
Second-Order Convergence in Private Stochastic
Non-Convex Optimization

Youming Tao
TU Berlin & Shandong University

tao@ccs-labs.org

Zuyuan Zhang
The George Washington University

zuyuan.zhang@gwu.edu

Dongxiao Yu
Shandong University
dxyu@sdu.edu.cn

Xiuzhen Cheng
Shandong University
xzcheng@sdu.edu.cn

Falko Dressler
TU Berlin

dressler@ccs-labs.org

Di Wang
KAUST

di.wang@kaust.edu.sa

Abstract

We investigate the problem of finding second-order stationary points (SOSP) in
differentially private (DP) stochastic non-convex optimization. Existing methods
suffer from two key limitations: (i) inaccurate convergence error rate due to over-
looking gradient variance in the saddle point escape analysis, and (ii) dependence
on auxiliary private model selection procedures for identifying DP-SOSP, which
can significantly impair utility, particularly in distributed settings. To address
these issues, we propose a generic perturbed stochastic gradient descent (PSGD)
framework built upon Gaussian noise injection and general gradient oracles. A core
innovation of our framework is using model drift distance to determine whether
PSGD escapes saddle points, ensuring convergence to approximate local minima
without relying on second-order information or additional DP-SOSP identification.
By leveraging the adaptive DP-SPIDER estimator as a specific gradient oracle, we
develop a new DP algorithm that rectifies the convergence error rates reported in
prior work. We further extend this algorithm to distributed learning with arbitrarily
heterogeneous data, providing the first formal guarantees for finding DP-SOSP
in such settings. Our analysis also highlights the detrimental impacts of private
selection procedures in distributed learning under high-dimensional models, under-
scoring the practical benefits of our design. Numerical experiments on real-world
datasets validate the efficacy of our approach.

1 Introduction

Stochastic optimization is a fundamental problem in machine learning and statistics, aimed at training
models that generalize well to unseen data using a finite sample drawn from an unknown distribution.
As the volume of sensitive data continues to grow, privacy has become a pressing concern. This has
led to the widespread adoption of differential privacy (DP) [11], which provides rigorous privacy
guarantees while preserving model utility in learning tasks.

In the past decade, significant progress has been made in DP stochastic optimization, particularly
for convex objectives [8, 29, 41, 39, 43]. While convex problems are relatively well understood,
non-convex optimization introduces unique challenges, primarily due to the presence of saddle points.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Most existing DP algorithms for non-convex problems focus on finding first-order stationary points
(FOSP), characterized by small gradient norms [2, 5, 54]. However, FOSP include not only local
minima but also saddle points and local maxima, often leading to suboptimal solutions [21, 42].
Consequently, second-order stationary points (SOSP), where the gradient is small and the Hessian is
positive semi-definite, are more desirable as they guarantee convergence to local minima.

Motivated by this, substantial research has been devoted to finding SOSP in non-convex optimiza-
tion [14, 24, 10, 22, 17]. However, the study of SOSP under differential privacy constraints (DP-
SOSP) remains limited. At the same time, distributed learning has become increasingly important for
training large-scale models across decentralized edge devices. Yet, no existing work has addressed
DP-SOSP in non-convex stochastic optimization under distributed settings. Compared to single-
machine setups, distributed learning introduces additional challenges, including data heterogeneity,
cross-participant privacy, and communication efficiency.

Limitations in the State-of-the-Art. A notable exception in the study of DP-SOSP for stochastic
optimization is the recent work by [30], which injects additional Gaussian noise into the DP gradient
estimator near saddle points to facilitate escape. Despite its contributions, this method suffers from
two key limitations. (i) Its saddle point escape analysis overlooks the variance of gradients, leading
to incorrect error bounds. A direct correction of the analysis would unfortunately yield a weaker type
of SOSP guarantee than originally targeted. This is because their design relies on additional injected
noise beyond the inherent DP noise for escape, highlighting the need for an effective way of exploiting
the DP noise already present. (ii) Their learning algorithm outputs all model iterates and guarantees
only the existence of a DP-SOSP, requiring an auxiliary private model selection procedure to identify
one. While effective in single-machine settings, it faces critical issues in distributed environments due
to decentralized data access. In particular, auxiliary private selection introduces non-negligible error
and communication overhead, especially when sharing high-dimensional second-order information.
These drawbacks also underscore the necessity of a new learning algorithm that inherently outputs a
DP-SOSP without dependence on any additional private selection procedure.

Our Contributions. We refer to Appendix A for more detailed discussions of the limitations outlined
above. To address the challenges identified above, we propose a generic algorithmic and analytical
framework for finding DP-SOSP in stochastic non-convex optimization. Our approach not only
corrects existing error rates but also extends naturally to distributed learning. The main contributions
are summarized as follows:

1. A generic non-convex stochastic optimization framework: We introduce a perturbed stochastic
gradient descent (PSGD) framework that employs Gaussian noise and general stochastic gradient
oracles. This framework serves as a versatile optimization tool for non-convex stochastic problems
beyond the DP setting. A key innovation is a novel criterion based on model drift distance, which
enables provable saddle point escape and guarantees convergence to approximate local minima with
low iteration complexity and high probability.

2. Corrected error rates for DP non-convex optimization: By incorporating the adaptive DP-
SPIDER estimator as the gradient oracle, we develop a differentially private algorithm that achieves a
corrected error rate bound of Õ

(
1

n1/3 +
(√

d
ϵn

)2/5)
, where n is the number of samples. This corrects

the suboptimal bound of Õ
(

1
n1/3 +

(√
d

ϵn

)3/7)
reported in [30].

3. Application to distributed learning: We extend the adaptive DP-SPIDER estimator to distributed
learning. Via adaptivity, our learning algorithm improves upon the DIFF2 [37], which only guarantees
convergence to DP-FOSP under homogeneous data. In contrast, our method provides the first error
bound for converging to DP-SOSP under arbitrarily heterogeneous data: Õ

(
1

(mn)1/3
+
(√

d
ϵmn

)2/5)
,

where m is the number of participants and n is the number of samples per participant. Furthermore,
we analyze the adverse effects of private model selection, showing that it deteriorates utility guarantees
in high-dimensional regimes, thereby highlighting the necessity of our framework.

Due to the space limit, technical lemmata, omitted proofs, experimental results and broader
impacts, conclusions are all included in the Appendix.

2

2 Related Work

Private Stochastic Optimization. Differential privacy (DP) has become a crucial consideration
in stochastic optimization due to increasing concerns about data privacy. The pioneering work by
[11] established the foundational principles of DP, and its application in stochastic optimization has
since seen significant progress. Early efforts primarily focused on convex optimization, achieving
strong privacy guarantees while ensuring efficient learning, with a long list of representative works
e.g., [6, 51, 48, 4, 47, 49, 15, 5, 20, 43, 41, 8, 40]. Recent advances have extended DP to non-convex
settings, mainly focusing on first-order stationary points (FOSP). Notable works in this area include
[46, 54, 5, 52, 2], which improved error rates in non-convex optimization with balanced privacy
and utility in stochastic gradient methods. However, these works generally fail to address the more
stringent criterion of second-order stationary points (SOSP). The very recent work [30] tired to narrow
this gap, but unfortunately has some issues in their results as we discussed before. Our work builds
on this foundation by correcting error rates and proposing a framework that ensures convergence to
SOSP while maintaining DP.

Finding SOSP. In non-convex optimization, convergence to FOSP is often insufficient, as saddle
points can lead to sub-optimal solutions [21, 42]. Achieving SOSP, where the gradient is small and the
Hessian is positive semi-definite, ensures that the optimization converges to a local minimum rather
than a saddle point. Techniques for escaping saddle points, such as perturbed SGD with Gaussian
noise, have been explored in works like [17] and [24]. [17] first showed that SGD with a simple
parameter perturbation can escape saddle points efficiently. Later, the analysis was refined by [22, 24].
Recently, variance reduction techniques have been applied to second-order guaranteed methods
[18, 28].These methods ensure escape from saddle points by introducing noise to the gradient descent
process. In contrast, the studies of SOSP under DP are quite limited, and most of them only consider
the empirical risk minimization objective, such as [46, 50, 3]. Very recently, [30] addressed the
population risk minimization objective, but with notable gaps in their error analysis, particularly in
the treatment of gradient variance. Moreover, all of these works are limited to the single-machine
setting and cannot be directly extended to the more general distributed learning setting.

Distributed Learning. With the rise of large-scale models and decentralized data, distributed learning
has gained significant attention. Methods like federated learning [34] have enabled multiple clients to
collaboratively train models without sharing their local data. Recent studies, such as [16, 32, 33] have
investigated DP learning in distributed settings, but these works are limited to first-order optimality.
While some studies have investigated SOSP in distributed learning, their focus was primarily on
Byzantine-fault tolerance [53], and communication efficiency [36, 7]. No effort, to our knowledge,
has been made to to ensure DP-SOSP in distributed learning scenarios with heterogeneous data.
Our proposed framework fills this gap by introducing the first distributed learning algorithm with
DP-SOSP guarantees while effectively handling arbitrary data heterogeneity across clients.

3 Preliminaries

Notations. We denote by ∥ · ∥ the ℓ2 norm and by λmin(·) the smallest eigenvalue of a matrix. The
symbol Id represents the d-dimensional identity matrix. We use O(·) and Ω(·) to hide constants
independent of problem parameters, while Õ(·) and Ω̃(·) additionally hide polylogarithmic factors.

Stochastic Optimization. Let f : Rd ×Z → R be a (potentially non-convex) loss function, where
x ∈ Rd denotes the d-dimensional model parameter and z ∈ Z is a data point.

Assumption 1. The loss function f(·; z) is G-Lipschitz, M -smooth, and ρ-Hessian Lipschitz.
Specifically, for any z ∈ Z and any x1, x2 ∈ Rd, we have: (i) |f(x1; z)− f(x2; z)| ≤ G∥x1 − x2∥;
(ii) ∥∇f(x1; z)−∇f(x2; z)∥ ≤M∥x1 − x2∥; (iii) ∥∇2f(x1; z)−∇2f(x2; z)∥ ≤ ρ∥x1 − x2∥.

Let D denote the unknown data distribution. The population risk is defined as the expected loss:
FD(x) := Ez∼D[f(x; z)] for ∀x ∈ Rd. When clear from context, we omit D and simply write F (x).

Assumption 2. Let x∗ denote a minimizer of the population risk and F ∗ = F (x∗) its minimum
value. There exists U ∈ R such that maxx F (x)− F ∗ ≤ U .

3

Let D denote a dataset of n i.i.d. samples from D. The empirical risk is defined as f̂D(x) :=
1

|D|
∑
z∈D f(x; z). Given access to D, the goal is to find an approximate second-order stationary

point (SOSP) of the unknown population risk F (·). In general, we have the notion of (αg, αH)-SOSP:
Definition 1 ((αg, αH)-SOSP). A point x is an (αg, αH)-SOSP of a twice differentiable function
F (·) if x satisfies ∥∇F (x)∥ ≤ αg and ∇2F (x) ⪰ −αH · Id.

As shown in [53, Proposition 1], there exists a lower bound of Õ(α
1/2
g) for αH given αg, implying

that an (α, Õ(
√
α))-SOSP is the best second-order guarantee achievable. Accordingly, we target the

notion of α-SOSP in this work, following [30].
Definition 2 (α-SOSP). A point x is an α-SOSP of a twice differentiable function F (·) if x satisfies
∥∇F (x)∥ ≤ α and ∇2F (x) ⪰ −√ρα · Id.

An α-SOSP excludes α-strict saddle points where ∇2F (x) ⪯ −√ραId, thereby ensuring conver-
gence to an approximate local minimum. Following prior work [30, 24], we assume M ≥ √ρα so
that finding an SOSP is strictly more challenging than finding an FOSP.

Distributed Learning. In the distributed (federated) learning setting, m clients collaboratively
learn under the coordination of a central server. Each client j ∈ [m] has a local dataset Dj of size
n, sampled from an unknown local distribution Dj . The population risk for client j is defined as
FDj

(x) := Ez∼Dj [f(x; z)] or simply Fj(x). The global population risk is defined as the average of
the local population risks: FD(x) :=

1
m

∑
j∈[m] Fj(x), or simply F (x). We allow for heterogeneous

local datasets, meaning that the local distributions {Dj}j∈[m] may differ arbitrarily.

Differential Privacy. We aim to find an α-SOSP under the requirment of Differential Privacy (DP),
which is referred to as an α-DP-SOSP. We say two datasets D and D′ are adjacent if they differ by at
most one record. DP ensures that the output of the stochastic optimization algorithm on any pair of
adjacent datasets is statistically indistinguishable.
Definition 3 (Differential Privacy (DP) [11]). Given ϵ, δ > 0, a randomized algorithm A : Z → X
is (ϵ, δ)-DP if for any pair of adjacent datasets D,D′ ⊆ Z , and any measurable subset S ⊆ X ,

P[A(D) ∈ S] ≤ exp(ϵ) · P[A(D′) ∈ S] + δ.

In distributed learning, we focus on inter-client record-level DP (ICRL-DP), which assumes that
clients do not trust the server or other clients with their sensitive local data. This notion has been
widely adopted in state-of-the-art distributed learning works, such as [16, 32, 33].
Definition 4 (Inter-Client Record-Level DP (ICRL-DP)). Given ϵ, δ > 0, a randomized algorithm
A : Zm → X satisfies (ϵ, δ)-ICRL-DP if, for any client j ∈ [m] and any pair of local datasets Dj and
D′
j , the full transcript of client j’s sent messages during the learning process satisfies (3), assuming

fixed local datasets for other clients.

Variance Reduction via SPIDER. Since the population risk F (·) is unknown, standard SGD
approximates the true gradient ∇F (xt−1) at iteration t using a stochastic estimate gt. However,
such estimates often exhibit high variance, degrading convergence. The Stochastic Path Integrated
Differential Estimator (SPIDER) [13] mitigates this variance using two gradient oracles O1 and O2.
For a mini-batch Bt at iteration t, we define

O1(xt−1,Bt) := ∇f̂Bt
(xt−1), O2(xt−1, xt−2,Bt) := ∇f̂Bt

(xt−1)−∇f̂Bt
(xt−2).

