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Abstract—The successful connection between in-body nanosen-
sors and gateway devices outside the human body enables
the identification of diseases, before symptoms even appear. In
this paper, we investigate the timely detection of abnormalities
using nanosensors flowing in the blood vessels and reporting
to external wearable devices. We develop analytic solutions to
evaluate the information freshness using the average peak age of
information (PAoI) metric. We model the mobility of nanosensors
in the blood flow as a random process through a Markov chain.
The communication capabilities with external devices to report
detected abnormalities are modeled as a linear time-variant (LTV)
channel. Besides, for communication with external devices, we
study the impact of the mobility of nanosensors when using
ultrasonic waveforms and integrate it with the PAoI formulation.
In addition to a previously proposed analytical model, we perform
large-scale simulations using Blood Voyager Simulator (BVS))
and the network simulator ns-3. As primary metrics, we use
the bit error rate (BER), the packet error rate (PER), and the
average PAoI. The results give clear insights into the impact
of the position of the external monitor. We also illustrate that
local communication performance almost does not influence the
average PAoI.

Index Terms—In-body nanocommunication, ultrasonic, blood
vessels, mobility, Markov model, ns-3, age of information (AoI)

I. INTRODUCTION

Nanocommunication technologies have propelled to the
forefront of future processes for diagnosis and treatment in
precision medicine [1]–[3]. The capability of nanocommuni-
cation to provide non-invasive solutions and reach delicate
locations of the human body while early reporting are some of
the reasons behind its potential [4]. Nanosensors injected in
the human circulatory system (HCS) can be utilized to monitor
the internal functions of the organism and report results to an
external monitor outside of the body [3], [5].

We consider an application scenario in precision medicine
where nanosensors survey the human body to identify potential
abnormalities, as depicted in Fig. 1. The nanosensors are
traveling within the blood vessels (cf. Fig. 1 b) of the
HCS (cf. Fig. 1 a), and they have sensing capabilities for
detecting the molecules released during quorum sensing (QS)
communications among the bacteria (as the abnormality).
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Fig. 1: In-vivo disease detection scheme. a) Human circulatory
system. b) Molecular communications for disease detection. c)
Communication between nanosensors and the external monitor.

The information detected by the nanosensors will then be
communicated to the monitor (cf. Fig. 1 c) once they travel
to the right heart chamber, on top of which the monitor is
positioned. The successful report of their sensing data to the
monitor is directly related to the quality of the communication
link between the in-body network to the body area network,
which is challenging due to the heterogeneous channel between
them. Besides, the timely data report will depend on the random
nature of the nanosensors’ traveling path along the HCS.

To enable the communication link between nanosensors
and the external gateway, we follow our previous work
in [6] using ultrasonic communication channels. Compared
to electromagnetic waves, ultrasound waves experience less
absorption within the human body, which mainly consists
of water [7]. As supported by measurements, ultrasonic
communication in human tissues exhibits a similar gain as
in water, thus, making it a preferable solution for health-
related applications [8]–[11]. Investigation of the propagation
of ultrasonic waveforms has been accomplished by using very
small transducers and reported to evaluate propagation delay,
excess delay, and channel impulse response (CIR) [7], [8],
[12].
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This research extends the results presented in [6] by aiming
to evaluate further the overall detection performance using
the average peak age of information (PAoI) metric. We
assess the average PAoI metric as integrating the ultrasonic
communication performance. Given the fact that reliability and
real-time data reporting capabilities are critical in healthcare
applications, the average PAoI is a useful metric to estimate the
freshness of the status update about potential abnormalities [13].
We evaluate the average PAoI integrating the random path of
nanosensors along the HCS [14] and their communication
errors in the interface with the external gateway [6].

The results obtained from the simulations and analytical
modeling are further verified by implementing the intrabody
communication link in the Blood Voyager Simulator (BVS)
platform [15]. The model is again built upon experimental data
for signal gain and bit error rate (BER) as published in [7].

Our main contributions can be summarized as follows:
• We assess the performance of ultrasonic communication

channels for in-body nanocommunication;
• we perform simulations to evaluate the impact of nanosen-

sors’ mobility using the network simulator ns-3; and
• we model and evaluate the PAoI metric for ultrasound

communications upon a Markov chain representation.
The rest of the paper is structured as follows. We summarize

related work in Section II aiming to provide further details
on this research context. We introduce the system model
in Section III focusing on the nanosensor mobility from
large and small-scale perspectives. We model the ultrasonic
linear time-variant (LTV) channel in Section IV including its
implementation in the simulator BVS. We integrate the mobility
model and the nanosensor-gateway link performance within the
average PAoI formulation in Section V. Finally, we discuss our
findings in Section VI and conclude the paper in Section VII.

II. RELATED WORK

Conventional radio frequency electromagnetic waves are not
an optimal solution for in-body networks, as they experience
high attenuation when propagating through human tissue.
Additionally, low-power consumption is a constraint, not only
for elongating the operation time of the devices but also for
preventing them from heating. Molecular communication (MC)
is another solution proposed in the literature, which mainly
focuses on enabling the communication of the nanosensors
between each other within the HCS [16]–[18]. Although
not suitable for the communication of the nanosensors with
the gateway, MC is an energy-efficient solution, in which
the nanosensors establish communication through signals
carried by molecule particles. Another enabling technology
discussed for in-body to body area networks is terahertz
communication [19]–[21]. However, this technology has its
own challenges, such as dominant shadowing and limited
communication distances within the body.

