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Abstract

We investigate the problem of finding second-order stationary points (SOSP) in
differentially private (DP) stochastic non-convex optimization. Existing methods suffer
from two key limitations: (i) inaccurate convergence error rate due to overlooking
gradient variance in the saddle point escape analysis, and (ii) dependence on auxiliary
private model selection procedures for identifying DP-SOSP, which can significantly
impair utility, particularly in distributed settings. To address these issues, we propose a
generic perturbed stochastic gradient descent (PSGD) framework built upon Gaussian
noise injection and general gradient oracles. A core innovation of our framework
is using model drift distance to determine whether PSGD escapes saddle points,
ensuring convergence to approximate local minima without relying on second-order
information or additional DP-SOSP identification. By leveraging the adaptive DP-
SPIDER estimator as a specific gradient oracle, we develop a new DP algorithm that
rectifies the convergence error rates reported in prior work. We further extend this
algorithm to distributed learning with arbitrarily heterogeneous data, providing the first
formal guarantees for finding DP-SOSP in such settings. Our analysis also highlights
the detrimental impacts of private selection procedures in distributed learning under
high-dimensional models, underscoring the practical benefits of our design. Numerical
experiments on real-world datasets validate the efficacy of our approach.

1 Introduction

Stochastic optimization is a fundamental problem in machine learning and statistics, aimed
at training models that generalize well to unseen data using a finite sample drawn from
an unknown distribution. As the volume of sensitive data continues to grow, privacy has
become a pressing concern. This has led to the widespread adoption of differential privacy
(DP) [10], which provides rigorous privacy guarantees while preserving model utility in
learning tasks.

In the past decade, significant progress has been made in DP stochastic optimization,
particularly for convex objectives [7, 28, 40, 38, 43, 42]. While convex problems are relatively
well understood, non-convex optimization introduces unique challenges, primarily due to
the presence of saddle points. Most existing DP algorithms for non-convex problems
focus on finding first-order stationary points (FOSP), characterized by small gradient
norms [1, 4, 56, 55]. However, FOSP include not only local minima but also saddle points
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and local maxima, often leading to suboptimal solutions [20, 41]. Consequently, second-
order stationary points (SOSP), where the gradient is small and the Hessian is positive
semi-definite, are more desirable as they guarantee convergence to local minima.

Motivated by this, substantial research has been devoted to finding SOSP in non-
convex optimization [13, 23, 9, 21, 16]. However, the study of SOSP under differential
privacy constraints (DP-SOSP) remains limited. At the same time, distributed learning
has become increasingly important for training large-scale models across decentralized
edge devices. Yet, no existing work has addressed DP-SOSP in non-convex stochastic
optimization under distributed settings. Compared to single-machine setups, distributed
learning introduces additional challenges, including data heterogeneity, cross-participant
privacy, and communication efficiency.
Limitations in the State-of-the-Art. A notable exception in the study of DP-SOSP
for stochastic optimization is the recent work by [29], which injects additional Gaussian
noise into the DP gradient estimator near saddle points to facilitate escape. Despite its
contributions, this method suffers from two key limitations. (i) Its saddle point escape
analysis overlooks the variance of gradients, leading to incorrect error bounds. A direct
correction of the analysis would unfortunately yield a weaker type of SOSP guarantee than
originally targeted. This is because their design relies on additional injected noise beyond
the inherent DP noise for escape, highlighting the need for an effective way of exploiting
the DP noise already present. (ii) Their learning algorithm outputs all model iterates
and guarantees only the existence of a DP-SOSP, requiring an auxiliary private model
selection procedure to identify one. While effective in single-machine settings, it faces
critical issues in distributed environments due to decentralized data access. In particular,
auxiliary private selection introduces non-negligible error and communication overhead,
especially when sharing high-dimensional second-order information. These drawbacks also
underscore the necessity of a new learning algorithm that inherently outputs a DP-SOSP
without dependence on any additional private selection procedure.
Our Contributions. We refer the reader to Appendix 3 for more detailed discussions of
the limitations outlined above. To address the challenges identified above, we propose a
generic algorithmic and analytical framework for finding DP-SOSP in stochastic non-convex
optimization. Our approach not only corrects existing error rates but also extends naturally
to distributed learning. The main contributions are summarized as follows:
1. A generic non-convex stochastic optimization framework: We introduce a
perturbed stochastic gradient descent (PSGD) framework that employs Gaussian noise and
general stochastic gradient oracles. This framework serves as a versatile optimization tool
for non-convex stochastic problems beyond the DP setting. A key innovation is a novel
criterion based on model drift distance, which enables provable saddle point escape and
guarantees convergence to approximate local minima with low iteration complexity and
high probability.
2. Corrected error rates for DP non-convex optimization: By incorporating the
adaptive DP-SPIDER estimator as the gradient oracle, we develop a differentially private
algorithm that achieves a corrected error rate bound of Õ

(
1

n1/3 +
(√

d
ϵn

)2/5), where n is the

number of samples. This corrects the suboptimal bound of Õ
(

1
n1/3 +

(√
d

ϵn

)3/7) reported
in [29].
3. Application to distributed learning: We extend the adaptive DP-SPIDER estimator
to distributed learning. Via adaptivity, our learning algorithm improves upon the DIFF2 [36],
which only guarantees convergence to DP-FOSP under homogeneous data. In contrast,
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our method provides the first error bound for converging to DP-SOSP under arbitrarily
heterogeneous data: Õ

(
1

(mn)1/3
+
( √

d
ϵmn

)2/5), where m is the number of participants and n
is the number of samples per participant. Furthermore, we analyze the adverse effects of
private model selection, showing that it deteriorates utility guarantees in high-dimensional
regimes, thereby highlighting the necessity of our framework.

Due to the space limit, literature review, technical lemmata, further discussions,
omitted proofs, experimental results, broader impacts and conclusions are all
included in the Appendix.

2 Related Work

Private Stochastic Optimization Differential privacy (DP) has become a crucial
consideration in stochastic optimization due to increasing concerns about data privacy. The
pioneering work by [10] established the foundational principles of DP, and its application in
stochastic optimization has since seen significant progress. Early efforts primarily focused on
convex optimization, achieving strong privacy guarantees while ensuring efficient learning,
with a long list of representative works e.g., [5, 51, 48, 3, 47, 49, 14, 4, 19, 43, 40, 7, 39].
Recent advances have extended DP to non-convex settings, mainly focusing on first-order
stationary points (FOSP). Notable works in this area include [46, 56, 4, 53, 1], which
improved error rates in non-convex optimization with balanced privacy and utility in
stochastic gradient methods. However, these works generally fail to address the more
stringent criterion of second-order stationary points (SOSP). The very recent work [29] tired
to narrow this gap, but unfortunately has some issues in their results as we discussed before.
Our work builds on this foundation by correcting error rates and proposing a framework
that ensures convergence to SOSP while maintaining DP.

Finding Second-Order Stationary Points (SOSP) In non-convex optimization,
convergence to FOSP is often insufficient, as saddle points can lead to sub-optimal solutions
[20, 41]. Achieving SOSP, where the gradient is small and the Hessian is positive semi-
definite, ensures that the optimization converges to a local minimum rather than a saddle
point. Techniques for escaping saddle points, such as perturbed SGD with Gaussian noise,
have been explored in works like [16] and [23]. [16] first showed that SGD with a simple
parameter perturbation can escape saddle points efficiently. Later, the analysis was refined
by [21, 23]. Recently, variance reduction techniques have been applied to second-order
guaranteed methods [17, 27].These methods ensure escape from saddle points by introducing
noise to the gradient descent process. In contrast, the studies of SOSP under DP are quite
limited, and most of them only consider the empirical risk minimization objective, such as
[46, 50, 2]. Very recently, [29] addressed the population risk minimization objective, but
with notable gaps in their error analysis, particularly in the treatment of gradient variance.
Moreover, all of these works are limited to the single-machine setting and cannot be directly
extended to the more general distributed learning setting.

Distributed Learning With the rise of large-scale models and decentralized data,
distributed learning has gained significant attention. Methods like federated learning [33]
have enabled multiple clients to collaboratively train models without sharing their local
data. Recent studies, such as [15, 52, 31, 32] have investigated DP learning in distributed
settings, but these works are limited to first-order optimality. While some studies have
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investigated SOSP in distributed learning, their focus was primarily on Byzantine-fault
tolerance [54], and communication efficiency [35, 6]. No effort, to our knowledge, has been
made to ensure DP-SOSP in distributed learning scenarios with heterogeneous data. Our
proposed framework fills this gap by introducing the first distributed learning algorithm
with DP-SOSP guarantees while effectively handling arbitrary data heterogeneity across
clients.

3 Limitations of the State-of-the-Art

3.1 Limitation 1: Flawed Error Rate Analysis

Gradient variance overlooked in saddle point escape. The error rate bound for
finding a DP-SOSP in [29] is fundamentally incorrect. Their analysis relies on Lemma 3.4
therein (adapted from [46, Lemma 12]), which claims that adding Gaussian noise at the
same scale as the DP gradient estimation error suffices to reduce the function value with
high probability, enabling escape from saddle points. This argument critically depends
on proving that the region around a saddle point where SGD may get stuck is sufficiently
narrow. Under this condition, perturbation along the escape direction ensures that the
SGD sequence can escape with high probability.

However, the analysis neglects a key factor, which is the stochastic gradient variance.
Their proof implicitly uses exact gradients of the population risk, which are unavailable
to the algorithm. This is evidenced by the equation preceding equation (39) in [46].
Another indication of this oversight is their choice of step size η = 1/M . While valid for
gradient descent with exact gradients, prior work [23] has shown that stochastic gradients
require a smaller step size. The use of η = 1/M in [29] for population risk minimization
reflects a failure to account for gradient stochasticity. This leads to an underestimated
gradient complexity and an overestimated effective sample size per gradient estimate, which
ultimately results in an overly optimistic error rate. A correct analysis must acknowledge
that stochastic gradients increase estimation error, implying that the true error rate for
finding a DP-SOSP is weaker than the one reported.

Fixing the proof is insufficient, a new algorithm is necessary. Although the
analytical error can be identified, correcting the proof alone does not yield a satisfactory
result. Any direct correction would only achieve a weaker (α, α2/5)-SOSP guarantee, rather
than the desired α-SOSP. In particular, the second-order accuracy would degrade to Õ(α2/5)
instead of the ideal Õ(α1/2).

This limitation arises because the algorithm in [29] can be viewed as a special case of
perturbed gradient descent with bounded gradient inexactness as developed in [54], where
the DP noise contributes to the perturbation. By invoking [54, Theorem 3], one only
obtains an error rate bound with respect to a weaker class of SOSP where the second-order
accuracy depends on Õ(α2/5).

The underlying reason is that both [54] and [30] rely on injecting additional noise to
facilitate escape from saddle points, without considering the role of inherent DP Gaussian
noise in the gradients. The excessive injected noise degrades the SOSP guarantee.

To fully resolve this issue, a new algorithmic design is required. In the setting of [54],
where gradient perturbations stem from adversarial attacks, such degradation is unavoidable
since the perturbations can hinder rather than assist escape. However, in the DP setting,
the Gaussian noise is well-behaved and can naturally aid saddle point escape. By leveraging
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the inherent DP noise, it becomes possible to avoid the need for additional injected noise
and to achieve α-SOSP convergence as desired. Therefore, relying on the algorithmic
designs of [54] or [30] is insufficient, and a new algorithm must be developed to achieve the
desired guarantees.

3.2 Limitation 2: Challenges of Private SOSP Selection

Inapplicability of AboveThreshold in distributed learning. The algorithm in [29]
guarantees only the existence of an α-SOSP among its iterates. To privately identify such
a point, it applies the AboveThreshold mechanism to test whether candidate models satisfy
the SOSP conditions by privately evaluating gradient norms and Hessian eigenvalues. While
this procedure introduces negligible error in single-machine settings, it faces fundamental
challenges in distributed learning.

According to [29, Lemma 4.5], for any x ∈ Rd and a dataset S of size O(n), with
probability at least 1− ω, the following holds:

∥∇FD(x)−∇f̂S(x)∥ ≤ O
(
G log(d/ω)√

n

)
, ∥∇2FD(x)−∇2f̂S(x)∥op ≤ O

(
M log(d/ω)√

n

)
.

This implies:

∥∇f̂S(x)∥ ≤ ∥∇FD(x)∥+O

(
G log d

ω√
n

)
, λmin(∇2f̂S(x)) ≥ λmin(∇2FD(x))−O

(
M log d

ω√
n

)
.

With these bounds, AboveThreshold can identify a DP-SOSP by setting appropriate
thresholds. However, this procedure relies on centralized access to the dataset S.

In distributed learning, each client holds a local dataset Si. To estimate global quantities,
aggregation is required:

∥∇f̂S(x)∥ ≤
1

m

m∑
i=1

∥∇f̂Si(x)∥, λmin(∇2f̂S(x)) ≥
1

m

m∑
i=1

λmin(∇2f̂Si(x)).

