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ABSTRACT The Internet of Things (IoT) enables the interconnection of multiple devices, typically sharing
network resources. These devices must identify a suitable time to access the channel without interfering
with each other, which can lead to additional energy consumption. To extend the network lifetime,
cooperative strategies have been proposed that modify the device operations between the ON/OFF states
to conserve energy. However, the challenge of selecting active devices for spectrum sensing increases with
mobile agents, referred to as Internet of Mobile Things (IoMT), since their positions may be unknown.
To deal with this uncertainty, we propose using the ordered weighted averaging (OWA) operator, which
provides a framework for decision-making under ignorance, to model the position uncertainty resulting
from node movement. We estimate node positions by assigning representative values for their distances to
the fusion center and primary user. We then determine the optimal number of active nodes that minimize
energy consumption while meeting detection constraints. We evaluate performance for different scenarios
in networks of various sizes consistent with smart agriculture environments, employing optimistic and
pessimistic approaches. The quality of decisions is validated under the assumption of nodes governed by
particular mobility patterns.

INDEX TERMS Cooperative spectrum sensing, decision-making under ignorance, energy efficiency,
Internet of Things

I. INTRODUCTION

THE Internet of Things (IoT) is a network of in-
terconnected devices that collect and exchange data

among each other while sharing frequency bands. This
paradigm enables novel interactions and communications
between the physical and digital realms. The integration
of IoT technology has become prevalent across diverse
applications, including the agriculture sector [1], [2]. Farmers
can improve agricultural efficiency and productivity while
minimizing costs and environmental impact by utilizing
static and mobile smart devices, such as sensors, unmanned
aerial vehicles (UAVs), and robots, in their daily tasks. The
spectrum scarcity problem affects these networks as the de-
vices typically operate in overcrowded industrial, scientific,

and medical (ISM) frequency bands. Promoting alternative
methods for managing spectrum resources is crucial to avoid
interfering with licensed users [3], [4].

Cognitive radio-capable devices can be integrated into IoT
networks to address the spectrum scarcity problem. These
entities can be classified as secondary user (SU), fusion
center (FC), or primary user (PU) based on cognitive radio
nomenclature. In this context, devices for smart agriculture
or SUs must continuously sense the spectrum to detect avail-
able channels for opportunistic transmission of information;
PUs are licensed devices for spectrum usage; FC merge the
data received from SUs to make a final decision about the
availability of spectrum bands.
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Each time a SU performs spectrum sensing tasks, it
consumes additional energy, which can become critical, pri-
marily when powered by batteries. Therefore, optimal energy
usage and management during spectrum sensing are crucial
to increasing the lifetime of current IoT networks [5]. To
overcome this issue, reported solutions address the problem
from two viewpoints mainly: energy harvesting [6], [7] and
energy conservation [8], [9]. The first approach involves
using the energy harvested by nodes to conduct spectrum
sensing operations and recharge batteries [10]. However,
external energy sources may be unreliable over time, raising
concerns about extending the available energy in sensor
nodes. The second approach aims to execute energy-efficient
operations from various perspectives, enabling the network
to run unattended for as long as possible.

Implementing the ON/OFF policy employed during the
cooperative spectrum sensing (CSS) is a widely used strategy
to conserve stored energy [11]. These approaches determine
the minimum number of active SUs required to successfully
detect PU signal and avoid interference with minimal energy
consumption. The remaining nodes enter a sleep mode to
conserve energy. An optimization problem is usually formu-
lated using an energy metric as the objective function and
considering detection constraints for energy minimization.
Heuristic algorithms identify the optimal number of active
nodes to devise a solution with reduced time complexity.

In general, sensor selection is addressed by assuming the
position of devices within the network is known, simplifying
the decision-making and enabling strategies under certainty
[11]–[16]. However, this precise knowledge is typical of
static IoT setups, which do not account for the mobility
of nodes within the network, as seen in Internet of Mobile
Things (IoMT). At present, IoMT scenarios align with: i)
precision agriculture, where UAVs cover a specific area to
monitor and assist with fertilizer and herbicide application in
crops [17], [18], ii) smart cities, specifically intelligent trans-
portation systems (ITS), where spectrum resource allocation
becomes essential to improve communication performance
[19], and iii) large-scale events or emergencies, where a
flexible mobile network assisted by drone base stations
(BSs) provides on-demand connectivity or address temporary
increases in network traffic [20]. All previous applications
are situated in the context of green communications by prior-
itizing energy optimization for environmental consciousness.

In order to address the mobility of nodes in such net-
works, a non-static scenario has been adopted in which the
movement of devices adheres to specific rules. This analysis
facilitates the computation of two different magnitudes as
statistical moments or the probability density function (PDF)
of mobility patterns to provide a solution for a given prob-
ability [21], [22]. Both approaches, called under risk, are
restricted to situations where the decision-maker can derive
or estimate the statistical features. From our understanding,
a more general approach to conserving energy in real-world
networks when ignoring the nodes’ position has yet to be

explored. The motivation of this work is to fill the existing
gap in determining the appropriate nodes that must be active
under ignorance of the mobility pattern.

This paper presents a general strategy to optimize en-
ergy consumption during spectrum sensing operations in the
IoMT, particularly for decision-making when the positions
of nodes are unknown. The unknown positions of SUs
are modeled by employing the ordered weighted averaging
(OWA) operator [23]. This framework allows mapping the
possible values of distances from SUs to the FC and PU into
a representative score, ranging from the optimistic case asso-
ciated with shorter distances to the pessimistic case related
to longer distances. Performance evaluation assumes that
the decision-maker uses homogeneous and heterogeneous
strategies. For different mobility models, the implications
of both methodologies in terms of consumed energy and
detection reliability are quantified.