SPIDER queries O1 every p iterations to refresh the gradient estimate. Between these updates, it uses
O2 to incrementally refine the estimate:

gt =

{
O1(xt−1,Bt), if (t− 1) mod p = 0,

gt−1 +O2(xt−1, xt−2,Bt), otherwise.

For smooth functions, the variance of O2(xt−1, xt−2,Bt) scales with ∥xt−1 − xt−2∥, which is
typically small when updates are minimal. This allows SPIDER to achieve low-variance gradient
estimates while maintaining accuracy.

We choose SPIDER because it achieves state-of-the-art error rates for privately finding first-order
stationary points (DP-FOSP) [2]. Our goal is to investigate whether its variance reduction can extend
to DP-SOSP. Importantly, the insights in this paper are not specific to SPIDER; they also apply
to other variance-reduced methods such as STORM [9] or SARAH [38]. However, since these
algorithms are conceptually similar, no significant improvement is expected from substituting them.

4

4 Our Generic Perturbed SGD Framework

Algorithm 1: Gauss-PSGD: Gaussian
Perturbed Stochastic Gradient Descent

Input: Failure probability ω, initial
model x0, learning rate η, # of
escape repeats Q, model deviation
thresholdR, # of escape steps Γ

1 t← 0;
2 while true do
3 t← t+ 1;
4 ĝt ← P_Grad_Oracle(∗);
5 if ∥ĝt∥ ≤ 3χ then

/* Saddle point escape */
6 t̃← t, x̃← xt−1, esc← false;
7 for q ← 1, · · · , Q do
8 t← t̃, xt ← x̃;
9 for τ ← 1, · · · ,Γ do

10 ĝt ←
P_Grad_Oracle(∗) ;

11 xt ← xt−1 − η · ĝt;
12 if ∥xt − x̃∥ ≥ R then
13 esc← true;
14 break;
15 else
16 t← t+ 1;

17 if esc = true then
18 break;

19 if esc = false then
20 return xt−1

21 else
/* Normal descent step */

22 xt ← xt−1 − η · ĝt;

In this section, we introduce a generic frame-
work for finding an α-SOSP of the population
risk FD(·) by escaping saddle points. Our frame-
work is a Gaussian perturbed stochastic gradient
descent method, denoted as Gauss-PSGD.

4.1 Gradient Oracle Setup

Since ∇FD(·) is unknown, direct gradient de-
scent is infeasible. As in standard stochastic op-
timization, we assume access to a stochastic gra-
dient oracle gt that approximates ∇FD(xt−1) at
iteration t. For example, gt can be computed as
an empirical gradient over a mini-batch Bt sam-
pled from D. We model the oracle as

gt = ∇F (xt−1) + ζt, (1)

where ζt represents inherent gradient noise. Fol-
lowing [24, 30], we assume ζt ∼ nSG(σ), where
nSG denotes a norm-sub-Gaussian distribution
(Definition 7 in Appendix B).

To enable saddle point escape, we introduce an
additional Gaussian perturbation to form a per-
turbed gradient oracle ĝt:

ĝt = gt + ξt = ∇F (xt−1) + ζt + ξt, (2)

where ξt ∼ N (0, r2Id). We define the effective
noise magnitude in ĝt as

ψ :=
√
σ2 + r2d. (3)

The model update is then performed by

xt ← xt−1 − ηĝt. (4)

Our problem setting fundamentally differs from that in [24]. In their setting, the target error α is given,
and the perturbation magnitude r is determined accordingly. In contrast, in our privacy-constrained
setting, r is dictated by the privacy parameters (ϵ, δ), and the goal is to achieve the smallest possible
α under this constraint. Crucially, their parameterization r = O(

√
(σ2 + α3/2)/d) implies that r

depends on both σ and α, determined by max{σ/
√
d, α3/4/

√
d}. This non-invertible relationship

between r and α makes their setting incompatible with ours. First, under DP constraints, r is
determined by (ϵ, δ) and may be smaller than σ/

√
d in weak privacy regimes, violating the required

lower bound. Second, because r and α are not uniquely determined by each other, it is not meaningful
to directly translate their error bounds into our setting. Thus, their analysis and results cannot be
directly applied to our problem.

4.2 Our Approach: A General Gaussian-Perturbed SGD Framework

We present our Gauss-PSGD framework in Algorithm 1, which finds an α-SOSP with high probability
at least 1−ω. As specified in (2), we employ a general Gaussian-perturbed stochastic gradient oracle,
denoted as P_Grad_Oracle(∗) in steps 4 and 10, where ∗ abstracts the specific arguments required
by the oracle implementation. This abstraction allows Gauss-PSGD to serve as a flexible optimization
framework for non-convex stochastic problems, applicable beyond the differential privacy (DP)
setting.

At each iteration, the gradient estimate ĝt is computed by P_Grad_Oracle(∗), and the model
parameter is updated via the gradient descent step in (4). The algorithm proceeds until it encounters a

5

point x̃ satisfying ∥ĝt∥ ≤ 3χ, where χ is specified in (5). This point x̃ may lie near a saddle point
with a large negative eigenvalue of the Hessian. To escape such a saddle point, the framework enters
an escape procedure (steps 6–20), which performs Q rounds of Γ-descent (steps 9–16).

In each round, the algorithm executes at most Γ perturbed SGD iterations starting from x̃. If at any
iteration we observe ∥xt − x̃∥ ≥ R for a thresholdR (specified in (5)), indicating that the iterate has
moved sufficiently far from x̃, we declare that the algorithm has successfully escaped the saddle point
and resume normal PSGD from xt. If no such movement is observed after Q rounds, we declare x̃
an α-SOSP of the population risk FD(·) and output x̃. The repetition over Q rounds ensures a high
probability of escape: as we will prove later, each Γ-descent succeeds in escaping a saddle point
with constant probability, and multiple repetitions reduce the failure probability to any desired level.

A central innovation of our framework is using model drift distance as the escape criterion (step 12),
replacing the function value decrease criterion used in [22, 24]. This design enables the algorithm to
identify an SOSP with high probability during the optimization process itself, eliminating the need for
an auxiliary private model selection step. Our key insight is as follows: escaping a saddle point not
only causes a decrease in the objective function [22, 24] but also induces a substantial displacement
of the model parameter beyond a thresholdR. Shifting from monitoring function values to tracking
parameter movement is critical in population risk settings, where the objective function is unknown
and function evaluations are unavailable, unlike in empirical risk minimization [22]. However, the
model iterates and their deviations are observable. By leveraging this property, our framework can
directly output an SOSP, rather than merely guaranteeing its existence among the iterates.

4.3 Main Results for Gauss-PSGD Framework

We begin by introducing the parameter setup and notations used throughout the analysis:

ι := sµ, χ := 4
√
Csµ2ψ, α := 4χ,

Γ :=
ι

sη
√
ρα
, R :=

1

ι1.5

√
α

ρ
, Φ :=

s

8ι3

√
α3

ρ
, η :=

√
ρα

M2ι2
.

(5)

where s is a sufficiently large absolute constant to be chosen later, and µ is a logarithmic factor:

µ := max

1

s
log

9d log
(

4C1/4

sηr

√
ψ
ρ

)
C1/4η

√
sρψ

 , log

(
160
√
2C1/4

s
√
ηr

√
ψ

ρ

)
,

(
C log 4T

ω

)1/4
2

3
4
√
s

, 1

 . (6)

Here C is an absolute constant that may change across expressions. The rationale behind these
parameter choices is further discussed in Remark 2 following Theorem 1. Let x̃ denote a saddle
point of the population risk F (·), and H := ∇2F (x̃). Let vmin be the eigenvector corresponding
to λmin(H), and P−vmin

be the projection onto the orthogonal complement of vmin. Set γ :=
−λmin(H).
Definition 5 (Coupling Sequence). Let {xi} and {x′i} be two PSGD sequences initialized at x̃. We
say they are coupled if they share the same randomness for P−vmin

ξt and ζt at each iteration t, but
use opposite perturbations in the vmin direction: v⊤minξt = −v⊤minξ

′
t.

The following lemma ensures that under Γ-descent, at least one of the coupled sequences escapes
the saddle point with constant probability (proof in Appendix C.1).
Lemma 1 (Escaping Saddle Points). Let {xi} and {x′i} be coupled PSGD sequences initialized at
x̃ such that ∥∇F (x̃)∥ ≤ α and λmin(∇2F (x̃)) ≤ −√ρα. Then, with probability at least 1/4, there
exists τ ≤ Γ such that max {∥xτ − x̃∥, ∥x′τ − x̃∥} ≥ R.

From this, we immediately obtain a corollary that applies to any PSGD sequence:
Corollary 1. For any PSGD sequence {xi} starting at x̃ with ∥∇F (x̃)∥ ≤ α and λmin(∇2F (x̃)) ≤
−√ρα, with probability at least 1/8, there exists t ≤ Γ such that ∥xt − x̃∥ ≥ R.

To ensure a high-probability escape from a saddle point, we repeat Γ-descent for Q rounds:
Lemma 2 (Escape Amplification via Repetition). Given any ω0 ∈ (0, 1), repeating Γ-descent
independently for Q = 26

5 log(1
ω0

) rounds ensures escape with probability at least 1− ω0.

6

The proof is deferred to Appendix C.2. We now analyze the total number of PSGD steps needed for
convergence. Let νt := ζt + ξt denote the combined noise in the gradient estimate.
Lemma 3 (Descent Lemma). For any t0, the following holds:

F (xt0+t)− F (xt0)≤−
η

2

t−1∑
i=0

∥∇F (xt0+i)∥2 +
η

2

t∑
i=1

∥νt0+i∥2 (7)

Since νt can be bounded with high probability, we have:
Corollary 2. For any t0 and some constant c, with probability at least 1− 2e−ι,

F (xt0+t)− F (xt0) ≤ −
η

2

t−1∑
i=0

∥∇F (xt0+i)∥2 + cηψ2(t+ ι). (8)

Proofs of Lemma 3 and Corollary 2 are in Appendix C.3 and C.4. These imply that large gradients
lead to rapid function decrease. We next show in Lemma 4 that a successful saddle point escape via
Γ-descent leads to a significant decrease in function value, whose proof is in Appendix C.5.
Lemma 4 (Value Decrease per Escape). Let a Γ-descent starting from xt0 succeed after τ ≤ Γ

steps. With probability at least 1− 2e−ι, F (xt0+τ)− F (xt0) ≤ − s
8ι3

√
α3

ρ = −Φ.

We bound the total number of PSGD steps required for convergence, based on the following estimate:
Lemma 5 (Gradient Estimate Error Bound). With probability at least 1 − ω/2, for all t ∈ [T],

∥νt∥ ≤ C
√
2 log

(
4T
ω

)
ψ ≤ χ.

Lemma 6 (Maximum Number of Descent Steps). Given failure probability ω, set Q =
26
5 log

(
16ι3(F0−F∗)

sω

√
ρ
χ3

)
. Gauss-PSGD returns an α-SOSP within at most Õ(1/α2.5) PSGD steps.

Proofs of Lemmas 5 and 6 are in Appendix C.6 and C.7, respectively.
Remark 1 (On Gradient Complexity). While Lemma 6 appears to improve gradient complexity from
O(1/α4) in [24] to O(1/α2.5), the two results are not directly comparable. In [24], the error target
α is treated as an input and can be arbitrarily small, with gradient variance σ typically treated as a
constant. In contrast, in our setting, the perturbation r and variance σ are fixed by privacy constraints,
and α emerges as a function of these. Thus, our gradient complexity fundamentally depends on σ
and r, though we express it in terms of α for clarity.

Combining all the above, we obtain the final convergence guarantee:
Theorem 1 (Convergence Guarantee of Gauss-PSGD). Let Assumptions 1 and 2 hold. For
any failure probability ω ∈ (0, 1), using the parameter settings in (5) and setting Q =
26
5 log

(
16ι3(F0−F∗)

sω

√
ρ
χ3

)
, then with probability at least 1 − ω, Gauss-PSGD (Algorithm 1) re-

turns an α-SOSP of F (·), where α = 4χ, within at most Õ(1/α2.5) PSGD steps.
Remark 2 (On the setting of parameters). The parameters introduced in (5) are chosen in accordance
with our convergence and privacy analysis. Specifically, the escape threshold χ matches the gradient
estimation error, ensuring a uniform expected decrease in the objective value per PSGD step (cf.
Lemma 5 and Lemma 6). The model drift threshold κ balances the cumulative error from the gradient
oracles O1 and O2, while the maximum drift threshold R and maximum escape steps Γ jointly
control the curvature-dependent term Ph(t) and keep the stochastic gradient noise Psg(t) bounded
(see Eq. (41) and (43)). Finally, the repeat number Q is chosen to grow logarithmically in the failure
probability parameter to amplify the overall success probability, as established in Lemma 2.

5 Rectified Error Rate for finding SOSP in DP Stochastic Optimization

5.1 Adaptive Gradient Oracle: Ada-DP-SPIDER

In this section, we derive the upper bound on the error rate for DP stochastic optimization by
instantiating the Gauss-PSGD framework with a specific gradient oracle. We adopt an adaptive version

7

of the DP-SPIDER estimator, referred to as Ada-DP-SPIDER, which is presented in Algorithm 2.
This adaptive version refines the original SPIDER by dynamically adjusting gradient queries based
on model drift. Unlike standard SPIDER, which queries O1 at fixed intervals and may suffer from
growing estimation error over time, Ada-DP-SPIDER tracks the cumulative model drift defined as

driftt :=
t∑

i=τ(t)

∥xi − xi−1∥2, (9)

where τ(t) is the last iteration at which the full gradient oracle O1 was queried.

The intuition is that, for smooth functions, the error of O2, which estimates∇F (xt−1)−∇F (xt−2),
is proportional to ∥xt−1 − xt−2∥. When the model drift is small, O2 remains accurate, allowing for
continued use to reduce variance (steps 9-11). However, when the drift becomes large, further use
of O2 can accumulate significant errors. To mitigate this, the algorithm triggers a fresh query to O1

(steps 4-7). A threshold κ is used in step 3 to determine when the drift is large. This enables adaptive
switching between oracles based on the model drift, ensuring the total error remains well controlled.

