750.2020.9195212.

[136] S. N. Solak and M. Oner, “RNN based abnormality detection with
nanoscale sensor networks using molecular communications,” in
7th ACM International Conference on Nanoscale Computing and
Communication (NANOCOM 2020), Virtual Conference: ACM, Sep.
2020, pp. 1–6. DOI: 10.1145/3411295.3411313.

[137] T. C. Mai, M. Egan, T. Q. Duong, and M. Di Renzo, “Event Detection
in Molecular Communication Networks With Anomalous Diffusion,”
IEEE Communications Letters, vol. 21, no. 6, pp. 1249–1252, Jun.
2017. DOI: 10.1109/lcomm.2017.2669315.

[138] Q. Ma et al., “A Survey on Time-Series Pre-Trained Models,” IEEE
Transactions on Knowledge and Data Engineering, pp. 1–20, 2024.
DOI: 10.1109/tkde.2024.3475809.

[139] J.-L. Wu, H. Xiao, and E. Paterson, “Physics-informed machine
learning approach for augmenting turbulence models: A comprehensive
framework,” Physical Review Fluids, vol. 3, no. 7, pp. 1–28, Jul. 2018.
DOI: 10.1103/physrevfluids.3.074602.

[140] X. Chen, L. Yang, J. Duan, and G. E. Karniadakis, “Solving Inverse
Stochastic Problems from Discrete Particle Observations Using the
Fokker–Planck Equation and Physics-Informed Neural Networks,”
SIAM Journal on Scientific Computing, vol. 43, no. 3, B811–B830,
Jan. 2021. DOI: 10.1137/20m1360153.

[141] L. Yang and A. Shami, “On hyperparameter optimization of machine
learning algorithms: Theory and practice,” Neurocomputing, vol. 415,
pp. 295–316, Nov. 2020. DOI: 10.1016/j.neucom.2020.07.061.

[142] R. Mosayebi, A. Ahmadzadeh, W. Wicke, V. Jamali, R. Schober, and
M. Nasiri-Kenari, “Early Cancer Detection in Blood Vessels Using
Mobile Nanosensors,” IEEE Transactions on NanoBioscience, vol. 18,
no. 4, pp. 103–116, Oct. 2019. DOI: 10.1109/tnb.2018.2885463.

[143] L. Felicetti, M. Femminella, G. Reali, T. Nakano, and A. V. Vasilakos,
“TCP-Like Molecular Communications,” IEEE Journal on Selected
Areas in Communications, vol. 32, no. 12, pp. 2354–2367, Dec. 2014.
DOI: 10.1109/jsac.2014.2367653.

[144] L. Lai, H. El Gamal, H. Jiang, and H. V. Poor, “Cognitive Medium
Access: Exploration, Exploitation, and Competition,” IEEE Transac-
tions on Mobile Computing, vol. 10, no. 2, pp. 239–253, Feb. 2011.
DOI: 10.1109/tmc.2010.65.

[145] S. Haykin, “Cognitive radio: brain-empowered wireless communica-
tions,” IEEE Journal on Selected Areas in Communications, vol. 23,
no. 2, pp. 201–220, Feb. 2005. DOI: 10.1109/JSAC.2004.839380.

[146] J. Torres Gómez, N. Spicher, J. L. González Rios, and F. Dressler,
“Fine-tune Circuit Representation of Human Vessels through Reinforce-
ment Learning: A Novel Digital Twin Approach for Hemodynamics,”
in 10th ACM International Conference on Nanoscale Computing and
Communication (NANOCOM 2023), Coventry, United Kingdom: ACM,
Sep. 2023, pp. 46–52. DOI: 10.1145/3576781.3608717.

https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/lcomm.2023.3303091
https://doi.org/10.1109/lcomm.2023.3303091
https://doi.org/10.48550/ARXIV.1409.0473
https://doi.org/10.21227/ytkm-xp81
https://doi.org/10.1109/tmbmc.2025.3546208
https://doi.org/10.1109/access.2019.2916701
https://doi.org/10.1109/ieeeconf59524.2023.10476924
https://doi.org/10.1145/3576781.3608733
https://doi.org/10.1109/tmbmc.2023.3277391
https://doi.org/10.1109/ICMLCN59089.2024.10624774
https://doi.org/10.1109/jsen.2023.3304971
https://doi.org/10.1109/jsen.2023.3304971
https://doi.org/10.1109/TMBMC.2024.3420749
https://doi.org/10.1109/tmbmc.2024.3412669
https://doi.org/10.1109/TNANO.2022.3217653
https://doi.org/10.1109/TNANO.2022.3217653
https://doi.org/10.1145/3485730.3494037
https://doi.org/10.1145/3686015.3689356
https://doi.org/10.1109/lcomm.2024.3432146
https://doi.org/10.1109/lcomm.2024.3432146
https://doi.org/10.1109/jsac.2024.3399257
https://doi.org/10.1109/jsac.2024.3399257
https://doi.org/10.1109/lcomm.2020.2968319
https://doi.org/10.1145/3477206.3477477
https://doi.org/10.1145/3477206.3477477
https://doi.org/10.1109/TMBMC.2024.3523428
https://doi.org/10.1109/icmlcn59089.2024.10625169
https://doi.org/10.1109/icmlcn59089.2024.10625169
https://doi.org/10.1109/sips50750.2020.9195212
https://doi.org/10.1145/3411295.3411313
https://doi.org/10.1109/lcomm.2017.2669315
https://doi.org/10.1109/tkde.2024.3475809
https://doi.org/10.1103/physrevfluids.3.074602
https://doi.org/10.1137/20m1360153
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.1109/tnb.2018.2885463
https://doi.org/10.1109/jsac.2014.2367653
https://doi.org/10.1109/tmc.2010.65
https://doi.org/10.1109/JSAC.2004.839380
https://doi.org/10.1145/3576781.3608717

44

[147] Á. Goñi-Moreno, “Biocomputation: Moving Beyond Turing with
Living Cellular Computers,” Communications of the ACM, vol. 67,
no. 6, pp. 70–77, May 2024. DOI: 10.1145/3635470.

[148] N. Dehghani and M. Levin, “Bio-inspired AI: Integrating Biological
Complexity into Artificial Intelligence,” arXiv, q-bio.NC, Nov. 2024,
pp. 1–14. DOI: 10.48550/ARXIV.2411.15243.

[149] A. Agiza, S. Marriott, J. K. Rosenstein, E. Kim, and S. Reda,
“pH-Controlled enzymatic computing for digital circuits and neural
networks,” Physical Chemistry Chemical Physics, vol. 26, no. 31,
pp. 20 898–20 907, 2024. DOI: 10.1039/d4cp02039a.

[150] B. Wang, M. Barahona, and M. Buck, “A modular cell-based biosensor
using engineered genetic logic circuits to detect and integrate multiple
environmental signals,” Biosensors and Bioelectronics, vol. 40, no. 1,
pp. 368–376, Feb. 2013. DOI: 10.1016/j.bios.2012.08.011.

[151] S. Brown and Z. Vranesic, Fundamentals of Digital Logic with VHDL
Design, 3rd ed. Boston, MA: McGraw-Hill, 2009, p. 934.

[152] A. Hjelmfelt, E. D. Weinberger, and J. Ross, “Chemical imple-
mentation of neural networks and Turing machines,” Proceedings
of the National Academy of Sciences (PNAS), vol. 88, no. 24,
pp. 10 983–10 987, Dec. 1991. DOI: 10.1073/pnas.88.24.10983.

[153] L. Deng, “The MNIST Database of Handwritten Digit Images for
Machine Learning Researc,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, Nov. 2012. DOI: 10.1109/msp.2012.
2211477.

[154] D. Bi and Y. Deng, “Digital Signal Processing for Molecular
Communication via Chemical-Reaction-Based Microfluidic Circuits,”
IEEE Communications Magazine, vol. 59, no. 5, pp. 26–32, May 2021.
DOI: 10.1109/mcom.001.2000830.

[155] A. O. Bicen and I. F. Akyildiz, “System-Theoretic Analysis and Least-
Squares Design of Microfluidic Channels for Flow-Induced Molecular
Communication,” IEEE Transactions on Signal Processing, vol. 61,
no. 20, pp. 5000–5013, Oct. 2013. DOI: 10.1109/tsp.2013.2274959.

[156] P. Hofmann, P. Zhou, C. Lee, M. Reisslein, F. H. P. Fitzek, and
C.-B. Chae, “OpenFOAM Simulation of Microfluidic Molecular
Communications: Method and Experimental Validation,” IEEE Access,
vol. 12, pp. 109 494–109 512, 2024. DOI: 10 . 1109 / access . 2024 .
3438243.

[157] D. Bi, Y. Deng, M. Pierobon, and A. Nallanathan, “Chemical
Reactions-Based Microfluidic Transmitter and Receiver Design for
Molecular Communication,” IEEE Transactions on Communications,
vol. 68, no. 9, pp. 5590–5605, Sep. 2020. DOI: 10.1109/tcomm.2020.
2993633.

[158] V. Walter, D. Bi, A. Salehi-Reyhani, and Y. Deng, “Real-time
signal processing via chemical reactions for a microfluidic molecular
communication system,” Nature Communications, vol. 14, no. 1,
pp. 1–14, 2023. DOI: 10.1038/s41467-023-42885-0.

[159] A. Amerizadeh et al., “Bacterial Receiver Prototype for Molecular
Communication Using Rhamnose Operon in a Microfluidic Envi-
ronment,” IEEE Transactions on NanoBioscience, vol. 20, no. 4,
pp. 426–435, Oct. 2021. DOI: 10.1109/tnb.2021.3090761.