Following up on the advantages of ultrasonic communica-
tions various research focus on the achievable performance.
From the communication perspective, the received signal is
affected by multiple parameters, such as propagation speed and
channel gain. The sound propagation speed in human tissues

is stated to be in the range of 1450–1540 m/s in [7]–[9]; unlike
in [11], where it is assumed to be in the range of 330–3600 m/s,
considering not only tissue but for example gas and air bubbles
in the lungs. This means that the results are dependent on the
setups and testbeds considered in different studies.

The attenuation level that the received signal experiences
varies with the frequency used, as well as the tissue where the
communication takes place. The frequency and distance have
a crucial effect on the received signal. In medical diagnostics,
the used frequencies are usually in the 2–10 MHz range. For
example, the authors of Santagati et al. [22] use frequencies
up to 10 MHz and experience an acceptable gain based on a
mathematical model. On the other hand, Bos et al. [7] consider
1.19 MHz to be the best frequency for distances of several
centimeters based on a testbed. In our previous work [6], we
analyzed the effect of different utilized frequencies on the
performance of ultrasonic communication channels, including
a practical case with mobility in the vessels. The results showed
that the signal to noise ratio (SNR) value can drop from 15 dB
to −40 dB in less than 5 ms for different frequencies.

The results provided by Bos et al. [7] and Sciacca and
Galluccio [8] build a solid foundation for the characterization
of ultrasonic in-body communication channels. The channel
impulse response contributed by Bos et al. [7] is of particular
interest, since the received signal can be obtained by simple
convolution of the transmitted signal. In [7], the human tissue
is mimicked through the usage of gelatin phantoms, which
are submersed into an anechoic water tank for representing
the implanted transducers. The transmitter and receiver are
then attached at the ends of a phantom at three different
communication distances, namely 2 cm, 4 cm, and 8 cm, for
which the CIR is measured accordingly. A waveform generator
is used to produce a pulse for transmission, whereas the
reception and the measurement of the amplitude of the received
signal are done by using the oscilloscope. Sciacca and Galluccio
[8] and Galluccio et al. [9] considered 5.5 cm, 10 cm, and 12 cm
distances between transmitter and receiver. The CIR is modeled
with a low pass filter and coefficients are estimated through
fitting techniques [7], [8].

The applications of in-body communication networks em-
phasize the importance of the constraints on reliability and
latency. As mentioned above, the age of information (AoI)
metrics can provide valuable insight for evaluating the system’s
performance in terms of how fresh the received information
at the monitor is. The concept of average AoI and PAoI of
in-body communication networks were first introduced and
analyzed in [23]. The AoI concept was integrated within the
BVS simulation framework and the freshness of the status
update packets is investigated for three different locations: the
brain, the liver, and the kidney. The results show that AoI is
directly related to the number of injected nanosensors, the status
update interval and the visiting probability of nanosensors to
a specific location of the human body. This metric can be
very valuable in further enhancing the system by optimizing,
e.g., the number of nanosensors, the gateway position, and the
sensor storage capabilities.
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III. SYSTEM MODEL

The impact of the nanosensors’ mobility is crucial for the
in-body to body area network communication performance. As
a result, modeling the behavior of the traveling nanosensors
enables the development of accurate and novel mechanisms
for nanocommunications.

With the advancements in piezoelectric materials and manu-
facturing technologies, machines in the micro and even nano
scale have been modelled and/or fabricated, as reported by
several studies [10], [24], [25]. The blood cells’ sizes are
usually a couple to tens of micrometers. We can say that the
size of the nanomachines and the blood cells is comparable,
and although there might be discrepancies when comparing
them, we assume that the particles flow with the blood flow,
following rather same speed profile.

In general, the mobility of the nanosensors injected in the
HCS can be assessed at two different scales, large-scale and
small-scale mobility – the former representing their distribution
in the blood vessels as a whole, the latter describing their path
inside the blood vessels, accounting for their proximity with
each other and with the external monitor. In the following, we
describe the dynamics of the movement of the nanosensors on
the large and the small-scale, respectively.

A. Large-Scale Mobility

In our model, the nanosensors flow passively with the blood
flow in the HCS. This leads to the challenging prediction
of their exact position because they randomly jump among
vessels at bifurcations. The changing location of the flowing
nanosensors can be represented by a discrete chain of tran-
sitions between the vessel segments. Moreover, the position
of the nanosensor at a specific time is not influeced by its
previous position and does not influence its next jump. Thus,
a Markov chain representation can be used to model the
large scale mobility of the nanosensors [26]. Previous works
have presented Markov chain formulations for predicting the
stationary distribution of the nanosensors in the different vessel
segments, see [14], [27]. Following the same approach, we use
the Markov chain representation of the vessels when evaluating
the transition probabilities with the blood flow. Doing so, we
assume that nanosensors flow with the same speed as the blood,
as the nanosensors’ size (≈ µm [10]) is comparable with the
red cells [28].