Our approach differs fundamentally from that of [30]. In their method, in addition to using model drift
to trigger O1, they also invoke O1 when approaching potential saddle points and inject an additional
Gaussian noise on top of the DP gradient estimator to escape. To prevent excessive noise injection,
they introduce a Frozen state to restrict how frequently this occurs. In contrast, our method leverages
the inherent Gaussian noise from the DP gradient estimator for saddle point escape and uses model
drift as the sole trigger for querying O1. This results in a simpler, more efficient estimator without
auxiliary state tracking or redundant noise injection.

5.2 Error Rate Analysis for DP-SOSP with Ada-DP-SPIDER

To minimize the error rate α for DP-SOSP using Ada-DP-SPIDER, we must carefully tune algorithmic
parameters, including the mini-batch sizes b1, b2, and the drift threshold κ. These parameters directly
influence the gradient estimation error, which, according to Theorem 1, dominates the learning error.
The following lemma characterizes how these parameters affect the estimation quality:
Lemma 7. Let Assumption 1 hold. For all t ∈ [T], the gradient estimate ĝt given by Ada-DP-SPIDER

satisfies: σ ≤ O
(√

G2 log2 d
b1

+ M2 log2 d
b2

κ

)
, r ≤ O

(√
G2 log(1/δ)

b21ϵ
2 + M2 log(1/δ)

b22ϵ
2 κ

)
.

The proof is given in Appendix D.1. To ensure that b1 and b2 remain valid mini-batch sizes under a
fixed sample budget, we must control the number of times O1 is queried. Lemma 8 bounds the count:
Lemma 8. Let Assumption 1 and 2 hold. Define T := {t ∈ [T] : driftt ≥ κ} as the set of rounds
where the drift exceeds the threshold κ. With high probability (as in Theorem 1), |T | ≤ O (Uη/κ).

Proof is in Appendix D.2. Guided by Lemmas 7 and 8, we now derive the error bound for α via
appropriate choices of b1, b2, and κ in Theorem 2. The proof is provided in Appendix D.3.

Theorem 2. Let Assumption 1 and 2 hold. Define b1 = nκ
2Uη , b2 = nηχ2

2U and κ =

max
{
G3/2U1/2ρ1/2

M5/2n1/2 , G
14/15d2/5U4/5ρ8/15

M34/15(nϵ)4/5

}
. Then, running Gauss-PSGD with gradient oracle in-

stantiated by Ada-DP-SPIDER ensures (ϵ, δ)-DP for constants c1, c2 and returns an α-SOSP with

α = Õ

(
1

n1/3 +
(√

d
nϵ

)2/5)
1.

Remark 3 (No Cyclic Dependency Among Parameters). All algorithmic parameters are consistently
defined in terms of the problem parameters n, d, and ϵ. Specifically, Gauss-PSGD parameters such as
the step size η and the noise scale χ depend on the target error α (see (5)), and the gradient oracle
parameters b1 and b2 are defined through η and χ, and thus also indirectly depend on α. In the proof of
Theorem 2, by utilizing the relationship α = Õ(

√
σ2 + r2d), we obtain the closed-form expression

of α that depends solely on the problem parameters n, d, and ϵ. As a result, all algorithm parameters
are ultimately determined by n, d, and ϵ, and there is no cyclic dependency in the parameter design.

1For clarity, the bound stated here omits constant factors stemming from the Lipschitzness, smoothness, and
Hessian Lipschitz assumptions. The complete expression, including these constants and their dependencies, is
provided in the proof in Appendix. The same convention applies to Theorem 3.

8

Algorithm 2: Ada-DP-SPIDER
Input: DP budget ϵ and δ, horizon T ,

model iterates {xt−1}Tt=1,
drift threshold κ

1 t← 1, drift← κ;
2 while t ≤ T do
3 if drift ≥ κ then

/* Using oracle O1 */
4 Sample mini-batch Bt of size

b1 from D;
5 Sample

ξt ∼ N (0, c1
G2 log 1

δ

b21ϵ
2 Id);

6 ĝt ← O1(xt−1,Bt) + ξt;
7 drift← 0;
8 else

/* Using oracle O2 */
9 Sample mini-batch Bt of size

b2 from D;
10 Sample ξt ∼ N (0,

c2
M2 log 1

δ

b22ϵ
2 ∥xt−1−xt−2∥2Id);

11 ĝt ← ĝt−1 +
O2(xt−1, xt−2,Bt) + ξt;

12 drift← drift + η2∥ĝt∥2;
13 t← t+ 1;

Output: ĝ1, ĝ2, · · · , ĝT

Algorithm 3: Distributed Ada-DP-SPIDER
Input: DP budget ϵ and δ, horizon T , model

iterates {xt−1}Tt=1, drift threshold κ
1 t← 1, drift← κ;
2 while t ≤ T do
3 if drift ≥ κ then
4 for every client j in parallel do
5 Sample mini-batch Bj,t of size b1

from Dj ;
6 Sample

ξj,t ∼ N (0, c1
G2 log 1

δ

b21ϵ
2 Id);

7 ĝj,t ← O1(xt−1,Bj,t) + ξj,t;
8 Send ĝj,t to the server;
9 drift← 0;

10 else
11 for every client i in parallel do
12 Sample mini-batch Bj,t of size b2

from Dj ;
13 Sample ξj,t ∼ N (0,

c2
M2 log 1

δ

b22ϵ
2 ∥xt−1−xt−2∥2Id);

14 ĝj,t ← ĝj,t−1 +
O2(xt−1, xt−2,Bj,t) + ξj,t;

15 Send ĝj,t to the server;

16 ĝt ← 1
m

∑m
j=1 ĝj,t;

17 drift← drift + η2∥ĝt∥2;
18 t← t+ 1;

Output: ĝ1, ĝ2, · · · , ĝT

6 Extension to Distributed SGD

By adapting the centralized gradient oracle Ada-DP-SPIDER (Algorithm 2) to the distributed setting,
we obtain Distributed Ada-DP-SPIDER (Algorithm 3), enabling our Gauss-PSGD framework to
extend seamlessly to distributed learning scenarios. The primary difference lies in the computation
and communication scheme: in the distributed variant, each client performs local gradient estimation
with private noise and communicates the privatized estimate to the server, which then aggregates the
results. This avoids centralized access to raw data while still leveraging collective information.

The learning algorithm using Distributed Ada-DP-SPIDER can be viewed as an adaptive extension
of the DIFF2 algorithm [37], which uses standard SPIDER and is limited to convergence to DP-FOSP
under homogeneous data. To the best of our knowledge, our method is the first to achieve convergence
to a DP-SOSP in a distributed setting with arbitrarily heterogeneous data.

Following the same analytical strategy as in Section 5, we first quantify in Lemma 9 the gradient
estimation quality in the distributed case. The proof is provided in Appendix E.1.

Lemma 9. Let Assumption 1 hold. For all t ∈ [T], the distributed Ada-DP-SPIDER ensures that the

gradient estimate ĝt satisfies σ ≤ O
(√

G2 log2 d
m·b1 + M2 log2 d

m·b2 κ

)
, r ≤ O

(√
G2 log 1

δ

m·b21ϵ2
+

M2 log 1
δ

m·b22ϵ2
κ

)
.

Based on this, we derive the error bound for α in the distributed setting. The proof is in Appendix E.2.

Theorem 3. Let Assumption 1 and 2 hold. Define b1 = nκ
2Uη , b2 = nηχ2

2U and κ =

max
{
G3/2U1/2ρ1/2

M5/2(mn)1/2
, G

14/15d2/5U4/5ρ8/15

M34/15(
√
mnϵ)4/5

}
. Then, running Gauss-PSGD with gradient oracle instanti-

ated by distributed Ada-DP-SPIDER ensures (ϵ, δ)-ICRL-DP for some constants c1, c2, and returns

an α-SOSP with α = Õ

(
1

(mn)1/3
+
(√

d√
mnϵ

)2/5)
.

9

Algorithm 4: Private Model Selection in Distributed Learning

Input: Model iterates {xt}Tt=1, DP budget ϵ, δ
1 for t← 1, · · · , T do
2 for every client j in parallel do
3 Compute∇F̄j(xt)← ∇f̂Sj

(xt) + θi,t, where θi,t ∼ N
(
0, c1

G2T log(1/δ)
n2ϵ2 Id

)
;

4 Compute∇2F̄j(xt)← ∇2f̂Sj
(xt) +Hj,t, where Hj,t is a symmetric matrix with its

upper triangle (including the diagonal) being i.i.d. samples from
N
(
0, c2

M2dT log(1/δ)
n2ϵ2

)
and each lower triangle entry is copied from its upper

triangle counterpart;
5 Send ∇F̄j(xt) and ∇2F̄j(xt) to the server;

6 ∇F̄ (xt)← 1
m

∑m
j=1∇F̄j(xt),∇2F̄ (xt)← 1

m

∑m
j=1∇2F̄j(xt);

7 if ∥∇F̄ (xt)∥2 ≤ α+
G log(8d/ω′)√

mn
+

G
√
dT log(1/δ) log(16/ω′)√

mnϵ
and

λmin

(
∇2F̄ (xt)

)
≥ −

(
√
ρα+M

√
log(8d/ω′)

mn +
Md
√
T log(1/δ) log(32/ω′)√

mnϵ

)
then

8 Return xt

Remark 4. The error rate shown in Theorem 3 highlights the collaborative synergy among clients,
indicating the learning performance benefits from distributed learning. Specifically, the first non-
private term of α exhibits a linear dependence on m before n, while the second term, which accounts
for the privacy cost, demonstrates a square root dependence

√
m before n. This separation reflects

the impact of data heterogeneity in distributed setting. The benefit of distributed collaboration under
DP constraints is consistent with prior results in heterogeneous federated learning [16].

We conclude by demonstrating the advantages of our Gauss-PSGD framework in distributed learning
by eliminating the need for a separate private model selection procedure. Without the guarantee
of directly outputting an α-SOSP, one must resort to evaluating all model iterates generated during
the learning process and privately selecting an approximate SOSP from them. As discussed in Ap-
pendix A, the AboveThreshold mechanism used in [30] for the single-machine case is not applicable
in distributed settings due to decentralized data access. To overcome this, we adapt [46, Algorithm 5]
to the distributed setting, resulting in Algorithm 4. In this scheme, each client computes privatized
gradients and Hessian estimates using additional local data, which are then aggregated by the server
to evaluate the stationary point conditions. Suppose a distributed learning algorithm produces a
sequence {xt}t∈[T] that contains at least one α-DP-SOSP. The following result characterizes the
quality of the point selected by Algorithm 4, whose proof is provided in Appendix E.3:

Theorem 4. Algorithm 4 satisfies (ϵ, δ)-ICRL-DP. Let Assumption 1 hold and mn ≥ 4
9 log

8d
ω′ , then

with probability at least 1− ω′, if there exists an α-SOSP xp ∈ {xt}Tt=1, then the selected point xo is

an α′-SOSP with α′=Õ
(
α+ 1

mn+
1√
mn

+ α√
mn

+
√
d√

mnϵα5/4 +
d√

mnϵα3/4 +
d2

mn2ϵ2α5/2

)
.

Remark 5. To ensure that the selected model’s error α′ does not exceed the training error α, the
following must hold:

√
d√

mnϵα5/4 +
d√

mnϵα3/4 +
d2

mn2ϵ2α5/2 ≤ Õ(α). This implies a constraint on the

model dimension: d ≤ min{(
√
mnϵ)2, (

√
mnϵ)6/13}. Thus, in high-dimensional regimes, private

model selection degrades the overall error rate, marking the limitation of selection-based approaches.

Remark 6. The error bound α′ in Theorem 4 can be improved by estimating the smallest eigenvalue
of the Hessian via Hessian-vector products using iterative methods such as the power method [26].
This reduces the dimensional dependence in the noise scale from O(d) to O(

√
d). However, the

remaining
√
d factor is sill problematic in high-dimensional settings. In contrast, in the single-machine

case, private model selection only requires perturbing scalar quantities, making the error independent
of dimension, preserving the error guarantee of the learning algorithm. In distributed settings,
sharing perturbed vectors becomes unavoidable. This emphasizes the necessity and superiority of our
Gauss-PSGD framework that inherently avoids the need for any separate model selection step.

10

Acknowledgments and Disclosure of Funding

Youming Tao was supported in part by the National Science Foundation of China (NSFC) under Grant
623B2068. Dongxiao Yu is supported in part by the Major Basic Research Program of Shandong
Provincial Natural Science Foundation under Grant ZR2025ZD18. Xiuzhen Cheng is supported in
part by the Major Basic Research Projects of Shandong Natural Science Foundation under Grant
ZR2022ZD02. Di Wang is supported in part by the funding BAS/1/1689-01-01 and funding from
KAUST - Center of Excellence for Generative AI, under award number 5940.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar,

and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pages 308–318, 2016.

[2] Raman Arora, Raef Bassily, Tomás González, Cristóbal A Guzmán, Michael Menart, and Enayat
Ullah. Faster rates of convergence to stationary points in differentially private optimization. In
International Conference on Machine Learning, pages 1060–1092. PMLR, 2023.

[3] Dmitrii Avdiukhin, Michael Dinitz, Chenglin Fan, and Grigory Yaroslavtsev. Noise is all you
need: Private second-order convergence of noisy sgd. arXiv preprint arXiv:2410.06878, 2024.

[4] Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Guha Thakurta. Private stochastic
convex optimization with optimal rates. Advances in neural information processing systems, 32,
2019.

[5] Raef Bassily, Cristóbal Guzmán, and Michael Menart. Differentially private stochastic opti-
mization: New results in convex and non-convex settings. Advances in Neural Information
Processing Systems, 34:9317–9329, 2021.

[6] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization:
Efficient algorithms and tight error bounds. In 2014 IEEE 55th annual symposium on foundations
of computer science, pages 464–473. IEEE, 2014.

[7] Sijin Chen, Zhize Li, and Yuejie Chi. Escaping saddle points in heterogeneous federated
learning via distributed sgd with communication compression. In International Conference on
Artificial Intelligence and Statistics, pages 2701–2709. PMLR, 2024.

[8] Christopher A Choquette-Choo, Arun Ganesh, and Abhradeep Thakurta. Optimal rates for
dp-sco with a single epoch and large batches. arXiv preprint arXiv:2406.02716, 2024.

[9] Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex
sgd. Advances in neural information processing systems, 32, 2019.