[160] M. Kuscu, H. Ramezani, E. Dinc, S. Akhavan, and O. B. Akan,
“Fabrication and microfluidic analysis of graphene-based molecular
communication receiver for Internet of Nano Things (IoNT),” Scientific
Reports, vol. 11, no. 1, pp. 1–20, Oct. 2021. DOI: 10.1038/s41598-
021-98609-1.

[161] A. Abdali and M. Kuscu, “Frequency-Domain Model of Microfluidic
Molecular Communication Channels With Graphene BioFET-Based
Receivers,” IEEE Transactions on Communications, vol. 72, no. 8,
pp. 4564–4576, Aug. 2024. DOI: 10.1109/tcomm.2024.3376593.

[162] J. Perera et al., “Wet-Neuromorphic Computing: A New Paradigm for
Biological Artificial Intelligence,” IEEE Intelligent Systems, pp. 1–7,
2025. DOI: 10.1109/mis.2025.3555551.

[163] H. Cai et al., “Brain organoid reservoir computing for artificial
intelligence,” Nature Electronics, vol. 6, no. 12, pp. 1032–1039, Dec.
2023. DOI: 10.1038/s41928-023-01069-w.

[164] B. J. Kagan et al., “In vitro neurons learn and exhibit sentience when
embodied in a simulated game-world,” Neuron, vol. 110, no. 23,
pp. 3952–3969, Dec. 2022. DOI: 10.1016/j.neuron.2022.09.001.

[165] O. Purcell and T. K. Lu, “Synthetic analog and digital circuits for
cellular computation and memory,” Current Opinion in Biotechnology,
vol. 29, pp. 146–155, Oct. 2014. DOI: 10.1016/j.copbio.2014.04.009.

[166] S. Balasubramaniam, S. Somathilaka, S. Sun, A. Ratwatte, and
M. Pierobon, “Realizing Molecular Machine Learning Through
Communications for Biological AI,” IEEE Nanotechnology Magazine,
vol. 17, no. 3, pp. 10–20, Jun. 2023. DOI: 10.1109/mnano.2023.
3262099.

[167] F.-L. A. Lau, R. Wendt, and S. Fischer, “Efficient in-message
computation of prevalent mathematical operations in DNA-based
nanonetworks,” Elsevier Nano Communication Networks, vol. 28,
pp. 1–17, Jun. 2021. DOI: 10.1016/j.nancom.2021.100348.

[168] Y. Brun, “Arithmetic computation in the tile assembly model: Addition
and multiplication,” Theoretical Computer Science, vol. 378, no. 1,
pp. 17–31, Jun. 2007. DOI: 10.1016/j.tcs.2006.10.025.

[169] R. Daniel, J. R. Rubens, R. Sarpeshkar, and T. K. Lu, “Synthetic analog
computation in living cells,” Nature, vol. 497, no. 7451, pp. 619–623,
May 2013. DOI: 10.1038/nature12148.

[170] S. S. Somathilaka, S. Balasubramaniam, D. P. Martins, and X.
Li, “Revealing gene regulation-based neural network computing in
bacteria,” Biophysical Reports, vol. 3, no. 3, pp. 1–21, Sep. 2023.
DOI: 10.1016/j.bpr.2023.100118.

[171] S. Somathilaka, A. Ratwatte, S. Balasubramaniam, M. C. Vuran,
W. Srisa-an, and P. Liò, “Wet TinyML: Chemical Neural Network
Using Gene Regulation and Cell Plasticity,” arXiv, cs.NE, Mar. 2024,
pp. 1–7. DOI: 10.48550/ARXIV.2403.08549.

[172] J. Kim, J. J. Hopfield, and E. Winfree, “Neural network computation
by in vitro transcriptional circuits,” in 18th International Conference
on Neural Information Processing Systems (NIPS 2004), ser. NIPS’04,
Vancouver, Canada: MIT Press, Dec. 2004, pp. 681–688.

[173] L. Qian, E. Winfree, and J. Bruck, “Neural network computation
with DNA strand displacement cascades,” Nature, vol. 475, no. 7356,
pp. 368–372, Jul. 2011. DOI: 10.1038/nature10262.

[174] D. Soloveichik, G. Seelig, and E. Winfree, “DNA as a universal
substrate for chemical kinetics,” Proceedings of the National Academy
of Sciences (PNAS), vol. 107, no. 12, pp. 5393–5398, Mar. 2010. DOI:
10.1073/pnas.0909380107.

[175] L. Rizik, L. Danial, M. Habib, R. Weiss, and R. Daniel, “Synthetic
neuromorphic computing in living cells,” Nature Communications,
vol. 13, no. 1, pp. 1–17, Sep. 2022. DOI: 10.1038/s41467-022-33288-8.

[176] A. G. Becerra, M. Gutiérrez, and R. Lahoz-Beltra, “Computing within
bacteria: Programming of bacterial behavior by means of a plasmid
encoding a perceptron neural network,” Biosystems, vol. 213, pp. 1–16,
Mar. 2022. DOI: 10.1016/j.biosystems.2022.104608.

[177] C. Chen, R. Wu, and B. Wang, “Development of a neuron model
based on DNAzyme regulation,” RSC Advances, vol. 11, no. 17,
pp. 9985–9994, 2021. DOI: 10.1039/d0ra10515e.

[178] A. J. van der Linden et al., “DNA Input Classification by a
Riboregulator-Based Cell-Free Perceptron,” ACS Synthetic Biology,
vol. 11, no. 4, pp. 1510–1520, Apr. 2022. DOI: 10.1021/acssynbio.
1c00596.

[179] S. Okumura et al., “Nonlinear decision-making with enzymatic neural
networks,” Nature, vol. 610, no. 7932, pp. 496–501, Oct. 2022. DOI:
10.1038/s41586-022-05218-7.

[180] X. Xiong et al., “Molecular convolutional neural networks with DNA
regulatory circuits,” Nature Machine Intelligence, vol. 4, no. 7, pp. 625–
635, Jul. 2022. DOI: 10.1038/s42256-022-00502-7.

[181] K. Sarkar, D. Bonnerjee, R. Srivastava, and S. Bagh, “A single layer
artificial neural network type architecture with molecular engineered
bacteria for reversible and irreversible computing,” Chemical Science,
vol. 12, no. 48, pp. 15 821–15 832, 2021. DOI: 10.1039/d1sc01505b.

[182] L. Smirnova et al., “Organoid intelligence (OI): the new frontier in
biocomputing and intelligence-in-a-dish,” Frontiers in Neuroscience,
vol. 1, pp. 1–23, Feb. 2023. DOI: 10.3389/fsci.2023.1017235.

[183] X. Li, L. Rizik, V. Kravchik, M. Khoury, N. Korin, and R. Daniel,
“Synthetic neural-like computing in microbial consortia for pattern
recognition,” Nature Communications, vol. 12, no. 1, pp. 1–12, May
2021. DOI: 10.1038/s41467-021-23336-0.

[184] A. Agiza et al., “Digital circuits and neural networks based on
acid-base chemistry implemented by robotic fluid handling,” Nature
Communications, vol. 14, no. 1, pp. 1–9, Jan. 2023. DOI: 10.1038/
s41467-023-36206-8.

[185] A. Pandi et al., “Metabolic perceptrons for neural computing in
biological systems,” Nature Communications, vol. 10, no. 1, pp. 1–13,
Aug. 2019. DOI: 10.1038/s41467-019-11889-0.

[186] R. Sawlekar and G. Nikolakopoulos, “A Survey of DNA-based
Computing Devices and their Applications,” in European Control
Conference (ECC 2021), Delft, Netherlands: IEEE, Jun. 2021, pp. 769–
774. DOI: 10.23919/ecc54610.2021.9654895.

[187] K. M. Cherry and L. Qian, “Scaling up molecular pattern recognition
with DNA-based winner-take-all neural networks,” Nature, vol. 559,
no. 7714, pp. 370–376, Jul. 2018. DOI: 10.1038/s41586-018-0289-6.

[188] K. R. Rodriguez, N. Sarraf, and L. Qian, “A Loser-Take-All DNA
Circuit,” ACS Synthetic Biology, vol. 10, no. 11, pp. 2878–2885, Oct.
2021. DOI: 10.1021/acssynbio.1c00318.

https://doi.org/10.1145/3635470
https://doi.org/10.48550/ARXIV.2411.15243
https://doi.org/10.1039/d4cp02039a
https://doi.org/10.1016/j.bios.2012.08.011
https://doi.org/10.1073/pnas.88.24.10983
https://doi.org/10.1109/msp.2012.2211477
https://doi.org/10.1109/msp.2012.2211477
https://doi.org/10.1109/mcom.001.2000830
https://doi.org/10.1109/tsp.2013.2274959
https://doi.org/10.1109/access.2024.3438243
https://doi.org/10.1109/access.2024.3438243
https://doi.org/10.1109/tcomm.2020.2993633
https://doi.org/10.1109/tcomm.2020.2993633
https://doi.org/10.1038/s41467-023-42885-0
https://doi.org/10.1109/tnb.2021.3090761
https://doi.org/10.1038/s41598-021-98609-1
https://doi.org/10.1038/s41598-021-98609-1
https://doi.org/10.1109/tcomm.2024.3376593
https://doi.org/10.1109/mis.2025.3555551
https://doi.org/10.1038/s41928-023-01069-w
https://doi.org/10.1016/j.neuron.2022.09.001
https://doi.org/10.1016/j.copbio.2014.04.009
https://doi.org/10.1109/mnano.2023.3262099
https://doi.org/10.1109/mnano.2023.3262099
https://doi.org/10.1016/j.nancom.2021.100348
https://doi.org/10.1016/j.tcs.2006.10.025
https://doi.org/10.1038/nature12148
https://doi.org/10.1016/j.bpr.2023.100118
https://doi.org/10.48550/ARXIV.2403.08549
https://doi.org/10.1038/nature10262
https://doi.org/10.1073/pnas.0909380107
https://doi.org/10.1038/s41467-022-33288-8
https://doi.org/10.1016/j.biosystems.2022.104608
https://doi.org/10.1039/d0ra10515e
https://doi.org/10.1021/acssynbio.1c00596
https://doi.org/10.1021/acssynbio.1c00596
https://doi.org/10.1038/s41586-022-05218-7
https://doi.org/10.1038/s42256-022-00502-7
https://doi.org/10.1039/d1sc01505b
https://doi.org/10.3389/fsci.2023.1017235
https://doi.org/10.1038/s41467-021-23336-0
https://doi.org/10.1038/s41467-023-36206-8
https://doi.org/10.1038/s41467-023-36206-8
https://doi.org/10.1038/s41467-019-11889-0
https://doi.org/10.23919/ecc54610.2021.9654895
https://doi.org/10.1038/s41586-018-0289-6
https://doi.org/10.1021/acssynbio.1c00318

