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Abstract—Recent molecular communication (MC) research
suggests machine learning (ML) models for symbol detection,
avoiding the unfeasibility of end-to-end channel models. However,
ML models are applied as black boxes, lacking proof of correctness
of the underlying neural networks (NNs) to detect incoming
symbols. This paper studies approaches to the explainability of
NNs for symbol detection in MC channels. Based on MC channel
models and real testbed measurements, we generate synthesized
data and train a NN model to detect of binary transmissions in MC
channels. Using the local interpretable model-agnostic explanation
(LIME) method and the individual conditional expectation (ICE),
the findings in this paper demonstrate the analogy between the
trained NN and the standard peak and slope detectors.

Index Terms—Explainable Al individual conditional expec-
tation, local interpretable model-agnostic explanation, machine
learning, molecular communication, neural network, testbed

I. INTRODUCTION

ESEARCH in molecular communication (MC) targets
Rnew symbol detection methods avoiding the use of end-
to-end channel models and the estimation of their parameters.
The lack of closed-form expressions for MC channels makes
it impractical to design detectors, as their optimal functioning
depends on the end-to-end channel impulse response (CIR).
Even with closed-form expressions for the CIR, still, variable
parameters, like the distance between emitters and receivers,
prevent setting detection thresholds to distinguish high from
low levels in, e.g., on-off keying (OOK) transmissions [1], [2].
Circumventing these impediments, the research community is
actively studying the use of machine learning (ML) methods
as an expedient way to build near-optimal detectors [3].

In the literature, supervised learning using neural networks
(NNs) is becoming the de-facto standard for implement-
ing detectors. Architectures like artificial neural networks
(ANN), recurrent neural networks (RNN), convolutional neural
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networks (CNN), or bidirectional RNN are trained offline
with a large number of received symbols. The models are
then deployed for online inference, here, symbol detection.
Such neural network (NN)-based solutions are applied to
the detection of pH levels controlled by Escherichia Coli
bacteria [4], using pumping machines in fluids [5], [6], and in
free-diffusion environments [7]—[9]. In addition, the k-means
clustering method is reported, evaluating the detector threshold
in free-diffusion environments [10].

Although the effectiveness of applying NN architectures
for symbol detection is evident, a proof of effectiveness, i.e.,
their explainability, is missing. As Huang et al. [3] mentioned,
the explainability in MC systems is even more vital than in
conventional communication systems. ML models are applied
as black boxes without taking care of proof of correctness
for the long-term functionality. The matter becomes relevant
in developing provable models [11], where trustworthiness is
crucial to deploy in-vivo systems for healthcare applications
like targeted drug delivery, or cancer cell detection [3].

In this paper, we study the explainability of NN-based
architectures for symbol detection in MC channels. As for
the NN explainability, we apply the local interpretable model-
agnostic explanation (LIME) method and the individual condi-
tional expectation (ICE) [12], also for ease of illustration. For
validation, we target a real testbed scenario as well as an end-
to-end channel model of a point transmitter, a free diffusion
channel, and a spherical absorbing receiver. Findings illustrate
the analogy between the trained NN and standard detectors
as the peak or the slope detectors, depending on extracted
features from the received signal. Based on such analogies,
this paper aims to introduce explainable methods searching for
mathematical models to later provide assurance of correctness
on the use of NNs for symbol detection.

Our key contributions can be summarized as follows:

o We study the use of ML models for symbol detection in
MC channels, also training on real testbed data;

o we, for the first time, study the explainability of NN
models used for MC; and

o we show results demonstrating the analogy between the
trained NN and standard peak and slope detectors.

II. SYSTEM MODEL
A. Synthesizing Data

We synthesize two databases to train the NN model using the
end-to-end channel models in [13] and the testbed presented in
our previous work accounting for a more realistic scenario (see



TABLE I
RANGE OF PARAMETERS USED WITH THE SYNTHETIC CIR AS IN EQ. (2).