Our main contributions can be summarized as follows:

• The IoMT environment is modeled in alignment with
smart agriculture, considering the dynamics of SUs.
The OWA operator is used for decision-making when
the positions of the nodes are unknown, based on
the decision-maker’s attitude (subjective) and limited
knowledge of the node movement patterns (objective).

• A stochastic optimization problem is formulated to
reduce the energy consumption in CSS. The feasible so-
lution of a deterministic equivalent version is obtained
using OWA-based assumptions regarding the distances
of each SU to FC and PU.

• Two approximations are deeply analyzed: one for cer-
tain distances representing all nodes, named homo-
geneous, and the other more general with individual
decisions per node, called heterogeneous.

• The energy-aware performance under ignorance is val-
idated through simulations in different network sizes.
The impact of decision strategies and the relevance of
these results are studied and compared to those reported
under risk approaches.

This paper is structured as follows. The related works are
exposed in Section II. The system model, channel propa-
gation, and detection theory are presented in Section III.
The problem formulation and energy metric related to CSS
are discussed in Section IV. Both sensor selection strategies
and uncertainty management via OWA operator are proposed
in Section V. Section VI provides illustrative examples for
scenarios of different network sizes and validates detection
constraints. Section VII concludes the paper.

II. RELATED WORK
The literature outlines five principal methodologies to reduce
the energy consumption of nodes and prolong the network
lifetime. Energy conservation techniques focus on optimizing
the throughput and energy sensing efficiency [24], [25],
implementing power allocation techniques for each sensor
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[9], optimizing the packet size for transmissions [26], im-
plementing energy-efficient spectrum sensing techniques via
machine learning algorithms [27]–[29], and suitable sensor
selection with ON/OFF policies [11]–[16].

In the latter approach, sensor selection strategies have
been addressed for a scenario with incomplete information
about the network status [12] or assuming a multi-channel
environment with multiple PUs sharing the spectrum with
SUs in the same area [13], [14]. The cluster formation based
on spectrum sensing and PU activity is modeled in [15]
to derive a relationship between the active nodes and the
signal to noise ratio (SNR). The mechanisms to achieve equal
energy consumption involve the participation of sensors with
a reduced probability of detection in CSS. This approach will
help to avoid the rapid depletion of batteries in sensors with
higher performance [16].

However, the majority of reported solutions [11]–[16]
assume static nodes, which limits their applicability in IoMT
environments [30]. This assumption implies that distances
from each SU to FC and PU can be considered to be
constants. The mobility of nodes introduces a new challenge
regarding the evolution of their spatial coordinates over the
operational lifetime of the network. This assertion transforms
the sensor selection process in dynamic networks into a
decision-making problem that can be classified as either
under certainty or uncertainty [31].

Certainty scenarios have been modeled as a kind of
stochastic programming known as “wait-and-see” [32]. This
strategy posits that the positions of nodes remain fixed for
a brief period. Thus, the problem is solved by applying the
tools of static solutions as discussed above. The proposal
in [33] illustrates an example of computing the total number
of awake nodes per time slot. However, this method has
the drawback of repeating the computation of the optimal
solution whenever the sensor nodes change positions, which
results in a waste of energy. Moreover, this kind of solution
incurs an additional energy cost in reporting the position of
SUs to FC.

Uncertainty scenarios can be categorized as either under
risk or ignorance. Solutions for scenarios under risk can be
addressed using the “here-and-now” approach [34], which
involves analyzing the statistical description of movement. A
strategy for selecting the optimal active sensors in a dynamic
wireless sensor network (WSN) is proposed in [21] through
the first and second statistical moments of distances from
each SU to FC. A second approach that minimizes random
consumed energy is presented in [22] for nodes performing
different mobility models, including Random Walk, Random
Waypoint, and Gauss-Markov. This method estimates the
PDF of random distances from each SU to FC and solves
a deterministic equivalent problem to minimize an energy
upper bound.

What about decision-making under ignorance? Until now,
sensor selection in IoMT has been addressed under certainty
or, in cases of uncertainty, under risk. However, decision-

PU

FC

FIGURE 1: System model for an IoMT network.

making can also be implemented under ignorance when the
position of each SU is unknown at any given time. The
evolution of node positions represents a stochastic process
where statistical features such as the PDF and moments are
generally assumed to be unknown. Specifically, we have
limited environmental knowledge, such as area boundaries,
to prevent nodes from moving out of the simulation scenario.
To handle this uncertainty, we can use distinct options: a
PDF that carries the minimum amount of information [35],
replace unknown probabilities with Dempster-Shafer belief
functions [36], apply interval calculus to replace probabilities
with probability intervals [37], or use the OWA operator to
transform a range of performance values into a single rep-
resentative value [23]. Among these alternatives, the OWA
operator provides a flexible framework for decision-making
by accommodating different attitudes, from optimistic to
pessimistic. This strategy effectively manages uncertainty
in node positions and subsequently focuses on minimizing
energy consumption.

III. SYSTEM MODEL
This section describes the network operation, aiming to de-
fine the architecture, the general assumption on the mobility
of nodes, the propagation channel, and the detection scheme.