Yet the learning algorithm guarantees only:

∥∇FD(x)∥ ≤
1

m

m∑
i=1

∥∇FDi(x)∥, λmin(∇2FD(x)) ≥
1

m

m∑
i=1

λmin(∇2FDi(x)),

This relationship does not provide an upper bound on ∥∇f̂S(x)∥ or a lower bound on
λmin(∇2f̂S(x)) solely from local empirical estimates. Therefore, it is infeasible to determine
valid thresholds for AboveThreshold based only on local information. Any attempt to
perform this selection would require clients to share their (noisy) gradients and Hessians
with the server, which introduces substantial privacy, communication, and computation
costs.

Eliminating private model selection is essential in distributed learning. A feasible
method for private model selection in distributed learning would extend the centralized
algortihm of [46, Algorithm 5]. Specifically, each client privately computes gradients and
Hessians on additional local data beyond the training set, and the server aggregates these
to estimate global quantities. However, this strategy has several drawbacks. It requires
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extra data outside the training process, increases communication overhead by transmitting
high-dimensional gradients and Hessians, and incurs high computational costs. It also shifts
the method from a first-order to a second-order algorithm.

Moreover, as shown in Section 7, sharing perturbed high-dimensional gradients and
Hessians, rather than one-dimensional scalar queries as in AboveThreshold, introduces
non-negligible additional error. This error accumulation degrades the accuracy guarantees
provided by the learning algorithm. Unlike the single-machine case, private model selection
in distributed learning incurs significant costs in accuracy, privacy, computation, and
communication.

These challenges demonstrate the necessity of designing an algorithm that inherently
outputs a DP-SOSP without relying on a private model selection procedure. Such a design
avoids additional data consumption, computational burden, communication overhead, and
deterioration of error guarantees.

4 Preliminaries

Notations. We denote by ∥ · ∥ the ℓ2 norm and by λmin(·) the smallest eigenvalue of a
matrix. The symbol Id represents the d-dimensional identity matrix. We use O(·) and Ω(·)
to hide constants independent of problem parameters, while Õ(·) and Ω̃(·) additionally hide
polylogarithmic factors.
Stochastic Optimization. Let f : Rd × Z → R be a (potentially non-convex) loss
function, where x ∈ Rd denotes the d-dimensional model parameter and z ∈ Z is a data
point.

Assumption 1. The loss function f(·; z) isG-Lipschitz, M -smooth, and ρ-Hessian Lipschitz.
Specifically, for any z ∈ Z and any x1, x2 ∈ Rd, we have: (i) |f(x1; z) − f(x2; z)| ≤
G∥x1− x2∥; (ii) ∥∇f(x1; z)−∇f(x2; z)∥ ≤M∥x1− x2∥; (iii) ∥∇2f(x1; z)−∇2f(x2; z)∥ ≤
ρ∥x1 − x2∥.

Let D denote the unknown data distribution. The population risk is defined as the
expected loss: FD(x) := Ez∼D[f(x; z)] for ∀x ∈ Rd. When clear from context, we omit D
and simply write F (x).

Assumption 2. Let x∗ denote a minimizer of the population risk and F ∗ = F (x∗) its
minimum value. There exists U ∈ R such that maxx F (x)− F ∗ ≤ U .

Let D denote a dataset of n i.i.d. samples from D. The empirical risk is defined as
f̂D(x) :=

1
|D|
∑

z∈D f(x; z). Given access to D, the goal is to find an approximate second-
order stationary point (SOSP) of the unknown population risk F (·). In general, we have
the notion of (αg, αH)-SOSP:

Definition 1 ((αg, αH)-SOSP). A point x is an (αg, αH)-SOSP of a twice differentiable
function F (·) if x satisfies ∥∇F (x)∥ ≤ αg and ∇2F (x) ⪰ −αH · Id.

As shown in [54, Proposition 1], there exists a lower bound of Õ(α1/2
g ) for αH given

αg, implying that an (α, Õ(
√
α))-SOSP is the best second-order guarantee achievable.

Accordingly, we target the notion of α-SOSP in this work, following [29].

Definition 2 (α-SOSP). A point x is an α-SOSP of a twice differentiable function F (·) if
x satisfies ∥∇F (x)∥ ≤ α and ∇2F (x) ⪰ −√ρα · Id.
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An α-SOSP excludes α-strict saddle points where ∇2F (x) ⪯ −√ραId, thereby ensuring
convergence to an approximate local minimum. Following prior work [29, 23], we assume
M ≥ √ρα so that finding an SOSP is strictly more challenging than finding an FOSP.
Distributed Learning. In the distributed (federated) learning setting, m clients collabo-
ratively learn under the coordination of a central server. Each client j ∈ [m] has a local
dataset Dj of size n, sampled from an unknown local distribution Dj . The population risk
for client j is defined as FDj (x) := Ez∼Dj [f(x; z)] or simply Fj(x). The global population
risk is defined as the average of the local population risks: FD(x) :=

1
m

∑
j∈[m] Fj(x), or

simply F (x). We allow for heterogeneous local datasets, meaning that the local distributions
{Dj}j∈[m] may differ arbitrarily.
Differential Privacy. We aim to find an α-SOSP under the requirment of Differential
Privacy (DP), which is referred to as an α-DP-SOSP. We say two datasets D and D′ are
adjacent if they differ by at most one record. DP ensures that the output of the stochastic
optimization algorithm on any pair of adjacent datasets is statistically indistinguishable.

Definition 3 (Differential Privacy (DP) [10]). Given ϵ, δ > 0, a randomized algorithm
A : Z → X is (ϵ, δ)-DP if for any pair of adjacent datasets D,D′ ⊆ Z, and any measurable
subset S ⊆ X ,

P[A(D) ∈ S] ≤ exp(ϵ) · P[A(D′) ∈ S] + δ.

In distributed learning, we focus on inter-client record-level DP (ICRL-DP), which
assumes that clients do not trust the server or other clients with their sensitive local data.
This notion has been widely adopted in state-of-the-art distributed learning works, such as
[15, 31, 32].

Definition 4 (Inter-Client Record-Level DP (ICRL-DP)). Given ϵ, δ > 0, a randomized
algorithm A : Zm → X satisfies (ϵ, δ)-ICRL-DP if, for any client j ∈ [m] and any pair of
local datasets Dj and D′

j , the full transcript of client j’s sent messages during the learning
process satisfies (3), assuming fixed local datasets for other clients.

Variance Reduction via SPIDER. Since the population risk F (·) is unknown, standard
SGD approximates the true gradient ∇F (xt−1) at iteration t using a stochastic estimate gt.
However, such estimates often exhibit high variance, degrading convergence. The Stochastic
Path Integrated Differential Estimator (SPIDER) [12] mitigates this variance using two
gradient oracles O1 and O2. For a mini-batch Bt at iteration t, we define

O1(xt−1,Bt) := ∇f̂Bt(xt−1), O2(xt−1, xt−2,Bt) := ∇f̂Bt(xt−1)−∇f̂Bt(xt−2).

SPIDER queries O1 every p iterations to refresh the gradient estimate. Between these
updates, it uses O2 to incrementally refine the estimate:

gt =

{
O1(xt−1,Bt), if (t− 1) mod p = 0,

gt−1 +O2(xt−1, xt−2,Bt), otherwise.

For smooth functions, the variance of O2(xt−1, xt−2,Bt) scales with ∥xt−1 − xt−2∥, which
is typically small when updates are minimal. This allows SPIDER to achieve low-variance
gradient estimates while maintaining accuracy.

We choose SPIDER because it achieves state-of-the-art error rates for privately finding
first-order stationary points (DP-FOSP) [1]. Our goal is to investigate whether its variance
reduction can extend to DP-SOSP. Importantly, the insights in this paper are not specific
to SPIDER; they also apply to other variance-reduced methods such as STORM [8] or
SARAH [37]. However, since these algorithms are conceptually similar, no significant
improvement is expected from substituting them.
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Algorithm 1: Gauss-PSGD: Gaussian Perturbed Stochastic Gradient Descent
Input: Failure probability ω, initial model x0, learning rate η, # of escape repeats

Q, model deviation threshold R, # of escape steps Γ
1 t← 0;
2 while true do
3 t← t+ 1;
4 ĝt ← P_Grad_Oracle(∗);
5 if ∥ĝt∥ ≤ 3χ then

/* Saddle point escape */
6 t̃← t, x̃← xt−1, esc← false;
7 for q ← 1, · · · , Q do
8 t← t̃, xt ← x̃;
9 for τ ← 1, · · · ,Γ do

10 ĝt ← P_Grad_Oracle(∗) ;
11 xt ← xt−1 − η · ĝt;
12 if ∥xt − x̃∥ ≥ R then
13 esc← true;
14 break;
15 else
16 t← t+ 1;

17 if esc = true then
18 break;

19 if esc = false then
20 return xt−1

21 else
/* Normal descent step */

22 xt ← xt−1 − η · ĝt;

5 Our Generic Perturbed SGD Framework

In this section, we introduce a generic framework for finding an α-SOSP of the population
risk FD(·) by escaping saddle points. Our framework is a Gaussian perturbed stochastic
gradient descent method, denoted as Gauss-PSGD.

5.1 Gradient Oracle Setup

Since ∇FD(·) is unknown, direct gradient descent is infeasible. As in standard stochas-
tic optimization, we assume access to a stochastic gradient oracle gt that approximates
∇FD(xt−1) at iteration t. For example, gt can be computed as an empirical gradient over a
mini-batch Bt sampled from D. We model the oracle as

gt = ∇F (xt−1) + ζt, (1)

where ζt represents inherent gradient noise. Following [23, 29], we assume ζt ∼ nSG(σ),
where nSG denotes a norm-sub-Gaussian distribution (Definition 7 in Appendix A).
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To enable saddle point escape, we introduce an additional Gaussian perturbation to
form a perturbed gradient oracle ĝt:

ĝt = gt + ξt = ∇F (xt−1) + ζt + ξt, (2)

where ξt ∼ N (0, r2Id). We define the effective noise magnitude in ĝt as

ψ :=
√
σ2 + r2d. (3)

The model update is then performed by

xt ← xt−1 − ηĝt. (4)

Our problem setting fundamentally differs from that in [23]. In their setting, the
target error α is given, and the perturbation magnitude r is determined accordingly.
In contrast, in our privacy-constrained setting, r is dictated by the privacy parameters
(ϵ, δ), and the goal is to achieve the smallest possible α under this constraint. Crucially,
their parameterization r = O(

√
(σ2 + α3/2)/d) implies that r depends on both σ and α,

determined by max{σ/
√
d, α3/4/

√
d}. This non-invertible relationship between r and α

makes their setting incompatible with ours. First, under DP constraints, r is determined
by (ϵ, δ) and may be smaller than σ/

√
d in weak privacy regimes, violating the required

lower bound. Second, because r and α are not uniquely determined by each other, it is not
meaningful to directly translate their error bounds into our setting. Thus, their analysis
and results cannot be directly applied to our problem.

5.2 Our Approach: A General Gaussian-Perturbed SGD Framework

We present our Gauss-PSGD framework in Algorithm 1. As specified in (2), we employ a
general Gaussian-perturbed stochastic gradient oracle, denoted as P_Grad_Oracle(∗) in
steps 4 and 10, where ∗ abstracts the specific arguments required by the oracle implementa-
tion. This abstraction allows Gauss-PSGD to serve as a flexible optimization framework for
non-convex stochastic problems, applicable beyond the differential privacy (DP) setting.

At each iteration, the gradient estimate ĝt is computed by P_Grad_Oracle(∗), and the
model parameter is updated via the gradient descent step in (4). The algorithm proceeds
until it encounters a point x̃ satisfying ∥ĝt∥ ≤ 3χ, where χ is specified in (5). This point x̃
may lie near a saddle point with a large negative eigenvalue of the Hessian. To escape such
a saddle point, the framework enters an escape procedure (steps 6–20), which performs Q
rounds of Γ-descent (steps 9–16).

In each round, the algorithm executes at most Γ perturbed SGD iterations starting
from x̃. If at any iteration we observe ∥xt − x̃∥ ≥ R for a threshold R (specified in (5)),
indicating that the iterate has moved sufficiently far from x̃, we declare that the algorithm
has successfully escaped the saddle point and resume normal PSGD from xt. If no such
movement is observed after Q rounds, we declare x̃ an α-SOSP of the population risk FD(·)
and output x̃. The repetition over Q rounds ensures a high probability of escape: as we will
prove later, each Γ-descent succeeds in escaping a saddle point with constant probability,
and multiple repetitions reduce the failure probability to any desired level.

A central innovation of our framework is using model drift distance as the escape criterion
(step 12), replacing the function value decrease criterion used in [21, 23]. This design enables
the algorithm to identify an SOSP with high probability during the optimization process
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itself, eliminating the need for an auxiliary private model selection step. Our key insight is as
follows: escaping a saddle point not only causes a decrease in the objective function [21, 23]
but also induces a substantial displacement of the model parameter beyond a threshold
R. Shifting from monitoring function values to tracking parameter movement is critical in
population risk settings, where the objective function is unknown and function evaluations
are unavailable, unlike in empirical risk minimization [21]. However, the model iterates and
their deviations are observable. By leveraging this property, our framework can directly
output an SOSP, rather than merely guaranteeing its existence among the iterates.