[10] Hadi Daneshmand, Jonas Kohler, Aurelien Lucchi, and Thomas Hofmann. Escaping saddles
with stochastic gradients. In International Conference on Machine Learning, pages 1155–1164.
PMLR, 2018.

[11] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography: Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pages 265–284.
Springer, 2006.

[12] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Founda-
tions and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

[13] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator. Advances in neural
information processing systems, 31, 2018.

[14] Cong Fang, Zhouchen Lin, and Tong Zhang. Sharp analysis for nonconvex sgd escaping from
saddle points. In Conference on Learning Theory, pages 1192–1234. PMLR, 2019.

11

[15] Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimization:
optimal rates in linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pages 439–449, 2020.

[16] Changyu Gao, Andrew Lowy, Xingyu Zhou, and Stephen J Wright. Private heterogeneous
federated learning without a trusted server revisited: Error-optimal and communication-efficient
algorithms for convex losses. arXiv preprint arXiv:2407.09690, 2024.

[17] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online
stochastic gradient for tensor decomposition. In Conference on learning theory, pages 797–842.
PMLR, 2015.

[18] Rong Ge, Zhize Li, Weiyao Wang, and Xiang Wang. Stabilized svrg: Simple variance reduction
for nonconvex optimization. In Conference on learning theory, pages 1394–1448. PMLR, 2019.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[20] Lijie Hu, Shuo Ni, Hanshen Xiao, and Di Wang. High dimensional differentially private
stochastic optimization with heavy-tailed data. In Proceedings of the 41st ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, pages 227–236, 2022.

[21] Prateek Jain, Chi Jin, Sham M Kakade, and Praneeth Netrapalli. Computing matrix squareroot
via non convex local search. arXiv preprint arXiv:1507.05854, 2015.

[22] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape
saddle points efficiently. In International conference on machine learning, pages 1724–1732.
PMLR, 2017.

[23] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. A short
note on concentration inequalities for random vectors with subgaussian norm. arXiv preprint
arXiv:1902.03736, 2019.

[24] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. On nonconvex
optimization for machine learning: Gradients, stochasticity, and saddle points. Journal of the
ACM (JACM), 68(2):1–29, 2021.

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[26] Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. 1950.

[27] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[28] Zhize Li. Ssrgd: Simple stochastic recursive gradient descent for escaping saddle points.
Advances in Neural Information Processing Systems, 32, 2019.

[29] Daogao Liu and Hilal Asi. User-level differentially private stochastic convex optimization:
Efficient algorithms with optimal rates. In International Conference on Artificial Intelligence
and Statistics, pages 4240–4248. PMLR, 2024.

[30] Daogao Liu, Arun Ganesh, Sewoong Oh, and Abhradeep Guha Thakurta. Private (stochastic)
non-convex optimization revisited: Second-order stationary points and excess risks. Advances
in Neural Information Processing Systems, 36, 2024.

[31] Ruixuan Liu, Yang Cao, Hong Chen, Ruoyang Guo, and Masatoshi Yoshikawa. Flame: Differ-
entially private federated learning in the shuffle model. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 8688–8696, 2021.

[32] Andrew Lowy, Ali Ghafelebashi, and Meisam Razaviyayn. Private non-convex federated
learning without a trusted server. In International Conference on Artificial Intelligence and
Statistics, pages 5749–5786. PMLR, 2023.

12

[33] Andrew Lowy and Meisam Razaviyayn. Private federated learning without a trusted server:
Optimal algorithms for convex losses. In The Eleventh International Conference on Learning
Representations, 2023.

[34] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

[35] Frank D McSherry. Privacy integrated queries: an extensible platform for privacy-preserving
data analysis. In Proceedings of the 28th ACM SIGMOD International Conference on Manage-
ment of data (SIGMOD), pages 19–30, 2009.

[36] Tomoya Murata and Taiji Suzuki. Escaping saddle points with bias-variance reduced local
perturbed sgd for communication efficient nonconvex distributed learning. Advances in Neural
Information Processing Systems, 35:5039–5051, 2022.

[37] Tomoya Murata and Taiji Suzuki. Diff2: Differential private optimization via gradient differ-
ences for nonconvex distributed learning. In International Conference on Machine Learning,
pages 25523–25548. PMLR, 2023.

[38] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for
machine learning problems using stochastic recursive gradient. In International conference on
machine learning, pages 2613–2621. PMLR, 2017.

[39] Jinyan Su, Lijie Hu, and Di Wang. Faster rates of private stochastic convex optimization. In
International Conference on Algorithmic Learning Theory, pages 995–1002. PMLR, 2022.

[40] Jinyan Su, Lijie Hu, and Di Wang. Faster rates of differentially private stochastic convex
optimization. Journal of Machine Learning Research, 25(114):1–41, 2024.

[41] Jinyan Su, Changhong Zhao, and Di Wang. Differentially private stochastic convex optimization
in (non)-euclidean space revisited. In Uncertainty in Artificial Intelligence, pages 2026–2035.
PMLR, 2023.

[42] Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase retrieval. In 2016 IEEE
International Symposium on Information Theory (ISIT), pages 2379–2383. IEEE, 2016.

[43] Youming Tao, Yulian Wu, Xiuzhen Cheng, and Di Wang 0015. Private stochastic convex
optimization and sparse learning with heavy-tailed data revisited. In IJCAI, pages 3947–3953,
2022.

[44] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computa-
tional mathematics, 12:389–434, 2012.

[45] Roman Vershynin. High-dimensional probability. University of California, Irvine, 10:11, 2020.

[46] Di Wang, Changyou Chen, and Jinhui Xu. Differentially private empirical risk minimization
with non-convex loss functions. In International Conference on Machine Learning, pages
6526–6535. PMLR, 2019.

[47] Di Wang, Marco Gaboardi, Adam Smith, and Jinhui Xu. Empirical risk minimization in the
non-interactive local model of differential privacy. Journal of machine learning research,
21(200):1–39, 2020.

[48] Di Wang, Marco Gaboardi, and Jinhui Xu. Empirical risk minimization in non-interactive local
differential privacy revisited. Advances in Neural Information Processing Systems, 31, 2018.

[49] Di Wang, Hanshen Xiao, Srinivas Devadas, and Jinhui Xu. On differentially private stochastic
convex optimization with heavy-tailed data. In International Conference on Machine Learning,
pages 10081–10091. PMLR, 2020.

[50] Di Wang and Jinhui Xu. Escaping saddle points of empirical risk privately and scalably via dp-
trust region method. In Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part
III, pages 90–106. Springer, 2021.

13

[51] Di Wang, Minwei Ye, and Jinhui Xu. Differentially private empirical risk minimization revisited:
Faster and more general. Advances in Neural Information Processing Systems, 30, 2017.

[52] Hanshen Xiao, Zihang Xiang, Di Wang, and Srinivas Devadas. A theory to instruct differentially-
private learning via clipping bias reduction. In 2023 IEEE Symposium on Security and Privacy
(SP), pages 2170–2189. IEEE, 2023.

[53] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Defending against saddle
point attack in byzantine-robust distributed learning. In International Conference on Machine
Learning, pages 7074–7084. PMLR, 2019.

[54] Yingxue Zhou, Xiangyi Chen, Mingyi Hong, Zhiwei Steven Wu, and Arindam Banerjee. Private
stochastic non-convex optimization: Adaptive algorithms and tighter generalization bounds.
arXiv preprint arXiv:2006.13501, 2020.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main contributions—namely, the
development of a PSGD-based framework that corrects prior analytical errors, eliminates
reliance on private model selection, and extends to distributed learning with heterogeneous
data. We also provide a list of our core contributions explicitly in our introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the limitation discussion in Section H in the Appendix, where we
highlight the theoretical assumption of unbiased gradient oracles and discuss its potential
divergence from practical DP optimizers. We also outline the challenges and directions for
extending the framework to handle biased gradient estimates.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

15

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We state all assumptions for our theoretical results in Section 2. For each
theoretical result (lemma, theorem, etc.), we explicitly indicate the assumptions it relies
on and provide a complete proof, with the location of each proof clearly referenced in the
Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a comprehensive description of our experimental setup, including
running environments, datasets, learning models, hyperparameter settings, and evaluation
metrics, in Section F of the Appendix. This ensures that the main experimental results are
reproducible and support the core claims of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

16

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets used in our experiments are publicly available. While our code is
not yet released at the time of submission, we plan to open-source it with detailed instructions
to reproduce all experimental results as described in the Appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all necessary experimental details in the experiment section
(Section F in Appendix). These details ensure that the experimental setup and results can be
fully understood and independently reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We reported error bars in our experimental results.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specify all the computational resources used for our experiments in the
experiment section (Section F in Appendix).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research fully complies with the NeurIPS Code of Ethics. We have
carefully reviewed and ensured adherence to all relevant standards.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

18

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]
Justification: We provide a Broader Impact Statement in Section G, discussing both the
potential positive impacts—such as enabling trustworthy and privacy-preserving machine
learning in sensitive domains like healthcare and finance—and the broader limitations
of differentially private learning, including potential reductions in model accuracy. This
balanced discussion reflects both societal benefits and possible drawbacks.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

19

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects.

20

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Limitations of the State-of-the-Art

A.1 Limitation 1: Flawed Error Rate Analysis

Gradient variance overlooked in saddle point escape. The error rate bound for finding a DP-
SOSP in [30] is fundamentally incorrect. Their analysis relies on Lemma 3.4 therein (adapted
from [46, Lemma 12]), which claims that adding Gaussian noise at the same scale as the DP gradient
estimation error suffices to reduce the function value with high probability, enabling escape from
saddle points. This argument critically depends on proving that the region around a saddle point
where SGD may get stuck is sufficiently narrow. Under this condition, perturbation along the escape
direction ensures that the SGD sequence can escape with high probability.

However, the analysis neglects a key factor, which is the stochastic gradient variance. Their proof
implicitly uses exact gradients of the population risk, which are unavailable to the algorithm. This is
evidenced by the equation preceding equation (39) in [46]. Another indication of this oversight is their
choice of step size η = 1/M . While valid for gradient descent with exact gradients, prior work [24]
has shown that stochastic gradients require a smaller step size. The use of η = 1/M in [30] for
population risk minimization reflects a failure to account for gradient stochasticity. This leads to an
underestimated gradient complexity and an overestimated effective sample size per gradient estimate,
which ultimately results in an overly optimistic error rate. A correct analysis must acknowledge that
stochastic gradients increase estimation error, implying that the true error rate for finding a DP-SOSP
is weaker than the one reported.

Fixing the proof is insufficient, a new algorithm is necessary. Although the analytical error can
be identified, correcting the proof alone does not yield a satisfactory result. Any direct correction
would only achieve a weaker (α, α2/5)-SOSP guarantee, rather than the desired α-SOSP. In particular,
the second-order accuracy would degrade to Õ(α2/5) instead of the ideal Õ(α1/2).

This limitation arises because the algorithm in [30] can be viewed as a special case of perturbed
gradient descent with bounded gradient inexactness as developed in [53], where the DP noise
contributes to the perturbation. By invoking [53, Theorem 3], one only obtains an error rate bound
with respect to a weaker class of SOSP where the second-order accuracy depends on Õ(α2/5).

The underlying reason is that both [53] and [31] rely on injecting additional noise to facilitate escape
from saddle points, without considering the role of inherent DP Gaussian noise in the gradients. The
excessive injected noise degrades the SOSP guarantee.

To fully resolve this issue, a new algorithmic design is required. In the setting of [53], where gradient
perturbations stem from adversarial attacks, such degradation is unavoidable since the perturbations
can hinder rather than assist escape. However, in the DP setting, the Gaussian noise is well-behaved
and can naturally aid saddle point escape. By leveraging the inherent DP noise, it becomes possible
to avoid the need for additional injected noise and to achieve α-SOSP convergence as desired.
Therefore, relying on the algorithmic designs of [53] or [31] is insufficient, and a new algorithm must
be developed to achieve the desired guarantees.

A.2 Limitation 2: Challenges of Private SOSP Selection

Inapplicability of AboveThreshold in distributed learning. The algorithm in [30] guarantees
only the existence of an α-SOSP among its iterates. To privately identify such a point, it applies
the AboveThreshold mechanism to test whether candidate models satisfy the SOSP conditions
by privately evaluating gradient norms and Hessian eigenvalues. While this procedure introduces
negligible error in single-machine settings, it faces fundamental challenges in distributed learning.

According to [30, Lemma 4.5], for any x ∈ Rd and a dataset S of size O(n), with probability at least
1− ω, the following holds:

∥∇FD(x)−∇f̂S(x)∥ ≤ O
(
G log(d/ω)√

n

)
, ∥∇2FD(x)−∇2f̂S(x)∥op ≤ O

(
M log(d/ω)√

n

)
.

This implies:

∥∇f̂S(x)∥ ≤ ∥∇FD(x)∥+O

(
G log d

ω√
n

)
, λmin(∇2f̂S(x)) ≥ λmin(∇2FD(x))−O

(
M log d

ω√
n

)
.

22

With these bounds, AboveThreshold can identify a DP-SOSP by setting appropriate thresholds.
However, this procedure relies on centralized access to the dataset S.

In distributed learning, each client holds a local dataset Si. To estimate global quantities, aggregation
is required:

∥∇f̂S(x)∥ ≤
1

m

m∑
i=1

∥∇f̂Si(x)∥, λmin(∇2f̂S(x)) ≥
1

m

m∑
i=1

λmin(∇2f̂Si(x)).

Yet the learning algorithm guarantees only:

∥∇FD(x)∥ ≤
1

m

m∑
i=1

∥∇FDi
(x)∥, λmin(∇2FD(x)) ≥

1

m

m∑
i=1

λmin(∇2FDi
(x)),

This relationship does not provide an upper bound on ∥∇f̂S(x)∥ or a lower bound on λmin(∇2f̂S(x))
solely from local empirical estimates. Therefore, it is infeasible to determine valid thresholds for
AboveThreshold based only on local information. Any attempt to perform this selection would require
clients to share their (noisy) gradients and Hessians with the server, which introduces substantial
privacy, communication, and computation costs.

