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ABSTRACT
The modeling of human vessel hemodynamics targets various ben-
efits in health care applications. Subject-specific models of vessels
allow the accurate prediction of pressure and flow, thus, enabling
the study of individuals’ responses to medical treatment. Instead
of developing a model for a standard person, this paper features
a design for the human circulatory system (HCS) accounting for
the specific physiological parameters of an individual. We report
using a reinforcement learning (RL) model for customary vessel
parameters when training with subject-specific pressure and flow
waveforms. We use an equivalent electric-circuit model for the
human arteries and adjust the values of resistors, inductors, and
capacitors in combination with reinforcement learning (RL). The
conceived model stems as a digital twin replicating specific sub-
jects. The reinforcement learning (RL) method predicts the vessel
length and radius with an error of less than 10 % and fits pressure
waveforms with a similarity higher than 94 %.
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1 INTRODUCTION
According to the World Health Organization, more than one billion
adults worldwide suffer from high blood pressure levels (hyperten-
sion), with approximately half of them not being aware of their
condition and not being treated adequately.1 Their treatment is one
of the global endeavors so as to reduce the prevalence of hyperten-
sion by 33 % until 2030. Targeting this aim requires intense applied
research on modeling the human circulatory system (HCS) as well
as hemodynamics, the research area dealing with the dynamics of
the blood flowing within the circulatory system. Modeling hemody-
namics in vessels pave the way for accurate prediction of pressure
and flow in the arteries as well as the individual response to medical
treatment [3].

Targeting real-world clinical data, a digital twin (DT) replica for
subject-specific hemodynamics will allow customized medical treat-
ment for improved healthcare [4]. Modeling the HCS, backbone
studies of translational research model the fluid-dynamics effects
in vessels, like laminar flow or turbulence, through the numerical
evaluation of Navier-Stokes equations for fluids as 3-D models [5].
The 0-D models, with fewer details and less computational com-
plexity, translate vessels’ physiology to electric circuit parameters
as resistors, inductors and capacitors [12]. Using the electric cir-
cuit representation, the voltage is translated to the variable time
evolution of pressure and the current to blood flow. Resistors rep-
resent the resistance to the blood, inductors the blood inertia, and
capacitors vessels compliance. The 0-D models significantly reduce
computational resources allowing to simulate a complete represen-
tation of the main arteries, capillaries, and veins in the body (see
for instance [12, Fig. 4.0.1 pag. 70]).

Various works tune 0-D models parameters to clinical data with
the Windkessel model, fitting the systemic circulation for particular
subjects. Research is reported through manual tunning [11], or
automatically using numerical solutions [13, 15] and predictors like
the Kalman filter [9]. Although these contributions fit parameters to
clinical data for particular subjects, they are limited to reproducing
the pressure and flow but only for a single major artery (Root Aorta).
The Windkessel model represents the whole systemic circulation
missing to represent details on other major arteries in the body like
femoral, ulnaris, and carotid.

1World Health Organization, Hypertension Factsheet. https://www.who.int/news-
room/fact-sheets/detail/hypertension, Accessed: 2023-03-29
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Figure 1: Connection of agent (reinforcement learning) and
the environment (human circulatory system).

Filling this gap, we aim to customize electric-circuit models for a
complete representation of the major arteries. We propose a novel
methodology for applying the concept of DT to hemodynamics
using reinforcement learning (RL). An RL agent is applied to learn
the best-fitting electric parameters for reproducing blood pressure
waveforms of individual subjects with the original waveforms stem-
ming from publicly-available virtual datasets. As Fig. 1 depicts, the
Agent will automatically modify the electric circuit parameters
(Resistor, Inductor, Capacitor), using the mean difference between
the predicted blood pressure and the original waveform from the
database. Besides, with the RL agent, the model is also flexible with
the dynamic of human activities, i.e., while doing sport in a very
active regime. Overall, this solution resembles a DT model, popu-
larly reported in healthcare applications [1, 3], while accounting
for the physiological parameters of a particular subject.

