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ABSTRACT
Nanotechnologies are advancing precision medicine applications,
enhancing the detection and treatment of diseases. Traveling through
the human vessels, nanosensors are envisioned to locally detect
and actuate on targets very efficiently. In this area, modeling the
behavior of traveling nanosensors in the human circulatory system
helps developing new mechanisms for medical treatments. This
paper explores the accurate modeling of the concentration level of
the flowing nanosensors in vessels. We use a Markov chain formu-
lation to predict the stationary distribution of them in the variety
of vessel segments. To evaluate the transition probabilities of the
Markov chain, we compute the blood flow based on the representa-
tion of vessels through electric circuit components. The resulting
study reveals the dynamics of the movement of nanosensors in
the blood flow yielding further details on their concentration level
along vessels.
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1 INTRODUCTION
In-body nanotechnology-focused research is today advancing appli-
cations for precision medicine. New technologies enhance health-
care supporting systems in this field while detecting and localizing
anomalies in the human body [1]. Nanosensors are envisioned
to travel through the human circulatory system (HCS), passively
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Figure 1: Electric-circuit representation in the arteries.

driven by the blood flow, and deliver the appropriate drug amount
without affecting healthy capillaries around [3, 12]. In this endeavor,
it is essential to assess location mechanisms for nanosensors in the
vessels supporting the detection and treatment of diseases in spe-
cific target regions.

Driven by the blood flow, the exact location of nanosensors in
vessels remains a challenging problem due to the non-predictable
paths through arteries, capillaries, and veins. Jumps at bifurcations
occur randomly resulting in a random process of the path trajectory
of nanosensors in the vessels. Recent research addresses this issue
through the use of anchor nodes and the exchange of reference co-
ordinate location using wireless technology [11, 16], or calculating
the distance to reference anchor nodes through hop-count metrics
in the received messages [2, 21]. In a different approach, machine
learning (ML) methods have been applied to leverage the traveling
time of the nanosensor as an indicator of the path circuit in the
body [19].

In this work, we follow on our previous methodology in [20],
where the HCS is modeled through a Markov chain, and its transi-
tionmatrix is evaluated relying on the electric circuit representation
of the vessels. In this paper, for the electric circuit we implement
a more complete design for the arteries from Noordergraaf et al.
[13], providing a more accurate representation of the vessels, 1. To
evaluate the stationary distribution of nanosensors, we apply the

1the design is publicly accessible in [18]
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Figure 2: Electric circuit design of the human arteries according to [13]. The complete design is publicly available in [18]

tow-steps model in Fig. 1, in the first step, the flow in the vessel
segments is computed directly from the currents in the electric
circuit, in the second step the transition probabilities of the Markov
chain are computed based on ratios of these flows. Based on the
Markov chain representation, it is then possible to predict the sta-
tionary distribution of nanosensors along the vessels. This finds
applicability to later assess their capabilities to detect and actuate
on targets in the human vessels. Depending on their concentration
level, they will be able to detect and actuate on a given target more
or less impactful.

The electric circuit representation of the human vessels is con-
ceived as 0-D models [4, 6, 13], providing the average flow and pres-
sure (over the geometric coordinates of vessels), while significantly
reducing computational resources. The time variable evolution of
pressure and flow per vessel segment is directly given as voltages
and currents provided by the circuit, respectively. In the literature,
reported electric models for the HCS focus on both, the heart, where
the systemic circulation is modeled with only one network, and the
arteries, which are modelled as a cascade connection of L and Π two
ports networks [4, 13, 15]. Since early work by Rideout [14], Snyder
and Rideout [17], only a few works model the HCS as comprised
of a more complete connection of arteries, capillaries, and veins.
Although the work in [14] provides a more complete representation

of the HCS, the model lacks to implement the arms and the legs are
analyzed as a single network; thereby providing fewer details.

This paper enhances our previously reported solution in [20]
accounting for an electric circuit model comprising the head, arms,
and legs as different circuit compartments. We describe the imple-
mentation of the electric circuit model in Simulink/Matlab (Sec-
tion 2) and display the pressure curves along with the different
artery segments. We also include additional stages in the Markov
model (Section 3) based on the more detailed representation in the
human arteries in accordance to Noordergraaf et al. [13]. Although
this representation does not account for capillaries and veins, it
provides the information needed to compute the transition matrix
of the Markov model. Finally, we conclude the paper by illustrat-
ing the transition probabilities at bifurcations and the predicted
concentration level of nanosensors per vessel segment (Section 4).