Eliminating private model selection is essential in distributed learning. A feasible method
for private model selection in distributed learning would extend the centralized algortihm of [46,
Algorithm 5]. Specifically, each client privately computes gradients and Hessians on additional local
data beyond the training set, and the server aggregates these to estimate global quantities. However,
this strategy has several drawbacks. It requires extra data outside the training process, increases
communication overhead by transmitting high-dimensional gradients and Hessians, and incurs high
computational costs. It also shifts the method from a first-order to a second-order algorithm.

Moreover, as shown in Section 6, sharing perturbed high-dimensional gradients and Hessians, rather
than one-dimensional scalar queries as in AboveThreshold, introduces non-negligible additional error.
This error accumulation degrades the accuracy guarantees provided by the learning algorithm. Unlike
the single-machine case, private model selection in distributed learning incurs significant costs in
accuracy, privacy, computation, and communication.

These challenges demonstrate the necessity of designing an algorithm that inherently outputs a DP-
SOSP without relying on a private model selection procedure. Such a design avoids additional data
consumption, computational burden, communication overhead, and deterioration of error guarantees.

B Useful Facts for Analysis

B.1 Probability Tools

Definition 6 (Sub-Gaussian random vector [23, Definition 2]). A random vector v ∈ Rd is ζ-sub-
Gaussian (or SG(ζ)), if there exists a positive constant ζ such that

E[exp(⟨u, v − E[v]⟩)] ≤ exp

(
∥u∥22ζ2

2

)
, ∀u ∈ Rd. (10)

Definition 7 (Norm-sub-Gaussian random vector [23, Definition 3]). A random vector v ∈ Rd is
ζ-norm-sub-Gaussian (or nSG(ζ)), if there exists a positive constant ζ such that

P [∥v − E[v]∥ ≥ t] ≤ 2 exp

(
− t2

2ζ2

)
, ∀t ∈ R. (11)

Note that norm-sub-Gaussian random vectors (Definition 7) are more general than sub-Gaussian
random vectors (Definition 6), as sub-Gaussian distributions require isotropy, whereas norm-sub-
Gaussian distributions do not impose this condition.

Lemma 10 ([23, Lemma 1]). A SG(r) random vector v ∈ Rd is also nSG(2
√
2 · r
√
d).

We are interested in the properties of norm-subGaussian martingale difference sequences. Concretely,
they are sequences satisfying the following properties.

23

Condition 1. Consider random vectors v1, · · · , vp ∈ Rd, and corresponding filtrations Fi =
σ(v1, · · · , vi) for i ∈ [n], such that vi|Fi−1 is zero-mean nSG(ζi) with ζi ∈ Fi−1. That is,

E[vi|Fi−1] = 0, P [∥vi∥ ≥ t|Fi−1] ≤ 2 exp

(
− t2

2ζ2

)
, ∀t ∈ R,∀i ∈ [p]. (12)

Lemma 11 (Hoeffding type inequality for norm-sub-Gaussian [23, Corollary 7]). Let random vectors
v1, · · · , vp ∈ Rd, and corresponding filtrations Fi = σ(v1, · · · , vi) for i ∈ [k] satisfy condition 1
with fixed {ζi}. Then for any ι > 0, there exists an absolute constant C such that, with probability at
least 1− 2d · e−ι, ∥∥∥∥∥

p∑
i=1

vi

∥∥∥∥∥
2

≤ C ·

√√√√ p∑
i=1

ζ2i · ι. (13)

Lemma 11 implies that the sum of norm-sub-Gaussian random vectors is till norm-sub-Gaussian.
Corollary 3. Let random vectors v1, · · · , vp ∈ Rd, and corresponding filtrations Fi = σ(v1, · · · , vi)

for i ∈ [k] satisfy condition 1 with fixed {ζi}. Then
∑p
i=1 vi is nSG

(
C ·
√
log(d)

∑k
i=1 ζ

2
i

)
.

Proof. Let ζ+ :=
√
C log(d)

∑k
i=1 ζi. According to Definition 7, we aim to show that, for any

ω ∈ (0, 1), with probability at least 1 − ω, ∥
∑p
i=1 vi∥ ≤

√
2ζ2+ ln 2

ω . By Lemma 11, we have

known that, with probability at least 1 − ω, ∥
∑p
i=1 vi∥ ≤ C ·

√∑p
i=1 ζ

2
i ln

2d
ω . Next, we show

that
√
2ζ2+ ln 2

ω ≥ C ·
√∑p

i=1 ζ
2
i ln

2d
ω , which, by re-arranging the terms, is equivalent to show

ζ2+ ≥ C2

2 (
∑p
i=i ζ

2
i)

log 2d
ω

log 2
ω

. This follows directly from the fact that log 2d
ω

log 2
ω

≤ 2 log d, ∀ω ∈ (0, 1).

Lemma 12 ([24, Lemma C.6]). Let random vectors v1, · · · , vp ∈ Rd, and corresponding filtrations
Fi = σ(v1, · · · , vi) for i ∈ [k] satisfy condition 1, then for any ι > 0, and B > b > 0, there exists
an absolute constant C such that, with probability at least 1− 2d log

(
B
b

)
· e−ι,

p∑
i=1

ζ2i ≥ B or

∥∥∥∥∥
p∑
i=i

vi

∥∥∥∥∥ ≤ C ·
√√√√max

{
p∑
i

ζ2i , b

}
· ι. (14)

Lemma 13 ([24, Lemma C.7]). Let random vectors v1, · · · , vp ∈ Rd, and corresponding filtrations
Fi = σ(v1, · · · , vi) for i ∈ [k] satisfy condition 1 with fixed ζ1 = ζ2 = · · · = ζp = ζ, then there
exists an absolute constant C such that, for any ι > 0, with probability at least 1− e−ι,

p∑
i=1

∥vi∥2 ≤ C · ζ2 · (p+ ι). (15)

Lemma 14 (Matrix Bernstein inequality [44, Theorem 1.4]). Consider a finite sequence {Mi}i∈[k]

of independent, random, self-adjoint matrices with dimension d×d. Assume that each random matrix
satisfies E[Mi] = 0, ∥Mi∥2 ≤ B, then for all t ≥ 0, we have

P

∥∥∥∥∥∥
∑
i∈[k]

Mi

∥∥∥∥∥∥
2

≥ t

 ≤ d exp(− t2

2(σ2 +Bt/3)

)
, (16)

where σ2 =
∥∥∥∑i∈[k] E[M2

i]
∥∥∥
2
.

Lemma 15 (Norm of symmetric matrices with sub-gaussian entries [45, Corollary 4.4.8]). Let M be
an d× d symmetric random matrix whose entries Mi,j on and above the diagonal are independent,
mean zero, sub-gaussian random variables. Then, with probability at least 1− 4 exp(−t2), for any
t > 0 we have

∥M∥2 ≤ C ·max
i,j
∥Mi,j∥ψ2

· (
√
d+ t), (17)

where C is a universal constant.

24

B.2 Privacy Preliminaries

Definition 8 (Gaussian Mechanism [12]). Given any input data D ∈ Xn and a query function
q : Xn → Rd, the Gaussian mechanismMG is defined as q(D) + ν where ν ∼ N (0, σ2

GId). Let
∆2(q) be the ℓ2-sensitivity of q, i.e., ∆2(q) := supD∼D′ ∥q(D)− q(D′)∥2. For any σ, δ > 0,MG

guarantees (∆2(q)
σG

√
2 log 1.25

δ , δ)-DP. That is, if we want the output of q to be (ϵ, δ)-DP for any

0 < ϵ, δ < 1, then σG should be set to ∆2(q)
ϵ

√
2 log 1.25

δ .

Lemma 16 (Adaptive Composition Theorem [12]). Given target privacy parameters 0 < ϵ < 1 and
0 < δ < 1, to ensure (ϵ, δ)-DP over k-fold adaptive mechanisms, it suffices that each mechanism is
(ϵ′, δ′)-DP, where ϵ′ = ϵ

2
√

2k ln(2/δ)
and δ′ = δ

2k .

Lemma 17 (Parallel Composition of DP [35]). Suppose there are n (ϵ, δ)-differentially private
mechanisms {Mi}ni=1 and n disjoint datasets denoted by {Di}ni=1. Then the algorithm, which
applies eachMi on the corresponding Di, preserves (ϵ, δ)-DP in total.

C Omitted Proofs in Section 4

C.1 Proof of Lemma 1

Proof of Lemma 1. We begin by introducing the following notations:

x̂t := xt − x′t, (18)

ζ̂t := ζt − ζ ′t, (19)

ξ̂t := ξt − ξ′t, (20)

∆t :=

∫ 1

0

∇2F (y · xt + (1− y) · x′t) dy −H (21)

The proof strategy is to derive a contradiction by showing that if the model remains localized (i.e.,
stays within a radiusR around the saddle point) with high probability, then the coupling sequence
must still diverge with non-negligible probability.

We first characterize the dynamics of x̂t in the following Lemma 18. At a high level, we decompose
the difference of the coupling sequence xt into three components: (i) a curvature-dependent term
Ph(t), (ii) a stochastic gradient noise term Psg(t), (iii) a perturbation-driven term Pp(t).

Lemma 18 (Coupling Dynamics). For any t ≥ 0, the difference between the two coupled iterates
satisfies:

x̂t = − η
t∑
i=1

(Id − ηH)t−i∆i−1x̂i−1︸ ︷︷ ︸
Ph(t)

− η
t∑
i=1

(Id − ηH)t−iζ̂i︸ ︷︷ ︸
Psg(t)

− η
t∑
i=1

(Id − ηH)t−iξ̂i︸ ︷︷ ︸
Pp(t)

. (22)

Proof of Lemma 18. By the update rule:

x̂t = xt − x′t (23)

= x̂t−1 − η[∇F (xt−1)−∇F (x′t−1) + ζt − ζ ′t + ξt − ξ′t] (24)

= x̂t−1 − η[(H+∆t−1)x̂t−1 + ζ̂t + ξ̂t] (25)

= (Id − ηH)x̂t−1 − η[∆t−1x̂t−1 + ζ̂t + ξ̂t]. (26)

25

Unrolling the recursion with initial condition x̂0 = 0 yields the desired result:

x̂t = (Id − ηH)tx̂0 − η
t∑
i=1

(Id − ηH)t−i(∆i−1x̂i−1 + ζ̂i + ξ̂i) (27)

= −η
t∑
i=1

(Id − ηH)t−i(∆i−1x̂i−1 + ζ̂i + ξ̂i). (28)

Let E denote the event that both sequences remain localized:

E := {∀t ≤ Γ : max {∥xt − x̃∥, ∥x′t − x̃∥} ≤ R} .
We proceed by contradiction. Assume:

P(E) ≥ 3

4
. (29)

To derive a contradiction, we analyze the terms in (22), showing in Lemma 19 and Lemma 20 that
the perturbation term Pp(t) dominates, while the curvature and stochastic gradient terms remain
controlled. Define:

a(t) :=

√√√√ t∑
i=1

(1 + ηγ)2(t−i), b(t) :=
(1 + ηγ)t√

2ηγ
. (30)

It has been verified in [24, Lemma 29] that a(t) ≤ b(t) for all t ∈ N.

Lemma 19. For all t ≥ 0, the following hold:

P
[
∥Pp(t)∥ ≤ cb(t)ηr ·

√
ι
]
≥ 1− 2e−ι (31)

P
[
∥Pp(t)∥ ≥

b(Γ)ηr

10

]
≥ 2

3
(32)

The proof follows from standard Gaussian concentration and is omitted here; see [24, Lemma 30].

Lemma 20. For all t ≥ 0, conditioned on E , we have:

P

[
∥Ph(t) + Psg(t)∥ ≤

b(t)ηr

20

∣∣∣∣∣E
]
≥ 1− 6dΓ log

(
R
ηr

)
e−ι (33)

Proof of Lemma 20. We prove the following strengthened claim for any t ≤ Γ by induction:

P

[
∀i ≤ t : ∥Ph(i) + Psg(i)∥ ≤

b(i)ηr

20
, ∥Pp(i)∥ ≤ cb(i)ηr

√
ι

∣∣∣∣∣E
]
≤ 1− 6dt log

(
R
ηr

)
e−ι.

(34)

For the base case of t = 0, the claim holds trivially as Ph(0) = Psg(0) = 0. Suppose the claim
holds for a step t < Γ, we then forward prove that the claim also holds for step t+ 1 ≤ Γ. Since for
∀i ≤ t, ∥Pp(i)∥ ≤ cb(i)ηr

√
ι, we have

∥x̂i∥ ≤ ∥Ph(i) + Psg(i)∥+ ∥Pp(i)∥ (35)

≤ b(i)ηr

20
+ cb(i)ηr ·

√
ι (36)

≤ 2cb(i)ηr ·
√
ι. (37)

Moreover, due to assumption (29) and the Hessian Lipschitz property, we have

∥∆i∥ =
∫ 1

0

∇2F (y · xi + (1− y) · x′i) dy (38)

≤ ρmax{∥xi − x̃∥, ∥x′i − x̃∥} ≤ ρR. (39)

26

With the above upper bounds on ∥x̂i∥ and ∥∆i∥ for i ≤ t, we immediately get for case t+ 1 from
the definition of Ph(·) in (22) that

∥Ph(t+ 1)∥ ≤ ηρR
t+1∑
i=1

(1 + ηγ)t+1−i (2cb(i)ηr√ι) (40)

≤ 2ηρRΓcb(t+ 1)ηr
√
ι ≤ b(t+ 1)ηr

40
, (41)

where the last inequality follows from 2cηρRΓ = 2c
s ≤

1
40 for large enough s such that s ≥ 80c.

Note that ζ̂t|Ft−1 ∼ nSG(M∥x̂t∥), by applying Lemma 12 with B = [a(t)]2η2M2R2 and b =

[a(t)]2η2M2η2r2 therein, we know that, with probability at least 1− 4d log
(

R
ηr

)
e−ι, we have

∥Psg(t+ 1)∥ ≤ 2cηM
√
Γb(t)ηr

√
ι. (42)

For large enough s such that s ≥ (80c)2, we have cηM
√
Γι ≤ 2c√

s
≤ 1

40 . Thus,

∥Psg(t+ 1)∥ ≤ cηM
√
Γb(t)ηr

√
ι ≤ b(t)ηr

40
. (43)

By Lemma 19, we know that, for case t+ 1, with probability at least 1− 2e−ι, we have

∥Pp(t+ 1)∥ ≤ cb(t+ 1)ηr
√
ι (44)

By the union bound, with probability at least 1−
(
6dt log

(
R
ηr

)
e−ι + 4d log

(
R
ηr

)
e−ι + 2e−ι

)
≥

1− 6d(t+ 1) log
(

R
ηr

)
e−ι,

∥Ph(t+ 1) + Psg(t+ 1)∥ ≤ b(t)ηr

20
≤ b(t+ 1)ηr

20
, ∥Pp(t+ 1)∥ ≤ cb(t+ 1)ηr

√
ι, (45)

which concludes the proof.

