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Abstract—This study presents an innovative deoxyribonucleic
acid (DNA)-based nanonetwork designed to detect and localize
abnormalities within the human body. The concept for the
architecture integrates nanosensors, nanocollectors, and a gateway
device, facilitating the detection and communication of disease
indicators through molecular and intra-body links. Modeling
DNA tiles for signal amplification and fusion rules (AND, OR,
MAJORITY), the system enhances detection accuracy while
enabling real-time localization of health anomalies via machine
learning models. Extensive simulations demonstrate the efficacy
of this approach in the dynamic environment of human vessels,
showing promising detection probabilities and minimal false
alarms. This research contributes to precision medicine by offering
a scalable and efficient method for early disease detection and
localization, paving the way for timely interventions and improved
healthcare outcomes.

Index Terms—DNA Tiles, Nanosensors, Nano Communication,
Human Circulatory System, Precision Medicine, Machine Learn-
ing, Markov Model

I. INTRODUCTION

NANOTECHNOLOGIES for healthcare practices may read
as a sensational story, but various research effects a

closing gap between possibility and reality. Nanomaterials
are becoming a technological innovation in the pharmaceutical
sector, improving the efficiency of drugs [1] and allowing for
manufacturing nanothings for medical diagnosis [2]. Biofunc-
tionalized nanosensors provide alerts on specific biomarkers,
enabling the detection of cancer tumors or pathogens like
viral or bacterial infections in the early stage [3]. However,
isolated nanosensors only have limited sensing and actuation
capabilities. Therefore, interconnection internet of bio-nano-
things (IoBNT) platforms for nanosensors among themselves
and to out-of-body monitors are crucial to boosting the practical
benefits of this new technology.

Basically, today, there are two architectures to deploy IoBNT
platforms [4], namely (i) reporting abnormal detection directly
to an external gateway (sensor-gateway architecture) [5] and
(ii) via a fusion node (FC) node (sensor-fusion node-gateway
architecture) [6]. Reporting through a FC node, local detection
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Fig. 1: The process of computing a fusion rule using DNA
nanosensor networks using an m-bit AND as an example.

capabilities of biomarkers are studied in [6]–[8] along specific
vessel segments. However, little research has been conducted to
account for the mobility of nanosensors and FC nodes together
within the bloodstream. Reported literature assumes the fixed
location of fusion nodes in the human vessels; see [9], [10],
or models local vessel segments without evaluating the human
circulatory system (HCS) as a whole system; see, for instance,
[6], [7]. In a more realistic scenario, the blood flow embeds
a time-variable character on nanonetworks’ detection and
localization capabilities impacting the detection and localization
performance.

Including the dynamic of the blood flow in the HCS, this
paper aims to evaluate the IoBNT architecture targeting the
detection and localization of abnormalities in the human
body. Based on a sensor-fusion node-gateway architecture,
the nanonetwork comprises nanosensors and nanocollectors
(performing as FC nodes) continuously flowing along the
human vessels. The role of the nanosensors and nanocollectors
is to realize the detection of abnormalities. We also conceive
an external gateway attached to the surface of the skin, to
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display the detection results and estimate the abnormality’s
localization; see a representation in [11, Fig. 1].

Within this nanonetwork architecture, we illustrate the
detection and localization of quorum sensing (QS) molecules
released by harmful bacteria (abnormality) at a given body
region. As visualized in Fig. 1, the nanosensors release
deoxyribonucleic acid (DNA)-tiles as indicators of their pres-
ence upon detection. The released DNA-tiles will also have
self-assembly capabilities while flowing in the bloodstream
[12], allowing to compute predefined fusion rules on the fly,
leading to reduced detection errors. Nanocollectors will collect
the assembled DNA-tiles to report detection results to the
external gateway later.

The sensor-fusion node-gateway architecture will result in a
more modular design for deployment than the sensor-gateway
architecture, as detection and reporting tasks are split apart.
Nanocollectors solely collect and report data to the external
gateway using terahertz (THz), optical, or ultrasonic waveforms.
Nanosensors solely detect biomarkers and report their detection
to the nanocollectors using molecular communication, with
message molecules assembled from DNA-tiles [13]. In this way,
the network lifetime can also be potentially extended as fewer
nanothings perform the more expensive communication link
with the gateway. This contrasts the sensor-gateway architecture,
where all the nanosensors emit their detection.

Extending the previous work in [11], we research the
detection and localization capabilities for the sensor-fusion
node-gateway architecture, where nanosensors and fusion nodes
(nanocollectors) are passively driven by the blood flow. Our
main contributions can be summarized as follows:

• We formulate the detection and localization capabilities
of nanosensor-fusion node-gateway architecture with a
probabilistic scheme.

• We report a fusion mechanism with DNA-tiles to imple-
ment OR, AND and MAJORITY fusion rules.

• We investigate the localization capabilities of abnormalities
with machine learning (ML) methods. We comparatively
illustrate the performance of low complex unsupervised
methods like k-means to predict the localization of
abnormalities.

The remainder of this paper is structured as follows:
Section II discusses in further detail the previous work on
abnormalities detection architectures. Section III introduces the
system model and explains all the components of the proposed
nanoscale system. Section IV delves into the collaborative
detection and reporting to the external gateway. Section V
introduces the ML method to localize the reported abnormality.
Section VI evaluates our approach using simulations and
analytical methods to derive the success probability of the
system. Finally, Section VIII summarizes the concluding
remarks.

II. RELATED WORK

Future health applications foresee deploying nanosensors
inside the human body, enabling earlier and more precise
disease detection. Detecting and localizing abnormalities with
sensors floating inside the HCS is a highly complex task

due to severe resource constraints, high mobility, and limited
communication capabilities. Therefore, traditional localization
schemes cannot be applied, and new approaches towards in-
body sensor localization are under development [4]. To the
best of our knowledge, there are very few attempts towards
localize and track in-body nanosensors and abnormalities in
human vessels. Amidst the reported literature, common factors
include the unrealistic assumption concerning the fixed location
of fusion nodes in human vessels. Besides, simulation models
are limited to focusing on local vessel segments instead of
comprising the complete human cardiovascular system. In
this Section, we discuss related work on in-body nanosensors,
abnormality detection, and localization techniques.

Addressing a local vessel segment, Varshney et al. [6] report
detecting abnormalities using nanosensors and fusion centers.
Each nanosensor performs abnormality detection with a certain
detection and false alarm probability in their work. Nanosensors
report their local decisions to a FC node over a diffusion-
advection blood flow channel. This study reports using different
types of molecules in the presence of inter-symbol interference,
multi-source interference, and counting errors. The FC employs
the OR and AND logic-based fusion rules to make the final
decision after decoding the local decisions.

