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Abstract

We study the matroid bandit optimization problem, a fundamental and broadly applicable framework for combinatorial
multi-armed bandits where the action space is constrained by a matroid. In particular, we address the challenge of
designing algorithms that remain effective under adversarial contamination of feedback rewards, which may severely
degrade performance or even mislead existing methods. Our main contribution is an efficient and robust algorithm
named ROMM, which builds upon the principle of optimistic matroid maximization and leverages robust statistical
estimators to assess base arm quality in polynomial time. Under the ϵ-contamination model, we establish lower
bounds and and prove that ROMM achieves near-optimal regret guarantees up to polylogarithmic factors. Our analysis
further reveals a sharp phase transition between the low and high contamination regimes. Notably, ROMM can tolerate
up to a universal constant fraction of corrupted feedback, which is optimal under mild conditions. Finally, we validate
our theoretical findings with numerical experiments that demonstrate the effectiveness of the proposed method.

Keywords: Multi-Armed Bandits, Combinatorial Optimization, Matroids, Robustness.

1. Introduction

Combinatorial optimization is a classical area with wide-ranging practical applications, including resource al-
location [1] and network routing [2]. Modern instances of these problems are often so massive that even mildly
polynomial-time solutions are infeasible. Fortunately, many significant problems, such as finding a minimum span-
ning tree, admit efficient greedy solutions. Such problems can often be formulated as optimization over a matroid [3],
a combinatorial structure that captures the concept of independence and is closely tied to computational tractability.
Notably, it is well established that maximizing a modular function subject to a matroid constraint can be solved greed-
ily if and only if feasible solutions correspond to the independent sets of a matroid [4]. Matroids are ubiquitous in
applications because they generalize many forms of independence, including linear independence and forest structures
in graphs.

In this paper, we consider a more realistic setting of learning how to maximize a stochastic modular function on
a matroid. Specifically, the modular function is defined as the sum of the weights of up to K items selected from the
ground set E of N items. Each item a ∈ E is associated with an unknown, unbounded σ-sub-Gaussian distribution
Da, and selecting item a yields a sample fromDa. These distributionsDa’s are initially unknown and must be learned
through repeated interactions with the environment.

Many real-world optimization problems can be modeled in our setting. For example, consider building a minimum
spanning tree for network routing [2]. If the delays on the network links are stochastic and their distributions is known,
the optimal routing corresponds to a classical minimum spanning tree. However, when the delay distributions are
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unknown, one must learn them over time by observing link delays. This introduces a trade-off between exploration
and exploitation, which is characteristic for stochastic multi-armed bandits framework [5] where a learner seeks to
optimize decisions based on stochastic feedback. Motivated by this connection, we refer to this problem setting as
matroid bandit optimization.

Prior Arts. Matroid bandit optimization has attracted significant attention in the past decade, with investigations into
various aspects such as regret minimization [6, 7, 8], pure exploration [9], algorithm efficiency [10] and differential pri-
vacy guarantees [11]. However, existing works commonly assume feedback is sampled faithfully from the underlying
distributions. In practice, this assumption is often violated as feedback may be corrupted due to system malfunction
or adversarial attacks [12]. In such cases, standard bandit algorithm suffer degraded performance. Recently, there has
been a surge of interest in developing bandit algorithms that are robust to data corruption, including work on classical
multi-armed bandit [12, 13, 14, 15] and more general combinatorial settings [16]. Although matroid bandits are a spe-
cial case of combinatorial bandits, general-purpose algorithms are often too computationally intensive. By exploiting
the greedy structure of matroids, much more efficient solutions can be achieved [6]. Thus, designing efficient and
robust matroid bandit algorithms under adversarial contamination remains an open and important challenge.

Our Contributions. This paper focuses on the robustness of matroid bandit optimization in the presence of adversarial
corruption. We study regret minimization under the ϵ-contamination model, where an ϵ fraction of the feedback is
corrupted by an arbitrary adversary. Our main contributions are as follows:

• We introduce a robust algorithmic framework for matroid bandit optimization, called ROMM, which is based on
the principle of optimistic matroid maximization. It incorporates a generic robust mean estimation subroutine,
RME, for which we formalize the requirements and provide several concrete implementations.

• We establish both instance-dependent and instance-independent regret lower bounds under the ϵ-contamination
model, characterizing the fundamental limits of performance with respect to the contamination level ϵ. As a
byproduct, our results yield the first instance-independent lower bound for uncontaminated matroid bandits,
resolving an open problem posed by [6].