The stages of the Markov model and their corresponding
transition probabilities are illustrated in Fig. 2, where the
transition probabilities are taken from [14, Fig. 10]. The
transition probabilities are evaluated as a ratio of blood
flows at biffurcations. The Markov model has a total of 51
stages, representing arteries, capillaries, and veins, where the
association between stages and vessels is detailed in [14, Table
1]. The model is fully defined by the transition probabilities
between these stages, from which the stationary distribution
of the nanosensors can be easily evaluated. For example,
considering a nanosensor at the left heart (S3, referring to
Fig. 2), the blood flow may randomly bring it towards the
head through the S4 → S5 → S6 → S7 path, or thorough
the S4 → S5 → S8 → S7 path, each of which occurs with a
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Fig. 2: Markov model and transition probabilities [14, Fig. 10].
The highlighted path illustrates the example used in Section V.
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Fig. 3: Conceptual representation of the flowing nanosensor
through a given blood vessel and its connection to the monitor.

different probability, 0.05× 0.56 and 0.07× 0.27 respectively.
Using this model, the concentration of nanosensors on a given
vessel segment can be computed as the probability of finding a
nanosensor at a given vessel times the total number of injected
nanosensors. Overall, this low complex representation of the
HCS with the Markov chains allows to predict the large-scale
mobility of nanosensors along the vessels.

B. Small-Scale Mobility

As for mobility on a small scale, we refer to the nanosensor’s
traveling path in a particular vessel segment. Fig. 3 illustrates
the path of a nanosensor, which is passively transported by
the blood flow inside a blood vessel. The blood vessels
are composed of different bloodstreams, which define the
nanosensor speed in the blood. For the sake of simplicity,
we assume a single speed for the nanosensor in the vessel,
evaluating the worst-case scenario. Specifically, 0.2, 0.1, and
0.03 m/s as maximum speeds in the arteries, capillaries, and
veins, respectively [28].

Without loss of generality, we assume that the nanosensor
travels straight from left to right relative to the monitor device
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on the skin’s surface. When the nanosensor flows near the
monitor, it can communicate with the monitor device with
packet emissions. The longest communication distance between
the nanosensor and the monitor corresponds to the distance
between them at time tin and tout, whereas the shortest
corresponds to the distance between them at time tbelow in
Fig. 3.

Fig. 4 illustrates the minimum and maximum communication
distances between the devices in more detail. The minimum
communication distance between the monitor and the nanosen-
sor is denoted by lv. This value might result in smaller than
the summation of the skin, fat and blood thicknesses (denoted
by Ls, Lt, and Lv, respectively), since the nanosensor may
be moving in different bloodstreams. These distances vary
for different tissues in the human body, and their values
are obtained as indicated in [29], [30]. The angle depicted
as φ denotes the angle between the shortest and the largest
communication distances. In other words, the nanosensor in
Fig. 4 can communicate with the monitor throughout a total
distance of 2× xmax.

IV. MODELING IN-BODY COMMUNICATION PERFORMANCE

In this section, we provide details on the communication
model between the nanosensors and the gateway. We also
provide details on the communication model implementation
in the BVS simulator.

A. Fundamentals

Taking into account the movement of the nanosensor (cf.
Fig. 5), the communication performance between the two
devices is modeled by a LTV channel. Also, it includes
the Doppler effect for ultrasound communications. Since the
distance between the nanosensor and the monitor changes
with time, the channel gain and delay are time-dependent.
The variables ti highlight certain points in time during the
movement process of a nanosensor (see Fig. 4). Timepoint tin
marks the time the nanosensor gets into the communication
range of the monitor. Timepoint tbelow marks the situation when
the nanosensor is directly below the monitor and the angle of
reception ϕt2 is, therefore, π

2 . For every time instant ti, there
is a combination of (hti , τti), where hti describes the channel
impulse response and τti describes the propagation delay for
the current point in time.

Monitor
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Fig. 4: Conceptual representation of the communication range
between the monitor and the moving nanosensors.

To describe the impact of the LTV channel on the received
signal r(t) (ultrasonic waveform), we use the formula provided
in [31] as

r(t) = gds(t− τd)e
j2πνt, (1)

where s(t), gd, τd, and ν represent the transmitted signal, gain
factor, delay, and Doppler frequency corresponding to the given
distance between the nanosensor and the monitor here denoted
as d.

The Doppler frequency can be obtained as

ν = v cos(ϕ)
fc
cu

, (2)

where v is the velocity of the nanosensor, cu is the propagation
speed of the ultrasonic waveform, fc is the carrier frequency,
and ϕ is the angle of arrival of the wave relative to the
direction of motion of the nanosensor, as depicted in Fig. 5.
For the in-body scenario, we consider typical velocities v
of the nanosensor in the human circulatory system in the
aorta (v = 0.2m/s), arteries (v = 0.1m/s), and veins
(v = 0.03m/s) [28].

According to Eq. (1), the impact of the LTV channel can
be analyzed through the three different terms gd, τd, and ν.
The terms gd and τd can be directly computed based on the
distance between the nanosensor and the monitor. In contrast,
the ν term is dependent on the dynamic of movement according
to the path trajectory and the velocity (ϕ and v in Eq. (1)),
as well as the communication parameters given by the center
frequency fc and the signal propagation speed cu in Eq. (2).