Parameter Variable  Value

Molecules per emission Ny 10*

Distance d 200 nm

Receiver radius TRx 50 nm

Diffusion coefficient D 10710 m?2 /s

Bit duration Ty 1 ms (low-interference regime)
100 ns (high-interference regime)

Sampling time Ts 100 ns (low-interference regime)

1 ns (high-interference regime)

Fig. 1) [14]. For the end-to-end channel model, we employ
the standard case point transmitter-free diffusion channel-
transparent spherical receiver, where the total number of
received molecules follows a Poisson distribution as [13, Eq.
(74)]

NRX NP<NTxh(t>)7 (1)
where h(t) is the CIR as [13, Eq. (34)]
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where N1, and Ny, denote the total number of transmitted
and received molecules, respectively, Vry is the receiver’s
volume, D is the diffusion coefficient of the molecules, d is
the distance between the transmitter and the receiver, and ¢ is
time. We remark that the Poisson distribution in Eq. (2) results
sufficiently accurate whenever the amplitude of the CIR is less
than 107!, which is valid in our case. We also remark that the
Eq. (2) is valid whenever the total number of received samples
is independently distributed over time [13]. The independent
assumption is also reasonable in our case as we avoid any non-
linear behavior at the receiver side (e.g., we avoid the receiver
occupancy effect), and the channel is linear and time-invariant.
Using the CIR in Eq. (2) with the parameters listed in Table I,
we generate synthetic data for 100 emissions (the emission of
molecules accounts for a one, while no emissions account for
a zero). Parameters provided in Table I follow values in [13].

We also synthesize data using the testbed illustrated in Fig. 1
(see [14] for further details). The transmitter is equipped with
a sprayer, and the receiver with a sensor located at a distance
of 1m. The sprayer releases a total number of 3.92x10*!
ethanol molecules into the air with a diffusion coefficient
D = 0.84 x 10°m?/s. The dissolution has a mass ratio of
one part of ethanol (H;CCH,OH) into four parts of water as
TMH,CCH,0H / mu,o = 1 /4. Molecule transmissions are supported
with a standard fan, producing a channel with drift of the
average speed v = 3.5m/s.! All used devices and sensors are
commercial-off-the-shelf ones — reprogrammable, reproducible,
and adaptable for different research approaches.

We use the testbed to generate data with recorded pulse
transmissions at the chemical sensor in Fig. 1. We averaged
over 40 emissions of 1’s, where each emission lasts for

I'The airflow speed was measured using an anemometer Airflow Instruments
LCA301.
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Fig. 1. Molecular SISO communication system testbed [14].
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Fig. 2. Average and 95 % confidence interval (blue area) for the normalized
received pulses after averaging 40 emissions in the testbed.

2s and samples are collected at the sensor node along 30s
with sampling time 0.1s.> Fig. 2 illustrates the average pulse
response after normalizing it with the total of emitted molecules.
The plot also shows the 95 % confidence interval (blue area).
This plot evidences that the average pulse sequence accurately
describes transmissions over the channel as we observe a low
variability of samples. Using the estimated pulse response, we
integrate the testbed to produce synthetic data using it as the
argument of the Poisson distribution in Eq. (1) and randomly
produce an OOK sequence of arbitrary length. We use the
Poisson distribution aiming to include some randomness in
the amplitude of received pulses. We remark that we perform
sufficiently large time intervals between the bit-1’s (as 305s) to
avoid saturation at the receiver sensor, as produced by a high
concentration of molecules with consecutive pulse emissions.

B. Neural Networks Architecture

To predict the transmitted bits, we implement a fully
connected feed-forward NN in Matlab with two layers for
classification, where the first layer has 10 outputs and the
second layer produces the binary output. The first layer uses the
rectified linear unit (ReLU) and the second layer the Softmax
activation functions.