As a resulting main contribution, we provide an expedited model
for the HCS, which automatically fits the pressure levels to a partic-
ular subject. Besides, such a model lets indirectly estimate vessels’
physiological parameters concerning their length, radius, and thick-
ness from pressurewaveforms (non-invasivemeans). As a particular
distinction, the trained RL model might also be used to estimate
these parameters in real-time for clinical studies. Elaborating on
these contributions, the remainder of this paper is structured as fol-
lows. The detailed description of the model is outlined in Section 2
building on the electric circuit design proposed in the previous
work [14] and extending it by integration of the RL model. The
resulting estimated parameters and their pressure resemblance to
database waveforms are highlighted in Section 3 and concluded in
Section 4.

2 DIGITAL TWIN MODEL: REINFORCEMENT
LEARNING – ELECTRIC CIRCUIT

The equivalent DT is achieved by integrating the RL model with
the electric circuit design. The design entails four main blocks, as
depicted in Fig. 1, namely

• Environment: electric circuit design for the HCS simulating
the blood pressure,

• Agent block: to run RL as a Deep Q-Network (DQN),

Figure 2: Simulated blood pressure in arms of a simulated
healthy subject with a heart rate of 75 beats/min.

• Mean difference block: to produce the agent’s observations,
• Reward block: to score the actions the agent made.

This way, the RL agent will actuate on the electric circuit parameters
aiming to minimize the difference between the blood pressure on
the HCS-circuit and the given database waveform. The following
subsections outline more details on each different block.

2.1 Dataset
We use a synthetic dataset with the pressure values to train the
Agent and evaluate the accuracy of the proposed method. We use
the design of Noordergraaf et al. [8], which comprises a 0-D model
for the human vessels as an electric circuit. The electric circuit de-
sign provides pressure waveforms and flows for 128 vessel segments
in the arteries as well as the length and radius per vessel segment
(see [8, Table 1]). 2 This model corresponds to an average healthy
subject (height: 175 cm, mass: 75 kg heart rate: 75 beats/min).

To illustrate some pressurewaveforms, Fig. 2 plots the pressure in
the arms. The waveforms illustrate a typical behavior for the blood
pressure of healthy subjects with the largest oscillation being in
the left ventricle, and its elongation is reduced in the arms and legs’
arteries (cf. [6, Fig. 14-2 pag. 172]). We also remark on the increased
amplitude in the large arteries (e.g., Aorta Carotis) compared to the
left ventricle as typical behavior of the blood pressure in vessels.
We use these waveforms for training the RL agent. Further details
on the electric circuit design are presented in the next subsection
as we use this model for the agent’s environment.

2.2 Electric Circuit Design
The complete circuit is implemented in Simulink/Matlab® Ver-
sion 2022b using resistors, inductors, capacitors, and diodes from
the Simscape library. The HCS-circuit implementation follows the
previous work in [14] with the original design of Noordergraaf et al.
[8]. It is conceived as the cascade connection of RLC circuit blocks
(representing the arteries) and terminated with resistors (repre-
senting the capillaries). All the arteries are modeled with the same
RLC topology (L-inverted) and terminated with the resistors. The
design1 is illustrated in Fig. 3 for the center body (Aorta Ascendens,
or Thorax Aorta) with terminator resistors R_64 and R_65 for the
capillaries (we follow the concepts in [8]).

2accessible online: Electric circuit representation of the human arteries.
https://www.mathworks.com/matlabcentral/fileexchange/109935-electric-circuit-
representation-of-the-human-arteries
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Figure 3: Electric circuit design of the human arteries

On each block, the resistor, inductor, and capacitor model the
physiologic parameters of blood and the vessel segment. The elec-
tric circuit models the input and output pressures (𝑃 ) and flows (𝑄)
with a system of first-order differential equation as [7, Eq. (10)]

𝐶
d𝑃in
d𝑡 +𝑄out −𝑄in = 0

𝐿
d𝑄out

d𝑡 + 𝑃out − 𝑃in + 𝑅𝑄out = 0
(1)