The work of Rogers and Koh [7] considers a detection
environment in the capillaries, where biomarkers flow from
fixed source locations to the nanosensors, distributed as a cone
pattern along the flow direction. A FC node is used to merge
data from nanosensors detection evaluating performance with
the receiver operating characteristics (ROCs) curves. From the
various fusion rules, the counting one is preferred because it
balances complexity and detection performance.

Mosayebi et al. [8] studied anomaly detection inside blood
vessels where nanosensors sense the presence of an anomaly
by detecting the biomarkers secreted by cancer cells. The
final decision regarding the presence of an anomaly is made
at a FC node based on the activation levels of the observed
nanosensors. The authors first considered a single cancerous
blood vessel from which they deduced the spatial distribution of
the biomarkers as a function of time. Then, the study extends
to the HCS and analyzes the distribution of biomarkers in
the connected blood vessels. The authors derive the optimal
decision rule and a simple sum detector for the FC and compare
their performances. The study was only able to model a sample
network of the HCS containing 16 edges and 5 nodes, and
they did not explore how to localize the body region in which
the cancerous cells have been detected.

Khaloopour et al. [9] propose a theoretical framework
for cooperative abnormality detection and localization via
molecular communications. The system consists of mobile
sensors in a fluidic medium, which are injected into the medium
to search the environment for an abnormality. Some FCs are
placed at specific locations in the medium, which absorb all
sensors that arrive there, and by observing its state, each FC
decides on the abnormality’s existence and its location. In a
real-world scenario, where sensors will be deployed inside the
HCS, the assumption of static FCs with known positions is
quite unrealistic and difficult to achieve.

Vasisht et al. [10] introduced a backscatter design, which
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is particularly customized to work inside human tissues.
It considers the interference generated by the body in the
intrabody communication link and develops the localization
of devices via time-of-flight signal estimation. The authors
implemented and tested their approach in animal tissue with an
average localization error of 1.4 cm. This work brings forward
the ideas of communication and localization inside the human
body. However, it considers the setup of a static implant rather
than flowing nanosensors.

Enabling the localization and communication with nanosen-
sors through THz backscattering is another approach recently
proposed in [14]. The work assumes that each nanosensor
can communicate via electromagnetic communication (0.5−
1.5THz) with the anchor nodes outside the body. Additionally,
backscattering communication in tissue suffers an extremely
high signal power loss which restricts the communication
distance to only a few mm.

Lemic et al. [15] have outlined an architecture for in-body
THz-operating nanosensors and integrating energy-harvesting
schemes. Their goal was to enable localization of the passively
flowing and energy-harvesting nanosensors and their two-
way communication with the outside world. To do so, the
authors propose to utilize location-aware and wake-up radio
(WuR)-based wireless nanocommunication paradigms, as well
as software-defined metamaterialss (SDMs). As a simulation
model, they use a 1 cm thick slice of the torso area, which is
approximated by a circle with the radius of 30 cm.

In line with the published survey by Etemadi et al. [4],
present work still miss to include end-to-end realistic system
models accounting for the HCS as a whole. In this direction, our
previous work [11] researched how to model the traveling paths
of nanosensors along the HCS and how to estimate nanosensors’
locations based on their traveling time and concentration
level. This approach assumes that each nanosensor reports
its sensor readings to an external gateway via electromagnetic
communication.

However, since nanonetworks for health applications will
employ hundreds or even thousands of nanosensors, see [16,
Table II], we research an approach to reduce the amount of
communication required to make the system operable. We
extend our previous system in [11] including FC nodes that
collect the nanosensor readings through DNA-based communi-
cation. As we employ a small amount of nanocollectors, this
architecture dramatically reduces the costly electromagnetic
communication reports to the external gateway. Next sections
detail the network architecture and formulate performance with
the corresponding detection and localization probabilities.

III. DETECTION AND LOCALIZATION NETWORK
ARCHITECTURE

This section explains the overarching system architecture of
the proposed detector and localization network. We describe the
architectural components and their communication capabilities
as nanothings. This section also includes the flow diagram for
detecting and localizing abnormalities and the modeling for
the flow of nanosensors and nanocollectors through the HCS.

Fig. 2: A controllable DNA box concept (left) and an atomic
force image (right). [17]

A. Architecture components

Five components comprise the detection and localization
architecture listed as the nanosensors, the molecular communi-
cation (MC) channel, nanocollectors, the external gateway, and
the intra-body communication link between the nanocollectors
and the gateway. Within this architecture, information flows
via the MC channel from bacteria to nanosensors using QS
molecules and from nanosensors to nanocollectors in the local
vessel segment using DNA-tiles.1 Finally, the information is
carried by the nanocollectors through the HCS and finds
its destination at the external gateway via the intra-body
communication link. The component and their functionalities
are listed below:

1) Nanosensors: We assume nanosensors passively flow
with the blood in the HCS. Nanosensors are equipped with
biosensors to detect QS molecules. Upon detection, nanosensors
will release DNA-tiles to the medium, indicating the presence
of abnormalities. To illustrate, nanosensors can be conceived
as boxes (see Fig. 2) pre-filled with a capacity to store 450
DNA molecules [12]. Those boxes can be opened with specific
marks like the QS molecules. Once the QS molecules bind to
a lid (represented as red spots in the boxes in Fig. 2), the box
opens and release the DNA tiles to the medium; in this way
implementing the bio-sensor mechanism.

2) Molecular communication channel between nanosensors
and nanocollectors: The nanosensors communicate with the
nanocollectors via the MC channel in the blood vessels. On
the one hand, the communication can be direct: nanosensors
will release DNA-tiles into the blood flow, propagating by
convection from nanosensors to the nanocollectors. We assume
that the nanocollector detects the presence of DNA-tiles
whenever nanosensors and nanocollectors are located in the
same vessel segment. This occurs with some probability; its
calculation is illustrated later in Section IV.

Besides, the DNA-tiles in the channel will also be able to
compute pre-defined fusion rules for more complex detection
procedures. The tiles are designed in a way that they can
compute the detection rules AND, OR, and MAJ rules, by
self-assembling the released DNA-tiles from the various
nanosensors. Nanocollectors can then detect the presence of

1We remark that the link between nanosensors and nanocollectors occurs in
the small-scale distance, whenever nanosensors and nanocollectors are in the
same vessel segment. Further details are given in Section IV.
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these complex structures just the same way as single DNA-tiles.
This process is the one interesting to implement fusion rules,
and it is explained in more detail in Section IV-A.