5.3 Main Results for Gauss-PSGD Framework

We begin by introducing the parameter setup and notations used throughout the analysis:

ι := sµ, χ := 4
√
Csµ2ψ, α := 4χ,

Γ :=
ι

sη
√
ρα
, R :=

1

ι1.5

√
α

ρ
, Φ :=

s

8ι3

√
α3

ρ
, η :=

√
ρα

M2ι2
.

(5)

where s is a sufficiently large absolute constant to be chosen later, and µ is a logarithmic
factor:

µ := max

1

s
log

9d log
(
4C1/4

sηr

√
ψ
ρ

)
C1/4η

√
sρψ

 , log

(
160
√
2C1/4

s
√
ηr

√
ψ

ρ

)
,

(
C log 4T

ω

)1/4
2

3
4
√
s

, 1

 . (6)

Here C is an absolute constant that may change across expressions. Let x̃ denote a
saddle point of the population risk F (·), and H := ∇2F (x̃). Let vmin be the eigenvector
corresponding to λmin(H), and P−vmin be the projection onto the orthogonal complement
of vmin. Set γ := −λmin(H).

Definition 5 (Coupling Sequence). Let {xi} and {x′i} be two PSGD sequences initialized
at x̃. We say they are coupled if they share the same randomness for P−vminξt and ζt at
each iteration t, but use opposite perturbations in the vmin direction: v⊤minξt = −v⊤minξ

′
t.

The following lemma ensures that under Γ-descent, at least one of the coupled sequences
escapes the saddle point with constant probability (proof in Appendix B.1).

Lemma 1 (Escaping Saddle Points). Let {xi} and {x′i} be coupled PSGD sequences
initialized at x̃ such that ∥∇F (x̃)∥ ≤ α and λmin(∇2F (x̃)) ≤ −√ρα. Then, with probability
at least 1/4, there exists τ ≤ Γ such that max {∥xτ − x̃∥, ∥x′τ − x̃∥} ≥ R.

From this, we immediately obtain a corollary that applies to any PSGD sequence:

Corollary 1. For any PSGD sequence {xi} starting at x̃ with ∥∇F (x̃)∥ ≤ α and
λmin(∇2F (x̃)) ≤ −√ρα, with probability at least 1/8, there exists t ≤ Γ such that
∥xt − x̃∥ ≥ R.

To ensure a high-probability escape from a saddle point, we repeat Γ-descent for Q
rounds:

Lemma 2 (Escape Amplification via Repetition). Given any ω0 ∈ (0, 1), repeating
Γ-descent independently for Q = 26

5 log( 1
ω0
) rounds ensures escape with probability

at least 1− ω0.

10



The proof is deferred to Appendix B.2. We now analyze the total number of PSGD
steps needed for convergence. Let νt := ζt + ξt denote the combined noise in the gradient
estimate.

Lemma 3 (Descent Lemma). For any t0, the following holds:

F (xt0+t)− F (xt0)≤−
η

2

t−1∑
i=0

∥∇F (xt0+i)∥2 +
η

2

t∑
i=1

∥νt0+i∥2 (7)

Since νt can be bounded with high probability, we have:

Corollary 2. For any t0 and some constant c, with probability at least 1− 2e−ι,

F (xt0+t)− F (xt0) ≤ −
η

2

t−1∑
i=0

∥∇F (xt0+i)∥2 + cηψ2(t+ ι). (8)

Proofs of Lemma 3 and Corollary 2 are in Appendix B.3 and B.4. These imply that
large gradients lead to rapid function decrease. We next show in Lemma 4 that a successful
saddle point escape via Γ-descent leads to a significant decrease in function value, whose
proof is in Appendix B.5.

Lemma 4 (Value Decrease per Escape). Let a Γ-descent starting from xt0 succeed after
τ ≤ Γ steps. With probability at least 1− 2e−ι, F (xt0+τ )− F (xt0) ≤ − s

8ι3

√
α3

ρ = −Φ.

We bound the total number of PSGD steps required for convergence, based on the
following estimate:

Lemma 5 (Gradient Estimate Error Bound). With probability at least 1− ω/2, for all

t ∈ [T ], ∥νt∥ ≤ C
√
2 log

(
4T
ω

)
ψ ≤ χ.

Lemma 6 (Maximum Number of Descent Steps). Given failure probability ω, set Q=
26
5 log

(
16ι3(F0−F ∗)

sω

√
ρ
χ3

)
. Gauss-PSGD returns an α-SOSP within at most Õ(1/α2.5) PSGD

steps.

Proofs of Lemmas 5 and 6 are in Appendix B.6 and B.7, respectively.

Remark 1 (On Gradient Complexity). While Lemma 6 appears to improve gradient
complexity from O(1/α4) in [23] to O(1/α2.5), the two results are not directly comparable.
In [23], the error target α is treated as an input and can be arbitrarily small, with gradient
variance σ typically treated as a constant. In contrast, in our setting, the perturbation
r and variance σ are fixed by privacy constraints, and α emerges as a function of these.
Thus, our gradient complexity fundamentally depends on σ and r, though we express it in
terms of α for clarity.

Combining all the above, we obtain the final convergence guarantee:

Theorem 1 (Convergence Guarantee of Gauss-PSGD). Let Assumptions 1 and 2 hold. For
any failure probability ω ∈ (0, 1), using the parameter settings in (5) and setting Q =
26
5 log

(
16ι3(F0−F ∗)

sω

√
ρ
χ3

)
, then with probability at least 1− ω, Gauss-PSGD (Algorithm 1)

returns an α-SOSP of F (·), where α = 4χ, within at most Õ(1/α2.5) PSGD steps.
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6 Rectified Error Rate for finding SOSP in DP Stochastic
Optimization

6.1 Adaptive Gradient Oracle: Ada-DP-SPIDER

In this section, we derive the upper bound on the error rate for DP stochastic optimization
by instantiating the Gauss-PSGD framework with a specific gradient oracle. We adopt an
adaptive version of the DP-SPIDER estimator, referred to as Ada-DP-SPIDER, which is
presented in Algorithm 2. This adaptive version refines the original SPIDER by dynamically
adjusting gradient queries based on model drift. Unlike standard SPIDER, which queries O1

at fixed intervals and may suffer from growing estimation error over time, Ada-DP-SPIDER
tracks the cumulative model drift defined as

driftt :=
t∑

i=τ(t)

∥xi − xi−1∥2, (9)

where τ(t) is the last iteration at which the full gradient oracle O1 was queried.
The intuition is that, for smooth functions, the error of O2, which estimates ∇F (xt−1)−

∇F (xt−2), is proportional to ∥xt−1 − xt−2∥. When the model drift is small, O2 remains
accurate, allowing for continued use to reduce variance (steps 9-11). However, when the
drift becomes large, further use of O2 can accumulate significant errors. To mitigate this,
the algorithm triggers a fresh query to O1 (steps 4-7). A threshold κ is used in step 3 to
determine when the drift is large. This enables adaptive switching between oracles based
on the model drift, ensuring the total error remains well controlled.

Our approach differs fundamentally from that of [29]. In their method, in addition to
using model drift to trigger O1, they also invoke O1 when approaching potential saddle
points and inject an additional Gaussian noise on top of the DP gradient estimator to
escape. To prevent excessive noise injection, they introduce a Frozen state to restrict how
frequently this occurs. In contrast, our method leverages the inherent Gaussian noise from
the DP gradient estimator for saddle point escape and uses model drift as the sole trigger
for querying O1. This results in a simpler, more efficient estimator without auxiliary state
tracking or redundant noise injection.

6.2 Error Rate Analysis for DP-SOSP with Ada-DP-SPIDER

To minimize the error rate α for DP-SOSP using Ada-DP-SPIDER, we must carefully tune
algorithmic parameters, including the mini-batch sizes b1, b2, and the drift threshold κ.
These parameters directly influence the gradient estimation error, which, according to
Theorem 1, dominates the learning error. The following lemma characterizes how these
parameters affect the estimation quality:

Lemma 7. Let Assumption 1 hold. For all t ∈ [T ], the gradient esti-

mate ĝt given by Ada-DP-SPIDER satisfies: σ ≤ O

(√
G2 log2 d

b1
+ M2 log2 d

b2
κ

)
, r ≤

O
(√

G2 log(1/δ)
b21ϵ

2 + M2 log(1/δ)
b22ϵ

2 κ
)
.

The proof is given in Appendix C.1. To ensure that b1 and b2 remain valid mini-batch
sizes under a fixed sample budget, we must control the number of times O1 is queried.
Lemma 8 bounds the count:
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Algorithm 2: Ada-DP-SPIDER
Input: DP budget ϵ and δ, horizon T , model iterates {xt−1}Tt=1, drift threshold κ

1 t← 1, drift← κ;
2 while t ≤ T do
3 if drift ≥ κ then

/* Using oracle O1 */
4 Sample mini-batch Bt of size b1 from D;

5 Sample ξt ∼ N (0, c1
G2 log 1

δ

b21ϵ
2 Id);

6 ĝt ← O1(xt−1,Bt) + ξt;
7 drift← 0;
8 else

/* Using oracle O2 */
9 Sample mini-batch Bt of size b2 from D;

10 Sample ξt ∼ N (0, c2
M2 log 1

δ

b22ϵ
2 ∥xt−1−xt−2∥2Id);

11 ĝt ← ĝt−1 +O2(xt−1, xt−2,Bt) + ξt;

12 drift← drift + η2∥ĝt∥2;
13 t← t+ 1;

Output: ĝ1, ĝ2, · · · , ĝT

Lemma 8. Let Assumption 1 and 2 hold. Define T := {t ∈ [T ] : driftt ≥ κ} as the set of
rounds where the drift exceeds the threshold κ. With high probability (as in Theorem 1),
|T | ≤ O (Uη/κ).

Proof is in Appendix C.2. Guided by Lemmas 7 and 8, we now derive the error bound
for α via appropriate choices of b1, b2, and κ in Theorem 2. The proof is provided in
Appendix C.3.

Theorem 2. Let Assumption 1 and 2 hold. Define b1 = nκ
2Uη , b2 = nηχ2

2U and κ =

max
{
G3/2U1/2ρ1/2

M5/2n1/2 , G
14/15d2/5U4/5ρ8/15

M34/15(nϵ)4/5

}
. Then, running Gauss-PSGD with gradient oracle

instantiated by Ada-DP-SPIDER ensures (ϵ, δ)-DP for constants c1, c2 and returns an α-

SOSP with α = Õ

(
1

n1/3 +
(√

d
nϵ

)2/5)
.

Remark 2 (No Cyclic Dependency Among Parameters). All algorithmic parameters are
consistently defined in terms of the problem parameters n, d, and ϵ. Specifically, Gauss-PSGD
parameters such as the step size η and the noise scale χ depend on the target error α
(see (5)), and the gradient oracle parameters b1 and b2 are defined through η and χ, and
thus also indirectly depend on α. In the proof of Theorem 2, by utilizing the relationship
α = Õ(

√
σ2 + r2d), we obtain the closed-form expression of α that depends solely on the

problem parameters n, d, and ϵ. As a result, all algorithm parameters are ultimately
determined by n, d, and ϵ, and there is no cyclic dependency in the parameter design.
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Algorithm 3: Distributed Ada-DP-SPIDER

Input: DP budget ϵ and δ, horizon T , model iterates {xt−1}Tt=1, drift threshold κ
1 t← 1, drift← κ;
2 while t ≤ T do
3 if drift ≥ κ then
4 for every client j in parallel do
5 Sample mini-batch Bj,t of size b1 from Dj ;

6 Sample ξj,t ∼ N (0, c1
G2 log 1

δ

b21ϵ
2 Id);

7 ĝj,t ← O1(xt−1,Bj,t) + ξj,t;
8 Send ĝj,t to the server;

9 drift← 0;
10 else
11 for every client i in parallel do
12 Sample mini-batch Bj,t of size b2 from Dj ;

13 Sample ξj,t ∼ N (0, c2
M2 log 1

δ

b22ϵ
2 ∥xt−1−xt−2∥2Id);

14 ĝj,t ← ĝj,t−1 +O2(xt−1, xt−2,Bj,t) + ξj,t;
15 Send ĝj,t to the server;

16 ĝt ← 1
m

∑m
j=1 ĝj,t;

17 drift← drift + η2∥ĝt∥2;
18 t← t+ 1;

Output: ĝ1, ĝ2, · · · , ĝT

7 Extension to Distributed SGD

By adapting the centralized gradient oracle Ada-DP-SPIDER (Algorithm 2) to the distributed
setting, we obtain Distributed Ada-DP-SPIDER (Algorithm 3), enabling our Gauss-PSGD
framework to extend seamlessly to distributed learning scenarios. The primary difference
lies in the computation and communication scheme: in the distributed variant, each client
performs local gradient estimation with private noise and communicates the privatized
estimate to the server, which then aggregates the results. This avoids centralized access to
raw data while still leveraging collective information.