A. NETWORK ARCHITECTURE AND NODES MOBILITY
We target a network composed of N devices, typically IoT
nodes, called SUs, that move over a bounded square area
of side S, simulating a smart farm. The FC is placed at
the center position, and a PU is located outside of the
field, as depicted in Fig. 1. The distance from the j-th SU,
j = {1, 2, ..., N}, to both FC and PU is denoted as dFCj and
dPUj , respectively. Sensor nodes handle the spectrum scarcity
problem by detecting vacant frequency bands and avoiding
interference with PU signal. SUs cooperate to determine the
channel status by transmitting their local spectrum sensing
information to FC, which aggregates the collected data to
make decisions about the availability of spectrum bands.
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B. PROPAGATION CHANNEL
The wireless channel is modeled by the complex-valued
channel coefficient expressed as [38]

hj =
√

G(dPUj )h̃j , ∀j = {1, 2, ..., N}, (1)

where G(dPUj ) accounts for the large-scale fading, includ-
ing distance-dependent path loss and shadowing, with dPUj
denoting the random distance between the j-th SU and PU
(due to the random mobility of SUs). The parameter h̃j is a
standard complex Gaussian random variable describing the
small-scale fading due to multi-path propagation. We use a
log-distance path loss model to capture power falloff versus
distance along with the random attenuation caused by the
shadowing effect [38]. The path loss model, in the units of
dB, reads

PL(dPUj ) = 10ηj log10 d
PU
j +Xk +Xψ, (2)

where PL(dPUj ) = −G(dPUj ) dB, ηj is the path loss
exponent, Xk = 10 log10 (

λ
4πd0

)2 is the free-space path gain
at reference distance d0 = 1m and assuming omnidirectional
antennas, λ is the wavelength, and Xψ ∼ N (0, σ2

Xψ
) is

a Gaussian random variable which models the shadowing
effect.

C. DETECTION SCHEME
Each sensor detects available spectrum bands using the
energy detector. We make this selection as it results in
less energy consumption due to its low complexity [39].
The system operates under the parameters given by the
spectrum sensing duration δ and the sampling frequency
fs, yielding a total of processed samples as δfs. Statistical
decision is made by two hypothesis: H1 and H0 where
H1 : yj [n] = hj [n]xj [n] + uj [n] represents a busy channel
due to the presence of PU and H0 : yj [n] = uj [n] represents
an idle channel due to the absent of PU. The parameter
n = {1, 2, ..., δfs} is the time index, xj [n] is the signal
transmitted from PU, uj [n] is an i.i.d. Gaussian noise with
zero mean and variance σ2

uj , and hj [n] is the channel gain
between each sensor node and PU.

Local detection results have been evaluated based on
decision rules about PU activity stated as: H1 if Ej ≥ ϵ or
H0 if Ej < ϵ. The term ϵ is the detection threshold and Ej
is the energy of the received signal at the j-th sensor given
by Ej = 1

δfs

∑δfs
n=1 |yj [n]|2. With the energy detector, the

probabilities of false alarm and detection for the j-th sensor
are defined as follows [39]:

Pfj = P (Ej > ϵ|H0) = Q

( ϵ
σ2
uj

− δfs
√
2δfs

)
, (3)

Pdj = P (Ej > ϵ|H1) = Q

 ϵ
σ2
uj

− δfs (γj + 1)√
2δfs(2γj + 1)

 , (4)

where γj = pt|hj |2/σ2
uj accounts for the SNR between

j-th SU and PU, pt is the transmission power, and Q

is the complementary distribution function of the standard
Gaussian distribution given by Q(x) = 1√

2π

∫∞
x

e−
t2

2 dt.
Upon local detection, each node sends one bit to FC

node to inform its local sensing result, and FC performs
a combined decision with a fusion rule. In this work, we
adopt the OR rule to merge the information in FC since it
demonstrates superior energy efficiency for IoT networks
[40]. By this rule, a given frequency band is considered
occupied if at least one sensor node claims the presence of
PU. Otherwise, the frequency band is free for transmissions.
The resulting global probability of false alarm PF and
detection PD are given as follows [41]:

PF = 1−
N∏
j=1

(1− ρjPfj ), (5)

PD = 1−
N∏
j=1

(1− ρjPdj ), (6)

considering ρj ∈ {0, 1}, where ρj = 1 indicates that the
j-th sensor node participates in spectrum sensing, otherwise
ρj = 0.

We remark that the global PD in (6) depends on the
local probability of detection Pdj , which is a function of
the SNR and is dependent on the squared magnitude of
the channel coefficient hj . Consequently, PD is related to
the distance through the large-scale fading G(dPUj ), which
takes into account the mobile position of nodes in dynamic
environments.

IV. PROBLEM FORMULATION
This work focuses on determining the appropriate number
of nodes participating in spectrum sensing tasks to reduce
energy consumption in dynamic environments. The energy
consumption model comprises three quantities reflecting the
main steps in CSS to find transmission opportunities. We
decompose the total energy on each SU node accounting for
sensing tasks (denoted as Esj ), reporting the local detection
results to FC (denoted as Etj ), as well as reporting the
SU’s position (denoted as Epj ). In total, the energy metric
is readily given as:

ET =

N∑
j=1

ρj(Esj + Etj + Epj ), (7)

where ρj ∈ {0, 1} indicates which nodes will be ON or OFF.
The parameter Esj is considered constant for all sensors,
while Etj and Epj are defined as,

Etj = Eelec + eamp(d
FC
j )2, (8)

Epj = 2nbEtj , (9)

where Eelec stands for the energy dissipated to run the
radio electronics, eamp is the required power amplification,
and dFCj is the distance between the j-th sensor node and
FC. The energy to report the positions of nodes is here a
function of the number of precision bits nb used to represent
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the (x, y) coordinates. Also, the energy formulation in (7)
will be stochastic-based provided each node follows random
movement patterns, and it must be remarked that dFCj is a
random variable as well.

To optimally reduce network energy consumption, we
state a stochastic formulation problem to properly select
those sensor nodes that will be ON or OFF. The network
must also operate to fulfill performance metrics account-
ing for spectrum sensing. We assume the network should
perform with an upper bound on the probability of false
alarm and a lower bound on the probability of detection.
Following these assumptions, the problem formulation is
stated as follows:

min
ρj

ET (ρj , d
FC
j ) (10)

s.t. PF ≤ α (10a)

PD(d
PU
j ) ≥ β (10b)

ρj ∈ {0, 1}, (10c)

where the decision variable ρj is a binary parameter, dFCj
and dPUj are random variables accounting for distances from
j-th SU to FC and PU, respectively. The constraints regard-
ing false alarm and detection global probabilities must satisfy
the threshold parameters α ∈ [0, 1] and β ∈ [0, 1], respec-
tively. The feasible solution to this problem is represented
by the N -column vector ρ = [ρj ] for which the random
variable ET (ρj , d

FC
j ) is minimized while simultaneously

guaranteeing constraints on detection performance.