The resistor accounts for the resistance to the blood flow with the
blood viscosity (𝜇) as [16]

𝑅 =
8𝜇
𝐴2 𝑙𝑣, (2)

where 𝑙𝑣 is the vessel length, 𝐴 = 𝜋𝑟2
𝑣 is sectional vessel area, and

𝑟𝑣 the vessel radius. The inductor models the inertia of the blood
with the blood density (𝜌) as

𝐿 =
𝜌

𝐴
𝑙𝑣 . (3)

The resistor and the inductor increase with the vessel length and
decrease with the vessel’s radius. The capacitor accounts for the
compliance of the vessel with the Young Modulus (𝐸) as

𝐶 =
3𝐴
2𝐸

𝑟𝑣𝑙𝑣

ℎ𝑣
, (4)

where ℎ𝑣 denotes the vessel thickness.
In addition, we included the circuit representation of the left

ventricle in the heart following the design in [12, Fig. 4.2.1 pag. 79].
This block models the heart pressure waveform at the left ventricle
using a variable capacitor and the voltage sources P_AT for the
atrial pressure and P_SV for the venous pressure. The design also
includes resistors and diodes to control the amount and direction

of the blood flow. The circuit reproduces the standard waveform
for the ventricular pressure, volume, and cardiac cycle as depicted
in Fig. 4. A voltage-controlled source connects the heart design to
the arteries without producing any additional circuit load in the
interface, see Fig. 3.

2.3 Integrating the Reinforcement Learning
model and the Electric Circuit

We combine the Agent with the circuit model by defining the gener-
ation of the blood pressure waveforms as an optimization problem.
We do this integration using as environment the complete circuit
design in Fig. 3 to evaluate specific vessel segments. In both cases,
the Agent modifies the parameters of the electrical circuit (Resis-
tor, Inductor, Capacitor), attempting to generate a pressure curve
similar to the ground truth waveform. Depending on the similar-
ity between generated and ground truth waveforms, the Agent is
rewarded for predicting the optimal (R,L,C) combination that fits
best to the ground truth waveform in the database. An example is
illustrated in Fig. 5a, where the RL model reproduces a waveform
quite similar to the Noordergraf waveform with a correlation coef-
ficient close to one (see Fig. 5b). In this way, the RL model attempts
to fit the differential equations system in Eq. (1) while tuning its
parameter to reproduce the database’s waveform. Further details
on integrating the RL model to the circuit design are given in the
following subsections.

Agent Actions: The agent’s actions are directly mapped to the
values of resistors, inductors, and capacitors in the electric circuit
design. On a given block in the circuit in Fig. 3, we replace the
resistor with a potentiometer and the inductor and capacitor with a
voltage-controlled inductor and capacitor, respectively, as sketched
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Figure 4: Electric circuit for the heart [12] and output blood flow, including the pressure and cardiac cycle in the left ventricle.
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Figure 5: Blood pressure and correlation coefficient in the Aorta Ascendens.

in Fig. 6. This way, the agent will control the nominal values for
the three-element circuit.

In this solution we interconnect the agent to a single block at-
tempting to reduce the computational complexity of training the
Agent. For instance, if we want to replicate the pressure in the Aorta
Hepatica as given in the database, the electric circuit will output
the voltage on the resistor R_64, and the agent will be connected
to the RLC_64 block in Fig. 3.

Connecting the agent to more blocks implies an action space
(combined RLC ternary values) exponentially growing with the
total of blocks. To illustrate, let’s assume the resistor, inductor, and
capacitor values range in three sets of 𝑁 elements each, yielding
a total combination of 𝑁 3 possible ternaries. Besides, with an ar-
bitrary total of blocks 𝐵, the action space increases exponentially

as 𝑁 3𝐵 , as each block also comprises an RLC ternary set. This expo-
nential increase in the action space will eventually be prohibitive
to scale this solution; however, we will show promising results in
Section 3 when connecting the agent to just a single one.