The learning algorithm using Distributed Ada-DP-SPIDER can be viewed as an adap-
tive extension of the DIFF2 algorithm [36], which uses standard SPIDER and is limited
to convergence to DP-FOSP under homogeneous data. To the best of our knowledge, our
method is the first to achieve convergence to a DP-SOSP in a distributed setting with
arbitrarily heterogeneous data.

Following the same analytical strategy as in Section 6, we first quantify in Lemma 9 the
gradient estimation quality in the distributed case. The proof is provided in Appendix D.1.

Lemma 9. Let Assumption 1 hold. For all t ∈ [T ], the distributed Ada-DP-SPIDER

ensures that the gradient estimate ĝt satisfies σ ≤ O

(√
G2 log2 d
m·b1 + M2 log2 d

m·b2 κ

)
, r ≤

O

(√
G2 log 1

δ

m·b21ϵ2
+

M2 log 1
δ

m·b22ϵ2
κ

)
.
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Algorithm 4: Private Model Selection in Distributed Learning
Input: Model iterates {xt}Tt=1, DP budget ϵ, δ

1 for t← 1, · · · , T do
2 for every client j in parallel do
3 Compute ∇F̄j(xt)← ∇f̂Sj (xt) + θi,t, where θi,t ∼ N

(
0, c1

G2T log(1/δ)
n2ϵ2

Id

)
;

4 Compute ∇2F̄j(xt)← ∇2f̂Sj (xt) +Hj,t, where Hj,t is a symmetric matrix
with its upper triangle (including the diagonal) being i.i.d. samples from
N
(
0, c2

M2dT log(1/δ)
n2ϵ2

)
and each lower triangle entry is copied from its

upper triangle counterpart;
5 Send ∇F̄j(xt) and ∇2F̄j(xt) to the server;

6 ∇F̄ (xt)← 1
m

∑m
j=1∇F̄j(xt), ∇2F̄ (xt)← 1

m

∑m
j=1∇2F̄j(xt);

7 if ∥∇F̄ (xt)∥2 ≤ α+ G log(8d/ω′)√
mn

+
G
√
dT log(1/δ) log(16/ω′)√

mnϵ
and

λmin

(
∇2F̄ (xt)

)
≥ −

(
√
ρα+M

√
log(8d/ω′)

mn +
Md
√
T log(1/δ) log(32/ω′)√

mnϵ

)
then

8 Return xt

Based on this, we derive the error bound for α in the distributed setting. The proof is
in Appendix D.2.

Theorem 3. Let Assumption 1 and 2 hold. Define b1 = nκ
2Uη , b2 = nηχ2

2U and κ =

max
{
G3/2U1/2ρ1/2

M5/2(mn)1/2
, G

14/15d2/5U4/5ρ8/15

M34/15(
√
mnϵ)4/5

}
. Then, running Gauss-PSGD with gradient oracle

instantiated by distributed Ada-DP-SPIDER ensures (ϵ, δ)-ICRL-DP for some constants

c1, c2, and returns an α-SOSP with α = Õ

(
1

(mn)1/3
+
( √

d√
mnϵ

)2/5)
.

Remark 3. The error rate shown in Theorem 3 highlights the collaborative synergy among
clients, indicating the learning performance benefits from distributed learning. Specifically,
the first non-private term of α exhibits a linear dependence on m before n, while the second
term, which accounts for the privacy cost, demonstrates a square root dependence

√
m

before n. This separation reflects the impact of data heterogeneity in distributed setting.
The benefit of distributed collaboration under DP constraints is consistent with prior results
in heterogeneous federated learning [15].

We conclude by demonstrating the advantages of our Gauss-PSGD framework in dis-
tributed learning by eliminating the need for a separate private model selection procedure.
Without the guarantee of directly outputting an α-SOSP, one must resort to evaluating all
model iterates generated during the learning process and privately selecting an approximate
SOSP from them. As discussed in Appendix 3, the AboveThreshold mechanism used in [29]
for the single-machine case is not applicable in distributed settings due to decentralized data
access. To overcome this, we adapt [46, Algorithm 5] to the distributed setting, resulting
in Algorithm 4. In this scheme, each client computes privatized gradients and Hessian
estimates using additional local data, which are then aggregated by the server to evaluate
the stationary point conditions. Suppose a distributed learning algorithm produces a
sequence {xt}t∈[T ] that contains at least one α-DP-SOSP. The following result characterizes
the quality of the point selected by Algorithm 4, whose proof is provided in Appendix D.3:
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Theorem 4. Algorithm 4 satisfies (ϵ, δ)-ICRL-DP. Let Assumption 1 hold and
mn ≥ 4

9 log
8d
ω′ , then with probability at least 1 − ω′, if there exists an α-

SOSP xp ∈ {xt}Tt=1, then the selected point xo is an α′-SOSP with α′ =

Õ
(
α+ 1

mn+
1√
mn

+ α√
mn

+
√
d√

mnϵα5/4 +
d√

mnϵα3/4 +
d2

mn2ϵ2α5/2

)
.

Remark 4. To ensure that the selected model’s error α′ does not exceed the training
error α, the following must hold:

√
d√

mnϵα5/4 +
d√

mnϵα3/4 +
d2

mn2ϵ2α5/2 ≤ Õ(α). This implies

a constraint on the model dimension: d ≤ min{(
√
mnϵ)2, (

√
mnϵ)6/13}. Thus, in high-

dimensional regimes, private model selection degrades the overall error rate, marking the
limitation of selection-based approaches.

Remark 5. The error bound α′ in Theorem 4 can be improved by estimating the smallest
eigenvalue of the Hessian via Hessian-vector products using iterative methods such as
the power method [25]. This reduces the dimensional dependence in the noise scale from
O(d) to O(

√
d). However, the remaining

√
d factor is sill problematic in high-dimensional

settings. In contrast, in the single-machine case, private model selection only requires
perturbing scalar quantities, making the error independent of dimension, preserving the
error guarantee of the learning algorithm. In distributed settings, sharing perturbed vectors
becomes unavoidable. This emphasizes the necessity and superiority of our Gauss-PSGD
framework that inherently avoids the need for any separate model selection step.

8 Limitation Discussion

One of the primary objective of this work is to rectify a key analytical error in [29] by
presenting the correct error rates for DP stochastic non-convex optimization. Our proposed
framework, Gauss-PSGD, is designed to be broadly applicable beyond the DP setting, offering
a versatile optimization tool for general non-convex problems. Furthermore, this work
makes the first attempt to extend DP-SOSP analysis to the distributed learning setting,
establishing state-of-the-art utility guarantees.

To maintain consistency with prior work [29], we assume access to an unbiased gradient
oracle. This assumption is fundamental in theoretical analysis and is also adopted by many
recent studies in DP optimization and distributed learning, such as [1, 15]. However, it may
not fully reflect the behavior of practical optimizers that employ biased and noisy gradients,
particularly those using gradient clipping—a standard technique in DP implementations.

Nevertheless, our Gauss-PSGD framework can be extended to handle biased oracles
induced by clipping. The main challenge lies in the analysis: incorporating clipping
introduces bias, requiring a refined characterization of the descent dynamics. In particular,
Lemma 3 (the descent lemma) must be adapted to reflect the bias–variance trade-off.
Techniques for bias reduction in clipped DP learning—such as those developed in [53]—
could offer a promising foundation for such an extension.

The saddle point escaping analysis (Lemma 1) can also be generalized. As shown in
our proof, the key mechanism enabling escape is the injection of symmetric Gaussian noise,
which drives the divergence in the coupling sequence. This mechanism remains valid under
clipping, provided the Gaussian noise is appropriately calibrated. However, the number of
steps required for escape may change due to the altered noise structure and bias, and a
more delicate analysis would be required to quantify this behavior accurately.

We consider this as a promising direction for future work and leave its full exploration
to subsequent studies.
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9 Conclusion

In this work, we investigated the problem of finding second-order stationary points (SOSP)
in differentially private (DP) stochastic non-convex optimization. We proposed a novel
framework that leverages perturbed stochastic gradient descent (SGD) with Gaussian noise
and introduces a novel criterion based on model drift distance to ensure provable saddle point
escape and efficient convergence. By incorporating an adaptive SPIDER as the gradient
oracle, we developed a new DP algorithm that rectifies existing error rates. Furthermore, we
extended our approach to distributed learning scenarios with heterogeneous data, providing
the first theoretical guarantees for finding DP-SOSP in such settings. Through rigorous
analysis, we demonstrated that our framework not only avoids the pitfalls of private model
selection but also remains effective in high-dimensional distributed learning environments.

Our work opens several promising directions for future research. A key challenge is
bridging the gap between our upper bound and the existing DP lower bound for stochastic
optimization, as established in [1]. The current lower bound is derived from convex
loss functions and first-order stationary points, wheras finding DP-SOSP in non-convex
optimization is inherently more difficult. We conjecture that the existing lower bound is
not tight for the non-convex case. Establishing a tighter lower bound remains a critical
open problem. Additionally, exploring whether our upper bounds can be further improved
is another intriguing direction that warrants in-depth investigation.

References

[1] Raman Arora, Raef Bassily, Tomás González, Cristóbal A Guzmán, Michael Menart,
and Enayat Ullah. Faster rates of convergence to stationary points in differentially
private optimization. In International Conference on Machine Learning, pages 1060–
1092. PMLR, 2023.

[2] Dmitrii Avdiukhin, Michael Dinitz, Chenglin Fan, and Grigory Yaroslavtsev. Noise
is all you need: Private second-order convergence of noisy sgd. arXiv preprint
arXiv:2410.06878, 2024.

[3] Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Guha Thakurta. Private
stochastic convex optimization with optimal rates. Advances in neural information
processing systems, 32, 2019.

[4] Raef Bassily, Cristóbal Guzmán, and Michael Menart. Differentially private stochastic
optimization: New results in convex and non-convex settings. Advances in Neural
Information Processing Systems, 34:9317–9329, 2021.

[5] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk mini-
mization: Efficient algorithms and tight error bounds. In 2014 IEEE 55th annual
symposium on foundations of computer science, pages 464–473. IEEE, 2014.

[6] Sijin Chen, Zhize Li, and Yuejie Chi. Escaping saddle points in heterogeneous feder-
ated learning via distributed sgd with communication compression. In International
Conference on Artificial Intelligence and Statistics, pages 2701–2709. PMLR, 2024.

17



[7] Christopher A Choquette-Choo, Arun Ganesh, and Abhradeep Thakurta. Optimal
rates for dp-sco with a single epoch and large batches. arXiv preprint arXiv:2406.02716,
2024.

[8] Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in
non-convex sgd. Advances in neural information processing systems, 32, 2019.

[9] Hadi Daneshmand, Jonas Kohler, Aurelien Lucchi, and Thomas Hofmann. Escaping
saddles with stochastic gradients. In International Conference on Machine Learning,
pages 1155–1164. PMLR, 2018.

[10] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Theory of Cryptography: Third Theory
of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006.
Proceedings 3, pages 265–284. Springer, 2006.

[11] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

[12] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal
non-convex optimization via stochastic path-integrated differential estimator. Advances
in neural information processing systems, 31, 2018.

[13] Cong Fang, Zhouchen Lin, and Tong Zhang. Sharp analysis for nonconvex sgd escaping
from saddle points. In Conference on Learning Theory, pages 1192–1234. PMLR, 2019.

[14] Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimiza-
tion: optimal rates in linear time. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, pages 439–449, 2020.

[15] Changyu Gao, Andrew Lowy, Xingyu Zhou, and Stephen J Wright. Private het-
erogeneous federated learning without a trusted server revisited: Error-optimal and
communication-efficient algorithms for convex losses. arXiv preprint arXiv:2407.09690,
2024.

[16] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online
stochastic gradient for tensor decomposition. In Conference on learning theory, pages
797–842. PMLR, 2015.

[17] Rong Ge, Zhize Li, Weiyao Wang, and Xiang Wang. Stabilized svrg: Simple variance
reduction for nonconvex optimization. In Conference on learning theory, pages 1394–
1448. PMLR, 2019.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

[19] Lijie Hu, Shuo Ni, Hanshen Xiao, and Di Wang. High dimensional differentially
private stochastic optimization with heavy-tailed data. In Proceedings of the 41st
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages
227–236, 2022.

18



[20] Prateek Jain, Chi Jin, Sham M Kakade, and Praneeth Netrapalli. Computing matrix
squareroot via non convex local search. arXiv preprint arXiv:1507.05854, 2015.

[21] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How
to escape saddle points efficiently. In International conference on machine learning,
pages 1724–1732. PMLR, 2017.

[22] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. A
short note on concentration inequalities for random vectors with subgaussian norm.
arXiv preprint arXiv:1902.03736, 2019.

[23] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. On
nonconvex optimization for machine learning: Gradients, stochasticity, and saddle
points. Journal of the ACM (JACM), 68(2):1–29, 2021.