• Through theoretical analysis, we show that ROMM achieves near-optimal regret bounds in both instance-dependent
and instance-independent settings. Our results uncover a sharp phase transition between low and high contami-
nation regimes: when ϵ is smaller than the minimum suboptimality gap ∆min, ROMM maintains sublinear regret,
whereas for larger ϵ (up to a universal constant 1

4 ), the regret scales linearly with the horizon T .

• We perform numerical experiments on specific matroid instances to demonstrate that ROMM significantly outper-
forms non-robust baselines. Our experiments empirically confirm the phase transition phenomenon and validate
the practical effectiveness of the proposed method.

2. Preliminaries

2.1. Combinatorial Optimization over a Matroid

LetM = (E,I) denote a matroid, where E = {1, · · · ,N} is a finite ground set of N items, and I is a collection of
subsets of E called the independent sets. A subset A ⊆ E is independent if A ∈ I.

Definition 1 (Matroid [3]). A pairM(E,I) is a matroid if the following properties hold:

1. The empty set is independent, i.e., ∅ ∈ I.
2. Hereditary property: If A ∈ I and A′ ⊂ A, then A′ ∈ I.
3. Exchange property: If A, A′ ∈ I with |A| > |A′|, then there exists a ∈ A \ A′ such that A′ ∪ a ∈ I.

An independent set A ∈ I is called a basis if it is maximal, i.e., it is not a proper subset of any other independent
set in I. Let B denote the set of all bases of M. It is a classical result that all bases in a matroid have the same
cardinality [3], known as the rank of the matroid, denoted by K; that is, |A| = K for all A ∈ B.
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In a typical combinatorial optimization problem over a matroid, each item a ∈ E is associated with a non-negative
weight µa, and we define the weight vector µ = (µ1, µ2, . . . , µN) ∈ (R+)N . The goal is to find a basis A∗ ∈ B that
maximizes the total weight:

A∗ ∈ arg max
A∈B

∑
a∈A

µa. (1)

This optimization can be efficiently solved using the greedy algorithm described in Algorithm 1.

Algorithm 1: The greedy strategy for finding a maximum-weight basis

1 Input: MatroidM = (E,I)
2 Initialize: A∗ ← ∅
3 Let a1, · · · , aN be an ordering of base arms such that: µa1 ≥ · · · ≥ µaN

4 for i = 1, · · · ,N do
5 if A∗ ∪ {ai} ∈ I then A∗ ← A∗ ∪ {ai}

2.2. Matroid Bandit Optimization

In the matroid bandit setting, a learner interacts with a matroid bandit instance over T rounds. Each item a ∈ E is
referred to as a base arm and is associated with an unknown feedback distribution Da instead of a fixed weight. A
basis A ∈ B is referred to as a super arm. At each round t ∈ [T ], each base arm a generates feedback xa(t) ∼ Da.
We assume each Da is an unbounded σ-sub-Gaussian distribution with mean µa, which generalizes the bounded
distributions used in earlier works [6, 7].

The feedback sequence {xa(t)}Tt=1 is i.i.d. for each base arm a, but the values {xa(t)}Na=1 may be arbitrarily correlated
across arms at any fixed time t. We adopt the semi-bandit feedback model [17], in which, at each round t, the learner
selects a super arm A(t) B {a1(t), a2(t), · · · , aK(t)} ∈ B and observes both the total reward r(t) B

∑
a∈A(t) xa(t) and the

individual feedback {(a, xa(t))|a ∈ A(t)}.
The objective is to minimize the expected cumulative regret over T rounds, defined as:

RT B E

 T∑
t=1

∑
a∈A⋆

xa(t) −
∑

a∈A(t)

xa(t)


 , (2)

where A⋆ B arg maxA∈B
∑

a∈A µa is the optimal super arm. Let A⋆ B {a⋆1 , · · · , a
⋆
K} such that µa⋆1

≥ · · · ≥ µa⋆K . We call
any a ∈ A⋆ an optimal base arm, and any a ∈ A⋆ B E\A⋆ a sub-optimal base arm. For any sub-optimal a ∈ A⋆ and
optimal base arm a⋆k ∈ A⋆, define the gap:

∆a,k = µa⋆k
− µa. (3)

Let
Ha B {k : ∆a,k > 0} (4)

be the set of indices of optimal arms whose mean is higher than that of a, and define

Ha B |Ha|. (5)

The sub-optimality gap of arm a is then defined as

∆a B ∆a,Ha . (6)
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Algorithm 2: ROMM Framework

1 Input: Time horizon T , contamination fraction ϵ, sub-Gaussian constant σ, an (ϵ, δ)-robust mean estimator
RME

2 for each base arm a ∈ E do
3 Pull base arm a and observe ya(0).
4 Set Ta(0)← 1.