45

[189] R. T. Nagipogu and J. H. Reif, “NeuralCRNs: A Natural Implementa-
tion of Learning in Chemical Reaction Networks,” arXiv, cs.ET, Aug.
2024, pp. 1–42. DOI: 10.48550/ARXIV.2409.00034.

[190] S. Angerbauer, F. Enzenhofer, T. Pankratz, M. Hamidovic, A. Springer,
and W. Haselmayr, “Novel Nano-Scale Computing Unit for the
IoBNT: Concept and Practical Considerations,” IEEE Transactions on
Molecular, Biological and Multi-Scale Communications, pp. 549–565,
2024. DOI: 10.1109/tmbmc.2024.3397050.

[191] S. Angerbauer, N. Tuccitto, G. T. Sfrazzetto, R. Santonocito, and
W. Haselmayr, “Investigation of Different Chemical Realizations for
Molecular Matrix Multiplications,” IEEE Transactions on Molecular,
Biological and Multi-Scale Communications, vol. 10, no. 3, pp. 464–
469, Sep. 2024. DOI: 10.1109/tmbmc.2024.3436905.

[192] S. Angerbauer, W. Haselmayr, F. Enzenhofer, T. Pankratz, R. Khan-
zadeh, and A. Springer, “Molecular Nano Neural Networks (M3N):In-
Body Intelligence for the IoBNT,” TechRxiv, preprint, Oct. 2023,
pp. 1–7. DOI: 10.36227/techrxiv.24427435.v1.

[193] M. Uzun, K. B. Ikiz, and M. Kuscu, “Molecular Communication
Channel as a Physical Reservoir Computer,” arXiv, cs.ET, Apr. 2025,
pp. 1–8. DOI: 10.48550/ARXIV.2504.17022.

[194] S. Stepney, “Physical reservoir computing: a tutorial,” Natural
Computing, vol. 23, no. 4, pp. 665–685, Nov. 2024. DOI: 10.1007/
s11047-024-09997-y.

[195] Z. W. El-Hajj and E. B. Newman, “How much territory can a single
E. coli cell control?” Frontiers in Microbiology, vol. 6, pp. 1–12, Apr.
2015. DOI: 10.3389/fmicb.2015.00309.

[196] M. Prakash and N. Gershenfeld, “Microfluidic Bubble Logic,” Science,
vol. 315, no. 5813, pp. 832–835, Feb. 2007. DOI: 10.1126/science.
1136907.

[197] S. Szott et al., “Wi-Fi Meets ML: A Survey on Improving IEEE
802.11 Performance with Machine Learning,” IEEE Communications
Surveys & Tutorials, vol. 24, no. 3, pp. 1843–1893, Jul. 2022. DOI:
10.1109/COMST.2022.3179242.

[198] S. Angerbauer, F. Enzenhofer, H. Gattringer, A. Springer, and W.
Haselmayr, “A Molecular Analog-to-Digital Converter,” TechRxiv, cs,
Jun. 2024, pp. 1–7. DOI: 10.36227/techrxiv.171777814.47534874/v1.

[199] B. A. Holt and G. A. Kwong, “Protease circuits for processing
biological information,” Nature Communications, vol. 11, no. 1,
pp. 1–12, Oct. 2020. DOI: 10.1038/s41467-020-18840-8.

[200] T. Huynh, B. Sun, L. Li, K. P. Nichols, J. L. Koyner, and R. F.
Ismagilov, “Chemical Analog-to-Digital Signal Conversion Based on
Robust Threshold Chemistry and Its Evaluation in the Context of
Microfluidics-Based Quantitative Assays,” Journal of the American
Chemical Society, vol. 135, no. 39, pp. 14 775–14 783, Sep. 2013.
DOI: 10.1021/ja4062882.

[201] M. Moškon, Ž. Pušnik, L. Stanovnik, N. Zimic, and M. Mraz,
“A computational design of a programmable biological processor,”
Biosystems, vol. 221, pp. 1–12, Nov. 2022. DOI: 10.1016/j.biosystems.
2022.104778.

[202] A. B. Carlson, P. B. Crilly, and J. C. Rutledge, Communication Systems:
An Introduction to Signals and Noise in Electrical Communication,
4th ed. New York City, NY: McGraw-Hill, 2002, p. 850.

[203] M. Nauta et al., “From Anecdotal Evidence to Quantitative Evaluation
Methods: A Systematic Review on Evaluating Explainable AI,” ACM
Computing Surveys, vol. 55, no. 13s, pp. 1–42, Jul. 2023. DOI: 10.
1145/3583558.

[204] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why Should I Trust
You?”: Explaining the Predictions of Any Classifier,” in 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA: ACM, Aug. 2016, pp. 1135–1144. DOI:
10.1145/2939672.2939778.

[205] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting
Model Predictions,” in 31st International Conference on Neural
Information Processing Systems (NIPS 2017), Long Beach, CA: Curran
Associates Inc., Dec. 2017, pp. 4768–4777.

[206] A. Binder, G. Montavon, S. Lapuschkin, K.-R. Müller, and W. Samek,
“Layer-Wise Relevance Propagation for Neural Networks with Local
Renormalization Layers,” in Artificial Neural Networks and Machine
Learning, A. E.P. Villa, P. Masulli, and A. J. Pons Rivero, Eds.,
Barcelona, Spain: Springer International Publishing, 2016, pp. 63–71.
DOI: 10.1007/978-3-319-44781-0_8.

[207] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important fea-
tures through propagating activation differences,” in 34th International
Conference on Machine Learning (ICML 2017), Sydney, Australia:
JMLR.org, Aug. 2017, pp. 3145–3153.

[208] T. N. Mundhenk, B. Y. Chen, and G. Friedland, “Efficient Saliency
Maps for Explainable AI,” arXiv, cs.CV, Mar. 2019, pp. 1–42. DOI:
10.48550/ARXIV.1911.11293.

[209] A. Wachter-Zeh, B. Mittelstadt, and C. Russell, “Counterfactual
Explanations without Opening the Black Box: Automated Decisions
and the GDPR,” arXiv, cs.AI, Mar. 2017, pp. 1–52. DOI: 10.48550/
ARXIV.1711.00399.

[210] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, Oct. 2001. DOI: 10.1023/A:1010933404324.

[211] X. Li, “Explainability of NN-based Detectors in MIMO Molecular
Channels,” Master’s Thesis, School of Electrical Engineering and
Computer Science, Berlin, Germany, Jul. 2023.

[212] J. Torres Gómez, P. Hofmann, F. H. P. Fitzek, and F. Dressler,
“Explainability of Neural Networks for Symbol Detection in Molecular
Communication Channels,” IEEE Transactions on Molecular, Biologi-
cal and Multi-Scale Communications, vol. 9, no. 3, pp. 323–328, Sep.
2023. DOI: 10.1109/TMBMC.2023.3297135.

[213] Y. Huang, M. Luo, X. Huang, M. Wen, and C.-B. Chae, “Demys-
tifying Molecular Data-driven Detection with Explainable Artificial
Intelligence,” IEEE Wireless Communications Letters, 2025. DOI:
10.1109/lwc.2025.3554889.

[214] O. T. Basaran, J. Torres Gómez, and F. Dressler, “XAI-Enhanced Bilat-
eral Molecular Communication: Revealing Cancer Microenvironment
Dynamics via Extracellular Tumor Vesicles,” in IEEE International
Conference on Machine Learning for Communication and Networking
(ICMLCN 2025), Barcelona, Spain: IEEE, May 2025.

[215] H. C. Berg, Random Walks in Biology. Princeton University Press,
1993, p. 152.

[216] P. Hofmann, P. Zhou, C. Lee, M. Reisslein, F. H. Fitzek, and
C.-B. Chae, Dataset for the Simulation of Microfluidic Molecular
Communication using OpenFOAM, 2023. DOI: 10.21227/b71c-4286.

[217] D. Weller, J. J. Tabor, H. Jasak, and C. Fureby, “A tensorial approach to
computational continuum mechanics using object-oriented techniques,”
Computers in Physics, vol. 12, no. 6, pp. 620–631, Nov. 1998. DOI:
10.1063/1.168744.

[218] P. Zhou, DMPPIC, 2024. [Online]. Available: https://github.com/
zhoupengjie/DMPPIC.