Now we complete the proof of Lemma 1. Choose ι large enough such that

ι ≥ log

(
36dΓ log

(
R
ηr

))
, (46)

which is promised by µ ≥ 1
s log

(
9d

C
1
4 η

√
sρψ

log

(
4C

1
4

sηr

√
ψ
ρ

))
for sufficiently large numerical

constant s. Then we have:

6dΓ log

(
R
ηr

)
e−ι ≤ 2

9
. (47)

From Lemma 19, we have:

P
[
∥Pp(Γ)∥ ≥

b(Γ)ηr

10

]
≥ 2

3
, (48)

and from Lemma 20,

P
[
∥Ph(Γ) + Psg(Γ)∥ ≤

b(Γ)ηr

20

]
≥ 3

4
·
(
1− 6dΓ log

(
R
ηr

)
e−ι
)
≥ 7

12
(49)

By the union bound, with probability at least 1−
(
1− 2

3

)
−
(
1− 7

12

)
= 1

4 , both events hold:

∥Pp(Γ)∥ ≥
b(Γ)ηr

10
, ∥Ph(Γ) + Psg(Γ)∥ ≤

b(Γ)ηr

20
. (50)

Therefore, using the triangle inequality:

max {∥xΓ − x̃∥, ∥x′Γ − x̃∥} (51)

≥ 1

2
∥x̂Γ∥ ≥

1

2
[∥Pp(Γ)∥ − ∥Ph(Γ) + Psg(Γ)∥] ≥

b(Γ)ηr

40
=

(1 + ηγ)Γ
√
ηr

40
√
2

(52)

≥
(1 + η

√
ρα)Γ

√
ηr

40
√
2

≥
2η

√
ραΓ√ηr
40
√
2

=
2

ι
s
√
ηr

40
√
2

=
2µ
√
ηr

40
√
2
> R, (53)

27

where the second last inequality is due to the fact 1 + a > 2a,∀a ∈ (0, 1] and η
√
ρα ≤ 1

ι2 ≤ 1, and

the last inequality is because µ > log

(
160

√
2C

1
4

s
√
ηr

√
ψ
ρ

)
.

The above means that the localization event E fails with probability at least 1/4, i.e., P(E) < 3
4 ,

which contradicts with our assumption (29). Therefore, the assumption (29) should be false, that is,
with probability at least 1

4 , ∃t ≤ Γ,max{∥xt − x̃∥, ∥x′t − x̃∥} ≥ R, completing the proof.

C.2 Proof of Lemma 2

Proof of Lemma 2. The failure probability after Q independent repetitions is at most (7/8)Q. Setting
Q = 26

5 log(1/ω0) yields (7/8)Q ≤ ω0, completing the proof.

C.3 Proof of Lemma 3

Proof of Lemma 3. For any t ≥ 1, by M -smoothness of F , we have:

F (xt)− F (xt−1) ≤ ⟨∇F (xt−1), xt − xt−1⟩+
M

2
∥xt − xt−1∥2 (54)

≤ −η⟨∇F (xt−1), ĝt−1⟩+
M

2
η2∥ĝt−1∥2 (55)

≤ −η⟨∇F (xt−1), ĝt−1⟩+
η

2
∥ĝt−1∥2 (56)

≤ η

2
∥νt∥2 −

η

2
∥∇F (xt−1)∥2 −

η

2
∥ĝt−1∥2 +

η

2
∥ĝt−1∥2 (57)

= −η
2
∥∇F (xt−1)∥2 +

η

2
∥νt∥2. (58)

Summing from t0 + 1 to t0 + t, we obtain:

F (xt0+t)− F (xt0) ≤ −
η

2

t−1∑
i=0

∥∇F (xt0+i)∥2 +
η

2

t∑
i=1

∥νt0+i∥2 (59)

C.4 Proof of Corollary 2

Proof of Corollary 2. Note that

η

2

t∑
i=1

∥νt0+i∥2 =
η

2

t∑
i=1

∥ζt0+i + ξt0+i∥2 ≤ η
t∑
i=1

(∥ζt0+i∥2 + ∥ξt0+i∥2) (60)

By Lemma 13, since ζi ∼ nSG(σ), with probability at least 1− e−ι:

t∑
i=1

∥ζt0+i∥2 ≤ C · σ2(t+ ι). (61)

Using Lemma 10, each ξi ∼ nSG(2
√
2r
√
d), and applying Lemma 13 again, with probability at

least 1− e−ι:
t∑
i=1

∥ξt0+i∥2 ≤ 8C · r2d(t+ ι). (62)

By the union bound, both bounds hold with probability at least 1− 2e−ι.

28

C.5 Proof of Lemma 4

Proof of Lemma 4. We begin with:

∥xt0+τ − xt0∥2 = η2

∥∥∥∥∥
τ∑
t=1

∇F (xt0+t−1) + νt0+t

∥∥∥∥∥
2

(63)

≤ 2η2τ

τ∑
t=1

(
∥∇F (xt0+t−1)∥2 + ∥νt0+t∥2

)
. (64)

Following the same argument in the proof of corollary 2, with probability at least 1− 2e−ι,
τ∑
t=1

∥νt0+t∥2 ≤ c · ψ2(τ + ι), (65)

From corollary 2, with the same probability of 1− 2e−ι,
τ∑
t=1

∥∇F (xt0+t−1)∥2 ≤
2

η
[F (xt0)− F (xt0+τ)] + c · ψ2(τ + ι). (66)

Combining above results, we have, with probability at least 1− 2e−ι,

∥xt0+τ − xt0∥2 ≤ 4ητ [F (xt0)− F (xt0+τ)] + 4c · η2τψ2(τ + ι). (67)

Re-arranging the terms above, we obtain

F (xt0+τ)− F (xt0) ≤ −
1

4ητ
∥xt0+τ − xt0∥2 + c · ηψ2(τ + ι). (68)

According to the criterion for successful escape, we have ∥xt0+τ − xt0∥ ≥ R. Then

F (xt0+τ)− F (xt0) ≤ −
1

4ητ
∥xt0+τ − xt0∥2 + c · ηψ2(τ + ι) (69)

≤ − R
2

4ηΓ
+ c · ηψ2(Γ + ι) (70)

≤ − s

4ι3

√
α3

ρ
+

2c · ψ2ι

s
√
ρα

(71)

≤ − s

8ι3

√
α3

ρ
= Φ, (72)

where the second to last inequality is from the fact that sη
√
ρα = ρα

M2sµ2 < 1, and the last inequality

follows from α ≥ 4
√
Csµ2ψ.

C.6 Proof of Lemma 5

Proof of Lemma 5. By Corollary 3, for all t, νt ∼ nSG(C
√
σ2 + r2d). Since E[νt] = 0, by Defini-

tion 7, with probability at least 1− ω
2T :

∥νt∥ ≤
√
2Cψ

√
log

4T

ω
≤ χ. (73)

Applying a union bound over t ∈ [T] gives the desired result: with probability at least 1 − ω/2,
∥ĝt −∇F (xt−1)∥ ≤ χ for all t.

C.7 Proof of Lemma 6

Proof of Lemma 6. By Lemma 5, with probability at least 1 − ω/2, the gradient estimation error
satisfies ∥ĝt−∇F (xt−1)∥ ≤ χ for all t ∈ [T]. We analyze two cases based on whether the algorithm
is in the escape phase.

29

Case 1: In escape phase. When ∥ĝt∥ ≤ 3χ, the escape process is triggered, implying
∥∇F (xt−1)∥ ≤ α = 4χ. The average function decrease per step during a successful escape is
at least:

Φ

Γ
=
s2α2η

8ι4
=

2χ2η

s2µ4
. (74)

Case 2: Outside escape phase. When ∥ĝt∥ > 3χ, we have ∥∇F (xt−1)∥ ≥ 2χ. Each PSGD step
yields at least:

η

2
(2χ)2 = 2χ2η >

2χ2η

s2µ4
. (75)

Thus, in either case, the function value decreases by at least 2χ2η/(s2µ4) per step. Denoting
U := F0 − F ∗, the number of effective descent steps is bounded by:

Teffective :=
Us2µ4

2χ2η
. (76)

Next, consider the number of α-strict saddle points encountered. Each successful escape yields
function decrease of at least Φ, so the total number of such escape phases is at most:

Nsaddle :=
U

Φ
=

8ι3U

s

√
ρ

χ3
. (77)

By Corollary 1, each Γ-descent succeeds with probability at least 1/8, and we boost this to 1−ω/2
via the Q independent repetitions in every escape procedure. By Lemma 2 with failure probability
ω0 = ω

2Nsaddle
, we require:

Q =
26

5
log

(
16ι3U

sω

√
ρ

χ3

)
. (78)

Hence, the total number of PSGD steps (including all Γ-descent repetitions) is at most:

T ≤ Teffective ·Q =
13Us2µ4

5χ2η
log

(
16ι3U

sω

√
ρ

χ3

)
= Õ

(
U

ηχ2

)
. (79)

D Omitted Proofs in Section 5

D.1 Proof of Lemma 7

Proof of Lemma 7. Let τ(t) denote the most recent iteration (up to t) at which oracle O1 was used.

Case 1: If t = τ(t), then
ĝt = O1(xt−1,Bt) + ξt. (80)

Let ζt := O1(xt−1,Bt)−∇F (xt−1), which is a zero-mean estimator with norm-subGaussian noise
due to the G-Lipschitz condition:

ζt ∼ nSG

(
G
√
log d√
b1

)
. (81)

The noise term ξt is drawn from a Gaussian distribution:

ξt ∼ N
(
0, c1

G2 log(1/δ)

b21ϵ
2

Id

)
. (82)

Thus, in this case, the oracle satisfies condition (2) with the desired bounds.

Case 2: If t > τ(t), then

ĝt = O1(xτ(t)−1,Bτ(t)) + ξτ(t) +

t∑
i=τ(t)+1

(O2(xi−1, xi−2,Bi) + ξi) . (83)

30

Let ζτ(t) := O1(xτ(t)−1,Bτ(t))−∇F (xτ(t)−1) and define

ζ ′i := O2(xi−1, xi−2,Bi)− (∇F (xi−1)−∇F (xi−2)) . (84)

Then

ĝt −∇F (xt−1) = ζτ(t) +

t∑
i=τ(t)+1

ζ ′i + ξτ(t) +

t∑
i=τ(t)+1

ξi. (85)

By the M -smoothness assumption, we have

ζ ′i ∼ nSG

(
M∥xi−1 − xi−2∥

√
log d√

b2

)
, (86)

and the privacy noise is drawn from

ξi ∼ N
(
0, c2

M2 log(1/δ)

b22ϵ
2

∥xi−1 − xi−2∥2Id
)
. (87)

Since the algorithm ensures driftt :=
∑t
i=τ(t)+1 ∥xi−1 − xi−2∥2 ≤ κ, we can bound the noise as

follows:

– From Corollary 3, the total norm-subGaussian parameter becomes:

σ ≤ O


√√√√√
(G√log d√

b1

)2

+

t∑
i=τ(t)+1

(
M∥xi−1 − xi−2∥

√
log d√

b2

)2
 · log d

 (88)

≤ O

√G2 log2 d

b1
+
M2 log2 d

b2
κ

 . (89)

– By the property of Gaussian, the total privacy noise magnitude satisfies:

r ≤ O

√√√√G2 log 1
δ

b21ϵ
2

+

t∑
i=τ(t)+1

(
M2 log 1

δ

b22ϵ
2
∥xt−1 − xt−2∥2

) (90)

≤ O

√G2 log 1
δ

b21ϵ
2

+
M2 log 1

δ

b22ϵ
2

κ

 . (91)

D.2 Proof of Lemma 8

Proof of Lemma 8. By the M -smoothness assumption and using the fact η ≤ 1
M , we apply the

standard descent lemma:

F (xt)− F (xt−1) ≤ ⟨∇F (xt−1), xt − xt−1⟩+
M

2
∥xt − xt−1∥2

≤ ⟨∇F (xt−1)− ĝt,−η · ĝt⟩ − η∥ĝt∥2 +
η

2
∥ĝt∥2

≤ η∥∇F (xt−1)− ĝt∥∥ĝt∥2 −
η

2
∥ĝt∥2.

By Lemma 5, with probability at least 1− ω/2, we have ∥∇F (xt−1)− ĝt∥ ≤ χ for all t.

Now consider two cases:

Case 1: If ∥∇F (xt−1)∥ ≥ 4χ, then

∥ĝt∥ ≥ ∥∇F (xt−1)∥ − χ ≥ 3χ ≥ 3∥∇F (xt−1)− ĝt∥, (92)

yielding
F (xt)− F (xt−1) ≤ −

η

6
∥ĝt∥2. (93)

31

Case 2: If ∥∇F (xt−1)∥ ≤ 4χ, then ∥ĝt∥ ≤ 5χ, and thus

F (xt)− F (xt−1) ≤ 5ηχ2. (94)

Let T = {t1, t2, . . . , t|T |} denote the set of iterations where model drift exceeds κ. For each pair of
successive drift resets:

F (xti+1
)− F (xti) ≤ −

1

6η

ti+1∑
t=ti+1

η2∥ĝt∥22 + (ti+1 − ti)5ηχ2 (95)

≤ − 1

6η
driftti+1

+(ti+1 − ti)5ηχ2 ≤ − 1

6η
κ+ (ti+1 − ti)5ηχ2. (96)

Summing over i, we obtain:

F (xt|T |)− F (xt1) ≤ −
|T |
6η

κ+ 5Tηχ2.

Since F (·) is upper bounded by U , we must have:

−U ≤ −|T |κ
6η

+ 5Tηχ2, (97)

which yields:

|T | ≤ O
(
Uη

κ
+
Tη2χ2

κ

)
= O

(
Uη

κ

)
,

using T = O(U/(ηχ2)).