We evaluate the three terms gd, τd, and ν in Eq. (1), assuming
that a nanosensor moves on a linear path trajectory from left to
right, as depicted in Fig. 5. This results in a valid approximation
for the traveling path of nanosensors, as they are driven through
the laminar blood flow in the vessels [28]. To compute the gain
and delay, we use the curve fitting method provided by Matlab
for the results of the measurements given by [7],1 where the

1Published by Thomas Bos under the CC-BY-SA 4.0 license on GitHub
https://github.com/BosThomas/USbodyComm

Direction of movement

Monitor

𝑡in 𝑡below 𝑡out

∅𝑡1 ∅𝑡2
∅𝑡3

ℎ𝑡in , 𝜏𝑡in ℎ𝑡below , 𝜏𝑡below
ℎ𝑡out , 𝜏𝑡out

Fig. 5: System model for ultrasound communication from in-
body nanosensors to a gateway system. The flowing nanosensor
navigates through a given blood vessel. Depicted are the rele-
vant communication link properties at time steps tin (nanosensor
gets into communication range with the monitor), tbelow
(nanosensor is closest to the monitor), and tout (nanosensor
leaves the communication range).

https://github.com/BosThomas/USbodyComm
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CIR is provided for three specific distances 20, 40, and 80 mm
between sender and receiver. Implicitly, the CIR also accounts
for the impact of bones and the already included multipath
effect.

To be able to compute the gain and delay for distances
smaller than 20 mm, we also include the unit gain corre-
sponding to the distance of 0mm in the curve fitting process.
Considering distances smaller than 20mm allows us to analyze
the system’s performance for a broader set of monitor locations.
We evaluate the gain for each distance as the root mean square
(RMS) of the given CIR (hd) yielding

gd′ =

√√√√ 1

N

N∑
k=1

h2
d′ [k], (3)

where N is the length of the sequence and hd′ [k] is the CIR
for the given distance d′, i.e., 20, 40, and 80 mm. For the
delay, we compute the mean value (concerning time) plus the
standard deviation of the CIR sequences as

τd′ = τd′ +
τσ,d′

2
, (4)

where

τd′ =
1

fs

1

N

∑N
k=1 k · h2

d′ [k]∑N
k=1 h

2
d′ [k]

, (5)

and

τσ,d′ =
1

fs

√√√√ 1

N

∑N
k=1 (k − fsτd′)h2

d′ [k]∑N
k=1 h

2
d′ [k]

, (6)

where fs is the sampling rate of the system. These relations in
Equations (5) and (6) evaluate the weighted arithmetic mean,
where the weights are defined by the square of the CIR function
to neglect its negative values.

Secondly, using the values provided in Equations (3) and (4)
for the specific distances, curve fitting is done to provide
values for arbitrary distances between nanosensors and the
monitor. Among several different results provided by the curve
fitting method in Matlab, the one resulting in the least error
between the real values and the fitted data is utilized for the
gain computation. For fitting a curve to the delay data, we

Fig. 7: Results on the perceived loss, delay, and the Doppler
term on the travel path when the velocity of the nanosensor is
v = 0.1m/sec and the carrier frequency is fc = 0.4MHz

.

utilize a y=a×x line equation due to its linear increase with
the distance.

To evaluate the Doppler term, we directly compute the
Eq. (2) according to the geometry in Fig. 5. Using trigonometric
properties, we compute the angle between the nanosensor and
the monitor for each different time-instant ϕt. As for the speed,
we use the reported blood speeds in arteries (v = 0.2m/s),
capillaries, (v = 0.1m/s), or veins (v = 0.03m/s) [28]. For
the communication parameters, we use the propagation speed
for the ultrasonic waveform as cu = 1480m/s, and a center
frequency of fc = 1MHz.

To illustrate, Fig. 6 depicts the resulting fitted data for the
power loss in decibels (pL = −20 log10 gd), and the delay
in the communication range 0–80 mm. Using this curve, we
evaluate the resulting gain and delay during the path trajectory
of the nanosensor according to its specific distance to the
monitor. The resulting evaluation is illustrated in Fig. 7 for the
power loss, the delay, and the Doppler term when assuming the
traveling speed of 0.1 m/s. As expected, the smallest power loss
and delay are obtained when the nanosensor has the shortest
distance to the monitor, i.e., for t = tbelow = 7.7ms, which
corresponds to the position tbelow in Fig. 5.

According to Fig. 7, the Doppler term (see Eq. (2)) will
introduce a remarkable distortion on the received waveform.
It will produce a phase shift in the range [−π,π] rad along
the traveling path. For instance, when considering the trans-
mission of phase shift keying (PSK) waveforms, the impact of
movement will severely rotate its constellation points, heavily
degrading the communication performance. Analytically, this
term introduces a rotation of the constellation coordinates with
the angle

∆φ = 2πνt, (7)

according to the exponential term in Eq. (1). The impact
of movement on communication performance is discussed



6

in the next section when integrating this model within the BVS
framework.

B. Implementing the In-Body Communication Link in BVS

BVS is a network simulator ns-3 module, in which the
movement of medical nanosensors in a simulated cardiovascular
system is implemented, accounting for the impact of the envi-
ronment on the nanosensors’ motion and communication [15].
This module includes all major vessels of the vascular system
and enables tracking of the nanosensor’ location each second
during the simulation. The communication model between the
nanosensor and the gateway is implemented as an extension
to this BVS module within ns-3.

Communication BVS (C-BVS) consists of three main com-
munication links on top of the conventional BVS module [32].
First of all, the nanosensors must communicate together; thus,
it is assumed that they can exchange packets if they are in
proximity 1 cm to each other. Moreover, a connection between
an external monitor placed on the skin and the nanosensors is
required, as aforementioned in the previous sections. Lastly,
an end-to-end connection between the monitor and a portable
device is also necessary, such that the data collected from the
nanosensors is made of use.