[24] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[25] Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. 1950.

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[27] Zhize Li. Ssrgd: Simple stochastic recursive gradient descent for escaping saddle points.
Advances in Neural Information Processing Systems, 32, 2019.

[28] Daogao Liu and Hilal Asi. User-level differentially private stochastic convex optimiza-
tion: Efficient algorithms with optimal rates. In International Conference on Artificial
Intelligence and Statistics, pages 4240–4248. PMLR, 2024.

[29] Daogao Liu, Arun Ganesh, Sewoong Oh, and Abhradeep Guha Thakurta. Private
(stochastic) non-convex optimization revisited: Second-order stationary points and
excess risks. Advances in Neural Information Processing Systems, 36, 2024.

[30] Ruixuan Liu, Yang Cao, Hong Chen, Ruoyang Guo, and Masatoshi Yoshikawa. Flame:
Differentially private federated learning in the shuffle model. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 8688–8696, 2021.

[31] Andrew Lowy, Ali Ghafelebashi, and Meisam Razaviyayn. Private non-convex federated
learning without a trusted server. In International Conference on Artificial Intelligence
and Statistics, pages 5749–5786. PMLR, 2023.

[32] Andrew Lowy and Meisam Razaviyayn. Private federated learning without a trusted
server: Optimal algorithms for convex losses. In The Eleventh International Conference
on Learning Representations, 2023.

[33] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communication-efficient learning of deep networks from decentralized data.
In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017.

19



[34] Frank D McSherry. Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In Proceedings of the 28th ACM SIGMOD International
Conference on Management of data (SIGMOD), pages 19–30, 2009.

[35] Tomoya Murata and Taiji Suzuki. Escaping saddle points with bias-variance reduced lo-
cal perturbed sgd for communication efficient nonconvex distributed learning. Advances
in Neural Information Processing Systems, 35:5039–5051, 2022.

[36] Tomoya Murata and Taiji Suzuki. Diff2: Differential private optimization via gradient
differences for nonconvex distributed learning. In International Conference on Machine
Learning, pages 25523–25548. PMLR, 2023.

[37] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method
for machine learning problems using stochastic recursive gradient. In International
conference on machine learning, pages 2613–2621. PMLR, 2017.

[38] Jinyan Su, Lijie Hu, and Di Wang. Faster rates of private stochastic convex optimization.
In International Conference on Algorithmic Learning Theory, pages 995–1002. PMLR,
2022.

[39] Jinyan Su, Lijie Hu, and Di Wang. Faster rates of differentially private stochastic
convex optimization. Journal of Machine Learning Research, 25(114):1–41, 2024.

[40] Jinyan Su, Changhong Zhao, and Di Wang. Differentially private stochastic convex
optimization in (non)-euclidean space revisited. In Uncertainty in Artificial Intelligence,
pages 2026–2035. PMLR, 2023.

[41] Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase retrieval. In 2016
IEEE International Symposium on Information Theory (ISIT), pages 2379–2383. IEEE,
2016.

[42] Youming Tao, Shuzhen Chen, Congwei Zhang, Di Wang, Dongxiao Yu, Xiuzhen Cheng,
and Falko Dressler. Private over-the-air federated learning at band-limited edge. IEEE
Transactions on Mobile Computing, 2024.

[43] Youming Tao, Yulian Wu, Xiuzhen Cheng, and Di Wang. Private stochastic convex
optimization and sparse learning with heavy-tailed data revisited. In IJCAI, pages
3947–3953, 2022.

[44] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
computational mathematics, 12:389–434, 2012.

[45] Roman Vershynin. High-dimensional probability. University of California, Irvine,
10:11, 2020.

[46] Di Wang, Changyou Chen, and Jinhui Xu. Differentially private empirical risk min-
imization with non-convex loss functions. In International Conference on Machine
Learning, pages 6526–6535. PMLR, 2019.

[47] Di Wang, Marco Gaboardi, Adam Smith, and Jinhui Xu. Empirical risk minimization
in the non-interactive local model of differential privacy. Journal of machine learning
research, 21(200):1–39, 2020.

20



[48] Di Wang, Marco Gaboardi, and Jinhui Xu. Empirical risk minimization in non-
interactive local differential privacy revisited. Advances in Neural Information Pro-
cessing Systems, 31, 2018.

[49] Di Wang, Hanshen Xiao, Srinivas Devadas, and Jinhui Xu. On differentially private
stochastic convex optimization with heavy-tailed data. In International Conference on
Machine Learning, pages 10081–10091. PMLR, 2020.

[50] Di Wang and Jinhui Xu. Escaping saddle points of empirical risk privately and
scalably via dp-trust region method. In Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2020, Ghent, Belgium, September
14–18, 2020, Proceedings, Part III, pages 90–106. Springer, 2021.

[51] Di Wang, Minwei Ye, and Jinhui Xu. Differentially private empirical risk minimization
revisited: Faster and more general. Advances in Neural Information Processing Systems,
30, 2017.

[52] Zihang Xiang, Tianhao Wang, Wanyu Lin, and Di Wang. Practical differentially private
and byzantine-resilient federated learning. Proceedings of the ACM on Management of
Data, 1(2):1–26, 2023.

[53] Hanshen Xiao, Zihang Xiang, Di Wang, and Srinivas Devadas. A theory to instruct
differentially-private learning via clipping bias reduction. In 2023 IEEE Symposium
on Security and Privacy (SP), pages 2170–2189. IEEE, 2023.

[54] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Defending
against saddle point attack in byzantine-robust distributed learning. In International
Conference on Machine Learning, pages 7074–7084. PMLR, 2019.

[55] Ruijia Zhang, Mingxi Lei, Meng Ding, Zihang Xiang, Jinhui Xu, and Di Wang. Im-
proved rates of differentially private nonconvex-strongly-concave minimax optimization.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages
22524–22532, 2025.

[56] Yingxue Zhou, Xiangyi Chen, Mingyi Hong, Zhiwei Steven Wu, and Arindam Baner-
jee. Private stochastic non-convex optimization: Adaptive algorithms and tighter
generalization bounds. arXiv preprint arXiv:2006.13501, 2020.

21



A Useful Facts for Analysis

A.1 Probability Tools

Definition 6 (Sub-Gaussian random vector [22, Definition 2]). A random vector v ∈ Rd is
ζ-sub-Gaussian (or SG(ζ)), if there exists a positive constant ζ such that

E[exp(⟨u, v − E[v]⟩)] ≤ exp

(
∥u∥22ζ2

2

)
, ∀u ∈ Rd. (10)

Definition 7 (Norm-sub-Gaussian random vector [22, Definition 3]). A random vector
v ∈ Rd is ζ-norm-sub-Gaussian (or nSG(ζ)), if there exists a positive constant ζ such that

P [∥v − E[v]∥ ≥ t] ≤ 2 exp

(
− t2

2ζ2

)
, ∀t ∈ R. (11)

Note that norm-sub-Gaussian random vectors (Definition 7) are more general than
sub-Gaussian random vectors (Definition 6), as sub-Gaussian distributions require isotropy,
whereas norm-sub-Gaussian distributions do not impose this condition.

Lemma 10 ([22, Lemma 1]). A SG(r) random vector v ∈ Rd is also nSG(2
√
2 · r
√
d).

We are interested in the properties of norm-subGaussian martingale difference sequences.
Concretely, they are sequences satisfying the following properties.

Condition 1. Consider random vectors v1, · · · , vp ∈ Rd, and corresponding filtrations
Fi = σ(v1, · · · , vi) for i ∈ [n], such that vi|Fi−1 is zero-mean nSG(ζi) with ζi ∈ Fi−1. That
is,

E[vi|Fi−1] = 0, P [∥vi∥ ≥ t|Fi−1] ≤ 2 exp

(
− t2

2ζ2

)
, ∀t ∈ R, ∀i ∈ [p]. (12)

Lemma 11 (Hoeffding type inequality for norm-sub-Gaussian [22, Corollary 7]). Let
random vectors v1, · · · , vp ∈ Rd, and corresponding filtrations Fi = σ(v1, · · · , vi) for i ∈ [k]
satisfy condition 1 with fixed {ζi}. Then for any ι > 0, there exists an absolute constant C
such that, with probability at least 1− 2d · e−ι,∥∥∥∥∥

p∑
i=1

vi

∥∥∥∥∥
2

≤ C ·

√√√√ p∑
i=1

ζ2i · ι. (13)

Lemma 11 implies that the sum of norm-sub-Gaussian random vectors is till norm-sub-
Gaussian.

Corollary 3. Let random vectors v1, · · · , vp ∈ Rd, and corresponding filtrations
Fi = σ(v1, · · · , vi) for i ∈ [k] satisfy condition 1 with fixed {ζi}. Then

∑p
i=1 vi is

nSG

(
C ·
√

log(d)
∑k

i=1 ζ
2
i

)
.

Proof. Let ζ+ :=
√
C log(d)

∑k
i=1 ζi. According to Definition 7, we aim to show that, for

any ω ∈ (0, 1), with probability at least 1 − ω, ∥
∑p

i=1 vi∥ ≤
√
2ζ2+ ln 2

ω . By Lemma 11,

we have known that, with probability at least 1 − ω, ∥
∑p

i=1 vi∥ ≤ C ·
√∑p

i=1 ζ
2
i ln

2d
ω .
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Next, we show that
√
2ζ2+ ln 2

ω ≥ C ·
√∑p

i=1 ζ
2
i ln

2d
ω , which, by re-arranging the terms,

is equivalent to show ζ2+ ≥ C2

2 (
∑p

i=i ζ
2
i )

log 2d
ω

log 2
ω

. This follows directly from the fact that
log 2d

ω

log 2
ω

≤ 2 log d,∀ω ∈ (0, 1).

Lemma 12 ([23, Lemma C.6]). Let random vectors v1, · · · , vp ∈ Rd, and corresponding
filtrations Fi = σ(v1, · · · , vi) for i ∈ [k] satisfy condition 1, then for any ι > 0, and
B > b > 0, there exists an absolute constant C such that, with probability at least
1− 2d log

(
B
b

)
· e−ι,

p∑
i=1

ζ2i ≥ B or

∥∥∥∥∥
p∑
i=i

vi

∥∥∥∥∥ ≤ C ·
√√√√max

{
p∑
i

ζ2i , b

}
· ι. (14)

Lemma 13 ([23, Lemma C.7]). Let random vectors v1, · · · , vp ∈ Rd, and corresponding
filtrations Fi = σ(v1, · · · , vi) for i ∈ [k] satisfy condition 1 with fixed ζ1 = ζ2 = · · · = ζp = ζ,
then there exists an absolute constant C such that, for any ι > 0, with probability at least
1− e−ι,

p∑
i=1

∥vi∥2 ≤ C · ζ2 · (p+ ι). (15)

Lemma 14 (Matrix Bernstein inequality [44, Theorem 1.4]). Consider a finite sequence
{Mi}i∈[k] of independent, random, self-adjoint matrices with dimension d× d. Assume that
each random matrix satisfies E[Mi] = 0, ∥Mi∥2 ≤ B, then for all t ≥ 0, we have

P

∥∥∥∥∥∥
∑
i∈[k]

Mi

∥∥∥∥∥∥
2

≥ t

 ≤ d exp(− t2

2(σ2 +Bt/3)

)
, (16)

where σ2 =
∥∥∥∑i∈[k] E[M2

i ]
∥∥∥
2
.

Lemma 15 (Norm of symmetric matrices with sub-gaussian entries [45, Corollary 4.4.8]).
Let M be an d× d symmetric random matrix whose entries Mi,j on and above the diagonal
are independent, mean zero, sub-gaussian random variables. Then, with probability at least
1− 4 exp(−t2), for any t > 0 we have

∥M∥2 ≤ C ·max
i,j
∥Mi,j∥ψ2 · (

√
d+ t), (17)

where C is a universal constant.

A.2 Privacy Preliminaries

Definition 8 (Gaussian Mechanism [11]). Given any input data D ∈ X n and a query
function q : X n → Rd, the Gaussian mechanism MG is defined as q(D) + ν where
ν ∼ N (0, σ2GId). Let ∆2(q) be the ℓ2-sensitivity of q, i.e., ∆2(q) := supD∼D′ ∥q(D)−q(D′)∥2.
For any σ, δ > 0,MG guarantees (∆2(q)

σG

√
2 log 1.25

δ , δ)-DP. That is, if we want the output

of q to be (ϵ, δ)-DP for any 0 < ϵ, δ < 1, then σG should be set to ∆2(q)
ϵ

√
2 log 1.25

δ .
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Lemma 16 (Adaptive Composition Theorem [11]). Given target privacy parameters
0 < ϵ < 1 and 0 < δ < 1, to ensure (ϵ, δ)-DP over k-fold adaptive mechanisms, it suffices
that each mechanism is (ϵ′, δ′)-DP, where ϵ′ = ϵ

2
√

2k ln(2/δ)
and δ′ = δ

2k .