5 for t = 1, · · · ,T do
6 for each base arm a ∈ E do
7 Compute robust feedback mean estimate µ̂a ← RME({ya(i)}Ta(t−1)

i=1 ).

8 Ua(t)← µ̂a +
σ

1−2ϵ

√
4 log(t)
Ta(t−1) .

9 Let a1, · · · , aN be a sorted sequence of base arms such that Ua1 (t) ≥ · · · ≥ UaN (t)
10 A(t)← ∅
11 for i = 1, · · · ,N do
12 if A(t) ∪ {ai} ∈ I then A(t)← A(t) ∪ {ai}.

13 Pull A(t), obtain the reward r(t) =
∑

a∈A(t) xa(t), and observe corrupted feedbacks {ya(t)}a∈A(t).
14 Ta(t)← Ta(t − 1) + 1, for all a ∈ A(t).

2.3. Contamination Model

We now consider a setting in which the learner observes corrupted feedback rather than the true values. Specif-
ically, for any base arm a ∈ E and any round t, an adversary may replace xa(t) with an arbitrary value ya(t). The
adversary is constrained by an ϵ-contamination rate, meaning that no more than an ϵ fraction of the feedback for each
arm may be corrupted by round t: ∑t

i=1{1xa(i),ya(i)}

t
≤ ϵ, for ∀t ∈ [T ]. (7)

This setting corresponds to the well-known ϵ-contamination model, which has been extensively studied in the
robust statistics literature [18, 19]. It generalizes the ϵ-Huber contamination model [20], commonly used in robust
estimation (see also [21, 22]).

The contamination model in (7) is quite general as it allows the adversary to corrupt feedback arbitrarily, provided
the overall corruption rate remains below ϵ. Moreover, the adversary is retrospective: it may adapt its strategy based
on the learner’s past, present, or even future actions, thus significantly complicating the learning process.

In this work, our goal is to design a robust learning algorithm for matroid bandit optimization under the con-
tamination model defined in (7). We emphasize that although the observed feedback may be corrupted, the actual
rewards received by the learner are based on the true feedback. Therefore, the regret defined in (2) remains valid as
the performance metric.

3. Robust Matroid Bandit Optimization Framework: ROMM

3.1. Matroid Bandit Optimization Framework

Our framework is a robust extension of the Optimistic Matroid Maximization (OMM) algorithm developed in [6],
which is grounded in the optimistic principle for decision-making under uncertainty [23]. Accordingly, we refer to
our framework as Robust Optimistic Matroid Maximization (ROMM).

The key idea behind OMM is to adapt the greedy strategy for finding a maximum-weight basis of a matroid
(Algorithm 1) to the stochastic setting. In particular, in each round t, the algorithm substitutes the weight/expected
feedback µa of each base arm a with an optimistic upper confidence bound (UCB) estimate Ua(t), which is typically
computed as the estimated feedback mean plus a confidence interval. When there is no contamination, using the
empirical mean as an estimator suffices to achieve the order-optimal regret.
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However, empirical mean is highly sensitive to outliers. Even a single outlier can deviate the empirical mean
arbitrarily. This vulnerability renders empirical mean estimators ineffective. To overcome this, our framework replaces
the empirical mean with a robust mean estimator (RME) that can tolerate a limited fraction of corruptions.

To formalize this requirement, we introduce the notion of an (ϵ, δ)-robust mean estimator.

Definition 2 ((ϵ, δ)-robust mean estimator((ϵ, δ)-RME)). Let S be the set of samples z1, · · · , zn ∈ R that are drawn from
a σ-sub-Gaussian distribution with mean µ. Let S C be the contaminated variant of S where ϵ fraction of samples are
contaminated by an adversary. For ϵ < 1

2 , 0 < δ < 1, an (ϵ,δ)-robust mean estimator RME guarantees with probability
at least 1 − δ that

|RME(S n) − µ| ≤ I(ϵ, δ, n) B C ·
σ

1 − 2ϵ


√

log 1
δ

n
+ ϵ

√
log

1
δ

 , (8)

where C is a universal numerical constant independent of ϵ, δ and n.