Agent Observation: When connecting the Agent’s action to the
circuit, we define the observation as the closeness to the blood
pressure we want to reproduce. We implement this observation
as the mean difference between the two waveforms in the Mean
Difference block (see Fig. 1), as depicted in Fig. 7. The signal from
the database is subtracted from the input signal (electric circuit’s
output), and its absolute value is sampled with the Zero-Order
Hold block to evaluate the difference in the discrete domain. Next,
the Buffer block outputs a sequence allowing us to evaluate the
difference’s mean along the buffer length (as a moving average
window). In this design, we assume a buffer length so as to capture
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Table 1: Electric and physiologic vessel parameters predicted by the RL model (relative errors to the baseline model in [8]).

Vessel R
[Ω]

L
[H]

C
[µF]

Length
[cm]

Length
relative
error

Radius
[cm]

Radius
relative
error

Thickness
[mm]

Thickness
relative
error

Aorta Ascendens 0.052 0.34 82 3.2 9.9 % 1.3 5.1 % 0.9776 51 %
Carotis Aorta 22 8.1 5.3 17 6.6 % 0.35 4.7 % 1.57 34.4 %
Aorta Radialis 50 15 57 20 0.7 % 0.15 1.9 % 1.45 35.6 %
Aorta Femoralis 5.8 6.8 4.1 25 10 % 0.33 2.9 % 2.55 65.2 %

C_RL

L_RLR_RL

In_A

In_B

Out_A

Out_B

Figure 6: Electric circuit design integrating the agent and the
circuit elements.

Database 
waveform

+

−
𝑢

Zero-Order
Hold

Buffer Mean

Electric Circuit 
Blood Preassure

Figure 7: Block Diagram for the Mean Difference block.

𝑢 + 10−1
1

𝑢

Figure 8: Reward block diagram.

one cardiac cycle, and the difference is sampled with the sampling
rate of the original circuit design as 1 ms.

Agent Reward: The reward is proportionally inverted to the dif-
ference between the circuit and database waveforms. In this way,
Agent’s observation for low values is rewarded higher. As depicted
in Fig. 8, the input sequence is inverted after being biased by the
amount 10−1. This bias is used to avoid the division by zero and
also sets a maximum reward of 10 units.

Agent Model: For the Agent’s model, we implemented a DQN
agent as the RL method. DQN is a variant of Q-learning and entails
a recurrent neural network (RNN) avoiding storing large Q-tables
instead. This model allows critics to estimate future rewards ac-
cording to their current actions following the epsilon-greedy policy.
This policy avoids local minima selecting a random action with
probability 𝜖 = 0.9, or a greedy action with probability (1 − 𝜖),
when looking for the highest value function.

Agent Training: The training is performed with the waveforms
from the original electric circuit design illustrated in Fig. 3 [8] (No-
ordergraaf model). We train the Agent so as to mimic pressure
waveforms at specific vessel segments, one at a time. During train-
ing, the critic is updated using randomly stored past experiences of
a total of 64 samples. Updates happen within a period of one cardiac
cycle, according to the length of the observation window. We use a
single episode of 100 sec (more than 80 periods of the cardiac cycle),
as there is any random initial condition in the experiment.

3 RESULTS
Using the introduced integration between the Agent and the electric
circuit model we highlight two main results: i) The similarity of the
produced pressure waveform with the ground truth waveforms and
ii) the accuracy on predicting physiological parameters like vessel
length and radius at different arteries. In addition, we illustrate
the model applicability predict the speed of the blood flow in the
vessel and monitor the cardiac output when using the Windkessel
scheme.

3.1 Similarity of Pressure Waveforms
For the similarity between pressure waveforms, we plot the ground
truth and derived pressures while computing the correlation coeffi-
cient between the two as a metric of similarity. Similar waveforms
will present a correlation coefficient close to one [10]. Figures 9
to 11 illustrate the closeness of the RL method with the original
circuit design waveform in a) coming from [8]. The different artery
segments are selected in the limbs (Radialis and Aorta) and the Head
(Carotis). In the three cases the correlation coefficient results larger
than 0.9 (see the plots in b)), providing an accurate correspondence
to the original circuit model from Noordergraaf et al. [8].