2 ELECTRIC CIRCUIT IMPLEMENTATION IN
SIMULINK/MATLAB

We implement the electric circuit for the major arteries following
the design provided by Noordergraaf et al. [13]. The circuit is con-
ceived in Simulink/Matlab® using resistors, inductors, capacitors,
and diodes from the Simscape library, (the design is publicly acces-
sible in [18]). Fig. 2 illustrates the connection of blocks in the center
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Figure 3: Blood pressure in the Head and the Arms.

body for a variety of aorta segments. As represented in this figure,
each aorta is implemented with the cascade connection of blocks
denoted as RLC_x. Each of these blocks is implemented through
an L-inverted topology, consisting in the series connection of a
resistor and an inductor, and the shunt connection of a capacitor.
The resistor, inductor, and capacitor, simulate the resistance to the
blood flow, the inertia of the blood, and the compliance of the vessel,
respectively, according to the specific segment in the aorta.

In this design, we also include diodes to guide the flow from
arteries to the next segments in the same way the blood flows in
the vessels. Due to the reactance of the capacitors and inductors,
a flow back may be experienced due to the stored energy in these
circuits, which is avoided with the addition of diodes. Finally, to
reproduce the signal from the Heart we use the sequence generated
for the left ventricle as given by the mathematical model in [9].
As for the complete design in [18], all the parameters are listed
and the plots for pressure and flow can be also generated for each
particular segment. In total, 128 blocks are implemented to complete
the representation of the arteries in the head, center body, arms,
and legs in accordance to Noordergraaf et al. [13].

Figures 3 and 4 provide the resulting pressure in the arms and
the legs, those directly derived from the connected voltage meter.
In accordance with the behavior of the blood pressure at different
vessel segments [7], the largest oscillation is derived in the Left
Ventricle (Heart) and its elongation is reduced in the arms and
legs’ arteries. We also remark the increased amplitude in the large
arteries (e.g., Aorta Carotis) in comparison to the left ventricle as a
typical behavior of the blood pressure in vessels.

The standard amplitude of pressure in the left ventricle is higher
than reported in Fig. 3. Typically, it alternates around 120mmHg
(systolic) and 80mmHg (diastolic) [7]. However, in our case, the
lower amplitude of the oscillations is mostly driven by the model
used for the heart. Future work will be conducted to implement an
electric model for the Heart as well, providing a larger amplitude
as the one we integrate is still a mathematical model [9].

3 MARKOV MODEL REPRESENTATION OF
THE HUMAN CIRCULATORY SYSTEM

The path trajectory of the flowing nanosensors in the HCS can be
modeled as a transition between stages, defined in one-to-one cor-
respondence with the vessel segments. Assuming that transitions
at bifurcations (to the next vessel segment in the arteries) happen
randomly and independent of the previously visited vessel, the

Figure 4: Blood pressure in the Legs.

traveling path of the nanosensor can be modeled using a Markov
chain approach [5].

Fig. 5 depicts the conceived stages for the Markov model follow-
ing the variety of artery segments represented by the electric circuit
design in Section 2. The veins in the Markov model are included
when mirroring the corresponding artery (due to the symmetry of
the human body), except for the head where the veins are reduced
to two from four just for the seek of simplicity. In total 51 stages are
conceived representing arteries, capillaries, and veins, as listed in
Table 1. In contrast to our previous design [20, Fig. 5], the current
one introduces additional stages accounting for the two arms and
the two legs. A more complete representation is provided here due
to the available representation of our circuit design.

The Markov model is completely defined by its transition matrix,
denoted as Π = {𝑝𝑖, 𝑗 }, where 𝑝𝑖, 𝑗 are the transition probabilities.
Besides, the stationary distribution of nanosensors can be directly
evaluated when solving for 𝝂 in

𝝂 = 𝝂Π. (1)

That is, the probability to find a nanosensor 𝑠 on a given vessel
segment 𝑘 can be directly computed from the components of the
vector 𝝂 as

𝑃𝑠,𝑘 = 𝜈𝑘 , (2)

based on which we can estimate the concentration of nanosensors
on a given vessel segment as 𝑃𝑠,𝑘 · 𝑁𝑠 , where 𝑁𝑠 are the total of
nanosensors flowing in the HCS.

The relation in Eq. (2) will ultimately depend on the transition
probabilities between states of theMarkovmodel. To compute those,
we rely on the equivalent circuit representation of the Markov
model comprised of nodes and oriented loops [10]. To illustrate,
Fig. 6 depicts on the left side the representation of a Markov chain
composed of 6 stages, out of which we can define three independent
oriented loops, all of them intercepting through the nodes 𝑠1, 𝑠2,
and 𝑠3, as represented in the right side of the figure. According
to [10], the equivalent representation is given by the unique relation
between the weighted coefficients (𝜔1, 𝜔2, and 𝜔3) along with
the loops and the transition probabilities in the Markov model.
For instance, if we want to evaluate the transition probability 𝑝1,3
through this coefficients it yields

𝑝1,3 =
𝜔1

𝜔1 + 𝜔2 + 𝜔3
, (3)

as the ratio between the coefficient corresponding to the loop where
the destination 𝑠3 is located (𝜔1 in this case), divided by the sum
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Figure 5: Markov model representation of the HCS.