Remark 1. While (ϵ, δ)-RME mitigates adversarial corruption, it also introduces a trade-off that impacts exploration.
Specifically, robust estimation reduces the effective sample size from n to roughly (1 − 2ϵ)2n, inflating the confidence
interval. This leads to more conservative estimates and prolonged exploration. Moreover, adversarial contamina-
tion limits how accurately each base arm can be learned, as reflected in the non-vanishing additive error term of
order Õ( σϵ1−2ϵ ) in the confidence bound. These effects illustrate the inherent tension between robustness and statistical
efficiency in matroid bandit optimization.

We provide concrete examples of robust mean estimators satisfying Definition 2 in the next subsection. With this
foundation, we now introduce our ROMM framework for matroid bandit optimization under the ϵ-contamination model,
as described in Algorithm 2. At a high level, ROMM operates in each round t by performing the following steps:

1. For each base arm a ∈ E, compute its UCB estimate Ua(t) using a robust mean estimator and its corresponding
confidence interval [lines 7-8].

2. Sort all base arms in descending order of their UCB values [line 9].
3. Construct the super arm A(t) by greedily selecting arms according to this order, while maintaining matroid

independence [lines 10-12].
4. Pull the selected super arm A(t) and observe the individual feedbacks xa(t)a∈A(t) [lines 13-14].

A subtle but important detail is that the confidence interval I(ϵ, δ, n) in the robust mean estimator contains an
additive term independent of the sample size n. Since this term is the same across all base arms, it does not affect the
relative ordering of UCB values and is therefore omitted in the implementation of the algorithm.

3.2. Instantiations of (ϵ, δ)-robust mean estimator

A key component of the ROMM framework is the (ϵ, δ)-robust mean estimator (RME), which is critical for tolerating
adversarially corrupted feedback. While Definition 2 formally specifies the properties an RME must satisfy, its practical
implementation remains to be addressed. Fortunately, the definition is broad enough to encompass several well-studied
estimators from the robust statistics literature. Below, we present three concrete instantiations of (ϵ, δ)-robust mean
estimators, all of which satisfy the robustness criteria in Definition 2.

• Median (Med) [21]: Find the median of all the sample points.

• Trimmed Mean (TM) [24]: Trim the smallest and largest ϵ fraction of points from the sample and calculate the
mean of the remaining points.

• Shorth Mean (SM) [12]: Take the mean of the shortest interval that removes the smallest ϵ1 and largest ϵ2 fraction
of points such that ϵ1 + ϵ2 = ϵ, where ϵ1 and ϵ2 is chosen to minimize the interval length of remaining points.

We provide the formal performance guarantees of these estimators under the ϵ-contamination model.
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Theorem 1. Let S = {z1, · · · , zn} ⊂ R be i.i.d. samples drawn from a σ-sub-Gaussian distribution with mean µ and let
S C be an ϵ-contaminated version of S . For ϵ < 1

4 and 0 < δ < 1, each of the following bounds holds with probability
at least 1 − δ:

|Med(S C) − µ| ≤ eσ


√

log 4
δ

2n
+ ϵ

 ,
|TM(S C) − µ| ≤

σ

1 − 2ϵ


√

2 log 4
δ

n
+ 4ϵ

√
3 log

4
δ

 ,
|SM(S C) − µ| ≤

σ

1 − 2ϵ


√

2 log 4
δ

n
+

2ϵ(3 − 4ϵ)
1 − ϵ

√
3 log

4
δ

 .
(9)

These results are based on existing analyses in the literature. The bound for the median estimator originates
from [21], and the explicit concentration inequality presented here is taken directly from [13, Equation (2)]. The
bound for the trimmed mean estimator is given in [12, Theorem1], which builds on foundational results from[24].
Lastly, the bound for the shorth mean estimator is established in [12, Theorem 2].

3.3. Theoretical Learning Performance Guarantees
Let ∆min B mina∈A⋆ ∆a denote the minimum sub-optimality gap. We begin by analyzing the performance of ROMM

in the regime of small contamination.

Theorem 2 (Instance-Dependent Regret Upper Bound for Small ϵ). For small contamination regime where ϵ ≤
∆min

4∆min+4
√

3Cσ
√

log T
, the instance-dependent expected cumulative regret of ROMM satisfies:

RT ≤ 96C2σ2
∑
a∈A⋆

log T
∆a
+
π2

6

∑
a∈A⋆

Ha∑
k=1

∆a,k.

Proof of Theorem 2. Let Rt denote the instantaneous regret at round t:

Rt B
∑
a∈A⋆

xa(t) −
∑

a∈A(t)

xa(t).