3) Nanocollectors: In this architecture, we conceive nanocol-
lectors performing as FC nodes upon detecting assembled DNA-
tiles. The fusion is already computed with the assembled DNA-
tiles, and nanocollectors just detect their presence in the blood
flow. For instance, a nanocollector detecting assembled DNA-
tiles, these implementing the AND rule among Ns nanosensors,
will report that Ns nanosensors detected the presence of QS
molecules; see further details in Section IV. The nanocollector
will also account for the time-instant when this event happens.
We assume the nanocollector has an internal clock with 1 s
period, and also report their counting with the detection event.
This timestamp will be used later in the gateway as a metric to
localize the source of QS molecules in the body (see Section V).
The nanocollector will also be able to report the total of
neighboring nanocollectors along the vessel segments. We will
assume that nanocollectors emit beacon messages, with low-
power electromagnetic pulses, that reach other nanocollectors
in the same vessel segment. Such a beacon signal will allow
detection of the presence of neighboring nanosensors later,
allowing to report the concentration of those along their path.
The concentration is also used as a feature to localize the QS
source later (further details in Section V).

4) Gateway: The gateway is basically a computing device
that is attached to the body in the skin’s surface. Gateways
collect all the nanocollectors’ report through electro magnetic
(EM) [18] or ultrasonic communication links [19], for instance.
When the nanocollector is in the vicinity of the gateway, it
reports the reading, and upon reception, the gateway performs
the ML methods proposed in Section V to localize the
abnormality. As the gateway device has significantly higher
processing power and memory, all data can be easily collected
and processed there.2

5) Intra-body communication link between nanocollectors
and the gateway: Nanocollectors collect the molecular message
and transmit the information to the gateway outside of the body.
For this transmission, we consider an ideal link error-free, as we
want to isolate the network’s fusion and localization capabilities
from communication errors.

B. Assumptions for the architecture deployment

In practice, we need to consider electromagnetic commu-
nication, optical [20], [21], ultrasound [19], [22], [23] or
(THz) communication [14], [24] to enable a communication
link between the nanothings and the external gateway. These
communication links have been demonstrated as potential
technologies to be used for intra-body communication scenarios.
However, THz communication suffers from high molecular
absorption noise, limiting the communication distance to a
few mm. A THz link will impose constraints on the placement
of the gateway device, allowing for locations where the

2We remark, that the processing in the gateway device can be realized in
a remote monitor device instead. That is, when the gateway comprises an
interface to the Internet, samples can be transferred and processed at a remote
location.
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Fig. 3: Flow diagram to detect and localize abnormalities in
the HCS.

intrabody distance between the skin surface and nanocollectors
in the human vessels is shorter, such as the wrists. Compared
to that, ultrasound and optical communication can cover longer
distances with significantly less path loss. It is subject to
advances in nanotechnology to develop nanoscale antennas
that can communicate in these bands.

Furthermore, we assume the deployed nanothings are bio-
compatible with the human body. As for the nanosensors, they
are implemented with hydrophobic molecules, i.e., long DNA
strands self-assemble boxes-like structures through a process
called DNA-origami [25]. As for the nanocollectors, we assume
no direct contact between radiator elements (antennas, optical
interfaces) or ultrasonic generators with the blood. To avoid
the potential toxicity to the human body produced by contact
of blood with these elements, we assume these radiators and
generators surfaces are coated with the biocompatible material
polydimethylsiloxane (PDMS).3

C. Detection and localization flow diagram

Using the components above, we devise a detection and
localization scheme as depicted in the flow diagram in Fig. 3,
which follows our previous work in [11]. As the primary
outcome of this flow, we aim to provide early alerts and the
location of abnormalities, including its reliability with the
successful detection probability as a metric.

We implement the flow diagram with two branches to
evaluate the detection probability. The left branch computes the
local detection probability of an abnormality on a given tissue,
assuming that nanosensors and nanocollectors (nanothings) are
in the region of interest. We evaluate this probability using

3PDMS is a bio-compatible material typically used for implanted antennas;
see [26], [27].
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Fig. 4: Human circulatory systems represented in the BVS
simulation framework.

COMSOL simulations and formulating analytic expressions for
the detection probability. Further details are given in Section IV.

We evaluate the total detection probability when including
the probability of nanothings in the region of interest (as
evaluated with the right branch). To evaluate the probability
of finding nanothings in the region of interest, we model their
time-varying location as a Markov model. As explained in
Section III-E, the traveling path of nanothings is assumed to
follow a markovian process. The Markov transition probabilities
are found with an unsupervised ML model using data reported
by the BloodVoyagerS (BVS) simulator [28], as explained in
Section III-D. We estimate the number of nanothings per tissue
with the corresponding stationary vector probability through the
Markov formulation. In this way we complete the formulation
for the total successful detection probability in Section IV.

The flow diagram in Fig. 3 also includes the localization
of the abnormality. Towards its estimation, we will train a
second ML-model (supervised) with the labeled samples from
the unsupervised ML model, as explained in Section V-C. The
samples consist of traveling time and concentration of neighbor
nanothings along the traveling path of nanocollectors; the labels
will denote the traveling tissue. The trained, supervised method
will provide the location of detected abnormalities upon the
nanocollector report.

D. Nanosensors and Nanocollectors Mobility Model

We model the mobility of the nanothings in the HCS with the
BVS simulator. BVS is a model of the human cardiovascular
system that simulates the mobility of nanothings traveling in

the vessels [28]. We implemented the mobility of nanosensors
and nanocollectors in BVS along 21 different streams in 94
vessels segments; see a representation of vessels in [11, Fig. 4].
Each stream implements a given speed emulating the laminar
flow profile in the vessels [29]. BVS implements a constant
blood speed along the human vessels, with the parameters listed
in Table I. This is a realistic assumption for the capillaries and
veins, where the pressure is rather constant, see [30, Fig. 14-2
pp. 172]. However, pressure in the arteries varies with time,
influencing the blood speed. This limitation will impact mostly
the localization performance, as later discussed in Section VII.

TABLE I: Simulation parameters.

Variable Description Value

vA Arteries’ speed 0.1m/s

vC Capillaries’ speed 0.01m/s

vV Veins’ speed 0.037m/s

rns Nanosensors’ radius 22 nm

rnc Nanocollectors’ radius 500 nm

We selected the nanosensor and nanocollector sizes according to the
nanometer scale of reported nanotechnologies; see [16]. As for the
blood speed blood speed, these are the values coded at the BVS
simulator, see https://github.com/RegineWendt/blood-voyager-s/tree/
master, which follow the range of reported values in [31, 31, Table I].

Dragged by the blood flow, we implement the traveling
nanothings’ speed with their size and geometry. According
to Stokes’ law, the velocity v at which a sphere moves by
the action of a force F is given by v = F

f , where f is the
frictional drag coefficient [29, Eq. (4.2)].4

In a given vessel segment, the net force due to a pressure
difference at the ends yields F = ∆P L∆h, where L is the
length of the vessel and ∆h denotes a thin layer across the
vessel where the fluid speed is constant (cf. Fig. 5) [29].
Furthermore, modeling the nanothings as spheres, where
f = 6πηr, the resulting speed will be given by

v =
∆P L∆h

6πηr
, (1)

where η is the fluid’s dynamic viscosity, and r is the sphere’s
radius. Using this relation for a given vessel segment, the result-
ing nanocollectors’ speed is related to that of the nanosensors
as a factor of

vnc
vns

=
rns
rnc

. (2)

With the above formulation, BVS is expanded in such a way
that any number of nanocollectors and nanosensors can be
simulated with their respective speed. The simulation in BVS
produces the raw data to later train the ML models (see the
right branch in Fig. 3).