Lemma 17 (Parallel Composition of DP [34]). Suppose there are n (ϵ, δ)-differentially
private mechanisms {Mi}ni=1 and n disjoint datasets denoted by {Di}ni=1. Then the
algorithm, which applies eachMi on the corresponding Di, preserves (ϵ, δ)-DP in total.

B Omitted Proofs in Section 5

B.1 Proof of Lemma 1

Proof of Lemma 1. We begin by introducing the following notations:

x̂t := xt − x′t, (18)

ζ̂t := ζt − ζ ′t, (19)

ξ̂t := ξt − ξ′t, (20)

∆t :=

∫ 1

0
∇2F (y · xt + (1− y) · x′t) dy −H (21)

The proof strategy is to derive a contradiction by showing that if the model remains
localized (i.e., stays within a radius R around the saddle point) with high probability, then
the coupling sequence must still diverge with non-negligible probability.

We first characterize the dynamics of x̂t in the following Lemma 18. At a high level,
we decompose the difference of the coupling sequence xt into three components: (i) a
curvature-dependent term Ph(t), (ii) a stochastic gradient noise term Psg(t), (iii) a
perturbation-driven term Pp(t).

Lemma 18 (Coupling Dynamics). For any t ≥ 0, the difference between the two coupled
iterates satisfies:

x̂t = − η
t∑
i=1

(Id − ηH)t−i∆i−1x̂i−1︸ ︷︷ ︸
Ph(t)

− η
t∑
i=1

(Id − ηH)t−iζ̂i︸ ︷︷ ︸
Psg(t)

− η
t∑
i=1

(Id − ηH)t−iξ̂i︸ ︷︷ ︸
Pp(t)

. (22)

Proof of Lemma 18. By the update rule:

x̂t = xt − x′t (23)
= x̂t−1 − η[∇F (xt−1)−∇F (x′t−1) + ζt − ζ ′t + ξt − ξ′t] (24)

= x̂t−1 − η[(H+∆t−1)x̂t−1 + ζ̂t + ξ̂t] (25)

= (Id − ηH)x̂t−1 − η[∆t−1x̂t−1 + ζ̂t + ξ̂t]. (26)

Unrolling the recursion with initial condition x̂0 = 0 yields the desired result:

x̂t = (Id − ηH)tx̂0 − η
t∑
i=1

(Id − ηH)t−i(∆i−1x̂i−1 + ζ̂i + ξ̂i) (27)

= −η
t∑
i=1

(Id − ηH)t−i(∆i−1x̂i−1 + ζ̂i + ξ̂i). (28)
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Let E denote the event that both sequences remain localized:

E :=
{
∀t ≤ Γ : max

{
∥xt − x̃∥, ∥x′t − x̃∥

}
≤ R

}
.

We proceed by contradiction. Assume:

P(E) ≥ 3

4
. (29)

To derive a contradiction, we analyze the terms in (22), showing in Lemma 19 and
Lemma 20 that the perturbation term Pp(t) dominates, while the curvature and stochastic
gradient terms remain controlled. Define:

a(t) :=

√√√√ t∑
i=1

(1 + ηγ)2(t−i), b(t) :=
(1 + ηγ)t√

2ηγ
. (30)

It has been verified in [23, Lemma 29] that a(t) ≤ b(t) for all t ∈ N.

Lemma 19. For all t ≥ 0, the following hold:

P
[
∥Pp(t)∥ ≤ cb(t)ηr ·

√
ι
]
≥ 1− 2e−ι (31)

P
[
∥Pp(t)∥ ≥

b(Γ)ηr

10

]
≥ 2

3
(32)

The proof follows from standard Gaussian concentration and is omitted here; see [23,
Lemma 30].

Lemma 20. For all t ≥ 0, conditioned on E , we have:

P

[
∥Ph(t) + Psg(t)∥ ≤

b(t)ηr

20

∣∣∣∣∣E
]
≥ 1− 6dΓ log

(
R
ηr

)
e−ι (33)

Proof of Lemma 20. We prove the following strengthened claim for any t ≤ Γ by induction:

P

[
∀i ≤ t : ∥Ph(i) + Psg(i)∥ ≤

b(i)ηr

20
, ∥Pp(i)∥ ≤ cb(i)ηr

√
ι

∣∣∣∣∣E
]
≤ 1− 6dt log

(
R
ηr

)
e−ι.

(34)
For the base case of t = 0, the claim holds trivially as Ph(0) = Psg(0) = 0. Suppose

the claim holds for a step t < Γ, we then forward prove that the claim also holds for step
t+ 1 ≤ Γ. Since for ∀i ≤ t, ∥Pp(i)∥ ≤ cb(i)ηr

√
ι, we have

∥x̂i∥ ≤ ∥Ph(i) + Psg(i)∥+ ∥Pp(i)∥ (35)

≤ b(i)ηr

20
+ cb(i)ηr ·

√
ι (36)

≤ 2cb(i)ηr ·
√
ι. (37)

Moreover, due to assumption (29) and the Hessian Lipschitz property, we have

∥∆i∥ =
∫ 1

0
∇2F (y · xi + (1− y) · x′i) dy (38)

≤ ρmax{∥xi − x̃∥, ∥x′i − x̃∥} ≤ ρR. (39)
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With the above upper bounds on ∥x̂i∥ and ∥∆i∥ for i ≤ t, we immediately get for case t+1
from the definition of Ph(·) in (22) that

∥Ph(t+ 1)∥ ≤ ηρR
t+1∑
i=1

(1 + ηγ)t+1−i (2cb(i)ηr√ι) (40)

≤ 2ηρRΓcb(t+ 1)ηr
√
ι ≤ b(t+ 1)ηr

40
, (41)

where the last inequality follows from 2cηρRΓ = 2c
s ≤

1
40 for large enough s such that

s ≥ 80c.
Note that ζ̂t|Ft−1 ∼ nSG(M∥x̂t∥), by applying Lemma 12 with B = [a(t)]2η2M2R2 and

b = [a(t)]2η2M2η2r2 therein, we know that, with probability at least 1− 4d log
(

R
ηr

)
e−ι,

we have
∥Psg(t+ 1)∥ ≤ 2cηM

√
Γb(t)ηr

√
ι. (42)

For large enough s such that s ≥ (80c)2, we have cηM
√
Γι ≤ 2c√

s
≤ 1

40 . Thus,

∥Psg(t+ 1)∥ ≤ cηM
√
Γb(t)ηr

√
ι ≤ b(t)ηr

40
. (43)

By Lemma 19, we know that, for case t+ 1, with probability at least 1− 2e−ι, we have

∥Pp(t+ 1)∥ ≤ cb(t+ 1)ηr
√
ι (44)

By the union bound, with probability at least 1 −(
6dt log

(
R
ηr

)
e−ι + 4d log

(
R
ηr

)
e−ι + 2e−ι

)
≥ 1− 6d(t+ 1) log

(
R
ηr

)
e−ι,

∥Ph(t+1)+Psg(t+1)∥ ≤ b(t)ηr

20
≤ b(t+ 1)ηr

20
, ∥Pp(t+1)∥ ≤ cb(t+1)ηr

√
ι, (45)

which concludes the proof.

Now we complete the proof of Lemma 1. Choose ι large enough such that

ι ≥ log

(
36dΓ log

(
R
ηr

))
, (46)

which is promised by µ ≥ 1
s log

(
9d

C
1
4 η

√
sρψ

log

(
4C

1
4

sηr

√
ψ
ρ

))
for sufficiently large numerical

constant s. Then we have:
6dΓ log

(
R
ηr

)
e−ι ≤ 2

9
. (47)

From Lemma 19, we have:

P
[
∥Pp(Γ)∥ ≥

b(Γ)ηr

10

]
≥ 2

3
, (48)

and from Lemma 20,

P
[
∥Ph(Γ) + Psg(Γ)∥ ≤

b(Γ)ηr

20

]
≥ 3

4
·
(
1− 6dΓ log

(
R
ηr

)
e−ι
)
≥ 7

12
(49)
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By the union bound, with probability at least 1−
(
1− 2

3

)
−
(
1− 7

12

)
= 1

4 , both events hold:

∥Pp(Γ)∥ ≥
b(Γ)ηr

10
, ∥Ph(Γ) + Psg(Γ)∥ ≤

b(Γ)ηr

20
. (50)

Therefore, using the triangle inequality:

max
{
∥xΓ − x̃∥, ∥x′Γ − x̃∥

}
(51)

≥ 1

2
∥x̂Γ∥ ≥

1

2
[∥Pp(Γ)∥ − ∥Ph(Γ) + Psg(Γ)∥] ≥

b(Γ)ηr

40
=

(1 + ηγ)Γ
√
ηr

40
√
2

(52)

≥
(1 + η

√
ρα)Γ

√
ηr

40
√
2

≥
2η

√
ραΓ√ηr
40
√
2

=
2

ι
s
√
ηr

40
√
2

=
2µ
√
ηr

40
√
2
> R, (53)

where the second last inequality is due to the fact 1+a > 2a,∀a ∈ (0, 1] and η√ρα ≤ 1
ι2
≤ 1,

and the last inequality is because µ > log

(
160

√
2C

1
4

s
√
ηr

√
ψ
ρ

)
.

The above means that the localization event E fails with probability at least 1/4, i.e.,
P(E) < 3

4 , which contradicts with our assumption (29). Therefore, the assumption (29)
should be false, that is, with probability at least 1

4 , ∃t ≤ Γ,max{∥xt − x̃∥, ∥x′t − x̃∥} ≥ R,
completing the proof.

B.2 Proof of Lemma 2

Proof of Lemma 2. The failure probability after Q independent repetitions is at most
(7/8)Q. Setting Q = 26

5 log(1/ω0) yields (7/8)Q ≤ ω0, completing the proof.

B.3 Proof of Lemma 3

Proof of Lemma 3. For any t ≥ 1, by M -smoothness of F , we have:

F (xt)− F (xt−1) ≤ ⟨∇F (xt−1), xt − xt−1⟩+
M

2
∥xt − xt−1∥2 (54)

≤ −η⟨∇F (xt−1), ĝt−1⟩+
M

2
η2∥ĝt−1∥2 (55)

≤ −η⟨∇F (xt−1), ĝt−1⟩+
η

2
∥ĝt−1∥2 (56)

≤ η

2
∥νt∥2 −

η

2
∥∇F (xt−1)∥2 −

η

2
∥ĝt−1∥2 +

η

2
∥ĝt−1∥2 (57)

= −η
2
∥∇F (xt−1)∥2 +

η

2
∥νt∥2. (58)

Summing from t0 + 1 to t0 + t, we obtain:

F (xt0+t)− F (xt0) ≤ −
η

2

t−1∑
i=0

∥∇F (xt0+i)∥2 +
η

2

t∑
i=1

∥νt0+i∥2 (59)
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B.4 Proof of Corollary 2

Proof of Corollary 2. Note that

η

2

t∑
i=1

∥νt0+i∥2 =
η

2

t∑
i=1

∥ζt0+i + ξt0+i∥2 ≤ η
t∑
i=1

(∥ζt0+i∥2 + ∥ξt0+i∥2) (60)

By Lemma 13, since ζi ∼ nSG(σ), with probability at least 1− e−ι:

t∑
i=1

∥ζt0+i∥2 ≤ C · σ2(t+ ι). (61)

Using Lemma 10, each ξi ∼ nSG(2
√
2r
√
d), and applying Lemma 13 again, with probability

at least 1− e−ι:
t∑
i=1

∥ξt0+i∥2 ≤ 8C · r2d(t+ ι). (62)

By the union bound, both bounds hold with probability at least 1− 2e−ι.

B.5 Proof of Lemma 4

Proof of Lemma 4. We begin with:

∥xt0+τ − xt0∥2 = η2

∥∥∥∥∥
τ∑
t=1

∇F (xt0+t−1) + νt0+t

∥∥∥∥∥
2

(63)

≤ 2η2τ

τ∑
t=1

(
∥∇F (xt0+t−1)∥2 + ∥νt0+t∥2

)
. (64)

Following the same argument in the proof of corollary 2, with probability at least 1− 2e−ι,

τ∑
t=1

∥νt0+t∥2 ≤ c · ψ2(τ + ι), (65)

From corollary 2, with the same probability of 1− 2e−ι,

τ∑
t=1

∥∇F (xt0+t−1)∥2 ≤
2

η
[F (xt0)− F (xt0+τ )] + c · ψ2(τ + ι). (66)

Combining above results, we have, with probability at least 1− 2e−ι,

∥xt0+τ − xt0∥2 ≤ 4ητ [F (xt0)− F (xt0+τ )] + 4c · η2τψ2(τ + ι). (67)

Re-arranging the terms above, we obtain

F (xt0+τ )− F (xt0) ≤ −
1

4ητ
∥xt0+τ − xt0∥2 + c · ηψ2(τ + ι). (68)
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According to the criterion for successful escape, we have ∥xt0+τ − xt0∥ ≥ R. Then

F (xt0+τ )− F (xt0) ≤ −
1

4ητ
∥xt0+τ − xt0∥2 + c · ηψ2(τ + ι) (69)

≤ − R
2

4ηΓ
+ c · ηψ2(Γ + ι) (70)

≤ − s

4ι3

√
α3

ρ
+

2c · ψ2ι

s
√
ρα

(71)

≤ − s

8ι3

√
α3

ρ
= Φ, (72)

where the second to last inequality is from the fact that sη√ρα = ρα
M2sµ2

< 1, and the last
inequality follows from α ≥ 4

√
Csµ2ψ.