Following a similar idea to the channel implementation
presented in the previous work in [6], C-BVS enables the
implementation of the ultrasonic in-body channel on a macro
level. The monitor is located at a fixed position, while the
nanosensors are injected at a specified vessel and then travel
through the vascular system using the BVS module. Two
assumptions are made: on the one hand nanosensor travels
from left to right relative to the monitor (see Fig. 5); on the
other hand, we assume each time the nanosensor enters a vessel
on top of which the monitor is positioned, the nanosensor will
definitely travel through the communication range with that
monitor.

Following the same steps as in [6], the Doppler term is
computed as well as different metrics such as Eb

No
, BER, to

evaluate the model’s performance withing BVS. To evaluate
those, the preceding curve fitting and interpolation results
for the gain and delay are mapped to the different distances
between the external monitor and the nanosensors on every
simulation step. The evaluation of BER can give us an insight
on the packet delivery ratio (PDR) as well, where PDR is
defined as (1−BER)m, such that m denotes the packet length.
Similarly, packet error rate (PER) can be obtained consequently
as PER = 1− (1− BER)m.

V. MODELING PAOI

The AoI measures the freshness of the status update about
a remote source at the monitoring device. In this research, we
target monitoring abnormalities as detected in the HCS. For
instance, the information source is the concentration level of
QS molecule as sampled by flowing nanosensors in the vessels
(see Fig. 1 c). Information flows carried by the nanosensor
along the vessels till it is delivered to the monitor device. The
monitor device is an external receiver located at the surface of
the skin (see Fig. 1 b).

time

Monitor

AoI

𝑡1 𝑡2 𝑡1
′ 𝑡2

′ 𝑡3
′𝑡3 𝑡4 𝑡4

′

𝐴1

𝐴3

𝐴2

𝑇𝑔 𝑇𝑑

Fig. 8: AoI representation and PAoI values as A1 to A3.

We report the use of the average PAoI metric as an indicator
of information aging at the monitor (see [13, Sec. 3.3]
concerning the PAoI metric). As depicted in Fig. 8, the peaks
Ai’s are those values just before a new sample arrives at the
monitor, which is directly evaluated as the sum of the generation
time plus the delay time between the source and the destination
(see [33, text below Eq. (8)]). Besides, considering that some
packets might get lost, the average PAoI is formulated as [18]

∆(p) =
1

1− ploss
E[Tg] +E[Td], (8)

where Tg and Td denote the generation and delay time intervals,
respectively.

The packet-loss event, as characterized by the probability
ploss in Eq. (8), might happen in two cases. When there are
errors in the communication link with the monitor device, as
given by the PER, or in case the nanosensor travels twice
through the target, which overwrites the current packet. We
provide more details to evaluate ploss in Section V-C.

The generation time Tg is produced whenever a nanosensor
passes by the target and reads the concentration level of QS
molecules. Upon this reading, packets are generated as repre-
sented by the time instants ti in Fig. 8, where Tg = ti − ti−1.
We remark that Tg will be a random variable depending on the
traveling nanosensor’s path. The generation time will be longer
or shorter, depending on the total of nanosensors currently
traveling through the target area (more details are given in
Section V-A).

Once samples are generated at the target, they travel with the
carrier nanosensor to the monitor device and are delivered at the
time instant t′i (see Fig. 8). The delay Td = t′i − ti, referred to
as the traveling time from the target area to the destination, will
generally be a random variable with the outcome dependent on
the traveling path from source to destination. See an example
in Fig. 2, where the source is the Tibialis Posterior (S42), and
the monitor is at the wrist (Capillary Ulnaris in S13).

To evaluate the average generation time and delay in Eq. (8),
we rely upon the Markov chain model of the HCS and the
corresponding transition probabilities. See a full representation
and the corresponding transition probabilities in Fig. 2, as
derived in the previous work in [14]. Using the stationary
probabilities from the Markov chain, we derive the generation



7

Segment length

𝑡𝑔,1𝑡𝑔,2

Fig. 9: Visualizing the generation time period as nanosensors
flow through the target.

time on the one hand (as explained in Section V-A). On the
other hand, we derive the average delay directly using the
transition probabilities. Further details on Tg and Td are given
below in Sections V-A and V-B, respectively.

A. Determining the Average Generation Time
The generation time Tg refers to the time elapsing between

consecutive target samples, which results analogous to finding
the time interval between two consecutive nanosensors traveling
along the same vessel segment, as represented in Fig. 9 with
tg,1 and tg,2. These time intervals might be modeled according
to the exponential distribution, as the sampling event may occur
continuously and independently, at a constant average rate λ
as (see [34, Sec. 5.5])

fTg
(tg) =

{
λe−λtg , tg ≥ 0,

0 tg < 0,
(9)

where λ refers to the number of nanosensors per unit of time
traveling along the vessel v segment, yielding

λv =
Nv

Tv
, (10)

where Nv is the total of nanosensors, and Tv is the traveling
time along the vessel segment v. Thus, the average generation
time will be readily given as

E[Tg] =
1

λv
=

Tv

Nv
. (11)

The traveling time Tv can be found from physiological
parameters like the vessel length and the blood speed, while the
total of nanosensors (Nv) based with their stationary probability
when modeling the HCS with a Markov model (cf. [35]).