[219] P. Zhou, R. Zheng, P. Hofmann, J. A. Cabrera, and F. H. P. Fitzek, “A
Diffusive MPPIC Solver in OpenFOAM for Microfluidic Molecular
Communication,” in 11th ACM International Conference on Nanoscale
Computing and Communication (NANOCOM 2024), Milan, Italy:
ACM, Oct. 2024, pp. 126–127. DOI: 10.1145/3686015.3689420.

[220] A. Wietfeld et al., “Advanced Plaque Modeling for Atherosclerosis
Detection Using Molecular Communication,” arXiv, cs.ET, Nov. 2024,
pp. 1–6. DOI: 10.48550/ARXIV.2411.13241.

[221] P. Hofmann et al., “A Molecular Communication Perspective on
Detecting Arterial Plaque Formation,” IEEE Transactions on Molecular,
Biological and Multi-Scale Communications, vol. 10, no. 3, pp. 458–
463, Sep. 2024. DOI: 10.1109/tmbmc.2024.3423005.

[222] P. Hofmann et al., Dataset for Advanced Plaque Modeling for
Atherosclerosis Detection using Molecular Communication, 2024. DOI:
10.21227/mn8d-0h55.

[223] F. Gulec, CFD Simulation Dataset for Airborne Pathogen Transmission
in Turbulent Channels, 2024. DOI: 10.5281/zenodo.13793238.

[224] F. Gulec, CFD-Approach-for-the-Characterization-of-Airborne-
Transmission-in-Turbulent-MC-Channels, 2024. [Online]. Available:
https : / / github . com / fatihguelec / CFD - Approach - for - the -
Characterization - of - Airborne - Transmission - in - Turbulent - MC -
Channels.

[225] F. Güleç, F. Dressler, and A. W. Eckford, “A Computational Approach
for the Characterization of Airborne Pathogen Transmission in
Turbulent Molecular Communication Channels,” IEEE Transactions
on Molecular, Biological and Multi-Scale Communications, vol. 9,
no. 2, pp. 124–134, Jun. 2023. DOI: 10.1109/TMBMC.2023.3273193.

[226] F. Gulec, Distance-Estimation-in-Molecular-Communication, 2020.
[Online]. Available: https : / / github . com / fatihguelec / Distance -
Estimation-in-Molecular-Communication.

[227] F. Güleç and B. Atakan, “Fluid dynamics-based distance estimation
algorithm for macroscale molecular communication,” Elsevier Nano
Communication Networks, vol. 28, pp. 1–9, Jun. 2021. DOI: 10.1016/
j.nancom.2021.100351.

[228] W. Gao, Dataset in Support of the Southampton Doctoral Thesis
"Type-Spread and Multiple-Access Molecular Communications", 2023.
DOI: http://dx.doi.org/10.5258/SOTON/D2545.

[229] W. Gao, T. Mak, and L.-L. Yang, “Molecular Type Spread Molecular
Shift Keying for Multiple-Access Diffusive Molecular Communi-
cations,” IEEE Transactions on Molecular, Biological and Multi-

https://doi.org/10.48550/ARXIV.2409.00034
https://doi.org/10.1109/tmbmc.2024.3397050
https://doi.org/10.1109/tmbmc.2024.3436905
https://doi.org/10.36227/techrxiv.24427435.v1
https://doi.org/10.48550/ARXIV.2504.17022
https://doi.org/10.1007/s11047-024-09997-y
https://doi.org/10.1007/s11047-024-09997-y
https://doi.org/10.3389/fmicb.2015.00309
https://doi.org/10.1126/science.1136907
https://doi.org/10.1126/science.1136907
https://doi.org/10.1109/COMST.2022.3179242
https://doi.org/10.36227/techrxiv.171777814.47534874/v1
https://doi.org/10.1038/s41467-020-18840-8
https://doi.org/10.1021/ja4062882
https://doi.org/10.1016/j.biosystems.2022.104778
https://doi.org/10.1016/j.biosystems.2022.104778
https://doi.org/10.1145/3583558
https://doi.org/10.1145/3583558
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1007/978-3-319-44781-0_8
https://doi.org/10.48550/ARXIV.1911.11293
https://doi.org/10.48550/ARXIV.1711.00399
https://doi.org/10.48550/ARXIV.1711.00399
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/TMBMC.2023.3297135
https://doi.org/10.1109/lwc.2025.3554889
https://doi.org/10.21227/b71c-4286
https://doi.org/10.1063/1.168744
https://github.com/zhoupengjie/DMPPIC
https://github.com/zhoupengjie/DMPPIC
https://doi.org/10.1145/3686015.3689420
https://doi.org/10.48550/ARXIV.2411.13241
https://doi.org/10.1109/tmbmc.2024.3423005
https://doi.org/10.21227/mn8d-0h55
https://doi.org/10.5281/zenodo.13793238
https://github.com/fatihguelec/CFD-Approach-for-the-Characterization-of-Airborne-Transmission-in-Turbulent-MC-Channels
https://github.com/fatihguelec/CFD-Approach-for-the-Characterization-of-Airborne-Transmission-in-Turbulent-MC-Channels
https://github.com/fatihguelec/CFD-Approach-for-the-Characterization-of-Airborne-Transmission-in-Turbulent-MC-Channels
https://doi.org/10.1109/TMBMC.2023.3273193
https://github.com/fatihguelec/Distance-Estimation-in-Molecular-Communication
https://github.com/fatihguelec/Distance-Estimation-in-Molecular-Communication
https://doi.org/10.1016/j.nancom.2021.100351
https://doi.org/10.1016/j.nancom.2021.100351
https://doi.org/http://dx.doi.org/10.5258/SOTON/D2545

46

Scale Communications, vol. 7, no. 1, pp. 51–63, Mar. 2021. DOI:
10.1109/tmbmc.2020.3041182.

[230] W. Gao, “Type-Spread and Multiple-Access Molecular Communi-
cations,” PhD Thesis, School of Electronics and Computer Science,
Southampton, United Kingdom, Feb. 2023.

[231] A. Das, B. Runwal, O. T. Baydas, O. Cetinkaya, and O. B. Akan,
Received Signal Modeling and BER Analysis for Molecular SISO
Communications, 2022. DOI: 10.5281/zenodo.7036057.

[232] A. Das, B. Runwal, O. T. Baydas, O. Cetinkaya, and O. B. Akan,
“Received signal modeling and BER analysis for molecular SISO
communications,” in 9th ACM International Conference on Nanoscale
Computing and Communication (NANOCOM 2022), Barcelona, Spain,
Oct. 2022, pp. 1–6. DOI: 10.1145/3558583.3558854.

[233] X. Lu, MCFormer, 2023. [Online]. Available: https://github.com/
Xiwen-Lu/MCFormer.

[234] M. Hamidović, S. Angerbauer, D. Bi, Y. Deng, T. Tugcu, and W.
Haselmayr, “Microfluidic Systems for Molecular Communications: A
Review From Theory to Practice,” IEEE Transactions on Molecular,
Biological and Multi-Scale Communications, vol. 10, no. 1, pp. 147–
163, Mar. 2024. DOI: 10.1109/tmbmc.2024.3368768.

[235] K. Gökarslan and E. Çağırıcı, MoleCom-Gpu, 2017. [Online]. Avail-
able: https://github.com/MoleCom-Gpu/MoleCom-Gpu.

[236] Y. Jian et al., “nanoNS3: A network simulator for bacterial nanonet-
works based on molecular communication,” Elsevier Nano Communi-
cation Networks, vol. 12, pp. 1–11, Jun. 2017. DOI: 10.1016/j.nancom.
2017.01.004.

[237] G. Wei, P. Bogdan, and R. Marculescu, “Efficient Modeling and
Simulation of Bacteria-Based Nanonetworks with BNSim,” IEEE
Journal on Selected Areas in Communications, vol. 31, no. 12, pp. 868–
878, Dec. 2013. DOI: 10.1109/JSAC.2013.SUP2.12130019.

[238] B. Drawert, S. Engblom, and A. Hellander, “URDME: a modular
framework for stochastic simulation of reaction-transport processes in
complex geometries,” BMC Systems Biology, vol. 6, no. 1, pp. 1–17,
Jun. 2012. DOI: 10.1186/1752-0509-6-76.

[239] S. S. Andrews, N. J. Addy, R. Brent, and A. P. Arkin, “Detailed
Simulations of Cell Biology with Smoldyn 2.1,” PLoS Computational
Biology, vol. 6, no. 3, pp. 1–10, Mar. 2010. DOI: 10.1371/journal.pcbi.
1000705.

[240] S. S. Andrews, “Smoldyn: particle-based simulation with rule-based
modeling, improved molecular interaction and a library interface,”
Bioinformatics, vol. 33, no. 5, pp. 710–717, Dec. 2016. DOI: 10.1093/
bioinformatics/btw700.

[241] I. Llatser et al., “Exploring the Physical Channel of Diffusion-
Based Molecular Communication by Simulation,” in IEEE Global
Telecommunications Conference (GLOBECOM 2011), Houston, TX:
IEEE, Dec. 2011, pp. 1–5. DOI: 10.1109/glocom.2011.6134028.

[242] I. Llatser, D. Demiray, A. Cabellos-Aparicio, D. T. Altilar, and E.
Alarcón, “N3Sim: Simulation framework for diffusion-based molecular
communication nanonetworks,” Simulation Modelling Practice and
Theory, vol. 42, pp. 210–222, Mar. 2014. DOI: 10.1016/j.simpat.2013.
11.004.

[243] A. Noel, K. C. Cheung, R. Schober, D. Makrakis, and A. Hafid,
“Simulating with AcCoRD: Actor-based Communication via Reaction–
Diffusion,” Elsevier Nano Communication Networks, vol. 11, pp. 44–
75, Mar. 2017. DOI: 10.1016/j.nancom.2017.02.002.