E. Nanosensors and Nanocollectors Markov Model

We use the Markov model to compute the stationary distribu-
tion of nanothings in the HCS and evaluate the probability Pc|k
represented in Fig. 3. The varying positions of the nanothings
might be modeled as a Markovian process, where the states

4The law is valid in incompressible liquids like the blood in the vessels.

https://github.com/RegineWendt/blood-voyager-s/tree/master
https://github.com/RegineWendt/blood-voyager-s/tree/master
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represent the vessel segments as in [32]. The 94 vessel segments
represented in BVS are directly mapped into the same number
of states; see a representation in [11, Fig. 4]. In this way, the
movement of the nanothing can be modeled through random
transitions between these states as it moves in the HCS; see
further details in our previous work in [33, Fig. 4].

We estimate the transition probabilities with the number of
nanothings flowing in the HCS [34, Eq. (1)]. According to
their flow in the bifurcations, the transition probability might
be evaluated as the corresponding ratio of flows. Having the
transition matrix Π = {pi,j} of the Markov model, we later
evaluate the stationary probability vector ν after solving the
equation

ν = νΠ, (3)

where the components of νk will readily provide the probability
to locate a nanothing in the given vessel segment k as

Pk = νk. (4)

IV. DETECTION SCHEME

The abnormalities in the body are detected in three steps as
follows from Fig. 1. In the first step, the nanosensors locally
detect the presence of QS molecules (marker detection in
Fig. 1) and release DNA-tiles upon detection. Secondly, the
released DNA-tiles self-assemble and realize a given fusion
rule. In the last step, nanocollectors detect the presence of the
assembled DNA-tiles reporting the global detection result to
the external gateway. This section details these three steps and
provides closed-form expressions for local and global detection
probabilities.

We take a probabilistic approach for the detection scheme
since when nanosensors are injected into the body, they will
follow a random path while travelling, which may or may not
pass through the infection region. As a first step, using the
BVS simulator and the Markov Chain approach, we calculate
the probability of a nanosensor being in the organ of infection
representing the right branch of Fig. 3. As a second step, since
the BVS simulator operates on the scale of organ and the
infection sensing region is much smaller than an organ, we
need to calculate the probability that a nanosensor is visiting
the sensing region when we determine it is in that organ
representing the left branch of Fig. 3. As the last step, we
need to calculate the global probability of detection where we
aggregate the data from nanosensors at the nanocollectors which
then report the aggregated data to the gateway. In this layered
architecture, the global probability of successful detection

Fig. 6: Concentration of QS molecules in the tissue as provided
by COMSOL simulator.

depends on the probability of detection of a single nanosensor
and how the data of multiple nanosensors is aggregated, i.e.,
fusion rules. This layered architecture allows us to utilize less
nanocollectors equipped with communication capabilities that
can report to the gateway and simpler and more nanosensors
patrolling the body and communicating with the nanocollectors
only.

Bacteria communicate with each other using QS molecules
to establish coordination among them. Since infection in the
body is the rapid reproduction of pathogenic bacteria, by
eavesdropping to QS it is possible to detect the severity of
infection. To carry out this functionality, mobile nanosensors
can be equipped with electrochemical sensors measuring QS
molecules of Pseudomonas aeruginosa pyocyanin [35] and
N-Acyl homoserine lactones (AHL) [36] through electrodes.

In our model, adapted from our previous work in [37], the
distribution of QS molecules in the tissue follows diffusion in
a porous medium where the interstitial space is considered as
pores through which QS molecules are diffusing. A represen-
tative tissue volume is considered as the simulation domain
where the infection is assumed to be on top, and the capillaries
are at the bottom of this unit volume.

Using the COMSOL simulations, we determine the re-
gion where the concentration of QS molecules is above the
threshold that the nanosensors can detect, which we call
sensing region. Assuming the detection limit of nanosensors to
be 1 × 10−5 mol/L [38], we use an ellipse to approximate the
sensing region which is elongated in the blood flow direction
with axes lengths of 0.1-0.5 cm and 1.75-3.5 cm.

We assume that the nanosensor locally detects the presence
of the QS molecules whenever it is located in the sensing region
(of volume Vs,k) and conditioned to be in the given blood vessel
segment (of volume Vk), where Vs,k ⊂ Vk. Accordingly, the
conditional probability can be evaluated as the ratio of these
two volume metrics as

Ps|k = Prob(l⃗n ∈ Vs,k|ln ∈ Vk) =
Vs,k

Vk
, (5)

where l⃗n is the (x, y)-location of nanosensors.
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A. DNA Fusion Rule Mechanism

Once nanosensors detect the presence of QS molecules,
they release DNA-tiles as an indicator. These tiles have been
designed in a way that they can compute fusion rules like
OR, AND, and MAJORITY. These rules are implemented by
resorting to the inherent binding properties of DNA. The
molecule consists of four amino acids: adenine, thymine,
cytosine, and guanine. Interestingly, adenine and thymine as
well as cytosine and guanine automatically form a stable
binding in a process called self-assembly. By artificially
manufacturing DNA strands, the self-assembly process of DNA
can be controlled to implement these rules. The temperature
stability of the binding follows the Wallace rule where each A
or T contributes 2 ◦ C of temperature stability and every C or
G adds 4 ◦ C. As such, suitable tiles may be designed for the
most realistic temperature ranges.

This technology is even capable of computing mathematical
functions and entire nanonetworks may be created from DNA
tiles that have already been created and used in wet-lab
experiments [12]. For instance, as depicted in Fig. 1, the
released DNA strands by the nanosensors (blocks 1 to m)
are manufactured in a way that the sequence of strands 1, 2 to
m can only bind with the corresponding neighbor molecules T,
σ, B, and R and with the specific order illustrated in the figure.
This block, will be the one detected by the nanocollector, as
the sequence of molecules R, m, and R will be the ones to
bind to the nanocollector receptor.

We now briefly introduce the DNA-based sensor systems we
propose and explain in depth how they can also compute fusion
rules.5 A fusion rule is a function that is directly executed
on the measured data of a sensor network. It is akin to a
preprocessing step to separate valid measurements from false
alarms.

Since the nanosensors are envisioned to be simple devices
to detect the presence of infection rather than an its level,
they operate in a binary fashion, i.e., they either generate
an alert for detecting infection or not rather than reporting a
continuous measurement. To aggregate their binary data at the
nanocollector, we use several different kinds of fusion rules
that are also demonstrated to be possible using DNA tiles as a
communication mechanism between the nanosensors and the
nanocollector.