D.3 Proof of Theorem 2

Proof of Theorem 2. We first verify that the batch size settings b1 and b2 are feasible, i.e., the total
number of data samples used remains O(n). Recall from Lemma 8 that the number of rounds
where drift exceeds the threshold is bounded by |T | = O(Uη/κ), and the total number of steps is
T = O(U/(ηχ2)). Then:

b1 · |T |+ b2 · (T − |T |) ≤ b1 · |T |+ b2 · T ≤ O(n), (98)

under our settings of b1 = nκ
2Uη and b2 = nηχ2

2U . This confirms feasibility.

Since each sample is used only once, the overall (ϵ, δ)-differential privacy guarantee follows directly
from the Gaussian mechanism and the parallel composition theorem.

We now derive the convergence error α via Theorem 1, which gives:

α = O(χ) = Õ(ψ) = Õ(
√
σ2 + r2d), (99)

where from Lemma 7:

σ2 ≤ Õ
(
G2

b1
+
M2κ

b2

)
, r2 ≤ Õ

(
G2

b21ϵ
2
+
M2κ

b22ϵ
2

)
. (100)

Substituting our settings b1 = nκ
2Uη and b2 = nηχ2

2U into the expression, we get:

α = Õ

(√
G2Uη

nκ
+
G2dU2η2

n2ϵ2κ2
+
M2Uκ

nηχ2
+
M2dU2κ

n2ϵ2η2χ4

)
(101)

= Õ

(√
G2U

√
ρα

M2nκ
+
G2dU2ρα

M4n2ϵ2κ2
+

M4Uκ
√
ρnα5/2

+
M6dU2κ

ρn2ϵ2α5

)
. (102)

To isolate α, we take the largest among the resulting bounds:

α = Õ

(
max

{(
G2U

√
ρ

M2nκ

)2/3

,
G2dU2ρ

M4n2ϵ2κ2
,

(
M4Uκ

n
√
ρ

)2/9

,

(
M6dU2κ

ρn2ϵ2

)1/7
})

. (103)

32

Now set:

κ = max

{
G3/2U1/2ρ1/2

M5/2n1/2
,
G14/15d2/5U4/5ρ8/15

M34/15(nϵ)4/5

}
. (104)

Substituting this into the above expression of α yields:

α = Õ

(GUM
n

)1/3

+
G2/15U2/5M8/15

ρ1/15

(√
d

nϵ

)2/5
 = Õ

 1

n1/3
+

(√
d

nϵ

)2/5
 . (105)

E Omitted Proofs in Section 6

E.1 Proof of Lemma 9

Proof of Lemma 9. Let τ(t) denote the most recent iteration at which oracle O1 was queried before
or at iteration t.

Case 1: If t = τ(t), then the global estimator is

ĝt =
1

m

m∑
j=1

(O1(xt−1,Bj,t) + ξj,t) . (106)

EachO1(xt−1,Bj,t) is an unbiased estimate of∇Fj(xt−1). Let ζj,t := O1(xt−1,Bj,t)−∇Fj(xt−1),
and define ζt := 1

m

∑
j ζj,t and ξt := 1

m

∑
j ξj,t. Then,

ĝt −∇F (xt−1) = ζt + ξt. (107)

Since f is G-Lipschitz, we have ζt ∼ nSG
(
G
√
log d√
mb1

)
. Each ξj,t ∼ N

(
0, c1

G2 log(1/δ)
b21ϵ

2 Id

)
, so their

average satisfies:

ξt ∼ N
(
0, c1

G2 log(1/δ)

mb21ϵ
2

Id

)
. (108)

Thus, in this case, the oracle satisfies condition (2) with the desired bounds.

Case 2: If t > τ(t), the global estimate is:

ĝt =
1

m

m∑
j=1

O1(xτ(t)−1,Bj,τ(t)) + ξj,τ(t) +

t∑
i=τ(t)+1

[O2(xi−1, xi−2,Bj,i) + ξj,i]

 . (109)

Let ζj,τ := O1(xτ(t)−1,Bj,τ(t))−∇Fj(xτ(t)−1), and define:

ζ ′j,i := O2(xi−1, xi−2,Bj,i)− [∇Fj(xi−1)−∇Fj(xi−2)] . (110)

Then,

ĝt −∇F (xt−1) = ζτ(t) +

t∑
i=τ(t)+1

ζ ′i + ξτ(t) +

t∑
i=τ(t)+1

ξi, (111)

where ζτ(t) := 1
m

∑
j ζj,τ(t), ζ

′
i :=

1
m

∑
j ζ

′
j,i, and similarly for ξτ(t) and ξi. By the M -smoothness

of f , we have:

ζ ′i ∼ nSG

(
M∥xi−1 − xi−2∥

√
log d√

mb2

)
, ξi ∼ N

(
0, c2

M2 log(1/δ)

mb22ϵ
2
∥xi−1 − xi−2∥2Id

)
.

(112)
Since the algorithm ensures that driftt :=

∑t
i=τ(t)+1 ∥xi−1 − xi−2∥2 ≤ κ, we obtain:

σ = Õ

√G2 log2 d

mb1
+
M2 log2 d

mb2
κ

 , r = Õ

(√
G2 log(1/δ)

mb21ϵ
2

+
M2 log(1/δ)

mb22ϵ
2

κ

)
. (113)

33

E.2 Proof of Theorem 3

Proof of Theorem 3. We first verify that the total sample usage per client is O(n). From Lemma 8,
we have |T | = O(Uη/κ) and T = O(U/(ηχ2)). Using the settings:

b1 =
nκ

2Uη
, b2 =

nηχ2

2U
, (114)

the total number of samples used per client is:

b1 · |T |+ b2 · (T − |T |) ≤ b1 · |T |+ b2 · T = O(n). (115)

Differential privacy guarantees follows from the Gaussian mechanism and parallel composition, since
each data point is used at most once.

Now for the error analysis. By Theorem 1:

α = O(χ) = Õ(ψ) = Õ(
√
σ2 + r2d). (116)

From Lemma 9:

α = Õ

(√
G2

mb1
+

G2d

mb21ϵ
2
+

(
M2

mb2
+

M2d

mb22ϵ
2

)
· κ

)
. (117)

Substitute the expressions for b1, b2 into the bound and simplify, we get:

α = Õ

(√
G2Uη

mnκ
+
G2dU2η2

mn2ϵ2κ2
+
M2Uκ

mnηχ2
+

M2dU2κ

mn2ϵ2η2χ4

)
(118)

= Õ

(√
G2U

√
ρα

mM2nκ
+

G2dU2ρα

mn2ϵ2M4κ2
+

M4Uκ

mnρ
1
2α

5
2

+
M6dU2κ

mn2ϵ2ρα5

)
. (119)

To isolate α, we take the largest among the resulting bounds:

α =Õ

(
max

{(
G2U

√
ρ

mM2nκ

)2/3

,
G2dU2ρ

mn2ϵ2M4κ2
,

(
M4Uκ

mn
√
ρ

)2/9

,

(
M6dU2κ

mn2ϵ2ρ

)1/7
})

.

Now set:

κ = max

{
G3/2

√
ρU

M5/2
√
mn

,
G14/15d2/5U4/5ρ8/15

M34/15(
√
mnϵ)4/5

}
(120)

Substituting this into the above expression of α yields:

α = Õ

(GUM
mn

)1/3

+
G2/15U2/5M8/15

ρ1/15

(√
d√

mnϵ

)2/5
 = Õ

 1

(mn)1/3
+

(√
d√

mnϵ

)2/5
 .

(121)

E.3 Proof of Theorem 4

Proof of Theorem 4. The (ϵ, δ)-ICRL-DP guarantee follows directly from the Gaussian mechanism
and the adaptive composition theorem, since each client adds independent Gaussian noise to both
their gradient and Hessian estimates. Each local data point is used at most T times—once for each
model iterate—and all messages sent to the server are privatized accordingly.

We now derive the error rate α guarantee for the output xo. Let S :=
⊔m
j=1 Sj denote the full held-out

evaluation dataset, and let xp be an α-SOSP in the input to Algorithm 4. Define the aggregate gradient
noise and Hessian noise as

θp :=
1

m

m∑
j=1

θj,p, Hp :=
1

m

m∑
j=1

Hj,p. (122)

34

Let σ2
1 = c1

G2T log(1/δ)
n2ϵ2 and σ2

2 = c2
M2dT log(1/δ)

n2ϵ2 denote the variances of the noise added to the
gradient and Hessian components, respectively.

Gradient Estimation Error. For any Sj and x, ∇f̂Sj (x) − ∇Fj(x) is zero-mean and follows

nSG
(

2G√
n

)
. By the G-Lipschitz assumption and norm-sub-Gaussian concentration (Lemma 11), we

have with probability at least 1− ω′/8:

∥∇F (xp)−∇f̂S(xp)∥ ≤ O

(
G
√
log(d/ω′)√
mn

)
. (123)

Also, since θp ∼ N (0, σ2
1/m), standard Gaussian concentration (Lemma 10) gives, with probability

at least 1− ω′/8:

∥θp∥ ≤ O

(
G
√
dT log(1/δ) log(1/ω′)√

mnϵ

)
. (124)

Hessian Estimation Error. For any j ∈ [m] and z ∈ Sj , E[∇2f(xp; z) − ∇2Fj(xp)] = 0, and
∥∇2f(xp; z)−∇2Fj(xp)∥2 ≤ 2M (due to M -smoothness). That is, each empirical Hessian term is
2M -bounded in operator norm. Applying the matrix Bernstein inequality (Lemma 14), and using the
assumption mn ≥ 4

9 log(8d/ω
′), we obtain with probability at least 1− ω′/8:∥∥∥∇2f̂S(xp)−∇2F (xp)

∥∥∥ ≤ O(M√ log(d/ω′)

mn

)
. (125)

For the added noise, since Hp consists of symmetric Gaussian matrices with variance σ2
2/m,

Lemma 15 gives, with probability at least 1− ω′/8:

∥Hp∥ ≤ O

(
Md

√
T log(1/δ) log(1/ω′)√

mnϵ

)
. (126)

Verification for xp. Combining the above estimates and using a union bound, with probability at
least 1− ω′/2, we have:

∥∇F̄ (xp)∥2 ≤ ∥∇F (xp)∥2 + ∥∇F̄ (xp)−∇F (xp)∥2 (127)

≤ ∥∇F (xp)∥2 + ∥∇f̂S(xp)−∇F (xp)∥2 + ∥θp∥2 (128)
≤ α+ (estimation error) (129)

≤ O

(
α+

G log (d/ω′)√
mn

+
G
√
dT log (1/δ) log (1/ω′)√

mnϵ

)
, (130)

and

λmin

(
∇2F̄ (xp)

)
≥ λmin

(
∇2F (xp)

)
+ λmin

(
∇2F̄ (xp)−∇2F (xp)

)
(131)

≥ λmin

(
∇2F (xp)

)
+ λmin

(
∇2f̂S(xp)−∇2F (xp)

)
+ λmin (Hp) (132)

≥ −√ρα−
∥∥∇2f(xp;S)−∇2F (xp)

∥∥
2
− ∥Hp∥2 (133)

≥ − (
√
ρα+ (estimation error)) (134)

≥ −O

(
√
ρα+M

√
log (d/ω′)

mn
+
Md

√
T log(1/δ) log (1/ω′)√

mnϵ

)
. (135)

Hence, xp will be selected with probability at least 1− ω′/2.

Guarantee for Output xo. Let xo be the output of Algorithm 4. By construction, it must satisfy:

∥∇F (xo)∥2 ≤ ∥∇F̄ (xo)∥2 + ∥∇F (xo)−∇F̄ (xo)∥2 (136)

≤ ∥∇F̄ (xo)∥2 + ∥∇F (xo)−∇f̂S(xo)∥2 + ∥ξo∥2, (137)

35

and

λmin(∇2F (xo)) ≥ λmin(∇2F̄ (xo)) + λmin(∇2F (xo)−∇2F̄ (xo)) (138)

≥ λmin(∇2F̄ (xo))− ∥∇2F (xo)−∇2F̄ (xo)∥2 (139)

≥ λmin(∇2F̄ (xo))− ∥∇2F (xo)−∇2f̂S(xo)∥2 − ∥Ho∥2. (140)

Using the same reasoning as above, applying the union bound again and using the fact that xo is the
output, we get that with probability at least 1− ω′, the following hold:

∥∇F (xo)∥ ≤ O

(
α+

G log(d/ω′)√
mn

+
G
√
dT log(1/δ) log(1/ω′)√

mnϵ

)
, (141)

and

λmin(∇2F (xo)) ≥ −O

(
√
ρα+M

√
log(d/ω′)

mn
+
Md

√
T log(1/δ) log(1/ω′)√

mnϵ

)
. (142)

Finally, recalling that T = O(1/α2.5), and grouping the dependency on α, d, m, n, and ϵ, we
conclude that xo is an α′-SOSP with

α′ = Õ

(
α+

1

mn
+

1√
mn

+
α√
mn

+

√
d√

mnϵα5/4
+

d√
mnϵα3/4

+
d2

mn2ϵ2α5/2

)
, (143)

as claimed.

F Experiments

Running Environments All experiments were conducted with the following computing infrastruc-
ture:

• OS: Ubuntu 22.04.4 LTS
• CPU: AMD EPYC 7513 32-Core Processor
• CPU Memory: 503GB
• GPU: NVIDIA RTX A6000 GPU
• GPU Memory: 48GB
• Programming language: Python 3.11.8
• Deep learning framework: Pytorch 2.2.2 + cuda 12.1

Tasks and Datasets We conduct image classification tasks on two datasets: MNIST [27] and
CIFAR-10 [25]. For each experiment, we set the number of training samples to n = 6000 and vary
the number of clients m in {1, 2, 5, 10}, where m = 1 corresponds to the single-machine setting,
while the others correspond to distributed learning scenarios. The test set consists of 10000 samples
for both datasets.

Models We primarily use a fully connected (FC) neural network with one hidden layer containing
128 units and ReLU activation. The loss function is the standard cross-entropy loss. The model is
initialized using Kaiming initialization [19], with biases set to zero by default. The FC network is
mainly employed to verify our theoretical findings, such as the trends of performance variation under
different parameter settings. In addition, we adopt a ResNet-18 architecture to demonstrate that our
algorithm also attains strong practical performance when applied to deeper models.