[244] X. Qian, M. Di Renzo, and A. Eckford, Molecular-Communication,
2020. [Online]. Available: https://github.com/MuskanM1/Molecular-
Communication.

[245] P. Sangani, Research-in-Molecular-Communication, 2021. [Online].
Available: https : / /github.com/Priyank31/Research- in- Molecular-
Communication.

[246] D. Patel, Molecular-Communication, 2020. [Online]. Available: https:
//github.com/devshree07/Molecular-Communications.

[247] Y. Shastri, Molecular-Communication—Model-based-and-Data-
Driven-Receiver-Design, 2020. [Online]. Available: https :
//github.com/Yesha19/Molecular-Communication---Model-based-
and-Data-Driven-Receiver-Design.

[248] H. Birkan, ANN for Diffusion Channel with Reflecting Spherical to
Absorbing Spherical, MATLAB Central File Exchange, 2017. [Online].
Available: https://www.mathworks.com/matlabcentral/fileexchange/
61382 - ann - for - diffusion - channel - with - reflecting - spherical - to -
absorbing-spherical.

[249] F. Gulec, Signal-Reconstruction-in-Diffusion-based-Molecular-
Communication, 2018. [Online]. Available: https : / / github . com /
fatihguelec/Signal- Reconstruction- in- Diffusion- based- Molecular-
Communication.

[250] B. Atakan and F. Güleç, “Signal reconstruction in diffusion-based
molecular communication,” Transactions on Emerging Telecommu-
nications Technologies, vol. 30, no. 12, pp. 1–14, Dec. 2019. DOI:
10.1002/ett.3699.

[251] F. Gulec, Mobile-Human-Ad-Hoc-Networks, 2022. [Online]. Available:
https://github.com/fatihguelec/Mobile-Human-Ad-Hoc-Networks.

[252] F. Güleç, B. Atakan, and F. Dressler, “Mobile Human Ad Hoc
Networks: A Communication Engineering Viewpoint on Interhuman
Airborne Pathogen Transmission,” Elsevier Nano Communication
Networks, vol. 32-33, pp. 1–11, Jun. 2022. DOI: 10.1016/j.nancom.
2022.100410.

[253] E. Dong, H. Du, and L. Gardner, “An interactive web-based dashboard
to track COVID-19 in real time,” The Lancet Infectious Diseases,
vol. 20, no. 5, pp. 533–534, May 2020. DOI: 10.1016/s1473-3099(20)
30120-1.

[254] F. Gulec and A. Eckford, “Stochastic Modeling of Biofilm Formation
with Bacterial Quorum Sensing,” in IEEE International Conference on
Communications (ICC 2023), Rome, Italy: IEEE, May 2023, pp. 4470–
4475. DOI: 10.1109/icc45041.2023.10278566.

[255] F. Gulec and A. Eckford, “A Stochastic Biofilm Disruption Model
Based on Quorum Sensing Mimickers,” IEEE Transactions on
Molecular, Biological and Multi-Scale Communications, vol. 9, no. 3,
pp. 346–350, Sep. 2023. DOI: 10.1109/tmbmc.2023.3292321.

[256] F. Gulec, Stochastic-Modeling-of-Biofilm-Formation-with-Bacterial-
Quorum-Sensing, 2022. [Online]. Available: https : / / github . com /
fatihguelec / Stochastic - Modeling - of - Biofilm - Formation - with -
Bacterial-Quorum-Sensing.

[257] F. Gulec, Stochastic-Biofilm-Disruption-Model-Based-on-Quorum-
Sensing-Mimickers, 2022. [Online]. Available: https://github.com/
fatihguelec / Stochastic - Biofilm - Disruption - Model - Based - on -
Quorum-Sensing-Mimickers.

[258] Z. Zhang, Informer-based, 2024. [Online]. Available: https://github.
com/Zhichao-Zhang-Zjut/Informer-based.

[259] D. Scazzoli, F. Vakilipoor, and M. Magarini, “Molecular communica-
tion data augmentation and deep learning based detection,” Elsevier
Nano Communication Networks, vol. 40, pp. 1–12, Jul. 2024. DOI:
10.1016/j.nancom.2024.100510.

[260] L. Grebenstein et al., “Biological Optical-to-Chemical Signal Con-
version Interface: A Small-Scale Modulator for Molecular Commu-
nications,” IEEE Transactions on NanoBioscience, vol. 18, no. 1,
pp. 31–42, Jan. 2019. DOI: 10.1109/TNB.2018.2870910.

[261] P. Hofmann, J. A. Cabrera, R. Bassoli, and F. H. Fitzek, Dataset for
Analog Network Coding in Molecular Communications: A Practical
Implementation, 2023. DOI: 10.21227/57z0-9q64.

[262] N. Tuccitto, Dataset of "Experimental Implementation of Molecule
Shift Keying for Enhanced Molecular Communication", 2023. DOI:
10.21227/krbw-ge80.

[263] T. Nunzio, Dataset of "Experimental Implementation of Molecule Shift
Keying for Enhanced Molecular Communication", Dec. 2023. DOI:
10.5281/zenodo.10390855.

[264] M. Bartunik, Channel Parameter Studies with a Biocompatible Testbed
for Molecular Communication, 2023. DOI: 10 . 21227 / g15d - kz12.
[Online]. Available: https://dx.doi.org/10.21227/g15d-kz12.

[265] F. Calì, G. Li-Destri, and N. Tuccitto, The Data Related to Inter-
facial Shift Keying Allows a High Information Rate in Molecular
Communication, Oct. 2022. DOI: 10.21227/mj9p-pt58.

[266] F. Calì, G. Li-Destri, and N. Tuccitto, The Data Related to Inter-
facial Shift Keying Allows a High Information Rate in Molecular
Communication, version 1.0.0, 2022. DOI: 10.5281/zenodo.7244181.

[267] M. Abbaszadeh, I. Atthanayake, P. J. Thomas, and W. Guo, Molecular
Signal Tracking and Detection Methods in Fluid Dynamic Channels,
2019. DOI: 10.21227/ynet-ss80.

[268] M. Abbaszadeh, I. Atthanayake, P. J. Thomas, and W. Guo, Molecular
Signal Tracking and Detection Methods in Fluid Dynamic Channels
(Method and Data), Jan. 2020. DOI: 10.21227/eae4-kg81.

[269] L. Grebenstein et al., A Molecular Communication Testbed Based on
Proton Pumping Bacteria, 2019. DOI: 10.21227/3zj6-pm05.

[270] V. Walter, D. Bi, A. Salehi-Reyhani, and Y. Deng, Real-Time Signal
Processing via Chemical Reactions for a Microfluidic Molecular
Communication System, 2023. DOI: 10.5281/zenodo.8422465.

[271] M. Scherer et al., Media Modulation Testbed: Code Package, 2025.
[Online]. Available: https : / / github . com / SyMoCADS / Media _
Modulation_Testbed/.

[272] M. Scherer et al., Closed-Loop Long-Term Experimental Molecular
Communication System, Feb. 2025. DOI: 10.5281/zenodo.13898880.

[273] F. Calì, S. Barreca, G. Li-Destri, A. Torrisi, A. Licciardello, and
N. Tuccitto, “Experimental Implementation of Molecule Shift Keying