We consider the:
1) OR-rule,
2) AND-rule,
3) MAJORITY-rule.

using DNA-based self-assembly mechanisms.
The OR-rule, AND-rule, and MAJORITY-rules describe how

many different types of nanosensors have to agree upon the
detection of a disease before the entire system is activated. For
the OR-rule, a single nanosensor would be sufficient but false
positive detections might frequently occur. In this case, each
nanosensor emits a single unique tile that may be collected.
The AND-rule requires n nanosensors to agree upon a detection.
Given a suitable n, false positives become arbitrarily unlikely.

5An extensive definition framework is beyond the scope of this paper and
we refer the interested reader to [12].

The physical implementation is illustrated in Fig. 1. The
MAJORITY-rule is a compromise between OR and AND and
requires a subset of nanosensors to agree.

As the physical implementation is rather complex, we only
offer an intuition; see further details in [39]. For each possible
way to match a threshold, we construct a unique message
molecule that behaves akin to an AND. As a single way to
exceed a threshold is sufficient, the concurrent presence of
possibly different message molecules works akin to a logical
OR. Deciding on a specific fusion rule and respective input
sizes allows us to fine-tune the specificity of the system.

An example of the entire process from detection to fusion
can be seen in Fig. 1, where the AND-rule is computed upon
detecting certain markers based on the approach in [12]. The
fusion rule’s computing process is separated into four phases:
marker detection, tile release, fusion, and collector binding.

Upon detection of the QS molecules (Phase 1 in Fig. 1),
each nanosensor releases DNA-tiles out of m-distinct types
of tiles (Phase 2). The released tiles will then compute a
preprogrammed fusion rule function by assembling it into
a message molecule, in this case, an m-bit-AND fusion rule.
Only when all m specific tile types are present can the message
molecule in the middle fully form, including a receptor (R
block in Fig. 1). The very special property of this process is
that the computation occurs inside a message molecule and
not inside a nanocollector. Notice that the message molecule
can only be detected by a nanocollector if the fusion has been
fully computed/assembled without errors (Phase 3 in Fig. 1).

With this binding mechanism, the other two rules, OR and
MAJORITY, can be implemented as well; see [39]. The OR-
rule is the simplest type of fusion rule. Just a single positive
measurement of any of the nanosensors detecting the QS
molecules is sufficient to signal the detection of a marker
or disease. In this case, no real computation is necessary and
the single tile just acts as a regular molecule for communication.
As a result, there are no additional sources for errors in the
further propagation of a detection.

The MAJORITY rule can be implemented with a threshold
mechanism, as shown in [39]. If a pre-defined threshold is
exceeded, all involved devices can decide on a single course
of action. As an example, a threshold of three out of four
possible tiles is used to compute the MAJORITY-rule. A
distinct message molecule for all relevant combinations of
tiles that reach the defined threshold is created. Once a single
message molecule is finished, the threshold has been met and
the nanocollector can collect the DNA-tiles.

The fifth combination that includes all four tiles is unnec-
essary as a smaller message molecule that includes just three
would be collected before. Simulations conducted in [39] have
shown that a 3.5 % error is to be expected while the assembly
time is estimated to be nine minutes. That said, the process can
be much faster/slower depending on the ambient temperature
and the concentration of tiles.

B. Global probability of successful detection

To compute the global detection probability, we will keep
the total number of injected nanothings (nanocollectors and
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nanosensors) a constant, here denoted as Nt = Ns + Nnc,
where the ratio of nanocollectors to nanosensors is evaluated
as η = Nnc/Nt. We assume that all the nanosensors in a given
vessel segment can connect to all the nanocollectors in the
same vessel segment, where the number of nanosensors in the
vessel segment can be found as

Nk
s = (1− η)NtPk. (6)

where Pk is the probability of finding a nanonothing in the
given vessel segment k, and evaluated with their stationary
distribution as indicated in Eq. (4). Similarly, the number of
nanocollectors in the vessel segment k can be found as

Nk
nc = ηNtPk. (7)

In both equations, we find the number of nanosensors or
nanocollectors multiplying the total amount with the probability
of them being in that vessel segment k.

For simplicity, we also assume zero errors in the assembling
process of DNA-tiles. As for the OR-rule

P OR
nc = 1−

Nk
c∏

i=1

(1− Ps|k), (8)

for the AND-rule:

P AND
nc =

Nk
c∏

i=1

Ps|k, (9)

and as for the MAJORITY-rule:

P MAJ
nc =

Nk
c −⌈Nk

c
2 ⌉∑

i=0

(
Nk

c

⌈Nk
c

2 ⌉

)
(1− Ps|k)

Nk
c −⌈Nk

c
2 ⌉−iP

⌈Nk
c
2 ⌉+i

s|k .

(10)
where Ps|k denotes the local detection probability, as given in
Eq. (5).

Using these expressions, we calculate the probability of
successful detection if at least one of the nanocollectors reports
a detection as

P X
d,k = 1− (1− P X

nc)
Nk

nc . (11)

where X refers to OR, AND, or MAJ to represent the mode of
fusion can be found as.

Although very unlikely due to the specific binding of QS
molecules to the sensor, there is still a probability that the
nanosensors will falsely detect due to the randomness of the
reading process. To incorporate this effect, we will assume
the false alarm constant of value 10−4 [37]. The false alarm
probability at a single nanocollector, P X

nc,f , can be found by
replacing Ps|k with Pf in the above expressions.

As for the OR-rule

P OR
nc,f = 1−

Nk
c∏

i=1

(1− Pf ), (12)

for the AND-rule

P AND
nc,f =

Nk
c∏

i=1

Pf , (13)

and as for the MAJORITY-rule

P MAJ
nc,f =

Nk
c −⌈Nk

c
2 ⌉∑

i=0

(
Nk

c

⌈Nk
c

2 ⌉

)
(1− Pf )

Nk
c −⌈M

2 ⌉−iP
⌈Nk

c
2 ⌉+i

f .

(14)
Similar to the probability of detection, for the false alarm
calculation, we assume an alarm is produced whenever a single
nanocollector reports an anomaly, yielding

P X
f,k = 1−

(
1− P X

nc,f

)Nk
nc . (15)

V. LOCALIZATION SCHEME USING MACHINE LEARNING

We use ML models to localize the source of abnormality
upon nanocolectors report to the gateway. The ML model
is trained with the traveling time and concentration level as
delivered by nanocollectors. Similarly to our previous work
in [11], the reported data is used to distinguish the nanothings’
traveling circuit, the Markov model’s transition probabilities,
and also to provide the location for detected abnormalities (see
the right branch in Fig. 3).

Two ML models are used as unsupervised and supervised
methods. As represented in Fig. 7, the raw data is generated
with BVS in Step 1. In Steps 2 and 3, the unsupervised model
evaluates the transition probabilities for the Markov model
on the one hand. On the other hand, it is used to train the
supervised model and provide early alerts with the detection
and localization of the abnormality, as represented in Step 4.