Then, the total regret RT satisfies:

RT =

T∑
t=1

E[Rt] ≤
T∑

t=1

E
[ ∑

a∈A⋆

Ha∑
k=1

∆a,k · 1a,k(t)
]
=

∑
a∈A⋆

Ha∑
k=1

∆a,kE
[ T∑

t=1

1a,k(t)
]
, (10)

where the inequality follows from (A.2) in Lemma 3.
Recall that in the ROMM framework (Algorithm 2), we denote by µ̂a(t) the estimated mean of base arm a at the end

of round t, and by Ta(t) the number of times arm a has been pulled by round t. Then confidence interval for the robust
estimator is given by

I(ϵ, δ, n) = C ·
σ

1 − 2ϵ


√

log( 1
δ
)

n
+ ϵ

√
log(

1
δ

)

 .
With these notations, we define the following good events:

Λt,a B {|̂µa − µa| ≤ I(ϵ, t−3, Ta(t − 1))} for ∀a ∈ [E], t ∈ [T ]

By using the Hoeffding’s inequality (Lemma 6), we have,

E
 T∑

t=1

1{Λt,a}

 ≤ T∑
t=1

t∑
s=1

P
(
|µa − ŵa(t − 1)| ≥ I(ϵ, t−4, Ta(t − 1))

)
≤

T∑
t=1

t∑
s=1

t−3 ≤

T∑
t=1

t−2 ≤
π2

6
.
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Substituting into (10), we split the regret into two parts:

RT ≤
∑
a∈A⋆

Ha∑
k=1

∆a,kE
[ T∑

t=1

1a,k(t) · 1{Λt,a}

]
+

∑
a∈A⋆

Ha∑
k=1

∆a,kE
[ T∑

t=1

1a,k(t) · 1{Λt,a}

]
. (11)

The second term in (11) is bounded by:

∑
a∈A⋆

Ha∑
k=1

∆a,kE[
T∑

t=1

1a,k(t) · 1{Λt,a}] ≤
π2

6

∑
a∈A⋆

Ha∑
k=1

∆a,k, (12)

For the first term in (11), a sub-optimal arm a is chosen over its optimal counterpart a∗ B a⋆k only if:

µa +
2σ

1 − 2ϵ

√
3 log(t)

Ta(t − 1)
+
σ

1 − 2ϵ
ϵ
√

3 log(t) ≥ Ua(t) ≥ Ua∗ (t) ≥ µa∗ −
σ

1 − 2ϵ

√
3 log(t), (13)

implying

∆a,k ≤
2σ

1 − 2ϵ


√

3 log(t)
Ta(t − 1)

+ ϵ
√

3 log(t)

 = 2I(ϵ, t−3, Ta(t − 1)).

Thus, to ensure that the algorithm always chooses a∗ instead of a, it suffices to find the minimum Ta(t − 1) such that

∆a,k > I(ϵ, t−3, Ta(t − 1)). (14)

If ϵ ≤ ∆a,Ha

4∆a,Ha+4
√

3Cσ
√

log(T )
, we obtain the following inequality by solving (14):

Ta(t − 1) >
48C2σ2 log(t)

∆2
a,k

. (15)

Note that, when ϵ ≤ ∆min

4∆min+4
√

3Cσ
√

log(T )
, (15) holds for all a ∈ E. Define τa,k(t) = 48C2σ2 log(t)

∆2
a,k

. Then we know that,

when Ta(t − 1) > τa,k(t), the algorithm must choose a⋆k instead of a. In other words, when event Λt,a holds, a can only
be chosen in rounds where Ta(t − 1) ≤ τa,k(t). Based on this, the first term in (11) can be bounded as follows:

∑
a∈A⋆

Ha∑
k=1

∆a,kE
[ T∑

t=1

1a,k(t) · 1{Λt,a}

]
≤

T∑
t=1

∑
a∈A⋆

Ha∑
k=1

∆a,kE[1a,k(t) · 1{Ta(t − 1) ≤ τa,k(t)}]

≤ max
T∑

t=1

∑
a∈A⋆

Ha∑
k=1

∆a,k1a,k(t)1{Ta(t − 1) ≤ τa,k(t)}

= max
∑
a∈A⋆

 Ha∑
k=1

∆a,k

T∑
t=1

1a,k(t)1{Ta(t − 1) ≤ τa,k(t)}

 . (16)

Denote ma,k =
∑T

t=1 1a,k(t)1{Ta(t − 1) ≤ τa,k(t)}. Note that:

1. the gaps are ordered such that ∆a,1 ≥ · · · ≥ ∆a,Ha (and thus τa,1 ≤ · · · ≤ τa,Ha ),
2. the counter Ta(t) increases by at most 1 when 1a,k(t) = 1 for any k ∈ [K],
3. by Lemma 3,

∑Ha
k=1 1a,k(t) ≤ 1 for any given a and t.