https://doi.org/10.1109/tmbmc.2020.3041182
https://doi.org/10.5281/zenodo.7036057
https://doi.org/10.1145/3558583.3558854
https://github.com/Xiwen-Lu/MCFormer
https://github.com/Xiwen-Lu/MCFormer
https://doi.org/10.1109/tmbmc.2024.3368768
https://github.com/MoleCom-Gpu/MoleCom-Gpu
https://doi.org/10.1016/j.nancom.2017.01.004
https://doi.org/10.1016/j.nancom.2017.01.004
https://doi.org/10.1109/JSAC.2013.SUP2.12130019
https://doi.org/10.1186/1752-0509-6-76
https://doi.org/10.1371/journal.pcbi.1000705
https://doi.org/10.1371/journal.pcbi.1000705
https://doi.org/10.1093/bioinformatics/btw700
https://doi.org/10.1093/bioinformatics/btw700
https://doi.org/10.1109/glocom.2011.6134028
https://doi.org/10.1016/j.simpat.2013.11.004
https://doi.org/10.1016/j.simpat.2013.11.004
https://doi.org/10.1016/j.nancom.2017.02.002
https://github.com/MuskanM1/Molecular-Communication
https://github.com/MuskanM1/Molecular-Communication
https://github.com/Priyank31/Research-in-Molecular-Communication
https://github.com/Priyank31/Research-in-Molecular-Communication
https://github.com/devshree07/Molecular-Communications
https://github.com/devshree07/Molecular-Communications
https://github.com/Yesha19/Molecular-Communication---Model-based-and-Data-Driven-Receiver-Design
https://github.com/Yesha19/Molecular-Communication---Model-based-and-Data-Driven-Receiver-Design
https://github.com/Yesha19/Molecular-Communication---Model-based-and-Data-Driven-Receiver-Design
https://www.mathworks.com/matlabcentral/fileexchange/61382-ann-for-diffusion-channel-with-reflecting-spherical-to-absorbing-spherical
https://www.mathworks.com/matlabcentral/fileexchange/61382-ann-for-diffusion-channel-with-reflecting-spherical-to-absorbing-spherical
https://www.mathworks.com/matlabcentral/fileexchange/61382-ann-for-diffusion-channel-with-reflecting-spherical-to-absorbing-spherical
https://github.com/fatihguelec/Signal-Reconstruction-in-Diffusion-based-Molecular-Communication
https://github.com/fatihguelec/Signal-Reconstruction-in-Diffusion-based-Molecular-Communication
https://github.com/fatihguelec/Signal-Reconstruction-in-Diffusion-based-Molecular-Communication
https://doi.org/10.1002/ett.3699
https://github.com/fatihguelec/Mobile-Human-Ad-Hoc-Networks
https://doi.org/10.1016/j.nancom.2022.100410
https://doi.org/10.1016/j.nancom.2022.100410
https://doi.org/10.1016/s1473-3099(20)30120-1
https://doi.org/10.1016/s1473-3099(20)30120-1
https://doi.org/10.1109/icc45041.2023.10278566
https://doi.org/10.1109/tmbmc.2023.3292321
https://github.com/fatihguelec/Stochastic-Modeling-of-Biofilm-Formation-with-Bacterial-Quorum-Sensing
https://github.com/fatihguelec/Stochastic-Modeling-of-Biofilm-Formation-with-Bacterial-Quorum-Sensing
https://github.com/fatihguelec/Stochastic-Modeling-of-Biofilm-Formation-with-Bacterial-Quorum-Sensing
https://github.com/fatihguelec/Stochastic-Biofilm-Disruption-Model-Based-on-Quorum-Sensing-Mimickers
https://github.com/fatihguelec/Stochastic-Biofilm-Disruption-Model-Based-on-Quorum-Sensing-Mimickers
https://github.com/fatihguelec/Stochastic-Biofilm-Disruption-Model-Based-on-Quorum-Sensing-Mimickers
https://github.com/Zhichao-Zhang-Zjut/Informer-based
https://github.com/Zhichao-Zhang-Zjut/Informer-based
https://doi.org/10.1016/j.nancom.2024.100510
https://doi.org/10.1109/TNB.2018.2870910
https://doi.org/10.21227/57z0-9q64
https://doi.org/10.21227/krbw-ge80
https://doi.org/10.5281/zenodo.10390855
https://doi.org/10.21227/g15d-kz12
https://dx.doi.org/10.21227/g15d-kz12
https://doi.org/10.21227/mj9p-pt58
https://doi.org/10.5281/zenodo.7244181
https://doi.org/10.21227/ynet-ss80
https://doi.org/10.21227/eae4-kg81
https://doi.org/10.21227/3zj6-pm05
https://doi.org/10.5281/zenodo.8422465
https://github.com/SyMoCADS/Media_Modulation_Testbed/
https://github.com/SyMoCADS/Media_Modulation_Testbed/
https://doi.org/10.5281/zenodo.13898880

47

for Enhanced Molecular Communication,” IEEE Transactions on
Molecular, Biological and Multi-Scale Communications, vol. 10, no. 1,
pp. 175–184, Mar. 2024. DOI: 10.1109/tmbmc.2024.3368759.

[274] P. Hofmann, J. A. Cabrera, R. Bassoli, and F. H. P. Fitzek, “Analog
Network Coding in Molecular Communications: A Practical Implemen-
tation,” in IEEE Global Communications Conference (GLOBECOM
2023), Kuala Lumpur, Malaysia: IEEE, Dec. 2023, pp. 571–576. DOI:
10.1109/globecom54140.2023.10437513.

[275] M. Bartunik, J. Teller, G. Fischer, and J. Kirchner, “Channel Parameter
Studies with a Biocompatible Testbed for Molecular Communication:
Methods and Data,” TechRxiv, report, Apr. 2023. DOI: 10.36227/
techrxiv.22674685.v1.

[276] F. Calì, G. Li-Destri, and N. Tuccitto, “Interfacial Shift Keying Allows
a High Information Rate in Molecular Communication: Methods
and Data,” IEEE Transactions on Molecular, Biological and Multi-
Scale Communications, vol. 9, no. 3, pp. 300–307, Sep. 2023. DOI:
10.1109/tmbmc.2023.3290076.

[277] M. Abbaszadeh, I. Atthanayake, P. J. Thomas, and W. Guo, “Molecular
Signal Tracking and Detection Methods in Fluid Dynamic Channels,”
IEEE Transactions on Molecular, Biological and Multi-Scale Com-
munications, vol. 6, no. 2, pp. 151–159, Nov. 2020. DOI: 10.1109/
tmbmc.2020.3009899.

[278] L. Grebenstein et al., “A Molecular Communication Testbed Based
on Proton Pumping Bacteria: Methods and Data,” IEEE Transactions
on Molecular, Biological and Multi-Scale Communications, vol. 5,
no. 1, pp. 56–62, Oct. 2019. DOI: 10.1109/tmbmc.2019.2957783.

[279] V. Walter, D. Bi, and Y. Deng, MolCommUI, 2023. [Online]. Available:
https://github.com/kcl-yansha/MolCommUI.

[280] L. Brand et al., “Closed Loop Molecular Communication Testbed:
Setup, Interference Analysis, and Experimental Results,” in 59th IEEE
International Conference on Communications (ICC 2024), Denver,
CO: IEEE, Jun. 2024, pp. 4805–4811. DOI: 10.1109/icc51166.2024.
10622231.

[281] L. Brand et al., “Switchable Signaling Molecules for Media Modula-
tion: Fundamentals, Applications, and Research Directions,” arXiv,
cs.NI 2302.10356, Feb. 2023, pp. 1–7. DOI: 10.48550/arXiv.2302.
10356.

[282] M. Scherer et al., “Closed-Loop Long-Term Experimental Molecular
Communication System,” arXiv, cs.ET, Feb. 2025, pp. 1–30. DOI:
10.48550/ARXIV.2502.00831.

[283] A. Das, B. Runwal, O. Cetinkaya, and O. B. Akan, Channel Estimation
and Performance Analysis of SISO Molecular Communications -
Version v2, 2021. DOI: 10.5281/zenodo.5701559.

[284] M. Thakkar, molecular_communication, 2020. [Online]. Available:
https : / / www . kaggle . com / datasets / mithilesh16 / molecular -
communication.

[285] K. Gebru et al., “Datasheets for datasets,” Communications of the
ACM, vol. 64, no. 12, pp. 86–92, Dec. 2021. DOI: 10.1145/3458723.

[286] H. Brownarchive, “Is this the End of Animal Testing?” MIT Technology
Review, Jun. 2024.

[287] L. Ewart et al., “Performance assessment and economic analysis of a
human Liver-Chip for predictive toxicology,” Nature Communications
Medicine, vol. 2, no. 1, pp. 1–16, Dec. 2022. DOI: 10.1038/s43856-
022-00209-1.

[288] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas im-
manent in nervous activity,” The Bulletin of Mathematical Biophysics,
vol. 5, no. 4, pp. 115–133, Dec. 1943. DOI: 10.1007/bf02478259.

[289] S. Skansi, Introduction to Deep Learning: From Logical Calculus
to Artificial Intelligence. Cham, Switzerland: Springer, 2018. DOI:
10.1007/978-3-319-73004-2.

[290] Y. Wu et al., “Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation,” arXiv, cs.CL, Sep.
2016. DOI: 10.48550/ARXIV.1609.08144.

[291] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in 27th International Conference on Neural
Information Processing Systems (NIPS 2014), Montréal, Canada: MIT
Press, Dec. 2014, pp. 3104–3112.

[292] K. Cho et al., “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation,” arXiv, cs.CL, Sep. 2014,
pp. 1–15. DOI: 10.48550/ARXIV.1406.1078.

[293] S. Levy, “8 Google Employees Invented Modern AI. Here’s the Inside
Story,” Wired, Mar. 2024.

[294] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. Dauphin,
“Convolutional Sequence to Sequence Learning,” arXiv, cs.CL, Jul.
2017, pp. 1–15. DOI: 10.48550/ARXIV.1705.03122.

[295] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “End-to-end
memory networks,” in 28th International Conference on Neural

Information Processing Systems (NIPS 2015), Montréal, Canada: MIT
Press, Dec. 2015, pp. 2440–2448.

[296] M.-T. Luong, H. Pham, and C. D. Manning, “Effective Approaches
to Attention-based Neural Machine Translation,” arXiv, cs.CL, Sep.
2015, pp. 1–11. DOI: 10.48550/ARXIV.1508.04025.

[297] J. Zhou, Y. Cao, X. Wang, P. Li, and W. Xu, “Deep Recurrent Models
with Fast-Forward Connections for Neural Machine Translation,”
arXiv, cs.CL 1606.04199, Jul. 2016. DOI: 10.48550/arXiv.1606.04199.

[298] D. Britz, A. Goldie, M.-T. Luong, and Q. Le, “Massive Exploration of
Neural Machine Translation Architectures,” arXiv, cs.CL, Mar. 2017.
DOI: 10.48550/ARXIV.1703.03906.

[299] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep Reinforcement Learning: A Brief Survey,” IEEE Signal
Processing Magazine, vol. 34, no. 6, pp. 26–38, Nov. 2017. DOI:
10.1109/MSP.2017.2743240.

[300] D. T. Hoang, N. Van Huynh, D. N. Nguyen, E. Hossain, and D.
Niyato, Deep Reinforcement Learning for Wireless Communications
and Networking: Theory, Applications and Implementation. Wiley-
IEEE Press, 2023, p. 288.

[301] D. Jurafsky, J. H. Martin, A. Kehler, K. V. Linden, and N. Ward, Speech
and Language Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition: An
Introduction to ... Hall Series in Artificial Intelligence). Stanford, CA:
Pearson, 2025.