To illustrate, let’s consider the Tibialis posterior in the
legs, where injuries are common. The blood speed in the
capillaries is approximately 0.1m/s [28], and the vessel length
is maximum 2 cm around [36], which results in Tv ≈ 0.2 s.
Besides, in the case of the Tibialis posterior, the probability
of finding a single nanosensor is p = 0.005 when looking at
the probability for the feet in [14, Fig. 11]. Then, assuming
there are a total of 103 flowing nanosensors in the HCS,
approximately Nv ≈ p× 103 = 5 nanosensors will be flowing
through the Tibialis posterior. Using these approximations,
the expected average for the generation time will result in
E[Tg] ≈ 0.2 s

5 = 40ms. A similar procedure applies to evaluate
the average generation time for other tissues in the body.

B. Determining the Average Delay

Once the packet is generated by sampling physiological
variables at the target, it flows with the carrier nanosensor
along the vessels. The traveling time from the source to the
monitor, denoted as Td, will generally be a random variable,
depending on the location of the source and the gateway.

To evaluate the average traveling time, we refer to the
transition probabilities provided by the Markov model. To
illustrate, let’s consider the target is in the left Tibialis posterior
(referred to as stages S42 in Fig. 2), and the source is attached
to the skin close to the heart (referred to stages S1 or S3).
Then, the nanosensor will travel with probability one to the
heart, and the traveling time will be the sum of the traveling
time along each vessel segment from S42 to S1. That is, the
traveling time will not be a random variable whenever the
monitor is located at the heart, regardless of the location of
the source in the capillaries.

However, the traveling time becomes a random variable
if the monitor is located on a different vessel segment. To
illustrate, let’s consider that the monitor is on the left wrist in
S13 (like using a smartwatch, the highlighted path in Fig. 2
illustrates this example). Then, a nanosensor with a packet, as
generated at the Tibialis Posterior, will travel with probability
one to the Arcus Aorta (S5), and with a probability equal to the
multiplication of the transition probabilities in the path between
S5 and S13 to the wrist. If the nanosensor travels through a
different path, the traveling time increases with the path along
the corresponding circuit. For instance, if the nanosensor jumps
from S5 to the head (S7), it will travel to the heart again to S5,
which increases the delay. Then, from there, it might travel or
not to the wrist in S13.

Taking this description into account, the average traveling
time from S42 to S13 can be evaluated as

E[Td] = TS42→S13 × pS42→S13+∑
c

c̸=S42
c̸=S13

∞∑
k=1

(k × Tc + TS42→S13)× pkc , (12)

where TS42→S13 is the traveling time for the direct path
between the Tibiales posterior and the wrist (S42 to S13), evalu-
ated as pS42→S13 = pS5→S8×pS8→S9×pS9→S10×pS10→S13.
The second term in Eq. (12) accounts for the event (with
probability pkc ) that the nanosensor jumps to and travels on
different circuits in the body (denoted as c) before traveling to
the monitor. Each circuit comprises those closed paths between
tissues and the heart; consequently, they are uniquely identified
with the corresponding tissue label c and the probability pc.
The variable Tc denotes the traveling time along these circuits.
Moreover, as we consider the path to the monitor, we also add
the term after each circuit that the nanosensor travels along, it
will return to the heart (S1) and then travel to the destination
(S13). That is why the overall travelling time is the summation
of k × Tc and TS42→S13.

The traveling along these circuits c’s, might happen k times
with probability pkc , thereby the sum in k and c in Eq. (12).
Besides, the second term does not consider the traveling along
the target tissue S42; otherwise the sample will be overwritten
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Fig. 10: Average traveling time along the various circuits in
the HCS and probabilities per closed loop in the HCS.

and the packet will be lost. That is, the packet will not be
delivered at the destination whenever the nanosensor travels
two consecutive rounds through the target. The sum does not
also consider the circuit with the monitor (S13) otherwise it
will evaluate the Td twice.

The formula in Eq. (12) can also be written as a closed-form
expression after evaluating the sum in k as

E[Td] = TS42→S13 × pS42→S13+∑
c

c ̸=S42
c ̸=S13

Tc
pc

(1− pc)2
+ TS42→S13

pc
1− pc

, (13)

when using the MacLaurin series expansion formulas∑∞
k=1 p

k = p
1−p and

∑∞
k=1 kp

k = p
(1−p)2 . The remaining

sum results finite and can be readily evaluated with pc, Tc and
TS42→S13.

To determine Tc in Eq. (5), we use the data provided by
BVS concerning the traveling path per nanosensor2. From this
data, we get the traveling time per tissue which is dependent
on the stream the nanosensor is flowing inside the vessels (see
[38, Fig. 7]). Averaging along the streams, then we get Tc as
Fig. 10 illustrates.

Finally, to determine the value for pc we use the transition
probabilities from the Markov model in Fig. 2. To illustrate, in
the closed loop comprised of the head and heart, pc is evaluated
after considering all possibilities for a nanosensor to take this
path as pc,head = 0.07×0.27+0.03+0.05×2×0.56 = 0.0989,
and a similar evaluation can be done for the other possible
closed loops. Applying this procedure to all the Markov model
circuits, we get the probabilities illustrated in Fig. 10, where
each tissue labels each circuit uniquely.