By following the above facts, we have
ma,k ≤ τa,k(T ),

7



and
Ha∑
k=1

ma,k ≤ ma,Ha .

Based on these, we continue (16) as follows,

∑
a∈A⋆

Ha∑
k=1

∆a,kE
[ T∑

t=1

1a,k(t) · 1{Λ1,t,a,Λ2,t,a}

]
≤

∑
a∈A⋆

∆a,1τa,1(T ) +
Ha∑
k=2

∆a,k(τa,k(T ) − τa,k−1(T ))


= 48C2σ2 log(t)

∑
a∈A⋆

[
∆a,1

1
∆2

a,1

+

Ha∑
k=2

∆a,k

 1
∆2

a,k

−
1
∆2

a,k−1

 ]

= 48C2σ2 log(t)
∑
a∈A⋆

Ha−1∑
k=1

∆a,k − ∆a,k+1

∆2
a,k

+
1
∆a,Ha


≤ 48C2σ2 log(t)

∑
a∈A⋆

Ha−1∑
k=1

∆a,k − ∆a,k+1

∆a,k∆a,k+1
+

1
∆a,Ha


= 48C2σ2 log(t)

∑
a∈A⋆

Ha−1∑
k=1

(
1
∆a,k+1

−
1
∆a,k

)
+

1
∆a,Ha


= 48C2σ2 log(t)

∑
a∈A⋆

(
2
∆a,Ha

−
1
∆a,1

)
(17)

< 48C2σ2 log(t)
∑
a∈A⋆

2
∆a,Ha

. (18)

Finally, by combining equation (18) and (12) together, we get

RT ≤ 96C2σ2
∑
a∈A⋆

log(t)
∆a
+
π2

6

∑
a∈A⋆

Ha∑
k=1

∆a,k, (19)

which concludes the proof.

Theorem 3 (Instance-Independent Regret Upper Bound for Small ϵ). For small contamination regime where ϵ ≤
∆min

4∆min+4
√

3Cσ
√

log T
, the instance-independent expected cumulative regret of ROMM is at most

RT ≤ 4
√

6Cσ
√

(N − K)KT log T +
π2(N − K)K

6
.

Proof of Theorem 3. For any a ∈ E, let Ha,λ be the number of optimal base arms inHa whose feedback mean is higher
than that of the sub-optimal base arm a by at least λ. According to (10), RT is bounded for any λ as:

RT ≤
∑
a∈A⋆

Ha,λ∑
k=1

∆a,kE
[ T∑

t=1

1a,k(t)
]
+

∑
a∈A⋆

Ha∑
k=Ha,λ+1

∆a,kE
[ T∑

t=1

1a,k(t)
]
. (20)

The first term in (20) can be bounded similarly to (19):

∑
a∈A⋆

Ha,λ∑
k=1

∆a,kE
[ T∑

t=1

1a,k(t)
]
≤ 96C2σ2

∑
a∈A⋆

log(T )
∆a,Ha,λ

+
π2

6

∑
a∈A⋆

Ha,λ∑
k=1

∆a,k

<
96C2σ2(N − K) log(T )

λ
+
π2(N − K)K

6
.
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The second term in (20) can be bounded trivially as:

∑
a∈A⋆

Ha∑
k=Ha,λ+1

∆a,kE
[ T∑

t=1

1a,k(t)
]
≤ λKT,

where we just use the fact that all gaps ∆a,k are upper bounded by λ and the maximum number of sub-optimally chosen
base arms in T rounds is KT (Lemma 3). By combining the above upper bounds on the two terms in (20) together,
we obtain that

RT ≤
96C2σ2(N − K) log(T )

λ
+ λKT +

π2(N − K)K
6

.

Finally, by setting λ = 4
√

6Cσ
√

(N−K) log T
KT , we get

RT ≤ 4
√

6Cσ
√

(N − K)KT log T +
π2(N − K)K

6
,

which concludes the proof.