[302] S. Dorner, S. Cammerer, J. Hoydis, and S. t. Brink, “Deep Learning
Based Communication Over the Air,” IEEE Journal of Selected Topics
in Signal Processing, vol. 12, no. 1, pp. 132–143, Feb. 2018. DOI:
10.1109/jstsp.2017.2784180.

[303] H. Ye, G. Y. Li, B.-H. F. Juang, and K. Sivanesan, “Channel Agnostic
End-to-End Learning Based Communication Systems with Conditional
GAN,” in IEEE Global Communications Conference (GLOBECOM
2018), Abu Dhabi, United Arab Emirates, Dec. 2018. DOI: 10.1109/
glocomw.2018.8644250.

[304] F. A. Aoudia and J. Hoydis, “Model-Free Training of End-to-
End Communication Systems,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 11, pp. 2503–2516, Nov. 2019. DOI:
10.1109/jsac.2019.2933891.

[305] W. Jin, Z. J. Li, L. S. Wei, and H. Zhen, “The improvements of BP
neural network learning algorithm,” in 5th International Conference
on Signal Processing Proceedings (ICSP 2000), Beijing, China: IEEE,
Aug. 2000. DOI: 10.1109/icosp.2000.893417.

[306] D. E. Rumelhart and J. L. McClelland, “Learning Internal Repre-
sentations by Error Propagation,” in Parallel Distributed Processing:
Explorations in the Microstructure of Cognition: Foundations, D. E.
Rumelhart and J. L. McClelland, Eds., MIT Press, 1987, pp. 318–362.

[307] T. O’Shea and J. Hoydis, “An Introduction to Deep Learning for the
Physical Layer,” IEEE Transactions on Cognitive Communications
and Networking, vol. 3, no. 4, pp. 563–575, Dec. 2017. DOI: 10.1109/
tccn.2017.2758370.

[308] H. Arjmandi, A. Ahmadzadeh, R. Schober, and M. N. Kenari, “Ion
Channel Based Bio-Synthetic Modulator for Diffusive Molecular
Communication,” IEEE Transactions on NanoBioscience, vol. 15,
no. 5, pp. 418–432, Jul. 2016. DOI: 10.1109/tnb.2016.2557350.

[309] B. Alberts et al., Essential Cell Biolog. New York City, NY: W.W.
Norton & Company, 2013. DOI: 10.1201/9781315815015.

[310] A. Goodman et al., “Ten Simple Rules for the Care and Feeding of
Scientific Data,” PLoS Computational Biology, vol. 10, no. 4, pp. 1–5,
Apr. 2014. DOI: 10.1371/journal.pcbi.1003542.

[311] S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A Survey of Optimization
Methods From a Machine Learning Perspective,” IEEE Transactions
on Cybernetics, vol. 50, no. 8, pp. 3668–3681, Aug. 2020. DOI:
10.1109/tcyb.2019.2950779.

[312] A. Wietfeld et al., “Advanced Plaque Modeling for Atherosclerosis
Detection Using Molecular Communication,” in IEEE International
Conference on Communications (ICC 2025), Montréal, Canada: IEEE,
Jun. 2025, pp. 5756–5762.

[313] F. Calì et al., “Fluorescent nanoparticles for reliable communication
among implantable medical devices,” Carbon, vol. 190, pp. 262–275,
Apr. 2022. DOI: 10.1016/j.carbon.2022.01.016.

[314] A. Das, B. Runwal, O. Cetinkaya, and O. B. Akan, Channel Estimation
and Performance Analysis of SISO Molecular Communications -
Version v1, 2021. DOI: 10.5281/zenodo.5701433.

[315] A. Noel, AcCoRD, 2020. [Online]. Available: https://github.com/
adamjgnoel/AcCoRD.

[316] L. Felicetti, M. Femminella, and G. Reali, “A simulation tool
for nanoscale biological networks,” Elsevier Nano Communication

https://doi.org/10.1109/tmbmc.2024.3368759
https://doi.org/10.1109/globecom54140.2023.10437513
https://doi.org/10.36227/techrxiv.22674685.v1
https://doi.org/10.36227/techrxiv.22674685.v1
https://doi.org/10.1109/tmbmc.2023.3290076
https://doi.org/10.1109/tmbmc.2020.3009899
https://doi.org/10.1109/tmbmc.2020.3009899
https://doi.org/10.1109/tmbmc.2019.2957783
https://github.com/kcl-yansha/MolCommUI
https://doi.org/10.1109/icc51166.2024.10622231
https://doi.org/10.1109/icc51166.2024.10622231
https://doi.org/10.48550/arXiv.2302.10356
https://doi.org/10.48550/arXiv.2302.10356
https://doi.org/10.48550/ARXIV.2502.00831
https://doi.org/10.5281/zenodo.5701559
https://www.kaggle.com/datasets/mithilesh16/molecular-communication
https://www.kaggle.com/datasets/mithilesh16/molecular-communication
https://doi.org/10.1145/3458723
https://doi.org/10.1038/s43856-022-00209-1
https://doi.org/10.1038/s43856-022-00209-1
https://doi.org/10.1007/bf02478259
https://doi.org/10.1007/978-3-319-73004-2
https://doi.org/10.48550/ARXIV.1609.08144
https://doi.org/10.48550/ARXIV.1406.1078
https://doi.org/10.48550/ARXIV.1705.03122
https://doi.org/10.48550/ARXIV.1508.04025
https://doi.org/10.48550/arXiv.1606.04199
https://doi.org/10.48550/ARXIV.1703.03906
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1109/jstsp.2017.2784180
https://doi.org/10.1109/glocomw.2018.8644250
https://doi.org/10.1109/glocomw.2018.8644250
https://doi.org/10.1109/jsac.2019.2933891
https://doi.org/10.1109/icosp.2000.893417
https://doi.org/10.1109/tccn.2017.2758370
https://doi.org/10.1109/tccn.2017.2758370
https://doi.org/10.1109/tnb.2016.2557350
https://doi.org/10.1201/9781315815015
https://doi.org/10.1371/journal.pcbi.1003542
https://doi.org/10.1109/tcyb.2019.2950779
https://doi.org/10.1016/j.carbon.2022.01.016
https://doi.org/10.5281/zenodo.5701433
https://github.com/adamjgnoel/AcCoRD
https://github.com/adamjgnoel/AcCoRD

48

Networks, vol. 3, no. 1, pp. 2–18, Mar. 2012. DOI: 10.1016/j.nancom.
2011.09.002.

[317] L. Felicetti, M. Femminella, and G. Reali, “Simulation of molecular
signaling in blood vessels: Software design and application to
atherogenesis,” Elsevier Nano Communication Networks, vol. 4, no. 3,
pp. 98–119, Sep. 2013. DOI: 10.1016/j.nancom.2013.06.002.

[318] L. A. Harris et al., “BioNetGen 2.2: advances in rule-based modeling,”
Bioinformatics, vol. 32, no. 21, pp. 3366–3368, Jul. 2016. DOI: 10.
1093/bioinformatics/btw469.

[319] R. Geyer, M. Stelzner, F. Büther, and S. Ebers, “BloodVoyagerS:
Simulation of the Work Environment of Medical Nanobots,” in
5th ACM International Conference on Nanoscale Computing and
Communication (NANOCOM 2018), Reykjavík, Iceland: ACM, Sep.
2018, 5:1–5:6. DOI: 10.1145/3233188.3233196.

[320] R. Geyer, C. Deter, and S. Fischer, “BVS-Vis: a web-based visual-
izer for BloodVoyagerS,” in 7th ACM International Conference on
Nanoscale Computing and Communication (NANOCOM 2020), Virtual
Conference: ACM, Sep. 2020. DOI: 10.1145/3411295.3411300.

[321] R. Wendt and S. Fischer, “MEHLISSA: A Medical Holistic Simulation
Architecture for Nanonetworks in Humans,” in 7th ACM Interna-
tional Conference on Nanoscale Computing and Communication
(NANOCOM 2020), Virtual Conference: ACM, Sep. 2020. DOI: 10.
1145/3411295.3411305.

[322] R. Wendt, blood-voyager-s, 2020. [Online]. Available: https://github.
com/RegineWendt/blood-voyager-s.

[323] R. Wendt, BVS-Vis, 2020. [Online]. Available: https://github.com/
RegineWendt/BVS-Vis.

[324] R. Wendt, MEHLISSA, 2024. [Online]. Available: https://github.com/
RegineWendt/MEHLISSA.

[325] L. Ebner et al., “BVS-Net: A Networking Tool for Studying THz-based
Intra-body Communication Links,” in 11th ACM International Con-
ference on Nanoscale Computing and Communication (NANOCOM
2024), Work in Progress Papers (WiP), Milan, Italy: ACM, Oct. 2024,
pp. 132–133. DOI: 10.1145/3686015.3691639.

[326] R. Wendt, L. Ebner, and J. T. Gomez, BVS_Net, 2019. [Online].
Available: https://github.com/tkn-tub/BVS_Net.

[327] J. Hattne, D. Fange, and J. Elf, “Stochastic reaction-diffusion simula-
tion with MesoRD,” Bioinformatics, vol. 21, no. 12, pp. 2923–2924,
Apr. 2005. DOI: 10.1093/bioinformatics/bti431.

[328] J. Hattne, D. Fange, and J. Elf, MesoRD, 2005. [Online]. Available:
https://sourceforge.net/projects/mesord/.

[329] B. Morgan, MolComSim, 2015. [Online]. Available: https://github.
com/calypsomatic/MolComSim.

[330] H. B. Yilmaz and C.-B. Chae, “Simulation study of molecular
communication systems with an absorbing receiver: Modulation and
ISI mitigation techniques,” Simulation Modelling Practice and Theory,
vol. 49, pp. 136–150, Dec. 2014. DOI: 10.1016/j.simpat.2014.09.002.