𝑠3𝑠1 𝑠2

𝑠4

𝑠5

𝑠6

𝑝12 𝑝23

𝑝34𝑝41

𝑝35

𝑝36

𝑝51

𝑝61

𝑠1

𝑠3

𝑠2

𝑠4

𝑤1

𝑤3

𝑤2

Circuit Representation
Markov Model

𝑠6

𝑠5

Figure 6: Circuit representation of a Markov chain.

of the coefficients concerning the loops intercepting the departing
stage 𝑠1 (the three loops in this case).

The way these coefficients are sketched (constant along the
loop), together with the circuit topology of this representation, let
us interpret this coefficient as mesh currents from the electric cir-
cuit that simulate the same HCS as the Markov model does [20].
That is, mesh currents are also constant along closed-loops [8],
and they superpose in the same way the coefficient does in the

circuit representation of the Markov model. In this way, the transi-
tion probability in Eq. (3) can be computed considering the mesh
currents in the electric circuit representation as

𝑝1,3 =
𝐼1

𝐼1 + 𝐼2 + 𝐼3
, (4)

when interpreting the coefficients as mesh currents as 𝐼𝑘 .
Extending this analysis to the original Markov model in Fig. 5,

the transition probability from Arcus Aorta to Aorta Thoratica can
be computed as the ratio of the output current from 𝑠5 to 𝑠29, to
the input current to 𝑠5, for instance. The same apply to the other
bifurcations as well. Intuitively, this also matches the definition
of probability as a ratio of successful events to the total of events.
Looking at the corresponding ratio of flows as the total of particles
moving to one branch in comparison to the total of particles at the
bifurcation, let to interpret it as a metric of probability.

In this way, the electric circuit for the arteries in Section 2 let
us compute the transition probabilities for the Markov model at
the bifurcations. Besides, because transitions in the veins happen
with a probability equal to 1, then the transition matrix of the
Markov model can be fully determined in this way. We remark
that according to the model in Fig. 5, there are two output veins
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Table 1: Association between stages and vessel segments.

Markov States Vessel Segment

S1 Right Heart
S2 Lungs
S3 Left Heart
S4 A. Ascendens
S5 Arcus Aorta
S6 A. Anonyma
S7 Head
S8 (S17) A. Subclavia s. (d)
S9 (S18) A. Axillaris s. (d.)
S10 (S19) A.Brachialis s. (d.)
S11 (S20) A. Radialis s. (d.)
S12 (S21) A. Interossea Volaris s. (d.)
S13 (S22) A. Ulnaris s. (d.)
S14 (S23) V. Brachialis s. (d.)
S15 (S24) V. Axillaris s. (d.)
S16 (S25) V. Subclavia s. (d.)
S26 (S27) Jugular Vein s. (d.)
S28 Superior Vena Cava
S29 Thoratica Aorta
S30 Thorax and Back
S31 Abdominal Aorta
S32 Mesenterica Superior
S33 Mesenterica Inferior
S34 Liver
S35 Kidneys
S36 Abdominal Vein
S37 Inferior Vena Cava
S38 (S45) A. Iliaca Communis and Externa s. (d.)
S39 (S46) A. Femoralis Profundis s. (d.)
S40 (47) A. Poplitea s. (d.)
S41 (S48) A. Tibialis Anterior s. (d.)
S42 (S49) A. Tibialis Posterior s. (d.)
S43 (S50) V. Poplitea s. (d.)
S44 (S51) V. Iliaca Communis and Externa s. (d.)

represented in the Head towards the stages S26 and S27. For the
sake of simplicity here we assume equal probability, although a
more accurate model can be obtained according to the ratio of flows
from both veins (Carotid and Vertebralis in this case).

4 RESULTS
In this Section, we illustrate results concerning the obtaining of the
transition matrix for the Markov model, and its use to predict the
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concentration level of nanosensors along the vessels. Figures 7 to 9
show the transition probabilities versus time at main bifurcations
in the upper, center and lower bodies, respectively. We compute
the transition probabilities directly evaluating the ratio of corre-
sponding current flows, as described in Eq. (4), where the flow is
measured by current meters located in the design (e.g., the blocks
F_ThA and F_ThA1 in Fig. 2).