Remark 2. The above Theorem 2 and Theorem 3 establish the regret guarantees for the small contamination regime
where the contamination proportion ϵ is required to be smaller than a problem instance gap determined threshold, i.e.,
ϵ ≤ ∆min

4∆min+4
√

3Cσ
√

log T
. Recall that, for the standard non-contamination matroid bandits, [6] has proven the instance-

dependent and instance-independent regret upper bounds of O(
∑

a∈A⋆
log T
∆a
+
∑

a∈A⋆
∑Ha

k=1 ∆a) and O(
√

(N − K)KT log T+
(N − K)K), respectively. Compared with the non-contamination bounds, we can see that, our framework ROMM does
not incur any additional price for withstanding the adversarial corruptions and achieves the same order of regret as in
the standard non-contamination case.

Though consistent with the non-contamination results, our bounds above do not allow ϵ to be too big relative
to the minimum suboptimality gap ∆min. Such kind of bound on the contamination proportion ϵ is very common
in robust learning and robust statistics literature and represents the breakdown point the algorithm. Moreover, if
ϵ > Ω(∆min), ROMM will incur a linear regret with respect to T . This is natural, since when ϵ gets large, it also harder to
distinguish between the base arms. In the next section, we will show that no algorithm can get sub-linear regret since
distinguishing between the top two actions will become impossible even with infinite samples. Before that, we now
put a much milder restriction on ϵ, and derive a more general regret upper bounds for any ϵ that is at most a universal
constant of 1

4 .

Theorem 4 (Instance-Dependent Regret Upper Bound). If ϵ ≤ 1
4 , the instance-dependent expected cumulative regret

of ROMM is at most

RT ≤ 96C2σ2
∑

a∈A⋆∩S

log T
∆a
+
π2

6

∑
a∈A⋆∩S

Ha∑
k=1

∆a,k +
4
√

3CσKϵ
1 − 4ϵ

T
√

log T .

Proof of Theorem 4. Note that our argument for bounding E[Ta(t − 1)] in Theorem 2 works under the following
condition

ϵ ≤
∆a

4∆a + 4
√

3Cσ
√

log(T )
. (21)

Let S be the set of base arms satisfying the condition (21). The arguments in the proof of Theorem 2 show that

∑
a∈A⋆∩S

Ha∑
k=1

∆a,kE
[ T∑

t=1

1a,k(t)
]
≤ 96C2σ2

∑
a∈A⋆∩S

log(t)
∆a
+
π2

6

∑
a∈A⋆∩S

Ha∑
k=1

∆a,k

For any base arm a < S, we have

∆a ≥
4
√

3Cσϵ
√

log T
1 − 4ϵ

,
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assuming that ϵ < 1
4 . The total regret contribution for a < S is therefore

∑
a∈A⋆∩S

Ha∑
k=1

∆a,kE
[ T∑

t=1

1a,k(t)
]
≤

4
√

3Cσϵ
√

log T
1 − 4ϵ

∑
a∈A⋆∩S

Ha∑
k=1

E
[ T∑

t=1

1a,k(t)
]

≤
4
√

3CσKϵ
1 − 4ϵ

T
√

log T

Therefore, the total regret should be bounded as follows

RT ≤ 96C2σ2
∑

a∈A⋆∩S

log(t)
∆a,Ha

+
π2

6

∑
a∈A⋆∩S

Ha∑
k=1

∆a,k +
4
√

3CσKϵ
1 − 4ϵ

T
√

log T ,

which concludes the proof.

Theorem 5 (Instance-Independent Regret Upper Bound). If ϵ ≤ 1
4 , the instance-independent expected cumulative

regret of ROMM is at most

RT ≤ 4
√

6Cσ
√

(N − K)KT log T +
π2(N − K)K

6
+

4
√

3CσKϵ
1 − 4ϵ

T
√

log T .

Proof of Theorem 5. The proof is similar to that of Theorem 4. Specifically, for any base arm a ∈ S, Theorem 3 itself
applies, i.e., ∑

a∈A⋆∩S

Ha∑
k=1

∆a,kE
[ T∑

t=1

1a,k(t)
]
≤ 4
√

6Cσ
√

(N − K)KT log T +
π2(N − K)K

6
.

For any base arm a ∈ S, we have the same bound we derived in the proof of Theorem 4 hold, that is

∑
a∈A⋆∩S

Ha∑
k=1

∆a,kE
[ T∑

t=1

1a,k(t)
]
≤

4
√

3CσKϵ
1 − 4ϵ

T
√

log T .

By combining the bounds above, we obtain

RT ≤ 4
√

6Cσ
√

(N − K)KT log T +
π2(N − K)K

6
+

4
√

3CσKϵ
1 − 4ϵ

T
√

log T ,

which concludes the proof.