V. SENSOR SELECTION STRATEGY UNDER IGNORANCE
Solving the optimization problem posed in (10) requires
previously determining the values of unknown dFCj and dPUj .
These distances are related to each other and are associated
with the energy metric (as in (8)) and probability of detection
(as in (10b)), respectively. To solve this problem, we propose
to find representative deterministic values for dFCj and dPUj ,
in this way to transform the stochastic formulation in (10)
into a deterministic one.

We select such representative values with the OWA op-
erator, denoted as FQ. This operator provides a unifying
framework for modeling uncertainty, allowing us to deal with
the ignorance of SUs’ position [23]. Using this operator, we
select a representative location for each SU in the network
based on the distance range and assumptions on their most
likely knowledge, denoted with the function of the distance
f . We denote this operation as

dj = FQ([dminj , dmaxj ], f), (11)

when transforming the distance range [dminj , dmaxj ] into the
representative value dj and with f as a function parameter.

Applying the OWA operator, as presented in (11), to all
distances from SUs to FC and PU enables the establishment
of positions for network nodes, thereby managing uncer-
tainty. Consequently, the stochastic optimization problem
introduced in (10) can be transformed into an equivalent

deterministic formulation as follows:

min
ρj

ET (ρj , FQ([d
FC
minj , d

FC
maxj ], f)) (12)

s.t. PF ≤ α (12a)

PD(FQ([d
PU
minj , d

PU
maxj ], f)) ≥ β (12b)

ρj ∈ {0, 1}, (12c)

where both uncertain distances, contained in (12) and (12b),
will be determined by mapping each interval [dFCminj

, dFCmaxj ]

and [dPUminj
, dPUmaxj ] into a representative single value for dFCj

and dPUj , respectively. This formulation raises an obvious
question regarding the selection of values within each in-
terval when making decisions under uncertainty about the
mobility model of devices. The following sections provide
further details regarding the determination of this value.

A. TACKLING UNCERTAINTY MANAGEMENT
The selection of representative distances is evaluated from
subjective and objective standpoints [23]. The subjective
standpoint refers to the decision-maker attitude, also known
as the attitudinal character, assessed through a basic unit-
interval monotonic (BUM) function denoted as Q(y). The
objective knowledge, typically partial knowledge about the
mobility model, is defined by the likely distance function f ,
which evaluates the most probable distances. It is noteworthy
that the functions Q(y) and f can have multiple definitions
in accordance with the network scenario and SU mobility
models. Further details on these functions consistent with
IoMT scenarios are provided in the subsequent subsections.
The OWA operator is defined as:

FQ([dmin, dmax], f) =

∫ 1

0

dQ(y)

dy
H−1(y) dy, (13)

where

H(x) =

∫ dmax

x

g(z) dz, (14)

and
g(z) =

f(z)∫ dmax

dmin
f(x) dx

, (15)

where the monotonic function Q : [0, 1] 7→ [0, 1] satisfies
Q(0) = 0, and Q(1) = 1.

In this paper, we use a polynomial function to define Q as
Q(y) = yp [23] as it provides a straightforward interpretation
for the OWA operator with the parameter p; see Section 1. As
for the function f , we discuss three variants while assuming
more likely distance sub-ranges than others; see Section 2.

1) SOLVING FOR THE ATTITUDINAL CHARACTER
The function Q captures the subjective belief of the decision-
maker regarding the location of nodes. Using Q(y) = yp for
all p ≥ 0 implicitly define an attitudinal character as for the
solution in (13). This is a mathematically tractable function
and illustrates a wide range of judgments. For instance, if
we consider the function f(z) = K, where K is a constant
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(a) Equal importance. (b) Low values are likely. (c) High values are likely.

FIGURE 2: Importance of weights contained in the function f(z).

describing equal importance for all possible distances inside
the interval, we obtain the following solution

FQ([dmin, dmax],K) =
dmax + pdmin

p+ 1
, (16)

after evaluating these two functions in (13), where the value
of p will directly define a representative distance between the
optimistic and pessimistic attitudes. The decision attitude is
reduced to setting the value of p according to a subjective
belief about the nodes’ position over the simulation scenario.
If we believe that nodes are close to the edge of the area
(dmax), we make p → 0. This is a pessimistic attitude as it
evaluates the greatest energy consumption. On the contrary,
if we expect that the devices are around the center (dmin),
we set p → ∞. This evaluates an optimistic attitude as it
defines the least possible energy consumption. The interval
average is modeled by choosing p→ 1, which stands for an
arbitrary decision-maker attitude.

2) SOLVING WITH PARTIAL KNOWLEDGE ABOUT THE
MOBILITY MODEL
The objective partial knowledge of the mobility model can
be introduced by employing various functions for f . The
function f will influence the decision of the distances dFCj
and dPUj when solving for the OWA operator in (13). We
do not assume any exact knowledge about their statistical
distributions, but we can describe which values, or ranges of
values, are more important or more likely [42]. Three intu-
itive ways allow capturing the realizations of the distances
from each SU to FC and PU as depicted in Fig. 2.

The first one, depicted in Fig. 2a, describes the evenly
distributed weights due to no objective information, and
the subjective attitude of the decision-maker will prevail.
However, for a given position of FC and PU, the mobility
patterns of SUs could lead us to identify that shorter or
longer distances {dFCj , dPUj } tend to predominate. In such
a case, it is fair to define decreasing functions as shown in
Fig. 2b when lower values are more critical or increasing
functions as depicted in Fig. 2c if larger values are more
probable. Although the actual movement patterns of devices

are unknown, the choice of these functions f seeks to
recreate uniform behavior or extreme cases that illustrate
possible situations.