The unsupervised model distinguishes the different data
sets (clusters) according to each tissue. Each cluster will
correspond to the human body’s tissues, e.g., spleen, liver,
and intestine, as given by BVS. The supervised model will be
trained to promptly distinguish the tissue once an abnormality
is reported using the labeled samples from the unsupervised
method, as represented by Step 4 in Fig. 7. That is, whenever
a nanocollector reports a detection, the supervised method will
provide the location of the source, e.g., on the liver, hands,
feet, etc.

We comparatively illustrate results between low and high
complex clustering ML methods. Specifically, we develop in
this section the unsupervised methods k-means (low complex)
and the deep neural network (NN) self-organizing feature map
(SOFM) (high complex) method for comparison purposes. As
illustrated in the section below, both methods perform similarly
regarding the positive predicted and false negative metrics,
allowing us to recommend deploying the k-means method.
As the supervised method, we implement the Decision Tree
algorithm, which results in a high-accuracy and low-complexity
classifier.

A. Training dataset

The ML model is trained with two datasets: the traveling
time of nanocollectors and their concentration level along the
vessel segments. As for the concentration level, we refer to the
total of neighbor nanosensors around each nanocollector per
vessel segment. In this regard, we assume that nanocollectors
might also detect the presence of neighbor nanosensors while
traveling (see Section III-A3).
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Fig. 7: Interactions between the different components in the
system model with the ML models.

Fig. 8: Representation of the collected data for the traveling
time along vessels, as provided by nanocollectors to the gateway
device.

We process the output data from the BVS simulator to
compile the dataset. BVS provides a file with the coordinates
from the traveling nanocollectors and nanosensors with time,
which we processed to compute the traveling time and
nanosensors concentration level per nanocollector.6

Figures 8 and 9 illustrate the histogram plot of the traveling
time and the concentration level of nanocollectors along the
different tissues. As these plots demonstrate, these two metrics
can distinguish the traveling tissue reported by the nanocollector.
For instance, the traveling time is larger in the low body than
in the center body regions (cf. Fig. 8). Similarly, the average
concentration level is lower in the shoulders than in the hands

6The Matlab code to process the BVS file is accessible in this link https:
//github.com/jorge-torresgomez/BVS_data, and it also includes a companion
datasheet for the dataset describing the composition of data. The datasheet’s
content follows the recommendations from Gebru et al. [40].

Fig. 9: Representation of the collected data for the average total
of nanosensors, as provided by nanocollectors to the gateway
device.

(cf. Fig. 9). Although not illustrated here, we also remark on the
use of average concentration, as it provides more discernible
sets compared to other metrics like the cumulative concentration
level.7

To reduce errors, we also assume that body regions are
distinguishable, i.e., head, center body, upper body, and lower
body. Consequently, clustering operations only focus on the
corresponding tissues per body region. For instance, in the
upper body, the problem will be to cluster samples from the
shoulders, upper arms, elbows, and hands. Otherwise, the Elbow
will not be distinguishable from the hips when mixing all the
body regions into one set only (cf. Figures 8 and 9), for instance.
To that end, we assume that anchor nodes, fixed to suitable
body locations (e.g., shoulders, hips, and the head), provide the
location to the nanocollectors when traveling nearby. Following
this assumption, we focus on the center body, where the data
is mixed in with the time and concentration dimensions.

Using these raw data for the traveling time and the concen-
tration of nanosensors, three alternative training sets might be
used for the ML models. The ML can be trained with 1D data
in the time or concentration domains (see Figures 8 and 9).
Alternatively, the combined domains as 2D data might be used
as a training set; see Fig. 10 for the histogram plot in the center
body tissues. The following Sections detail the ML training
procedure and their comparative performance in distinguishing
the data sets.

B. Unsupervised ML Methods: k-means vs. self-organizing
feature map

This section explores the performance of low and high
complex ML methods using the dataset, as described in the
Section above. We implement in Matlab code the k-means

7Further plots for comparison are accessible in https://github.com/
jorge-torresgomez/BVS_data.

https://github.com/jorge-torresgomez/BVS_data
https://github.com/jorge-torresgomez/BVS_data
https://github.com/jorge-torresgomez/BVS_data
https://github.com/jorge-torresgomez/BVS_data
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Fig. 10: Representation of the collected data, concerning
traveling time and average concentration level, provided by
nanocollectors to the gateway device.

method as the low-complex [41] one, and the deep learning
SOFM method as the complex one [41], [42].8

Both methods aim to find the partition of samples into
clusters, looking for resembling samples in the same cluster that
are also dissimilar to the ones in different clusters. The k-means
method implements this partition by clustering the data around
the centroids and updating the clusters’ centroids iteratively.
Data is partitioned around the centroids by minimizing a
proximity metric as the distance between samples and centroids.
Starting with a random distribution of centroids, as proved to
converge faster, the centroids are iteratively updated for each
cluster; see [41, Sec. II C.].

The training for the k-means method is implemented with
4000 iterations. We set the number of clusters to k = 6 as
we know in advance the number of capillaries in the center
body region, see Fig. 10. The six centroids are initially placed
randomly on each iteration, and we run the iterations until the
six centroids are located in the time interval corresponding
to each circuit. For instance, we expect one of the centroids
located in the range 30 − 40 s, in correspondance with the
values in Fig. 8. Similarly, we define ranges for the other five
centroids.

In a different approach, the SOFM method uses neurons as
placed in a grid to cluster samples [42]. Inspired by the cortex
of mammals, the neuron’s positions are updated according
to heuristic rules, i.e., without explicitly minimizing error
functions [43]. The resulting location of neurons is then used
to partition the data into clusters.

We train the SOFM model using 90% of the amount of data
and the remaining 10% for testing. Six neurons are initially

8The k-means and SOFM methods are implemented according
to the description in https://www.mathworks.com/help/stats/
kmeans.html and https://www.mathworks.com/help/deeplearning/gs/
cluster-data-with-a-self-organizing-map.html, respectively.

Fig. 11: Unsupervised method after merging clusters with the
SOFM SOFM method.

layered as a hexagonal topology during the training phase.
Using this minimum amount of neurons, equal amount of
clusters are achieved as represented in the 2D histogram plot
in Fig. 11. The training phase runs till we observe the centroids
are located within the same time interval as for the k-means
method, as explained above.

When comparing to the ground truth in Fig. 10, we can
directly identify the thorax (Set 1), the pelvis (Set 6) and part
of the kidneys (Set 4), while the spleen, intestine and liver
are distributed among the Sets 2, 3, and 5, respectively. To
account for six clusters (according to the six tissues in the
center body), we arbitrarily merged 2 and 8 as the kidneys, 3
and 9 as the intestine, and 5 and 7 as the spleen, resulting in
the sets depicted in Fig. 11 for the testing data.