B.6 Proof of Lemma 5

Proof of Lemma 5. By Corollary 3, for all t, νt ∼ nSG(C
√
σ2 + r2d). Since E[νt] = 0, by

Definition 7, with probability at least 1− ω
2T :

∥νt∥ ≤
√
2Cψ

√
log

4T

ω
≤ χ. (73)

Applying a union bound over t ∈ [T ] gives the desired result: with probability at least
1− ω/2, ∥ĝt −∇F (xt−1)∥ ≤ χ for all t.

B.7 Proof of Lemma 6

Proof of Lemma 6. By Lemma 5, with probability at least 1−ω/2, the gradient estimation
error satisfies ∥ĝt −∇F (xt−1)∥ ≤ χ for all t ∈ [T ]. We analyze two cases based on whether
the algorithm is in the escape phase.

Case 1: In escape phase. When ∥ĝt∥ ≤ 3χ, the escape process is triggered, implying
∥∇F (xt−1)∥ ≤ α = 4χ. The average function decrease per step during a successful escape
is at least:

Φ

Γ
=
s2α2η

8ι4
=

2χ2η

s2µ4
. (74)

Case 2: Outside escape phase. When ∥ĝt∥ > 3χ, we have ∥∇F (xt−1)∥ ≥ 2χ. Each
PSGD step yields at least:

η

2
(2χ)2 = 2χ2η >

2χ2η

s2µ4
. (75)

Thus, in either case, the function value decreases by at least 2χ2η/(s2µ4) per step.
Denoting U := F0 − F ∗, the number of effective descent steps is bounded by:

Teffective :=
Us2µ4

2χ2η
. (76)

Next, consider the number of α-strict saddle points encountered. Each successful escape
yields function decrease of at least Φ, so the total number of such escape phases is at most:

Nsaddle :=
U

Φ
=

8ι3U

s

√
ρ

χ3
. (77)
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By Corollary 1, each Γ-descent succeeds with probability at least 1/8, and we boost this
to 1− ω/2 via the Q independent repetitions in every escape procedure. By Lemma 2 with
failure probability ω0 =

ω
2Nsaddle

, we require:

Q =
26

5
log

(
16ι3U

sω

√
ρ

χ3

)
. (78)

Hence, the total number of PSGD steps (including all Γ-descent repetitions) is at most:

T ≤ Teffective ·Q =
13Us2µ4

5χ2η
log

(
16ι3U

sω

√
ρ

χ3

)
= Õ

(
U

ηχ2

)
. (79)

C Omitted Proofs in Section 6

C.1 Proof of Lemma 7

Proof of Lemma 7. Let τ(t) denote the most recent iteration (up to t) at which oracle O1

was used.
Case 1: If t = τ(t), then

ĝt = O1(xt−1,Bt) + ξt. (80)

Let ζt := O1(xt−1,Bt)−∇F (xt−1), which is a zero-mean estimator with norm-subGaussian
noise due to the G-Lipschitz condition:

ζt ∼ nSG

(
G
√
log d√
b1

)
. (81)

The noise term ξt is drawn from a Gaussian distribution:

ξt ∼ N
(
0, c1

G2 log(1/δ)

b21ϵ
2

Id

)
. (82)

Thus, in this case, the oracle satisfies condition (2) with the desired bounds.
Case 2: If t > τ(t), then

ĝt = O1(xτ(t)−1,Bτ(t)) + ξτ(t) +
t∑

i=τ(t)+1

(O2(xi−1, xi−2,Bi) + ξi) . (83)

Let ζτ(t) := O1(xτ(t)−1,Bτ(t))−∇F (xτ(t)−1) and define

ζ ′i := O2(xi−1, xi−2,Bi)− (∇F (xi−1)−∇F (xi−2)) . (84)

Then

ĝt −∇F (xt−1) = ζτ(t) +

t∑
i=τ(t)+1

ζ ′i + ξτ(t) +

t∑
i=τ(t)+1

ξi. (85)

By the M -smoothness assumption, we have

ζ ′i ∼ nSG

(
M∥xi−1 − xi−2∥

√
log d√

b2

)
, (86)
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and the privacy noise is drawn from

ξi ∼ N
(
0, c2

M2 log(1/δ)

b22ϵ
2

∥xi−1 − xi−2∥2Id
)
. (87)

Since the algorithm ensures driftt :=
∑t

i=τ(t)+1 ∥xi−1− xi−2∥2 ≤ κ, we can bound the noise
as follows:

– From Corollary 3, the total norm-subGaussian parameter becomes:

σ ≤ O


√√√√√
(G√log d√

b1

)2

+
t∑

i=τ(t)+1

(
M∥xi−1 − xi−2∥

√
log d√

b2

)2
 · log d

 (88)

≤ O

√G2 log2 d

b1
+
M2 log2 d

b2
κ

 . (89)

– By the property of Gaussian, the total privacy noise magnitude satisfies:

r ≤ O

√√√√G2 log 1
δ

b21ϵ
2

+

t∑
i=τ(t)+1

(
M2 log 1

δ

b22ϵ
2
∥xt−1 − xt−2∥2

) (90)

≤ O

√G2 log 1
δ

b21ϵ
2

+
M2 log 1

δ

b22ϵ
2

κ

 . (91)

C.2 Proof of Lemma 8

Proof of Lemma 8. By the M -smoothness assumption and using the fact η ≤ 1
M , we apply

the standard descent lemma:

F (xt)− F (xt−1) ≤ ⟨∇F (xt−1), xt − xt−1⟩+
M

2
∥xt − xt−1∥2

≤ ⟨∇F (xt−1)− ĝt,−η · ĝt⟩ − η∥ĝt∥2 +
η

2
∥ĝt∥2

≤ η∥∇F (xt−1)− ĝt∥∥ĝt∥2 −
η

2
∥ĝt∥2.

By Lemma 5, with probability at least 1− ω/2, we have ∥∇F (xt−1)− ĝt∥ ≤ χ for all t.
Now consider two cases:
Case 1: If ∥∇F (xt−1)∥ ≥ 4χ, then

∥ĝt∥ ≥ ∥∇F (xt−1)∥ − χ ≥ 3χ ≥ 3∥∇F (xt−1)− ĝt∥, (92)

yielding
F (xt)− F (xt−1) ≤ −

η

6
∥ĝt∥2. (93)

Case 2: If ∥∇F (xt−1)∥ ≤ 4χ, then ∥ĝt∥ ≤ 5χ, and thus

F (xt)− F (xt−1) ≤ 5ηχ2. (94)
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Let T = {t1, t2, . . . , t|T |} denote the set of iterations where model drift exceeds κ. For each
pair of successive drift resets:

F (xti+1)− F (xti) ≤ −
1

6η

ti+1∑
t=ti+1

η2∥ĝt∥22 + (ti+1 − ti)5ηχ2 (95)

≤ − 1

6η
driftti+1 +(ti+1 − ti)5ηχ2 ≤ − 1

6η
κ+ (ti+1 − ti)5ηχ2. (96)

Summing over i, we obtain:

F (xt|T |)− F (xt1) ≤ −
|T |
6η

κ+ 5Tηχ2.

Since F (·) is upper bounded by U , we must have:

−U ≤ −|T |κ
6η

+ 5Tηχ2, (97)

which yields:

|T | ≤ O
(
Uη

κ
+
Tη2χ2

κ

)
= O

(
Uη

κ

)
,

using T = O(U/(ηχ2)).

C.3 Proof of Theorem 2

Proof of Theorem 2. We first verify that the batch size settings b1 and b2 are feasible, i.e.,
the total number of data samples used remains O(n). Recall from Lemma 8 that the
number of rounds where drift exceeds the threshold is bounded by |T | = O(Uη/κ), and
the total number of steps is T = O(U/(ηχ2)). Then:

b1 · |T |+ b2 · (T − |T |) ≤ b1 · |T |+ b2 · T ≤ O(n), (98)

under our settings of b1 = nκ
2Uη and b2 = nηχ2

2U . This confirms feasibility.
Since each sample is used only once, the overall (ϵ, δ)-differential privacy guarantee

follows directly from the Gaussian mechanism and the parallel composition theorem.
We now derive the convergence error α via Theorem 1, which gives:

α = O(χ) = Õ(ψ) = Õ(
√
σ2 + r2d), (99)

where from Lemma 7:

σ2 ≤ Õ
(
G2

b1
+
M2κ

b2

)
, r2 ≤ Õ

(
G2

b21ϵ
2
+
M2κ

b22ϵ
2

)
. (100)

Substituting our settings b1 = nκ
2Uη and b2 = nηχ2

2U into the expression, we get:

α = Õ

(√
G2Uη

nκ
+
G2dU2η2

n2ϵ2κ2
+
M2Uκ

nηχ2
+
M2dU2κ

n2ϵ2η2χ4

)
(101)

= Õ

(√
G2U

√
ρα

M2nκ
+
G2dU2ρα

M4n2ϵ2κ2
+

M4Uκ
√
ρnα5/2

+
M6dU2κ

ρn2ϵ2α5

)
. (102)
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To isolate α, we take the largest among the resulting bounds:

α = Õ

(
max

{(
G2U

√
ρ

M2nκ

)2/3

,
G2dU2ρ

M4n2ϵ2κ2
,

(
M4Uκ

n
√
ρ

)2/9

,

(
M6dU2κ

ρn2ϵ2

)1/7
})

. (103)

Now set:

κ = max

{
G3/2U1/2ρ1/2

M5/2n1/2
,
G14/15d2/5U4/5ρ8/15

M34/15(nϵ)4/5

}
. (104)

Substituting this into the above expression of α yields:

α = Õ

(GUM
n

)1/3

+
G2/15U2/5M8/15

ρ1/15

(√
d

nϵ

)2/5
 = Õ

 1

n1/3
+

(√
d

nϵ

)2/5
 . (105)

D Omitted Proofs in Section 7

D.1 Proof of Lemma 9

Proof of Lemma 9. Let τ(t) denote the most recent iteration at which oracle O1 was queried
before or at iteration t.

Case 1: If t = τ(t), then the global estimator is

ĝt =
1

m

m∑
j=1

(O1(xt−1,Bj,t) + ξj,t) . (106)

Each O1(xt−1,Bj,t) is an unbiased estimate of ∇Fj(xt−1). Let ζj,t := O1(xt−1,Bj,t) −
∇Fj(xt−1), and define ζt := 1

m

∑
j ζj,t and ξt := 1

m

∑
j ξj,t. Then,

ĝt −∇F (xt−1) = ζt + ξt. (107)

Since f is G-Lipschitz, we have ζt ∼ nSG
(
G
√
log d√
mb1

)
. Each ξj,t ∼ N

(
0, c1

G2 log(1/δ)
b21ϵ

2 Id

)
,

so their average satisfies:

ξt ∼ N
(
0, c1

G2 log(1/δ)

mb21ϵ
2

Id

)
. (108)

Thus, in this case, the oracle satisfies condition (2) with the desired bounds.
Case 2: If t > τ(t), the global estimate is:

ĝt =
1

m

m∑
j=1

O1(xτ(t)−1,Bj,τ(t)) + ξj,τ(t) +

t∑
i=τ(t)+1

[O2(xi−1, xi−2,Bj,i) + ξj,i]

 . (109)

Let ζj,τ := O1(xτ(t)−1,Bj,τ(t))−∇Fj(xτ(t)−1), and define:

ζ ′j,i := O2(xi−1, xi−2,Bj,i)− [∇Fj(xi−1)−∇Fj(xi−2)] . (110)

Then,

ĝt −∇F (xt−1) = ζτ(t) +
t∑

i=τ(t)+1

ζ ′i + ξτ(t) +
t∑

i=τ(t)+1

ξi, (111)
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where ζτ(t) := 1
m

∑
j ζj,τ(t), ζ

′
i := 1

m

∑
j ζ

′
j,i, and similarly for ξτ(t) and ξi. By the M -

smoothness of f , we have:

ζ ′i ∼ nSG

(
M∥xi−1 − xi−2∥

√
log d√

mb2

)
, ξi ∼ N

(
0, c2

M2 log(1/δ)

mb22ϵ
2
∥xi−1 − xi−2∥2Id

)
.