Closed-form expressions for the functions f(z) are given
below considering the parameter h is a constant that vanishes
after the normalization shown in (15):

f1(z) = K, (17)

f2(z) = −
h

dmax − dmin
z +

hdmax

dmax − dmin
, (18)

f3(z) =
h

dmax − dmin
z − hdmin

dmax − dmin
, (19)

where f1(z), f2(z), f3(z) are non-negative functions
reflecting the importance associated with the value
z ∈ [dmin, dmax]. In particular, let us consider the case
where f(z) is linear with a negative slope, leading to
f(z) = f2(z), as exposed in Fig. 2b. Substituting in (13)
and solving for Q(y) = yp, a solution arises as a function
of the exponent p similar to equal-importance weights
approach as:

FQ([dmin, dmax], f2) = dmax− (dmax−dmin)
2p

2p+ 1
. (20)

It can be noticed that when p→ 0, we get the maximum dis-
tance dmax, and when p→∞, we get the minimum distance
dmin. Another interesting result emerges when p→ 1, then
the operator yields (dmax +2dmin)/3 instead of the average
as in the case of f1(z) = K.

We analyze the opposite situation for a function f(z)
that has a positive slope, yielding f(z) = f3(z), as shown
in Fig. 2c, in this way introducing more weight into the
higher distance range. Solving (13) for the same function
Q(y) = yp and after some mathematical modifications, we
get:

FQ([dmin, dmax], f3) = dmin + (dmax − dmin)I(y), (21)

where

I(y) =

∫ 1

0

pyp−1(1− y)
1
2 dy, (22)

which does not evaluate a closed-form expression and must
be solved numerically. We discuss its evaluation in the next
section.
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Unfortunately, we can not directly apply OWA to deter-
mine distances dFCj and dPUj because of geometric con-
straints which prohibit the selection of some values to
indicate every sensor location. The position of each SU
is associated with a distance to FC that fixes the set of
distances to PU or vice versa. For instance, an adequate
spatial coordinate for a SU may not coincide with the longest
or shortest distance to FC and PU for such a scenario, as
shown in Fig. 1.

B. ENERGY OPTIMIZATION FOR HOMOGENEOUS
DECISIONS
To solve the optimization problem presented in (12), we can
use a homogeneous approach where equal strategy is applied
to each SU (subjective and objective in Section 1 and 2).
In simple terms, a single pair

(
dFCj , dPUj

)
is taken as a

representative position for all SUs in the entire network. This
approach emulates under-risk solutions where each node has
the same statistical features provided by a standard mobility
model.

A methodology to solve the problem in (12) will first find
the representative values for dFCj and dPUj and then solve
the problem to find which nodes will be ON and OFF. The
methodology is detailed as follows:

(i) Determine the interval [dFCmin, d
FC
max] accounting for

the distance range between SUs and FC node. For
instance, in the grid depicted in Fig. 1, dFCj ∈ [1,

√
2
2 S]

as we consider a square grid with granularity the unit
and maximum width of S units.

(ii) Evaluate the OWA operator using Equations (16), (20)
or (21) to choose a representative value for dFCj in the
interval [dFCmin, d

FC
max].

(iii) Find the distance range [dPUmin, d
PU
max] between SUs and

PU node. For instance, the fixed dFCj will sketch a
circle where the solution is located. The minimum
distance dPUmin will be defined as the point on the circle
that is closest to PU, and the maximum distance dPUmax

will be defined as the point on the circle that is farthest
from the PU. To identify both points, we readily find
the interceptions between a line passing through the
FC and PU positions and the circle, as depicted in
Fig. 1.

(iv) Evaluate the OWA operator using Equations (16), (20)
or (21) to choose a representative value for dPUj in the
interval [dPUmin, d

PU
max].

(v) Solve the optimization problem posed in (12) to min-
imize the energy consumption.

To illustrate, Fig. 3 shows the solution for the OWA oper-
ator following the steps (i) to (iv). The evaluation in Fig. 3a
and Fig. 3b involves the assessment of the representative
scores for the distances from SU to FC and PU, designated
as dFCj and dPUj , respectively. All curves are obtained
employing the same attitude function as Q(y) = yp for
distinct values of p, and three assumptions on the movement
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(a) Representative dFCj values.
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(b) Representative dPUj values.

FIGURE 3: Different objective and subjective decisions over an area
of side S = 100m.

of nodes {f1(z), f2(z), f3(z)} as stated in (17), (18), (19).
The length of the square area is S = 100m, FC is located at
the center, and PU is outside to the right of the simulation
area. The results validate that the maximum is reached when
p → 0, and the representative distance decreases with p. In
addition, for a given p value, higher outcomes are shown for
the increasing, constant, and decreasing functions f(z) in
that order, except for the second distance dPUj . This interval
depends on the previous decision about dFCj , which varies
from one function f(z) to another.

The feasible solution to the optimization problem in (12)
can be addressed following the homogeneous decision ap-
proach. A single pair of distances {dFCj , dPUj } will represent
the whole set of potential combinations. The approximate
amount of sensors with ρj = 1 can be derived by simply
activating the requisite number of sensors to fulfill the
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detection constraint in (12b), with the remaining sensors
entering a sleep mode to conserve energy.