After implementing these methods, we evaluate their cluster-
ing performance with the positive predicted and false negative
metrics. To illustrate, Fig. 12 depicts the prediction performance
when using the k-means method, in average the positive
predicted samples are 85.96%, and the false negative is 14.04%
of the total. Most false negative bars stem in the center body
region, which is the hardest region to distinguish among the
different clusters. As Fig. 8 depicts, the overlapping sets in
the center body (thorax, spleen, etc) impact the clustering
performance.

We compare the performance of the ML models (k-means
and SOFM) using the 2D-data and 1D data, as depicted in
Fig. 12. In addition, we also illustrate the Gaussian method to
cluster data in the concentration domain due to its similarity to
a Gaussian distribution, see Fig. 9.9 As illustrated in Fig. 12,
the low complex k-means method scores with the highest
performance when using the 2D data. Remarkably, clustering
in the time domain only with the k-means method does not

9The Gaussian model is implemented according to the
description in this link https://www.mathworks.com/help/stats/
clustering-using-gaussian-mixture-models.html.

https://www.mathworks.com/help/stats/kmeans.html
https://www.mathworks.com/help/stats/kmeans.html
https://www.mathworks.com/help/deeplearning/gs/cluster-data-with-a-self-organizing-map.html
https://www.mathworks.com/help/deeplearning/gs/cluster-data-with-a-self-organizing-map.html
https://www.mathworks.com/help/stats/clustering-using-gaussian-mixture-models.html
https://www.mathworks.com/help/stats/clustering-using-gaussian-mixture-models.html
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(time domain)
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k-means, 2D-data

False negative Positive predicted

Fig. 12: Comparative prediction performance of the various
ML models using the 2D and 1D data.

result in that amount different from the 2D data.

C. Supervised ML method: Decision Tree

We implement a supervised ML method to promptly alert
the location of detected abnormalities, as follows from the
right branch in Fig. 3. As for the supervised model, we apply
the Decision Tree method with the 2D labeled data provided
by the unsupervised k-means method, as it resulted in the
best performance; see Fig. 13. Using Gini’s diversity index as
the splitting rule, this method minimizes the errors using the
resubstitution estimate [44], resulting in a high accuracy and
low complexity classifier. 10

The Decision Tree is implemented with 100 splits using
Gini’s diversity index as the split criterion. The training is
performed with the 90% of the BVS data set, and the testing
is made with the remainder 10%. The resulting prediction
performance is illustrated in Fig. 13 and assumes the labeled
data from the unsupervised method as ground truth. Similarly
to the unsupervised methods, there are non-negligible errors
in detecting the source of the abnormality in the center body,
specifically in the Spleen and the Intestine. This is due to the
similarity of reported traveling time and concentration level in
the raw data; see Figures 8 and 9.

VI. RESULTS

This section illustrates the localization and detection ca-
pabilities in two subsections with the proposed methodology
in Fig. 3. We evaluate the localization capability with the
right branch of this methodology. In this respect, we illustrate
the ML capabilities to localize the location of reported
abnormalities. Besides, we also present the results for the
detection performance with the left branch of the methodology.
We illustrate the improvement in detection due to the fusion
capabilities of DNA-tiles.

10The Decision Tree method is implemented in Matlab code according to
the description in https://www.mathworks.com/help/stats/decision-trees.html.
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Fig. 13: Supervised method: prediction performance of the
supervised method to provide early alerts upon detection.
Positive predicted samples are 87.83% while false negative
are 12.17% of the total.

A. Distribution of nanothings in the human vessels

Using the Markov model formulation in Eq. (4), we deter-
mine the stationary distribution of nanothings along the vessels,
according to the right branch in Fig. 3. The stationary vector ν
is numerically computed as the solution to Eq. (3) in Matlab
code.11 The transition matrix Π is determined by evaluating
the ratio of nanosensors at bifurcations ([34, Eq. (1)]), where
the total of nanosensors per circuit Ni is estimated with the
k-means method using the 2D data, see the step 3 in Fig. 7.
The k-means method, trained with the 2D data, is selected due
to its better prediction performance (cf. Fig. 13).

Fig. 14 illustrates the stationary distribution of nanosensors
along the various vessel segments in the arteries, capillaries,
and veins. As expected, the highest probability is found in the
Arcus Aorta (A1), in the heart, and in the inferior and superior
vena Cava, as these are segments where most circuits pass by.
A low probability is obtained in the capillaries of the legs, for
instance, as the blood concentration is expected to be lower.

To compare results, we also depict the solution to the
stationary vector but compute it with the ground truth labeled
data from BVS. We evaluate the transition probabilities of the
Markov model without errors in the prediction performance
using an ideal estimator. Most of the probabilities differ in the
half for the vessel segments, which is a consequence of the
errors introduced by the predicted sample; see the prediction
performance in Fig. 13.

B. Detection Probabilities

To account for the detection capabilities of our system,
comprised of nanosensors and nanocollectors, we evaluate
the global detection probability with Eq. (11) and the global
false alarm probability with Eq. (15). These probabilities are
derived by merging three components in simulation: 1) the
local detection probability of a nanosensor using COMSOL

11To solve for the stationary distribution of the Markov chain, we follow the
description in https://www.mathworks.com/help/econ/dtmc.asymptotics.html.

https://www.mathworks.com/help/stats/decision-trees.html
https://www.mathworks.com/help/econ/dtmc.asymptotics.html
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Fig. 14: Distribution of nanosensors in the HCS as derived by the k-means method and the ground truth as using the labeled
data from BVS. As for the labels in the arteries and veins; see [11, Fig. 4].

simulations; 2) the probability of a nanosensor visiting a
given sensing region as evaluated by the ML algorithms; and
3) the sensor fusion rules, namely, OR, AND, and MAJ rules to
determine the detection probability at the nanocollector. We
choose to evaluate these probabilities for the upper shoulders
region, but they can be easily extended to any other part in
the body.

Fig. 15 depicts the global probability of detection and
probability of false alarm versus the total number of sensors for
the AND rule.12 We plot the results for varying nanocollector-to-
nanosensor ratios, denoted as η, when an AND rule is applied.
We evaluate these probabilities with Equations (9) and (11)
as for the detection probability and as for the false alarm
probability with Equations (13) and (15).

We observe that although increasing the number of nanoth-
ings helps with the detection probability up to a certain point
(Nt ≈ 104), it does not yield better detection probabilities
after that point. This is because it gets more difficult to have a
correct reading out of all the nanosensors to decide on detection
in the AND rule; even a single nanosensor missing detection
blocks a correct decision. Also, even at its peak, the AND rule
gives a probability of detection of 0.073, which is very low
for our application scenario.