Algorithms We compare our proposed algorithm, Gauss-PSGD, against multiple baselines:

• The method from [30], which serves as the primary baseline in our main experiments.
This comparison highlights the superiority of Gauss-PSGD in achieving second-order
convergence under differential privacy.

36

0
10

0
20

0
30

0
40

0

Epoch

0.5

0.6

0.7

0.8

0.9

1.0
Te

st
 A

cc
ur

ac
y

Gauss-PSGD m = 1
Gauss-PSGD m = 2
Gauss-PSGD m = 5
Gauss-PSGD m = 10
Baseline

(a) Test Accuracy (ϵ = 0.5)

0
10

0
20

0
30

0
40

0

Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

Gauss-PSGD m = 1
Gauss-PSGD m = 2
Gauss-PSGD m = 5
Gauss-PSGD m = 10
Baseline

(b) Test Accuracy (ϵ = 1.0)

0
10

0
20

0
30

0
40

0

Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

Gauss-PSGD m = 1
Gauss-PSGD m = 2
Gauss-PSGD m = 5
Gauss-PSGD m = 10
Baseline

(c) Test Accuracy (ϵ = 2.0)

0
10

0
20

0
30

0
40

0

Epoch

0.0

0.5

1.0

1.5

Te
st

 L
os

s

Gauss-PSGD m = 1
Gauss-PSGD m = 2
Gauss-PSGD m = 5
Gauss-PSGD m = 10
Baseline

(d) Test Loss (ϵ = 0.5)

0
10

0
20

0
30

0
40

0

Epoch

0.2

0.4

0.6

0.8

Te
st

 L
os

s

Gauss-PSGD m = 1
Gauss-PSGD m = 2
Gauss-PSGD m = 5
Gauss-PSGD m = 10
Baseline

(e) Test Loss (ϵ = 1.0)

0
10

0
20

0
30

0
40

0

Epoch

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 L
os

s

Gauss-PSGD m = 1
Gauss-PSGD m = 2
Gauss-PSGD m = 5
Gauss-PSGD m = 10
Baseline

(f) Test Loss (ϵ = 2.0)

Figure 1: Comparison of learning performance for our Gauss-PSGD and the baseline method on
MNIST dataset. Top: Test accuracy v.s. # epoch for varying privacy budget ϵ ∈ {0.5, 1.0, 2.0}.
Bottom: Test loss v.s. # epoch for varying privacy budget ϵ ∈ {0.5, 1.0, 2.0}.

0 20 40 60 80
Epoch

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

Gauss-PSGD m = 1
Gauss-PSGD m = 2
Gauss-PSGD m = 5
Gauss-PSGD m = 10
Baseline

(a) Test Accuracy (ϵ = 0.5)

0 20 40 60 80
Epoch

0.1

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

Gauss-PSGD m = 1
Gauss-PSGD m = 2
Gauss-PSGD m = 5
Gauss-PSGD m = 10
Baseline

(b) Test Accuracy (ϵ = 1.0)

0 20 40 60 80
Epoch

0.2

0.3

0.4

0.5

Te
st

 A
cc

ur
ac

y

Gauss-PSGD m = 1
Gauss-PSGD m = 2
Gauss-PSGD m = 5
Gauss-PSGD m = 10
Baseline

(c) Test Accuracy (ϵ = 2.0)

0 20 40 60 80
Epoch

1.4

1.6

1.8

2.0

2.2

Te
st

 L
os

s Gauss-PSGD m = 1
Gauss-PSGD m = 2
Gauss-PSGD m = 5
Gauss-PSGD m = 10
Baseline

(d) Test Loss (ϵ = 0.5)

0 20 40 60 80
Epoch

1.4

1.6

1.8

2.0

2.2

Te
st

 L
os

s

Gauss-PSGD m = 1
Gauss-PSGD m = 2
Gauss-PSGD m = 5
Gauss-PSGD m = 10
Baseline

(e) Test Loss (ϵ = 1.0)

0 20 40 60 80
Epoch

1.4

1.6

1.8

2.0

Te
st

 L
os

s

Gauss-PSGD m = 1
Gauss-PSGD m = 2
Gauss-PSGD m = 5
Gauss-PSGD m = 10
Baseline

(f) Test Loss (ϵ = 2.0)

Figure 2: Comparison of learning performance for our Gauss-PSGD and the baseline method on
CIFAR-10 dataset. Top: Test accuracy v.s. # epoch for varying privacy budget ϵ ∈ {0.5, 1.0, 2.0}.
Bottom: Test loss v.s. # epoch for varying privacy budget ϵ ∈ {0.5, 1.0, 2.0}.

37

10
0

20
0

30
0

40
0

Epoch

30

40

50

Te
st

 A
cc

ur
ac

y

DP-SGD
Ours

(a) Accuracy (DP-SGD, FCN)

10
0

20
0

30
0

40
0

Epoch

40

50

60

70

Te
st

 A
cc

ur
ac

y

DP-SGD
Ours

(b) Accuracy (DP-SGD, ResNet-18)

10
0

20
0

30
0

40
0

Epoch

40

50

60

70

80

Te
st

 A
cc

ur
ac

y

DIFF2
Ours

(c) Accuracy (DIFF2, ResNet-18)

10
0

20
0

30
0

40
0

Epoch

0.25

0.30

0.35

0.40

0.45

Tr
ai

n
Lo

ss

DP-SGD
Ours

(d) Loss (DP-SGD, FCN)

10
0

20
0

30
0

40
0

Epoch

0.25

0.30

0.35

0.40

0.45

Tr
ai

n
Lo

ss

DP-SGD
Ours

(e) Loss (DP-SGD, ResNet-18)

10
0

20
0

30
0

40
0

Epoch

0.25

0.30

0.35

0.40

0.45

Tr
ai

n
Lo

ss

DIFF2
Ours

(f) Loss (DIFF2, ResNet-18)

Figure 3: Comparison of Gauss-PSGD with baseline methods on the CIFAR-10 dataset under a fixed
privacy budget of ϵ = 2. Top: Test accuracy over epochs. Bottom: Test loss over epochs. In the
centralized setting (m = 1), Gauss-PSGD is compared with DP-SGD using a fully connected network
(FCN, left) and a ResNet-18 model (middle). In the distributed setting (m = 10), Gauss-PSGD is
compared with DIFF2 using the ResNet-18 model (right). Shaded areas indicate standard deviation
over 5 independent runs

• Standard DP-SGD [1], used in centralized (single-client) settings. This comparison is
designed to evaluate the benefit of incorporating second-order convergence.

• DIFF2 [37], a recent state-of-the-art differentially private federated learning (DP-FL) algo-
rithm that employs the standard SPIDER variance reduction technique but achieves only
first-order convergence. This comparison is intended to demonstrate the advantage of
second-order convergence in distributed settings.

For Gauss-PSGD, we use the following empirical hyperparameters:

• Escape threshold χ = 0.01

• Model drift threshold κ = 0.1

• Maximum escape steps Γ = 10

• Maximum repeat number of escape Q = 3

For all algorithms, we set the privacy parameters to δ = 10−5 and vary ϵ in {0.5, 1.0, 2.0}, corre-
sponding to strong, medium, and weak privacy regimes, respectively. The learning rate is set to 0.001
for MNIST and 0.01 for CIFAR-10. In all experiments, we apply gradient clipping with a threshold
of 1.0, selected via grid search.

Evaluations We evaluate the performance of the implemented algorithms using two criteria: test
accuracy and test loss. Both metrics are analyzed over training epochs to assess convergence and
generalization performance.

Results The experimental results on the MNIST and CIFAR-10 datasets are presented in Fig. 1
and Fig. 2, respectively. Each figure shows test accuracy (top row) and test loss (bottom row) over
training epochs for different privacy budgets ϵ ∈ {0.5, 1.0, 2.0}. Across all settings, Gauss-PSGD
consistently outperforms the baseline method from [30]. Overall, the test accuracy improves as ϵ
increases, and the performance gap between Gauss-PSGD and the baseline widens in distributed
settings (m > 1), highlighting the collaborative synergy of distributed learning and the robustness of
Gauss-PSGD in handling data heterogeneity. Additionally, Gauss-PSGD exhibits faster loss reduction
in early training, suggesting improved convergence behavior.

38

To further evaluate the benefits of second-order convergence, we include additional comparisons in
Fig. 3. In the centralized setting (m = 1), we compare Gauss-PSGD with standard DP-SGD using
both a simple fully connected network (Fig. 3 (a), (d)) and a deeper ResNet-18 model (Fig. 3 (b), (e)).
In both cases, Gauss-PSGD achieves comparable or higher test accuracy and demonstrates reduced
variance across runs.

In the distributed setting (m = 10), we compare Gauss-PSGD with DIFF2, a recent differentially
private federated learning algorithm designed for first-order convergence. The results (Fig. 3 (c), (f))
show that Gauss-PSGD achieves higher test accuracy and improved stability across runs, despite
both methods being first-order in design. These comparisons further support the advantage of Gauss-
PSGD’s second-order convergence behavior in both centralized and federated learning scenarios.

G Broader Impact Statement

This paper advances the field of differentially private (DP) stochastic non-convex optimization
by addressing key theoretical challenges in finding second-order stationary points (SOSP). Our
contributions are particularly relevant for applications requiring strong privacy guarantees, including
distributed learning with heterogeneous data. These advancements have practical implications for
privacy-sensitive fields such as healthcare, finance, and large language models (LLMs), where data
confidentiality is paramount.

By improving the efficiency and accuracy of DP optimization techniques, our work supports the
development of machine learning systems that can operate on sensitive datasets without compromising
privacy. This fosters greater trust in data-driven decision-making and encourages organizations to
adopt privacy-preserving practices, enabling informed and responsible use of sensitive data.

Nevertheless, it is important to acknowledge the broader limitations inherent to DP-based learning
algorithms, not just those specific to our work. Privacy-preserving methods often introduce trade-offs,
such as reduced model accuracy compared to their non-private counterparts, which may impact
decision-making in high-stakes applications.

Despite these challenges, we believe that advancing and responsibly applying privacy-preserving
optimization techniques will have a positive societal impact. By enabling secure and ethical data
analysis, our work contributes to the broader goal of building trustworthy AI/ML systems.

H Limitation Discussion

One of the primary objective of this work is to rectify a key analytical error in [30] by presenting the
correct error rates for DP stochastic non-convex optimization. Our proposed framework, Gauss-PSGD,
is designed to be broadly applicable beyond the DP setting, offering a versatile optimization tool for
general non-convex problems. Furthermore, this work makes the first attempt to extend DP-SOSP
analysis to the distributed learning setting, establishing state-of-the-art utility guarantees.

To maintain consistency with prior work [30], we assume access to an unbiased gradient oracle. This
assumption is fundamental in theoretical analysis and is also adopted by many recent studies in DP
optimization and distributed learning, such as [2, 16]. However, it may not fully reflect the behavior
of practical optimizers that employ biased and noisy gradients, particularly those using gradient
clipping—a standard technique in DP implementations.

Nevertheless, our Gauss-PSGD framework can be extended to handle biased oracles induced by
clipping. The main challenge lies in the analysis: incorporating clipping introduces bias, requiring
a refined characterization of the descent dynamics. In particular, Lemma 3 (the descent lemma)
must be adapted to reflect the bias–variance trade-off. Techniques for bias reduction in clipped DP
learning—such as those developed in [52]—could offer a promising foundation for such an extension.

The saddle point escaping analysis (Lemma 1) can also be generalized. As shown in our proof,
the key mechanism enabling escape is the injection of symmetric Gaussian noise, which drives the
divergence in the coupling sequence. This mechanism remains valid under clipping, provided the
Gaussian noise is appropriately calibrated. However, the number of steps required for escape may
change due to the altered noise structure and bias, and a more delicate analysis would be required to
quantify this behavior accurately.

39

We consider this as a promising direction for future work and leave its full exploration to subsequent
studies.

I Conclusion

In this work, we investigated the problem of finding second-order stationary points (SOSP) in
differentially private (DP) stochastic non-convex optimization. We proposed a novel framework
that leverages perturbed stochastic gradient descent (SGD) with Gaussian noise and introduces a
novel criterion based on model drift distance to ensure provable saddle point escape and efficient
convergence. By incorporating an adaptive SPIDER as the gradient oracle, we developed a new DP
algorithm that rectifies existing error rates. Furthermore, we extended our approach to distributed
learning scenarios with heterogeneous data, providing the first theoretical guarantees for finding
DP-SOSP in such settings. Through rigorous analysis, we demonstrated that our framework not
only avoids the pitfalls of private model selection but also remains effective in high-dimensional
distributed learning environments.

Our work opens several promising directions for future research. A key challenge is bridging the gap
between our upper bound and the existing DP lower bound for stochastic optimization, as established
in [2]. The current lower bound is derived from convex loss functions and first-order stationary points,
wheras finding DP-SOSP in non-convex optimization is inherently more difficult. We conjecture that
the existing lower bound is not tight for the non-convex case. Establishing a tighter lower bound
remains a critical open problem. Additionally, exploring whether our upper bounds can be further
improved is another intriguing direction that warrants in-depth investigation.

40

	Introduction
	Related Work
	Preliminaries
	Our Generic Perturbed SGD Framework
	Gradient Oracle Setup
	Our Approach: A General Gaussian-Perturbed SGD Framework
	Main Results for Gauss-PSGD Framework

	Rectified Error Rate for finding SOSP in DP Stochastic Optimization
	Adaptive Gradient Oracle: Ada-DP-SPIDER
	Error Rate Analysis for DP-SOSP with Ada-DP-SPIDER

	Extension to Distributed SGD
	Limitations of the State-of-the-Art
	Limitation 1: Flawed Error Rate Analysis
	Limitation 2: Challenges of Private SOSP Selection

	Useful Facts for Analysis
	Probability Tools
	Privacy Preliminaries

	Omitted Proofs in Section 4
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Corollary 2
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6

	Omitted Proofs in Section 5
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Theorem 2

	Omitted Proofs in Section 6
	Proof of Lemma 9
	Proof of Theorem 3
	Proof of Theorem 4

	Experiments
	Broader Impact Statement
	Limitation Discussion
	Conclusion