C. ENERGY OPTIMIZATION FOR HETEROGENEOUS
DECISIONS
The preceding section shows an extreme case when a
single pair

(
dFCj , dPUj

)
models all nodes’ positions. A

more general situation can be addressed when levels be-
tween the optimistic and the pessimistic cases are equipar-
titioned among nodes, referred to as a heterogeneous ap-
proach. Under this consideration, the decision-maker has
to make N selections for the expected positions of sen-
sors. We define two terms: a continuous random variable
uniformly distributed Xp ∼ U(pmin, pmax) accounting for
the exponent of the attitudinal function Q(y), and the set
fi(z) = {f1(z), f2(z), f3(z)} representing the knowledge
about the distribution of distances, where we model the
member index i as a discrete random variable uniformly
distributed i ∼ U{1, 3}. Thus, we can model a heterogeneous
scenario using the observed values of two random variables
to obtain specific distances dFCj and dPUj for each SU.

Next, we can find the minimum number of awake nodes
based upon the OWA-dependent optimization problem in
(12). Firstly, we execute steps (i) to (iv) in Section B for
each j-th sensor node, j = {1, 2, ..., N}. Lastly, we find the
optimal solution to reduce energy consumption via (v).

To simplify the solution for the non-convex problem stated
in (12), we adopt the method outlined in [11]. Initially, we
modify the constraint in (12a) because PF is independent of
PU signal. This change imposes an upper bound for the total
number of active nodes. We have also revised the domain
of ρj to remove the binary constraint, leading to a relaxed
problem denoted as:

min
ρj

ET (ρj , FQ([d
FC
minj , d

FC
maxj ], f)) (23)

s.t.
N∑
j=1

ρj ≤

 ln(1− α)

ln

(
1−Q

((
ϵ
σ2
uj

− 1
)√

δfs

))
 = M

(23a)

PD(FQ([d
PU
minj , d

PU
maxj ], f)) ≥ β (23b)

ρj ∈ [0, 1]. (23c)

Solving for (23), we can analyze the first-order partial
derivative condition for the Lagrangian function by finding
the stationary points. However, this requires solving an
equation system involving N unknown variables ρj , which
can be computationally expensive. To tackle this concern, we
derive a cost function per j-th sensor node that quantifies its
level of preference compared to the other nodes, formulated
as:

Cj = Esj + (1 + nb)(Eelec + eamp(d
FC
j )2)− λPdj , (24)

to determine which nodes will be ON or OFF. This cost func-
tion represents a priority metric to identify the nodes with

Algorithm 1: OWA-Based Sensor Selection
Input: N , S
Output: ρ, ET

1 nodes = 1, λmin = 0, λmax = ζ, ϵ is a small enough
number, ρ[1 : N ]← 0, M based on (23a)

2 while |λmax − λmin| > ϵ do
3 λ = (λmax + λmin)/2
4 for j = 1 to N do
5 Observed values: Xp → Q, i→ fi
6 dFCj ← FQ([d

FC
minj

, dFCmaxj ], fi)

7 dPUj ← FQ([d
PU
minj

, dPUmaxj ], fi)

8 Pdj (d
PU
j ) based on (4)

9 Cj based on (24);

10 Rearrange Cj in ascending order and store
indexes

11 while nodes ≤M do
12 ρ[nodes]← 1
13 PD(FQ([d

PU
minj

, dPUmaxj ], fi)) for nodes
14 if PD ≥ β then
15 break
16 nodes← nodes+ 1

17 if PD ≥ β then
18 λmax ← λ
19 else if PD < β then
20 λmin ← λ
21 ET for nodes

the lowest energy consumption and the highest probability of
detection. The first two terms in (24) account for the energy
metric, while the last term indicates the detection capability
of nodes. Using this metric, nodes with the lowest Cj value
will be chosen to be in ON mode, ensuring compliance with
the constraints in (23a) and (23b).

We summarize the main steps of the approximate solu-
tion with the pseudocode in Algorithm 1. The pseudocode
comprises two blocks mainly, one block to evaluate the
representative distances with the OWA operator and compute
the cost functions with (24), and a second block to select
the nodes in the ON state. The first line initializes the
required variables, followed by a preprocessing stage (lines
3 to 10), which decides nodes’ positions based on the
OWA operator and evaluates the cost function. The selection
stage (lines 11 to 21) seeks appropriate nodes to participate
in spectrum sensing and updates the search space of the
Lagrange multiplier λ (line 18 or 20).

The time complexity of Algorithm 1 is the result of three
phases: while loop in line 2 that executes a binary search
with O(log ζ) where ζ accounts for the maximum number
of Lagrange multiplier; a second while loop in line 11
where M is upper bounded by N , thereby obeying to O(N);
and last, the line 13 computes PD for N nodes in the
worst-case scenario such that implies O(N). By combining
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all stages, we obtain a time complexity of O(N2 log ζ).
However, a fixed value of ζ > 0 could be derived, as
suggested in [11], to reduce the search space and transform
the time complexity of the main loop into constant O(1). As
a result, the time complexity of our solution can be reduced
to O(N2), surpassing the time complexity of the exhaustive
search algorithm O(N !). Remarkably, the proposed solution
does not incur additional data transmission to determine
the ON/OFF state of network nodes, thereby resulting in
negligible communication overhead.

VI. PERFORMANCE EVALUATION
This section presents the simulation results for both strate-
gies: homogeneous and heterogeneous. The energy efficiency
is initially examined for different approaches based on sub-
jective attitudinal character and objective knowledge of the
SU mobility. Then, we explore the implications of adopting
specific mobility models, such as Random Waypoint and
Gauss-Markov, to describe movement patterns. We highlight
how our proposed solution aligns with these patterns, even
under complete ignorance. The selection of mobility patterns
is motivated by their relevance in modeling ground user
behavior within contemporary drone-assisted networks, as
demonstrated in [43], [44]. This simulation environment
aligns with potential applications of mobile networks in
IoMT, as previously discussed in the context of smart
agriculture. In such scenarios, nodes must share the spectrum
resources available for transmissions while reducing energy
consumption.