Fig. 16 depicts the global probability of detection and false
alarm with the MAJ rule, evaluating the Equations (10) and (11)
and Equations (14) and (15), respectively. Similarly to the AND
rule, we observe peaks with the detection probability; see
for instance the peak at Nt = 13 × 103 when η = 0.5. The
observed peak is since, with the MAJ rule, more than half
of the nanosensors in that organ should detect the anomaly
and report it to the nanocollector. We also observe that the
highest probability of detection as 0.14 is better than the AND

12We remark that Pd also refers to the sensitivity, and Pfa to the specificity
as a common nomenclature in the medical field to evaluate infection detection
mechanisms.
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Fig. 15: Resulting detection and false alarm probabilities for the
AND rule for the varying ratio of nanocolectors and nanosensors
η.

rule with similar probabilities of false alarm. However, the
detection probability is still far from the unit (best performance)
for reasonable numbers of nanothings.

Finally, Fig. 17 depicts the global probability of detection and
probability of false alarm with the OR rule; see Equations (8)
and (11) as for the detection probability and Equations (12)
and (15) as for the false alarm. In contrast to the AND and MAJ
rules, we observe this rule gives a probability of detection of
0.99 with 6 × 103 nanothings. This result is very promising for
the application that we consider. We also observe that within
the region of the number of nanosensors where the detection
probability approaches the maximum performance (1), with
Nt in the range 6 × 103-104, while the false alarm probability
is still below 0.1.

Another major conclusion is that we observe the maximum
detection performance when the amount of nanosensors and
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Fig. 16: Resulting detection and false alarm probabilities for the
MAJ rule for the varying ratio of nanocolectors and nanosensors
η.
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Fig. 17: Resulting detection and false alarm probabilities for the
OR rule for the varying ratio of nanocolectors and nanosensors
η.

nanocollectors is balanced (η = 0.5) in the above three
Figures 15 to 17. For the fusion rules, it is important to locally
detect and have a sufficient amount of FC nodes. These plots
show that both nanothings should be in the same amount in
the vessel segment where the infection happens.

In summary, we observe a promising application when
merging the localization prediction of the ML methods with
the fusion mechanism to detect abnormalities in the human
body. The localization with the k-means method positively
predicts the location of the 86% of the samples. Besides,
it estimates the location of the abnormalities and provides
the spatial probabilities needed to evaluate the fusion rules.
Furthermore, the OR rule implements the highest detection
probability as 0.99. Although at the expense of the highest
false alarm probability compared to the other two fusion rules,
it yields an acceptable performance.

VII. FUTURE WORK & OPEN QUESTIONS

Within the IoBNT framework, there are more challenges
to address in future work. Despite of the suporting testbed

technologies (see [45], [46]), the framework requires more
development as a concept. Research directions related to more
realistic assumptions for the system model, the communication
links, and the development of goal-oriented communication
strategies open new development pathways. This section
remarks on these topics, elaborating on possible research
directions.

BVS implements a constant blood speed with time along
the different vessel segments. Although this is a realistic
assumption in the capillaries and the veins, see [30, Fig. 14-2
pp. 172], will not be the case for the arteries where the pressure
variability with time is significant. This time variability also
yields a varying traveling time for the nanosensors along the
HCS. In that regard, we expect a broader distribution for the
traveling time than the case depicted in Fig. 8; thereby, a
reduced performance for the localization mechanism introduced
in Section V. We let for future work further developments in
this direction.

A second direction for future work is related to the impact of
the communication mechanism in the interfaces with external
devices. This work assumes an ideal connection between the
nanocollectors and the gateway. Still, in a real-case scenario,
there will be some errors due to noise in the communication
link and due to synchronization performance. See, for instance,
the impact of noise in the bit error rate (BER) metric for
intrabody links in [47, Figures 4 and 5], and the impact of
synchronization in [18, Figures 12 and 13].

The operation of the IoBNT network is also prone to
failures that require further investigation. The nanothings’
limited battery capacities or the chemical reaction with blood
components can prevent the system from operating. Although
there are preliminary studies on the topic, which includes
the impact of a limited lifetime in the network, see [48],
further research is needed in this topic to account for realistic
parameters as the battery capacity or the resistance of the
nanodevice to chemical interaction with blood components.

The impact of noise in the MC channel between the
nanosensors and the nanocollectors is also relevant as well.
The process in the MC channels follows a diffusion-advection
mechanism, where the diffusion of molecules also introduces a
noisy component; see the diffusion noise description in [49, Eq.
(87)]. Current literature evaluates the reliability of deployed
ML modules for prediction detection, see [50], however, the
impact of noise, as reflected within the input data is still a
topic for further development.

Further, it is yet unclear how the DNA-computation of
the fusion rule fares under more realistic circumstances.
While DNA quickly and reliably assembles under laboratory
conditions, the complex environments in the human body might
interfere in undesired ways. As an example, the human immune
system is sensitive to DNA outside of the proper places and
might attack artificial DNA structures. Further, certain tumors
might emit enzymes like DNase that destroy double-stranded
DNAs. Future wet lab experiments are necessary to validate
the functionality of such systems under gradually more realistic
circumstances.

Further, DNA-based computations are stochastic systems
where potentially millions of tiles self-assemble in parallel,
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which is supportive for scalability. However, there is need of
more research when it comes to complex or large computations
as the assembly process tends to slow down significantly for
some computations. Yet, as the nanoscale is extremely resource-
constrained anyway, we do not think that those limits will be
approached any time soon.

Finally, we will consider goal-oriented communication
strategies within this framework to achieve early alerts and
prompt actuation constraints on potential diseases. In this
regard, the update’s timeliness at the gateway device should
allow for following the evolution of potential diseases; see
some initial work in [48], [51], [52]. Aiming to maximize
information freshness, metrics related to information age can
provide a way to evaluate it with a balance between nanosensors
and nanocollectors.

VIII. CONCLUSION

This paper outlines a detection and localization framework
of abnormalities in the human body following the sensor-
fusion node-gateway architecture. The architecture integrates
nanosensors and fusion nodes implemented with nanocollectors
in the human vessels scenario, where both components are
mobile. Furthermore, leveraging on the DNA-tiles computa-
tional capabilities, we realize the standard OR, AND, and MAJ
fusion rules. Such a conception supersedes computation tasks
in nanothings with natural processes in the biological domain.
Besides adding flexibility to the architecture, we integrate ML
modules to evaluate physiologic-based parameters. The ML
fulfills two purposes: it computes transition probabilities in the
vessels’ bifurcations and jointly localizes the abnormalities’
source. The ML module accounts for a flexible design as it
can be trained for the specificity of individual subjects.

Our findings illustrate a valuable balance between detection
capabilities and false alarm performance. Implementing the
fusion OR rule achieves a high detection ratio with a low false
alarm probability. Although remarkably, this is obtained with
an equal balance of fusion nodes and nanosensors. Reducing
the number of nanocollectors has little impact on the detection
ratio but has a larger impact on the false alarm probability.
These results illustrate the usefulness of including mobile fusion
nodes within the architecture.
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