[331] H. Birkan, MolecUlar CommunicatIoN (MUCIN) Simulator, 2024.
[Online]. Available: https : / / www. mathworks . com / matlabcentral /
fileexchange/46066-molecular-communication-mucin-simulator.

[332] T. Saiki and T. Nakano, “Design and Implementation of a Multicellular
Molecular Communication Simulator,” in Joint 12th International
Conference on Soft Computing and Intelligent Systems and 23rd
International Symposium on Advanced Intelligent Systems (SCIS and
ISIS 2022), Ise, Japan: IEEE, Nov. 2022, pp. 1–5. DOI: 10.1109/
scisisis55246.2022.10002068.

[333] T. Saiki, S. Imanaka, S. Kobayashi, and T. Nakano, “A General-
Purpose Simulation Platform for Multicellular Molecular Communi-
cation Systems,” IEEE Transactions on Molecular, Biological and
Multi-Scale Communications, vol. 11, no. 2, pp. 152–165, Jun. 2025.
DOI: 10.1109/tmbmc.2025.3544141.

[334] T. Saiki and S. Imanaka, Multicellular Molecular
Communication System Simulator, 2025. [Online].
Available: https : / / github . com / ImanakaShohei /
MulticellularMolecularCommunicationSystemSimulator.

[335] N. A. Turgut, B. A. Bilgin, and O. B. Akan, “N4 Sim: The
First Nervous NaNoNetwork Simulator With Synaptic Molecular
Communications,” IEEE Transactions on NanoBioscience, vol. 21,
no. 4, pp. 468–481, Oct. 2022. DOI: 10.1109/tnb.2021.3118851.

[336] N. A. Turgut, N4Sim, 2020. [Online]. Available: https://github.com/
nafiturgut/N4Sim.

[337] M. Ander et al., “SmartCell, a framework to simulate cellular processes
that combines stochastic approximation with diffusion and localisation:
analysis of simple networks,” IEEE Proceedings – Systems Biology,
vol. 1, no. 1, pp. 129–138, Jun. 2004. DOI: 10.1049/sb:20045017.

[338] P. Bauer, S. Engblom, A. Senek, and D. Wilson, URDME (Version
1.4), 2024. [Online]. Available: https://github.com/URDME/urdme.

[339] A. Grimmer, M. Hamidović, W. Haselmayr, and R. Wille, “Advanced
Simulation of Droplet Microfluidics,” ACM Journal on Emerging
Technologies in Computing Systems, vol. 15, no. 3, pp. 1–16, Apr.
2019. DOI: 10.1145/3313867.

[340] G. Fink, F. Costamoling, and R. Wille, “MMFT Droplet Simulator:
Efficient Simulation of Droplet-based Microfluidic Devices,” Software
Impacts, vol. 14, p. 100 440, Dec. 2022. DOI: 10.1016/j.simpa.2022.
100440.

[341] A. Grimmer, M. Hamidović, W. Haselmayr, and R. Wille, SIMPAC-
2022-234, 2022. [Online]. Available: https : / / github . com /
SoftwareImpacts/SIMPAC-2022-234.

[342] J. P. Drees et al., “Efficient Simulation of Macroscopic Molecular Com-
munication: The Pogona Simulator,” in 7th ACM International Con-
ference on Nanoscale Computing and Communication (NANOCOM
2020), Virtual Conference: ACM, Sep. 2020. DOI: 10.1145/3411295.
3411297.

[343] L. Stratmann, J. P. Drees, F. Bronner, and F. Dressler, “Using
Vector Fields for Efficient Simulation of Macroscopic Molecular
Communication,” IEEE Transactions on Molecular, Biological and
Multi-Scale Communications, Special Section - Advances in Molecular
Communication, vol. 7, no. 2, pp. 73–77, Jun. 2021. DOI: 10.1109/
TMBMC.2021.3054930.

[344] J. P. Drees et al., pogona, 2020. [Online]. Available: https://github.
com/tkn-tub/pogona.

https://doi.org/10.1016/j.nancom.2011.09.002
https://doi.org/10.1016/j.nancom.2011.09.002
https://doi.org/10.1016/j.nancom.2013.06.002
https://doi.org/10.1093/bioinformatics/btw469
https://doi.org/10.1093/bioinformatics/btw469
https://doi.org/10.1145/3233188.3233196
https://doi.org/10.1145/3411295.3411300
https://doi.org/10.1145/3411295.3411305
https://doi.org/10.1145/3411295.3411305
https://github.com/RegineWendt/blood-voyager-s
https://github.com/RegineWendt/blood-voyager-s
https://github.com/RegineWendt/BVS-Vis
https://github.com/RegineWendt/BVS-Vis
https://github.com/RegineWendt/MEHLISSA
https://github.com/RegineWendt/MEHLISSA
https://doi.org/10.1145/3686015.3691639
https://github.com/tkn-tub/BVS_Net
https://doi.org/10.1093/bioinformatics/bti431
https://sourceforge.net/projects/mesord/
https://github.com/calypsomatic/MolComSim
https://github.com/calypsomatic/MolComSim
https://doi.org/10.1016/j.simpat.2014.09.002
https://www.mathworks.com/matlabcentral/fileexchange/46066-molecular-communication-mucin-simulator
https://www.mathworks.com/matlabcentral/fileexchange/46066-molecular-communication-mucin-simulator
https://doi.org/10.1109/scisisis55246.2022.10002068
https://doi.org/10.1109/scisisis55246.2022.10002068
https://doi.org/10.1109/tmbmc.2025.3544141
https://github.com/ImanakaShohei/MulticellularMolecularCommunicationSystemSimulator
https://github.com/ImanakaShohei/MulticellularMolecularCommunicationSystemSimulator
https://doi.org/10.1109/tnb.2021.3118851
https://github.com/nafiturgut/N4Sim
https://github.com/nafiturgut/N4Sim
https://doi.org/10.1049/sb:20045017
https://github.com/URDME/urdme
https://doi.org/10.1145/3313867
https://doi.org/10.1016/j.simpa.2022.100440
https://doi.org/10.1016/j.simpa.2022.100440
https://github.com/SoftwareImpacts/SIMPAC-2022-234
https://github.com/SoftwareImpacts/SIMPAC-2022-234
https://doi.org/10.1145/3411295.3411297
https://doi.org/10.1145/3411295.3411297
https://doi.org/10.1109/TMBMC.2021.3054930
https://doi.org/10.1109/TMBMC.2021.3054930
https://github.com/tkn-tub/pogona
https://github.com/tkn-tub/pogona

	Introduction
	Prelude
	Literature Review Strategy
	Contributions
	Reader's Itinerary

	Most Recent Developments in Molecular Communications: A Survey-based Perspective
	IoBNT/MC Frameworks and Applications
	Theoretical and Technical Developments Regarding MC Channel Models
	Recent AI Innovations in the MC Field
	Cross-Disciplinary Routes
	Summary Remarks

	Neural Networks as Enablers of IoBNT Networks
	MC Channel Estimation
	Problem Definition
	Environments for MC Channel Estimation
	NN Models for MC Channel Estimation
	Illustrative Code Example to Estimate the Distance Among Cells
	Concluding Remarks

	Synchronization
	Problem Definition for Synchronization
	Relevant Environments for Synchronization
	NN Models for Synchronization
	Illustrative Code Example to Synchronize the Receiver and Emitter Symbol Time
	Concluding Remarks

	Detectors
	Problem Definition to Decode Incoming Symbols
	Environments for NN Detectors
	NN Architectures to Detect Incoming Symbols
	Illustrative Code Example for Symbol Detection
	Concluding Remarks

	Autoencoders
	Problem Definition for Autoencoders
	Environments for Autoencoders
	NN Models for Autoencoders
	Illustrative Example for Autoencoders
	Concluding Remarks

	Higher Layers
	Resource Allocation
	Localization
	Data Fusion

	Concluding Remarks and Outlook
	Alternative NN Architectures
	Hyperparameter Tunning
	Channel Access in MC-based IoBNT Networks
	Leveraging Cognitive Radio Concepts

	Enabling Biocomputing in IoBNT Networks
	Trends in Biocomputing
	Biocomputing in the Digital Domain
	Logic gates and NNs with CRNs
	Digital signal processing in microfluidic chips

	Biocomputing in the Analog Domain
	Wet Neuromorphic Computing
	Analog computation with CRNs
	Compartment-based models
	Reservoir computing in MC channels

	Resource Demand and Feasibility of Bio-AI Unit Implementation
	Concluding Remarks and Future Outlook
	MC Networks as ML Platforms
	Deployment at the Nanoscale Level

	Early Work on Explainable Neural Networks
	Motivation
	Explainable and Interpretable Molecular Communication
	Explainability Metrics
	Explainability Techniques

	Reported Research
	Illustrative Code Example and Results
	Concluding Remarks and Outlook

	The Backbone of Neural Networks: Training Data
	General Considerations
	Synthetic Data Generation
	Existing Datasets
	Dataset Generation Tools

	Experimental Data Generation
	Discussion
	Concluding Remarks and Outlook
	Training in Body-like Testbeds
	Transferring from Simulators to Real-World Testbeds

	Conclusion
	Appendix
	Feedforward NNs as a Universal Approximator
	Accounting for Data Relevancy within LSTM Networks
	Attention in the Loop with the Transformer Architecture
	Reinforcement Learning: Smartly Actuating on the Environment
	Training a Neural Network
	Training an Autoencoder
	NN's Hyperparameters
	Deployment of NNs in MC Environments