It is worthwhile noting that our solution applies follow-
ing the perspective of a “wait-and-see” approach, which
identifies the optimal number of awake nodes in each time
slot. In this case, we implement the energy efficient sensor
selection (EESS) algorithm to discuss the boundaries of
our proposal [11]. In addition, we conduct comparisons
with “here-and-now” approaches, which previously estimate
the statistical features of distances as in [21], [22]. The
simulation scenarios are examined for various network sizes,

TABLE 1: Parameters values in the system model.

Parameter Value
Number of nodes, N 100

Side length of the network area, S 50m to 100m

Transceiver frequency, fc 2.4GHz

Transmission power, pt 20mW

Bandwidth, B 1MHz

Noise power spectrum density, N0 −170 dBm/Hz

Noise power, σ2
uj

= N0B −110 dBm

Probability of detection threshold, β 0.9

Probability of false alarm threshold, α 0.1

Energy of sensing tasks, Esj 193 nJ

Energy dissipated, Eelec 80 nJ

Power amplification, eamp 40.4 pJ/m2

Bits used to report the SU position, nb 8 bits

corresponding to the density of SUs per square meter for a
fixed number of nodes, and with FC positioned at the center
of the field.

Table 1 outlines the parameters utilized in numerical
simulations unless explicitly specified otherwise. The values
for energy consumption were obtained from the 2.4GHz RF
Transceiver CC2500 datasheet by Texas Instruments [45].
The energy wasted in sensing tasks Esj is derived by adding
a typical value of 40 nJ used for the receiving electronic
components and the energy involved in the signal processing
phase of 153 nJ. The energy terms associated with the
transmission of sensing results to FC are Eelec = 80nJ and
eamp = 40.4 pJ/m2 similar to [46]. The parameter Epj is
only considered by the “wait-and-see” algorithm because
SUs must update their positions to FC to perform the sensors
selection. For the (x, y) coordinates of each SU transmitted
to FC, we assume a precision of nb = 8bits.

A. IMPACT OF PARAMETERS
Fig. 4 illustrates a variety of scenarios through the pro-
posed OWA operator with the optimistic and pessimistic
approaches. Both the number of active nodes and the
corresponding energy consumption value tend to decrease
with the increase of p, despite the knowledge about nodes’
distribution in the grid, given by the function f(z). In addi-
tion, our understanding of movement rules with f(z) leads
to establishing distinct levels of active nodes and energy
expended. For instance, assuming that SUs will be more
likely apart from FC and PU nodes (function f3(z)), will
accordingly require the more significant energy consumption
in the network compared to the opposite behavior with the
function f2(z), where we assume the lowest distance. In the
following sections, we aim to find appropriate combinations
of Q(y) and f(z) functions suitable for realistic scenarios
applicable to femtocells in mobile networks [47].

B. ASSESSING RISK AND IGNORANCE APPROACHES
To evaluate decision-making under risk and ignorance, we
distribute N = 100 sensors over a square area of side S
in the range 50m to 100m, and implement mobility with
two cases: Random Waypoint and Gauss-Markov mobility
models. With this simulation, we can accurately evaluate the
statistical moments and the PDF of distances from every
SU to FC and PU, which provides a way to interpret our
proposed solution. We also compare decision-making under
ignorance to certainty and risk-based approaches.

Fig. 5 compares the energy consumption with the Random
Waypoint mobility model and uses the OWA operator to
estimate distances from SUs to FC and PU. The comparisons
include the expected values of distances (labeled as ’mean
rway’ [21]), the expected values plus k times the standard
deviation (labeled as ’mean-std rway’ [21]), and a bounded
energy value with a probability θ (labeled as ’kataoka rway’
[22]). Setting the parameter k = 10 and θ = (1− 1

k ) = 0.9
ensures that energy values remain within the predefined
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(a) Total awake nodes.

(b) Energy consumption.

FIGURE 4: Homogeneous approach outputs for an area of S = 100m.

interval and that the upper bound on energy is minimized
with the same probability.

Our solution for homogeneous decisions using Q(y) = y4

and f1(z) is similar to the expected value approach with a
root mean square error (RMSE) of 1.17µJ, as shown in
Fig. 5. Furthermore, the statistical characteristics of both
distances dFCj and dPUj are not required to determine the
optimal number of active nodes, which represents one of the
primary advantages of our proposal. Also, for f3(z) and the
same attitude Q(y), the shape of the energy curve fits the
Kataoka approach with an RMSE of 0.33µJ. Furthermore,
the function f2(z) leads to an over-optimistic outcome,
which may not satisfy the lower bound of energy or detection
constraints.

To avoid over-optimistic cases, we compare the energy
consumption of the proposed method with the average of the
EESS static algorithm, which provides the optimal solution
in each time slot. To be more general, we assume that all
nodes move following the Gauss-Markov mobility model,

50 100 150 200 250 300

5

10

15

20

25

FIGURE 5: Energy consumption compared to under risk approaches
for devices with a Random Waypoint mobility model.

a memory system that provides more realistic movement
patterns. The two extreme cases for this mobility model are
displayed with black color lines in Fig. 6. Both curves expose
the optimal energy wasted with and without exchanging
information regarding the positions of SUs. Specifically, the
worst-case, shown with a solid line, is considerably far away
from the other curves provided that Epj must be included
in the energy formulation. The ideal case represented by
a dotted line is derived by omitting the Epj . Any curve
between the ideal and the worst case is a valid solution to
the original problem.

In addition, Fig. 6 includes the homogeneous decisions
with Q(y) = y and the three options for f(z), and the
heterogeneous decisions regarding the position of each SU.
The plot for function f2(z) with decreasing slope has energy
values below the lower bound. We adopt a conservative
attitude to amend this issue, selecting a value of p < 1.
For instance, the dash-dotted red line depicts the function
Q(y) = y

2
3 that fulfills the energy requirements. Surpris-

ingly, the energy behavior of the heterogeneous approach,
shown in the violet color, is similar to that of the conservative
homogeneous decision. The RMSE values for homogeneous
and heterogeneous decisions with respect to the energy lower
bound are 0.49µJ and 0.67µJ, respectively. However, the
heterogeneous decision approach has the advantage of being
able to select the specific nodes to be activated based on
an attitudinal character and a reduced knowledge about the
most probable distances dFCj and dPUj .