As shown in Fig. 7, most of the time transitions are favored
in the direction of the lower body, than the upper body. That is,
from the left ventricle (S4) a larger flow follows to the lower body
through Arcus Aorta (S5), which is in correspondence to the larger
cross-sectional area of the Thorax Aorta (S31). This result also
matches our previous calculation of transition probabilities in [20,
Fig. 7] using the electric circuit design from [14, 17], where the
larger probability is also in the direction of the lower body. Besides,
according to the plots in Fig. 7, most of the time nanosensors will
be traveling to the head (through Carotis and Vertebralis) than to
the arms in the direction of the Subclavia and the Aorta Axillaris.



NANOCOM ’22, October 5–7, 2022, Barcelona, Spain J. Torres, J. L. González, and F. Dressler

Head

Lungs

Right
Heart

Left
Heart

Thorax 
& Back

Mesenterica
Inferior

Mesenterica
Superior

Kidneys

Femoralis
Profundis

Tibialis
Anterior

Tibialis
Posterior

Capillary
Ulnaris

S5

S6

S7

S8

S29

S33

S35

S38

S40

S10

S28

S27

S37

S26

S36
S32

S9

S14

S31
Liver

S1

S2

S3S30
S4 S11

S12

Capillary 
Radialis

Capillary 
Volaris

S13

S16

S17

S15

Capillary
Ulnaris

S19

S18

S23

S20

S21

Capillary 
Radialis

Capillary 
Volaris

S22

S25

S24

S34

S39

S41

S42

S43

S44

Femoralis
Profundis

Tibialis
Anterior

Tibialis
Posterior

S47

S46

S48

S49

S50

S51

S45

𝑝𝑖,𝑗 = 1

0.07

0.73

0.56

0.44

0.85

0.14

0.86

0.32

0.29

0.165
0.165

0.36

0.27

0.73

0.31

0.53

𝑝𝑖,𝑗 ≥ 0.5

𝑝𝑖,𝑗 < 0.5

Figure 10: Transition probabilities represented by the width of the edges.

Figure 11: Distribution of nanosensors in the HCS.

In the center body (cf. Fig. 8), most of the time transitions happen
to the Kidneys and to the Messenterica Superior. Fewer transitions

happens to the Messenteric Inferior or the legs with time. Besides,
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accounting for the lower body (cf. Fig. 9), we remark the less vari-
ability of the transition probabilities with time in the legs. This
is a consequence of the less variability of the pressure as these
body regions are more distant from the heart. According to these
plots, most of the time nanosensors will be traveling through the
Profundis Femoris in the legs than to the Poplitea or the Posterior
and Anterior Tibialis.

Using these transition probabilities at the bifurcations, we com-
plete the transition matrix of the Markov model. To do so, we
average these transition probabilities over time and set equal to one
the transition probabilities in the veins. In the case of the output
veins from the head, we assume equal probability to travel through
the Vertebralis or the Carotis for the seek of simplicity, although
more accurate values can be derived based on the flows on each
vessel. The resulting procedure is illustrated in Fig. 10, where the
width of the arrows is used to illustrate where the averaged tran-
sition probabilities are one, higher, or less than 0.5. As exhibited
in this graph, the larger transition probabilities are obtained at
bifurcations for those paths addressing the head, the center body,
the Femoris Profundis, and the Tibialis Posterior.

Using these average transition probabilities, then the stationary
distribution can be derived using Eq. (2) after solving Eq. (1). The
results are plotted in Fig. 11, where the length of the bars indicates
the probability to locate a given nanosensor along with the vessel’s
segments. As exhibited in this figure, the largest probability is
obtained at the Arcus and Thoratica Aorta, the Heart, the Lungs, and
the Superior Vena Cava. In this case, the probability is around 0.1
which is close to the probability derived in our previous work in [20,
Fig. 9]. However, in contrast to our previous work, in this case, the
Superior Vena Cava exhibits a larger probability than the Inferior
Vena Cava. This is a consequence of the inclusion of the two arms
and the connection of the Thorax capillaries to the Superior Vena
Cava. Finally, according to these bars, the less probability to find a
nanosensor is given in the Mesenteric Inferior and the capillaries
in the arms and legs.

5 CONCLUSION
This work underlines an effective methodology to predict the con-
centration of nanosensors traveling in the blood flow. Relying on
the Markov model representation of the human circulatory system,
the methodology employs a low complex electric circuit to evaluate
the transition probabilities. Results exhibit a good correspondence
to our previous work and the expected distribution of nanosensors
along with the vessel segments. Future work will be conducted to
include an electric circuit design for the heart and the lungs. Be-
sides, we will include additional vessel segments for a more detailed
representation of the human circulatory system.
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