(112)
Since the algorithm ensures that driftt :=

∑t
i=τ(t)+1 ∥xi−1 − xi−2∥2 ≤ κ, we obtain:

σ = Õ

√G2 log2 d

mb1
+
M2 log2 d

mb2
κ

 , r = Õ

(√
G2 log(1/δ)

mb21ϵ
2

+
M2 log(1/δ)

mb22ϵ
2

κ

)
. (113)

D.2 Proof of Theorem 3

Proof of Theorem 3. We first verify that the total sample usage per client is O(n). From
Lemma 8, we have |T | = O(Uη/κ) and T = O(U/(ηχ2)). Using the settings:

b1 =
nκ

2Uη
, b2 =

nηχ2

2U
, (114)

the total number of samples used per client is:

b1 · |T |+ b2 · (T − |T |) ≤ b1 · |T |+ b2 · T = O(n). (115)

Differential privacy guarantees follows from the Gaussian mechanism and parallel
composition, since each data point is used at most once.

Now for the error analysis. By Theorem 1:

α = O(χ) = Õ(ψ) = Õ(
√
σ2 + r2d). (116)

From Lemma 9:

α = Õ

(√
G2

mb1
+

G2d

mb21ϵ
2
+

(
M2

mb2
+

M2d

mb22ϵ
2

)
· κ

)
. (117)

Substitute the expressions for b1, b2 into the bound and simplify, we get:

α = Õ

(√
G2Uη

mnκ
+
G2dU2η2

mn2ϵ2κ2
+
M2Uκ

mnηχ2
+

M2dU2κ

mn2ϵ2η2χ4

)
(118)

= Õ

(√
G2U

√
ρα

mM2nκ
+

G2dU2ρα

mn2ϵ2M4κ2
+

M4Uκ

mnρ
1
2α

5
2

+
M6dU2κ

mn2ϵ2ρα5

)
. (119)

To isolate α, we take the largest among the resulting bounds:

α =Õ

(
max

{(
G2U

√
ρ

mM2nκ

)2/3

,
G2dU2ρ

mn2ϵ2M4κ2
,

(
M4Uκ

mn
√
ρ

)2/9

,

(
M6dU2κ

mn2ϵ2ρ

)1/7
})

.
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Now set:

κ = max

{
G3/2
√
ρU

M5/2
√
mn

,
G14/15d2/5U4/5ρ8/15

M34/15(
√
mnϵ)4/5

}
(120)

Substituting this into the above expression of α yields:

α = Õ

(GUM
mn

)1/3

+
G2/15U2/5M8/15

ρ1/15

( √
d√

mnϵ

)2/5
 = Õ

 1

(mn)1/3
+

( √
d√

mnϵ

)2/5
 .

(121)

D.3 Proof of Theorem 4

Proof of Theorem 4. The (ϵ, δ)-ICRL-DP guarantee follows directly from the Gaussian
mechanism and the adaptive composition theorem, since each client adds independent
Gaussian noise to both their gradient and Hessian estimates. Each local data point is used
at most T times—once for each model iterate—and all messages sent to the server are
privatized accordingly.

We now derive the error rate α guarantee for the output xo. Let S :=
⊔m
j=1 Sj denote

the full held-out evaluation dataset, and let xp be an α-SOSP in the input to Algorithm 4.
Define the aggregate gradient noise and Hessian noise as

θp :=
1

m

m∑
j=1

θj,p, Hp :=
1

m

m∑
j=1

Hj,p. (122)

Let σ21 = c1
G2T log(1/δ)

n2ϵ2
and σ22 = c2

M2dT log(1/δ)
n2ϵ2

denote the variances of the noise added to
the gradient and Hessian components, respectively.

Gradient Estimation Error. For any Sj and x, ∇f̂Sj (x)−∇Fj(x) is zero-mean and

follows nSG
(

2G√
n

)
. By the G-Lipschitz assumption and norm-sub-Gaussian concentration

(Lemma 11), we have with probability at least 1− ω′/8:

∥∇F (xp)−∇f̂S(xp)∥ ≤ O

(
G
√

log(d/ω′)√
mn

)
. (123)

Also, since θp ∼ N (0, σ21/m), standard Gaussian concentration (Lemma 10) gives, with
probability at least 1− ω′/8:

∥θp∥ ≤ O

(
G
√
dT log(1/δ) log(1/ω′)√

mnϵ

)
. (124)

Hessian Estimation Error. For any j ∈ [m] and z ∈ Sj , E[∇2f(xp; z)−∇2Fj(xp)] = 0,
and ∥∇2f(xp; z) − ∇2Fj(xp)∥2 ≤ 2M (due to M -smoothness). That is, each empirical
Hessian term is 2M -bounded in operator norm. Applying the matrix Bernstein inequality
(Lemma 14), and using the assumption mn ≥ 4

9 log(8d/ω
′), we obtain with probability at

least 1− ω′/8: ∥∥∥∇2f̂S(xp)−∇2F (xp)
∥∥∥ ≤ O(M√ log(d/ω′)

mn

)
. (125)
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For the added noise, since Hp consists of symmetric Gaussian matrices with variance σ22/m,
Lemma 15 gives, with probability at least 1− ω′/8:

∥Hp∥ ≤ O

(
Md

√
T log(1/δ) log(1/ω′)√

mnϵ

)
. (126)

Verification for xp. Combining the above estimates and using a union bound, with
probability at least 1− ω′/2, we have:

∥∇F̄ (xp)∥2 ≤ ∥∇F (xp)∥2 + ∥∇F̄ (xp)−∇F (xp)∥2 (127)

≤ ∥∇F (xp)∥2 + ∥∇f̂S(xp)−∇F (xp)∥2 + ∥θp∥2 (128)
≤ α+ (estimation error) (129)

≤ O

(
α+

G log (d/ω′)√
mn

+
G
√
dT log (1/δ) log (1/ω′)√

mnϵ

)
, (130)

and

λmin

(
∇2F̄ (xp)

)
≥ λmin

(
∇2F (xp)

)
+ λmin

(
∇2F̄ (xp)−∇2F (xp)

)
(131)

≥ λmin

(
∇2F (xp)

)
+ λmin

(
∇2f̂S(xp)−∇2F (xp)

)
+ λmin (Hp) (132)

≥ −√ρα−
∥∥∇2f(xp;S)−∇2F (xp)

∥∥
2
− ∥Hp∥2 (133)

≥ − (
√
ρα+ (estimation error)) (134)

≥ −O

(
√
ρα+M

√
log (d/ω′)

mn
+
Md

√
T log(1/δ) log (1/ω′)√

mnϵ

)
. (135)

Hence, xp will be selected with probability at least 1− ω′/2.
Guarantee for Output xo. Let xo be the output of Algorithm 4. By construction, it

must satisfy:

∥∇F (xo)∥2 ≤ ∥∇F̄ (xo)∥2 + ∥∇F (xo)−∇F̄ (xo)∥2 (136)

≤ ∥∇F̄ (xo)∥2 + ∥∇F (xo)−∇f̂S(xo)∥2 + ∥ξo∥2, (137)

and

λmin(∇2F (xo)) ≥ λmin(∇2F̄ (xo)) + λmin(∇2F (xo)−∇2F̄ (xo)) (138)

≥ λmin(∇2F̄ (xo))− ∥∇2F (xo)−∇2F̄ (xo)∥2 (139)

≥ λmin(∇2F̄ (xo))− ∥∇2F (xo)−∇2f̂S(xo)∥2 − ∥Ho∥2. (140)

Using the same reasoning as above, applying the union bound again and using the fact
that xo is the output, we get that with probability at least 1− ω′, the following hold:

∥∇F (xo)∥ ≤ O

(
α+

G log(d/ω′)√
mn

+
G
√
dT log(1/δ) log(1/ω′)√

mnϵ

)
, (141)

and

λmin(∇2F (xo)) ≥ −O

(
√
ρα+M

√
log(d/ω′)

mn
+
Md

√
T log(1/δ) log(1/ω′)√

mnϵ

)
. (142)
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Finally, recalling that T = O(1/α2.5), and grouping the dependency on α, d, m, n, and ϵ,
we conclude that xo is an α′-SOSP with

α′ = Õ

(
α+

1

mn
+

1√
mn

+
α√
mn

+

√
d

√
mnϵα5/4

+
d

√
mnϵα3/4

+
d2

mn2ϵ2α5/2

)
, (143)

as claimed.

E Experiments

Running Environments All experiments were conducted with the following computing
infrastructure:

• OS: Ubuntu 22.04.4 LTS

• CPU: AMD EPYC 7513 32-Core Processor

• CPU Memory: 503GB

• GPU: NVIDIA RTX A6000 GPU

• GPU Memory: 48GB

• Programming language: Python 3.11.8

• Deep learning framework: Pytorch 2.2.2 + cuda 12.1
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Figure 1: Comparison of learning performance for our Gauss-PSGD and the baseline
method on MNIST dataset. Top: Test accuracy v.s. # epoch for varying privacy
budget ϵ ∈ {0.5, 1.0, 2.0}. Bottom: Test loss v.s. # epoch for varying privacy budget
ϵ ∈ {0.5, 1.0, 2.0}.
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(a) Test Accuracy (ϵ = 0.5)
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(b) Test Accuracy (ϵ = 1.0)
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(c) Test Accuracy (ϵ = 2.0)
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(d) Test Loss (ϵ = 0.5)
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(e) Test Loss (ϵ = 1.0)
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(f) Test Loss (ϵ = 2.0)

Figure 2: Comparison of learning performance for our Gauss-PSGD and the baseline
method on CIFAR-10 dataset. Top: Test accuracy v.s. # epoch for varying privacy
budget ϵ ∈ {0.5, 1.0, 2.0}. Bottom: Test loss v.s. # epoch for varying privacy budget
ϵ ∈ {0.5, 1.0, 2.0}.

Tasks and Datasets We conduct image classification tasks on two datasets: MNIST [26]
and CIFAR-10 [24]. For each experiment, we set the number of training samples to n = 6000
and vary the number of clients m in {1, 2, 5, 10}, where m = 1 corresponds to the single-
machine setting, while the others correspond to distributed learning scenarios. The test set
consists of 10000 samples for both datasets.

Models We use a fully connected neural network with one hidden layer containing 128
units and ReLU activation. The loss function is the standard cross-entropy loss. The model
is initialized using Kaiming initialization [18], with biases set to zero by default.

Algorithms We compare our proposed algorithm, which is abbreviated as Gauss-PSGD,
against the baseline method from [29]. The hyperparameters for Gauss-PSGD are set as
follows:

• Escape threshold χ = 0.01

• Model drift threshold κ = 0.1

• Maximum escape steps Γ = 10

• Maximum repeat number of escape Q = 3

For all algorithms, we set the privacy parameters to δ = 10−5 and vary ϵ in {0.5, 1.0, 2.0},
corresponding to strong, medium, and weak privacy regimes, respectively. The learning
rate is set to 0.001 for MNIST and 0.01 for CIFAR-10.
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Evaluations We evaluate the performance of the implemented algorithms using two
criteria: test accuracy and test loss. Both metrics are analyzed over training epochs to
assess convergence and generalization performance.

Results The experimental results for the MNIST and CIFAR-10 datasets are shown in
Fig. 1 and Fig.2, respectively. In each figure, we present test accuracy (top row) and test loss
(bottom row) against the number of epochs for different privacy budgets (ϵ = 0.5, 1.0, 2.0).
From the experimental results, it can be seen that our proposed Gauss-PSGD consistently
outperforms the baseline across all configurations. Specifically, Gauss-PSGD achieves
higher test accuracy than the baseline for both datasets, with accuracy improving as ϵ
increases due to weaker privacy constraints. The accuracy gap between Gauss-PSGD and
the baseline widens in distributed settings (m > 1), highlighting the collaborative synergy
of distributed learning and the robustness of Gauss-PSGD in handling data heterogeneity.
Gauss-PSGD exhibits lower test loss compared to the baseline across all configurations.
The rapid reduction in loss during the initial epochs indicates faster convergence, which
holds true for both datasets and all privacy budgets. In conclusion, the results demonstrate
that Gauss-PSGD achieves superior accuracy, faster convergence, and better scalability
compared to the baseline.

F Broader Impact Statement

This paper advances the field of differentially private (DP) stochastic non-convex opti-
mization by addressing key theoretical challenges in finding second-order stationary points
(SOSP). Our contributions are particularly relevant for applications requiring strong privacy
guarantees, including distributed learning with heterogeneous data. These advancements
have practical implications for privacy-sensitive fields such as healthcare, finance, and large
language models (LLMs), where data confidentiality is paramount.

By improving the efficiency and accuracy of DP optimization techniques, our work
supports the development of machine learning systems that can operate on sensitive datasets
without compromising privacy. This fosters greater trust in data-driven decision-making
and encourages organizations to adopt privacy-preserving practices, enabling informed and
responsible use of sensitive data.

Nevertheless, it is important to acknowledge the broader limitations inherent to DP-
based learning algorithms, not just those specific to our work. Privacy-preserving methods
often introduce trade-offs, such as reduced model accuracy compared to their non-private
counterparts, which may impact decision-making in high-stakes applications.

Despite these challenges, we believe that advancing and responsibly applying privacy-
preserving optimization techniques will have a positive societal impact. By enabling secure
and ethical data analysis, our work contributes to the broader goal of building trustworthy
AI/ML systems.
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