C. DETECTION PERFORMANCE
Finally, we account for the global probabilities of detection
and false alarm, PD and PF , to validate the detection
constraints. The transmitted PU signal is composed of a
rectangular pulse train contaminated with additive white
gaussian noise (AWGN) and the SNR parameter ranges
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FIGURE 6: Energy consumption for homogeneous and heterogeneous
decisions compared to under certainty approach and Gauss-Markov
mobility model.

on the interval [−10, 10] dB. The number of samples per
pulse is δfs = 100, and the number of transmitted bits
of information is 106. We estimate the local detection and
false alarm probabilities, Pd and Pf with the Monte Carlo
simulation. For a given SNR value at the j-th SU, the
Algorithm 1 returns the number of required nodes to fulfill
detection constraints. Then, we use these values to compute
the OR fusion rule and verify if PD and PF have been
satisfied, as shown in Fig. 7.

Fig. 7a demonstrates that PD exceeds the detection thresh-
old β = 0.9 for SNR ≥ −9.5 dB avoiding interference
with PU signal. This curve is monotonically increasing
on those intervals where the estimated local probability of
detection is growing faster than the number of active nodes,
which decreases due to better SNR values. Moreover, when
SNR = −10 dB, it is not enough with 100 SUs to reach
the detection threshold through the fusion rule. Fig. 7b
depicts that PF curve is below the threshold α = 0.1 for
SNR ≥ −7 dB. The PF curve is decreasing because fewer
nodes have been selected to participate in the spectrum
sensing phase. The constant interval accounts for the best
case where only one SU satisfies the false alarm constraint.

D. REAL-WORLD IMPLICATIONS
The proposed solution presents potential avenues for imple-
mentation in wireless networks comprising battery-limited
devices, including UAVs, autonomous vehicles, and mobile
IoT nodes for smart cities. Regarding energy efficiency,
this approach based on the OWA operator eliminates the
need for devices to report their positions during CSS tasks
to a controller node, such as a fixed BS in UAV-assisted
networks or an roadside unit (RSU) in vehicular networks.
Consequently, it saves energy by avoiding communication
overhead. Regarding detection constraints, our proposal is
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(a) Global probability of detection.
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(b) Global probability of false alarm.

FIGURE 7: Detection constraints for different SNR values.

deployable for an SNR of at least −7 dB. This constraint
guarantees the successful identification of spectrum holes
for transmissions without interfering with the PU signal. In
a practical scenario like the case of beyond fifth generation
(B5G) networks, it is postulated that a multitude of mobile
nodes will be available for the IoT paradigm, with UAVs
acting as flying BSs, which will be empowered by three-
dimensional mobility. Consequently, the device characteris-
tics will be advantageous in ensuring the required SNR for
successfully detecting the PU signal.

Nevertheless, the aforementioned network scenarios could
potentially support the execution of the OWA-based algo-
rithm, albeit with certain limitations or prior modifications.
The primary challenge lies in implementing a training stage
to assess the efficacy of different objective and subjective
standpoints for managing the uncertainty of node positions
by means of functions f and Q. In this context, it is
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necessary to examine alternative mobility models besides
Random Waypoint and Gauss-Markov that may be more
suitable for urban scenarios. Such motion patterns may
include the Levy Walk, which describes human mobility
[48], or group mobility models for platooning in vehicular
networks [49]. Conversely, it can be argued that homoge-
neous decisions, where one location represents the entire
set of nodes, may be more suitable for characterizing group
mobility models. However, heterogeneous decisions, where
each node is individually represented by a distinct location,
are more appropriate for simulating movements with rapid
fluctuations, such as those performed by drones.

VII. CONCLUSION
This paper proposes a novel approach based on OWA oper-
ator for energy-aware device selection under ignorance with
detection constraints in IoMT environments. We discuss two
directions according to the decision strategy: homogeneous
and heterogeneous. The former supposes that one spatial
coordinate in the area is sufficient to represent the tendency
in the positions of nodes. The latter addresses a more
general case where the levels of optimism and pessimism
are equipartitioned between each SU making individual
decisions about their positions. Then, we find the minimum
number of active nodes that must participate in spectrum
sensing to reduce energy consumption. The numerical results
focus on evaluating the performance of different attitudes
of the decision-maker to identify the appropriate approach.
The energy consumption fits stochastic decisions, considered
under risk solutions, without knowledge of statistical features
of movement. Also, the behavior of the proposed algorithm
is bounded by the average static solution per time slot. We
conclude with a set of functions Q and f suitable for nodes
guided by Random Waypoint and Gauss-Markov mobility
models. The global probabilities of detection and false
alarm are guaranteed for SNR ≥ −7 dB for the simulation
environment under study. The potential for developing new
functions applicable to B5G network scenarios is a topic that
will be addressed in the future.

APPENDIX
List of Acronyms

AWGN additive white gaussian noise
B5G beyond fifth generation
BS base station
BUM basic unit-interval monotonic
CSS cooperative spectrum sensing
EESS energy efficient sensor selection
FC fusion center
IoMT Internet of Mobile Things
IoT Internet of Things
ISM industrial, scientific, and medical
ITS intelligent transportation systems

OWA ordered weighted averaging
PDF probability density function
PU primary user
RMSE root mean square error
RSU roadside unit
SNR signal to noise ratio
SU secondary user
UAV unmanned aerial vehicle
WSN wireless sensor network
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