The NN is trained to minimize the cross-entropy loss
function to find the NN parameters [15]. Data for training
are synthetically generated in Matlab using the above Eq. (1)

The dataset for the testbed measurements and the Matlab processing code
are available at IEEE DataPort at http://ieee-dataport.org/11110.
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Fig. 3. MOL-eye diagram.

with the argument given as in Eq. (2) on the one hand, and
with the average received molecules measured with the testbed
on the other hand. The NN is trained with 50 % and evaluated
with the remaining 50 % of the generated data.

III. EXPLAINING THE NEURAL NETWORKS BEHAVIOR

In this Section, we provide explanations based on the
synthetically generated data using Equations (1) and (2) on
the one hand, and with the testbed average pulses in Fig. 2
on the other hand. As for the synthetic data, we train the
NN under two regimes, low- and high-interference levels. As
depicted in the MOL-eye diagram [16] in Fig. 3a, the low-
interference diagram exhibits a wide open eye in contrast to
the high-interference one in Fig. 3b. The level of interference
is tuned with the bit duration 7, — the low level is the
case when T, = 1ms, where the amplitude on the tail is
less than 1% the amplitude on the peak. The high level of
interference is produced when 7; = 100 ns, where the peak
amplitude, at T}, = % ~ 66 ns [13], is located close to the
bit duration and the total number of received molecules from
the previous emission are the 94 % of the actual transmission
peak amplitude.

To explain the trained NN model, we apply the local
interpretable model-agnostic explanation (LIME) method with
the Matlab function 1ime (). The LIME method fits a linear
model while identifying the most valuable predictors (inputs
samples) to distinguish the ones from the zeros in the two
regimes. The 1ime function implements the group orthogonal
matching pursuit (OMP) algorithm for the predictors selec-
tion [17]. It estimates the most valuable predictors solving an
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Fig. 4. Important samples used by the NN detector according to LIME for low-
and high-interference regime. We recall that some samples at the beginning
of reception are zero due to the low probability of molecules’ arrival.

equivalent optimization problem with a least square regression
formulation [18].

Results of the LIME method are illustrated in Fig. 4, where
we used the same closed form expression Ntyh(t) as in
Equations (1) and (2) for the fairness of comparison. The
trained NN model utilizes those samples located at the peak
of the received symbols in the low-interference level regime
(see Fig. 4a). As expected, those samples are more distant
from zero, thus producing a better distinction between the
two emissions. Meanwhile, in the high-interference regime
(see Fig. 4b), the NN method employs samples located at the
beginning of symbols and at the peak to distinguish emissions.

We depict in Fig. 5 the ICE plot for the two interference
regimes. The ICE plot illustrates the correspondence between
the predictor variable (input molecules) and the predicted class
(zero or one) for a given observation (Sample 9 in Fig. 5a),
for instance) [12]. In the horizontal axis are the amplitude
values (some of them are superposed) taken among the various
symbols, and in the vertical axes, it is the produced output
as the bit 1 or bit 0. This plot visualizes a relation between
the sample value and the NN decision. As Fig. 5a depicts, in
the low-interference regime the NN outputs a 1 whenever the
sample is higher than 39 molecules, and 0 whenever it is less
than 11 molecules. Based on the two plots Figures 4a and 5a,
we can readily interpret that the NN is operating as a peak-
detector for the low-interference regime, where samples in the
peaks are compared to a threshold, in this way distinguishing
emissions in one from zero (see [19, Sec. V.A.2.d]).

Interpreting the NN operation as a peak-detector, then we
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Fig. 5. ICE plot of the NN detector for low- and high-interference regimes.

can use the corresponding equations to evaluate the bit error
rate (BER) (see [20, Sec. III]) with the threshold given by the
Fig. 5a (around 30 molecules). However, in the low-interference
regime the BER can be readily evaluated to be less than 107,
see [20, Fig. 15], as we are considering any interference noise
and negligible inter-symbol interference (ISI).