3.2 Prediction of Vessel Parameters
We estimate the predicted length (𝑙𝑣 ), radius (𝑟𝑣 ) and elasticity (𝐸) of
the vessel segment using the predicted values for 𝑅, 𝐿, and𝐶 by the
RL model. Using Equations (2) and (3) we solve for the parameters

𝑙𝑣 =
8𝜋𝜇 𝐿2

𝜌2𝑅
, 𝑟𝑣 =

√︄
8𝜋𝜇
𝜌

𝐿

𝑅
, (5)

and replacing these results in Eq. (4) we estimate the vessel’s thick-
ness as

ℎ𝑣 =
3𝜋

2𝐸𝐶 𝑟3
𝑣𝑙𝑣 . (6)
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(b) Correlation coefficient of the two waveforms.

Figure 9: Blood pressure and correlation coefficient in the Carotis Aorta.
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Figure 10: Blood pressure and correlation coefficient in the Aorta Radialis.
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Figure 11: Blood pressure and correlation coefficient in the Aorta Femoralis.

As for the blood viscosity we consider 𝜇 = 3 × 10−2 P and blood
density as 𝜌 = 1.05 g/cm3 in the centimetre–gram–second system
(CGS) unit [16]. 3

Using these relations, we get the length, radius, and thickness
per vessel segment with the predicted RLC values. To illustrate, the
RL model outputs the value of the three elements, as depicted in

3We use the CGS units as the original work from Noordergraaf et al. [8] computes the
values for resistors, inductors, and capacitors using this system.

Fig. 12 for the Aorta Ascendens, and using these, we get the vessel
parameters as listed in Table 1. According to the table, the relative
error results in less than 10 % for the vessel length and radius,
except for the thickness, where the error is higher. In the case of the
thickness, which depends on the capacitor (see Eq. (4)), we presume
that adjusting the pressure waveform has little sensitivity with the
capacitor value. Thereby a good fit with the pressure waveform is
achieved in a range of capacitor values.
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Figure 12: RL prediction for the Electric circuit parameters
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the Aorta Radialis.
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Figure 14: Estimated profile for the blood speed in the Aorta
Ascendens.

3.3 Predicting Blood Speed in Arteries
Using the predicted values for the radius and length allows also
estimate the flow inside the vessel. In the vessels the blood speed
follows a parabolic profile along the diameter, represented with 𝑦
in Fig. 13). The blood speed 𝑣 (𝑦), due to a difference in pressure
along the vessel segment is [2, Eq. 4.9 pag. 54]

𝑣 (𝑦) = 𝑣𝑐

𝑟2
𝑣

(
2𝑟𝑣𝑦 − 𝑦2

)
, 𝑦 ∈ [0, 2𝑟𝑣], (7)

where 𝑣𝑐 is the maximum speed at the vessel center as

𝑣𝑐 =
Δ𝑃𝑟2

𝑣

2𝜇𝑙𝑣
. (8)

Using the predicted 𝑙𝑣 and 𝑟𝑣 we can estimate the blood flow
dynamics with Equations (7) and (8). To illustrate, Fig. 14 plots the
blood speed with 𝑦 in the Aorta Ascendens using the parameters
listed in Table 1. With a similar procedure, the profile can also be
estimated for other vessel segments.

4 CONCLUSION
This paper evidences amethod to estimate vessel physiologic param-
eters from pressure waveforms. The method fits the model output
pressure to the database waveform while tuning the vessel length,
radius, and thickness. We use RL to fit the model and learn the
subject-specific parameters, in this way devising a digital twin for
the main arteries. Although improvements are needed to estimate
the thickness, the model achieved estimation errors that resulted in
less than 10 % for the vessel length and radius. As future work we
will implement more accurate models, like different policies and
reward functions, to further reduce the estimation errors.
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