C. Determining the Probability for Packet Loss

Once a packet is generated at a given nanosensor, it can get
lost for two reasons. The first reason is when the nanosensor
travels twice through the same target circuit, and the packet is

2We provide open access to the code at https://github.com/jorge-torresgomez/
BVS_data and also document the BVS’s dataset as a datasheet following to
Gebru et al. [37].

overwritten. The second case is when the nanosensor travels in
the monitor’s circuit but the transmission to the monitor device
is erroneous, due to the impact of noise and mobility as given
by the PER (see Section IV). Having the two cases together
the packet loss probability can be evaluated as follows

ploss = PER× pT→M + pT→T, (14)

where pT→M denotes the probability of traveling from the
target to the monitor without returning to the target, while
pT→T denotes the probability of traveling again to the target
once the nanosensor flows from there.

We evaluate the probability that the nanosensor travels from
the target to the monitor device (pT→M) with the following
reasoning. When the nanosensor collects a sample at the target
in the capillaries, it will travel with probability one to the
heart, irrespective of the target’s location at any capillary in
the HCS (see for instance the case at the Tibialis Posterior in
Fig. 2). Being at the heart, the nanosensor might travel next
to the monitor’s circuit with probability pc=M. The case the
nanosensor travels to a different circuit before jumping to the
monitor will happen with probability pc=M × (1 − pc=T −
pc=M) (excluding the travel to the target circuit). The case
the nanosensor traveled twice along any of the circuits, except
for the Target one before visiting the Monitor will happen
with probability pc=M × (1 − pc=T − pc=M)2. Then, when
considering all possible choices, it results in

pT→M =pc=M ×
∞∑
k=0

(1− pc=T − pc=M)k,

=
pc=M

pc=T + pc=M
,

after using the MacLaurin series formula
∑∞

k=0 (1− p)
k
=

1
p . Finally, to evaluate pT→T, we follow a similar reasoning
yielding

pT→T = pc=T ×
∞∑
k=0

(1− pc=T − pc=M)k, (15)

=
pc=T

pc=T + pc=M
.

VI. SIMULATION RESULTS

We illustrate the performance of the communication system
with the impact of the nanosensor’s mobility and the achievable
BER and PER in the local link, that is, between nanosensors
and the monitor device, on the one hand. On the other hand,
we plot the end-to-end average PAoI considering the monitor’s
at various locations like the heart, wrist and femoralis, while
the target is at the Tibialis Posterior. The average PAoI will
consider not only the impact of traveling delays but errors
in tranmissions in the local communication with the monitor
device.

A. Evaluating the Nanosensor-Gateway Communication Link

For local communication between the nanosensor and the
monitor device, we assume a propagation speed for the
ultrasonic waveform as cu = 1480m/s. To illustrate, we
performed simulations in which we transmitted a binary phase

https://github.com/jorge-torresgomez/BVS_data
https://github.com/jorge-torresgomez/BVS_data
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Fig. 11: Recovered constellation points for a nanosensor
traveling speed of 0.03m/sec, SNR = 15dB, and a center
frequency fc = 1MHz.

shift keying (BPSK) waveform, as indicated in [7], with a
transmission rate of 10 kbit/s and of amplitude A = 1. For
transmissions, we assume a center frequency as fc = 0.4MHz
as it results in less attenuation with time (see [6, Figures 6
and 8]). Furthermore, we assumed the additive white gaussian
noise (AWGN) model (as given in [7]) to evaluate the impact
of noise in the channel. We assume a noise spectral density
as No = −107 dB/Hz to evaluate SNR = 15dB at the
communication distance d = 80mm.

Fig. 11 visualizes the impact of mobility on the recovered
constellation points, where the nanosensor velocity is 0.03 m/s
as the blood in the veins. The transmission starts while the
nanosensor is at the position provided by tin = 0ms (see
Fig. 3); corresponding to the largest distance to the monitor as
d = 80mm and SNR = 15dB. Although constant noise level
produces spreading, the impact of mobility is clearly visible
in the rotation of the constellation points, represented by the
angle ∆φ as in Eq. (7).

As a result, the emitted coordinates (−A, 0) and (A, 0) are
rotated over time to (0,−A) and (0, A), respectively. This
is produced by the dominating Doppler factor ν as depicted
in Fig. 7 c) and according to Eq. (2). The rotation of the
constellation will consequently produce a severe degradation
of the BER when decoding the received BPSK waveform.

In our previous work, the impact of mobility on the
communication performance was evaluated by simulating the
channel model as given in Eq. (1) in Matlab [6]. Based on this
model, we presented results regarding BER and Eb

No
, focusing

on the impact that different parameters, such as used frequency
and nanosensor’s speed have on the performance of a mobility-
based system. This work evaluates the BER performance by
implementing the ultrasonic in-body-to-body area network
connection on ns-3 to study large-scale effects. Similarly, in
the ns-3 environment, a BPSK waveform is emitted when
the nanosensor is in communication range with the external
monitor. The simulation results evaluate the impact of the
monitor’s location, where four different tissues are considered:
the heart, the femoralis, the left wrist, and the left ankle.