In the high-interference regime, it results non-meaningful to
interpret the ICE plot in Fig. 5b as all the samples score zero
regardless of their value. In this case, it is needed to apply
a different mechanism to interpret the rule implemented by
the NN. In our opinion, the NN might be implementing a slope
detector, as it uses samples at the beginning and at the peak
of incoming symbols to perform detection (cf. Fig. 4b).

In the high-interference regime, we also implement the slope
detector due to its effectiveness to reduce the ISI [5], [21]. We
follow the detector conceived in [5], where the NN is trained
with features as the slope between segments, 10 samples each,
of the received signals and the variance of samples as well (see
[5, Appendix]). Fig. 6a illustrates the most important predictors
used by the NN model, where samples b’ s denote the slope
of the received sequence, and var b denotes the variance
of these samples. As a result of this plot, the most important
sample is Sample b4, which represents the steepest slope
from segments in the transition time interval between the low
and the high-level, i.e., located between 20 samples and 40
samples in Fig. 4. Besides, the ICE plot in Fig. 6b exhibits a
well-distinction to score the detection of the ones; e.g., samples
with a slope higher than six units are identified as ones. Using
these features, this NN will behave mostly as a slope detector
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Fig. 6. Interpretability for the slope detector in [5]. Most important samples
are distinguished with LIME method and the corresponding ICE plot.

when comparing the steepest slope of the incoming symbol to a
threshold. Coincidentally, the slope detector has been reported
as a solution to reduce the impact of ISI in MC channels [22].
The peak value of the derivative is closer to the beginning of
the symbol than the peak of the CIR, which allows it to reduce
the impact of ISI.

When interpreting the NN as a slope detector, we evaluate
its performance with the same closed-form expression as the
threshold detector but calculating its input signal-to-noise ratio
(SNR) differently [23]. As the slope detector evaluates the
difference between two samples at 7} and 0, as follows from
Fig. 4b, the signal’s power at the output of the slope detector
approximates as (Nt,h(T}))?. Besides, the noise’s power can
be readily evaluated as 2Nt.h(Tp)s[k] [23] modeling the
received noise like a Gaussian process [13, Eq. (89)]. Then,
after evaluating the ratio between the signal and noise powers,
the SNR = 0.5N1h(T}) ~ 31dB using the parameters in
Table I and Eq. (2) to evaluate h(T}). Finally, according to the
plot in [20, Fig. 15] the BER ~ 4 x 1072,

Finally, we plot the results for the LIME method in Fig. 7
using the testbed-generated sequence with pulses. We aim to
illustrate results for a more realistic scenario with experimental
data. In this case, we construct a high-interference regime,
where the symbol time is T, = 2, with the corresponding
superposition of pulse transmissions. The LIME plot exhibits
that the most important samples to perform detection are at the
beginning and at the end of the symbol, which is similar to our
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simulation results in Fig. 4b. Although we do not plot here,
the ICE plot looks also similar to the case in Fig. 5b, which
does not allow interpreting a rule. Similarly to the simulator
results for the high-interference regime, we also suggest that
the NN is implementing a slope detector to distinguish the
ones from the zeros in the testbed real case scenario.

IV. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

Research reports symbol detection in MC channels using a
NN due to its flexibility despite unknown channel parameters.
With the help of a testbed, we trained a NN for symbol
detection in MC. We then investigated the explainability of
NN models, opening ways to provide proof of accuracy as
detectors. Findings illustrate that our NN operates as intuitively
expected to detect emissions in ones from zero. In the low-
interference regime, it behaves as a peak detector. Besides,
in the high-interference regime and using the slope of input
samples as features, the NN mostly uses the slope located at the
transitions, thus, performing as a slope detector. Our findings
also illustrate that the NN emulates a low-complex mechanism
to decode the received signal, as only a few samples are selected
to distinguish emissions. Future work will be conducted to
analyze the optimality of the NN-based detectors with the
threshold.
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