For a fair evaluation of the BER and PER, among these four

0 0.002 0.004 0.006 0.008 0.01

10
-5

10
0

0 0.02 0.04 0.06 0.08 0.1
10

-50

10
0

Fig. 12: Achievable BER versus time for different locations
of the external monitor (heart, femoralis, wrist, and ankle).
The velocity of the nanosensor is 0.2m/sec for the heart, and
0.1m/sec for the other cases.

scenarios, we refer to the illustration in Fig. 4 for computing
the minimum communication distance between the monitor
and the nanosensor and the maximum possible communication
distance between them. The minimum distances for these four
different monitor positions are 20mm, 32.8mm, 2mm, and
2.8mm for the heart, femoralis, wrist and ankle, respectively.

The angle φ in Fig. 4 is assumed to be 30◦, and by using the
Pythagoras theorem, the maximum possible communication dis-
tance is computed. As for the nanosensor velocity, v = 0.2m/s
is assumed for the cases of the heart and the femoralis, whereas
v = 0.1m/s for the wrist and the ankle. The BER values are
obtained for each case until it degrades to 0.5 units.

The results for the BER are plotted in Fig. 12. When the
monitor is located at heart, the BER degrades slower than when
it is located at the femoralis, because the path loss is lower for
the former case. Similar behavior is obtained when comparing
the case of the monitor located at the wrist to when it is located
at the ankle. The impact of the velocity can be observed as
well, given that a better overall BER performance is obtained
when the velocity of the nanosensors is smaller. We remark
that the BER results in the order of 10−50 at t around zero
due to the shorter distance between the vessel and the skin in
the wrist and the ankle. Although the noise level remains the
same, the attenuation is highly reduced.

Secondly, the impact of the location of the external mon-
itor on the PER is investigated. Packets of 8-bits length
are considered, in this way, the PER is computed as
PER = 1− (1− BER)8. A similar behavior to that of Fig. 12
can be seen on Fig. 13 as well, where the delivery ratio drops
faster when the path loss is higher and when the velocity (hence
Doppler effect) is higher as well.

B. Evaluating the Average PAoI at the Monitor Device

We evaluate the average PAoI with Eq. (8) when using
Eq. (11) to evaluate the average generation time, Eq. (13)
to evaluate the packet delay, and Eq. (14) to evaluate ploss.
Although the expression in Eq. (13) targets the delay between
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Fig. 13: Achievable PER versus time for different locations
of the external monitor (heart, femoralis, wrist, and ankle).
The velocity of the nanosensor is 0.2m/sec for the heart, and
0.1m/sec for the other cases. The packet length is assumed
to be 8 bits.

the Tibialis Posterior (S42) and the left wrist (S13), it also states
for other link pairs when replacing the indexes accordingly.
We target the source at the Tibialis Posterior and analyze
the perceived average PAoI with the monitor located at three
positions on the skin’s surface: heart, left wrist, and left
Femoralis Profundis (see Fig. 2).

Following the example in Section V-A, the average genera-
tion time at the Femoralis Posterior approximately results in
E[Tg] ≈ 40ms when the total of flowing nanosensors is 103.
Meanwhile, the average delay will be deterministic when the
monitor device is at the heart; after passing by any capillary
system, all the nanosensors flow to the heart. In this case,
the average delay results in E[Td] ≈ 40ms as reported by the
BVS framework. If the monitor is placed at a different location
(wrists or femoris), then we use Eq. (13).

Fig. 14 depicts the average PAoI for the various monitor’s
locations with the PER. All the cases exhibit a monotonic
increase as the PER increases. However, the impact of local
communication becomes relevant only when the PER is close
to one. That is, the average PAoI remains almost constant, in
the scale of seconds when the PER is less than 10−1 units.
Besides, the information age accounts for the less when the
monitor is at heart (≈ 36 s) and becomes larger when located at
the wrist (≈ 48.6 s) or the Femoralis (≈ 48.5 s). These results
agree with the certain to travel to the heart once leaving the
target, and with the higher probability to travel to the Femoralis
Profundis than to the Wrist (Capillaris Ulnaris in Fig. 10).

VII. CONCLUSION

In this paper, we evaluate the timely detection of the
information gathered by the flowing nanosensors in the HCS
to external monitoring devices. We report a methodology to
compute the average PAoI metric, which accounts for the
information freshness. In evaluating this metric, we integrated
the random mobility of nanosensors while flowing in the
HCS and the impact of the channel in the communication

PER

Monitor at the heart

(a) Heart

PER

Monitor at left wrist

(b) Left wrist

PER

Monitor at the Femoralis

(c) Femoralis Profundis

Fig. 14: Average PAoI when the gateway is located at the
heart, the left wrist, and the Femoralis Profundis. The target is
referred to as the Tibialis Posterior. Please note the different
scale of the y-axis.

link between nanosensors and the monitor device. Extending
previous results, we further evaluate the performance of the
ultrasonic communication channel through its implementation
in the network simulator ns-3 in combination with BVS. The
results show the importance of the location of the external
monitor on the human body and its impact on the BER, the
PER, and the average PAoI. Surprisingly, the resulting average
PAoI metric is independent of the PER. We observe little
variability of the average PAoI in the order of seconds when
PER is less than 10−1.

The large-scale simulation on ns-3 and the inclusion of the
PAoI metric for evaluation open the path for new research on
protocol design for ultrasonic communication in-body-to-body
area networks connection. Moreover, including non-constant
velocities for the nanosensors, considering that the bloodstream
transports them, can be considered in future works.
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