Remark 3. The above Theorem 4 and Theorem 5 illustrates that, in general, ROMM incurs a linear regret term of
Õ( ϵ1−ϵKT ) in both the instance-dependent and instance-independent bound for any 0 < ϵ < 1

4 . The linear term in the
regret may be acceptable if the contamination proportion ϵ is not very large. Moreover, we can see that, when ϵ = 0
(i.e., there is no contamination), the linear term vanishes and ROMM recovers the state-of-the-art non-contamination
regret derived in [6].

Remark 4. Note that the classical stochastic multi-armed bandit (MAB) is a special case of matroid bandit with K = 1.
When K = 1, our instance-independent bound in Theorem 5 recovers the state-of-the-art bound of Õ(

√
NT + ϵ

1−4ϵT )
for ϵ-contaminated MAB in [12]. That is, our bound can be seen as a generalization of the previous MAB bound to
the matroid bandit case.
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4. Lower Bounds

In this section, we establish both instance-dependent and instance-independent lower bounds for matroid bandit
optimization under the ϵ-contamination model.

We start by introducing a special class of matroid bandit instances called partition matorid bandits, which is also
used in [6]. Let P1, P2, · · · , PK be a partition of the ground set E, such that,

K⋃
k=1

Pk = E, and Pi

⋂
P j = ∅ for ∀i, j ∈ [K]. (22)

The family of independent sets is defined as

I = {I ⊆ E : |I ∩ Pk | ≤ 1,∀k ∈ [K]}. (23)

ThenM = (E,I) is a partition matroid of rank K. For the feedback generation, we consider the Bernoulli distribution
with means that lie in the interval (0, 1). Specifically, we set the mean of each base arm a ∈ Pk, k ∈ [K] as follows:

µa =

 1
2 , a = mini∈Pk i,
1
2 − ga, otherwise,

(24)

where 0 < ga <
1
2 and the optimal base arm in each partition is the item with the smallest index, i.e., mini∈Pk i, and the

gap of each base arm a is just ga, i.e., ∆a = ga.
To prove the lower bounds under ϵ-contamination model, we develop a new hard instance ξ, which basically

comes from the instance used in [6] but we add more restriction so that we can obtain tight instance-independent
lower bound. In ξ, we let each of P1, P2, · · · , PK contain the same number of base arms, i.e.,

|P1| = |P2| = · · · = |PK | = N/K. (25)

Without loss of generality, we assume that N/K is an integer. The key observation for proving the instance-independent
lower bound is that our problem is equivalent to K N/K-armed Bernoulli bandit. With this perception, we first study
the lower bound incurred by one of these N/K-armed Bernoulli bandit.

Our main idea for proving the instance-dependent lower bound is to decompose the regret into a weighted sum of
the expected pulling number of all sub-optimal base arms and then show that no algorithm can achieve low pulling
number for each sub-optimal arm i on ν and νi simultaneously. For this, we consider consistent learning algorithms:

Definition 3. Denote the number of times that a base arm a is chosen in T rounds by Na(T ). An algorithm π is called
consistent if for any sub-optimal base arm a, the expected number of times that a is pulled by π is sub-polynomial in
T for any stochastic matroid bandit instance, i.e., E[Na(T )] ≤ o(T c) for any 0 < c < 1. 1

Intuitively, the consistency defined above requires that the algorithm achieves sub-polynomial regret over all prob-
lem instances. Any inconsistent algorithm performs poorly on some instances and extremely well on others, which
makes it difficult to prove good instance-dependent lower bounds for inconsistent algorithms. Thus, the consistent
algorithm class is considered to be reasonable and has been used for lower bound analysis in many previous bandit
literature [6, 25, 26, 27]. Fix a partition Pk and a sub-optimal base arm ai ∈ Pk. We denote the original instance of
this N/K-armed Bernoilli bandit as ν. Then we define another instance νi where all the setting is the same as ν except
that the mean of the ai is increased by 2∆ai .

Lemma 1. For any fixed partition Pk and any consistent matroid bandit optimization algorithm, there exists a N/K
Bernoulli bandit instance for Pk and an adversary with contamination fraction ϵ such that the expected regret incurred
from Pk, denoted as RT,Pk , is at least

RT,Pk ≥ Ω

 ∑
a∈A⋆∩Pk

log T
∆a
+
ϵ

1 − ϵ
T

 . (26)

1Without loss of generality, we let c = 3
4 in this paper.
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Proof of Lemma 1. We denote byR(π, ν,T ) the expected cumulative regret for algorithm π over instance ν in T rounds.
Contamination setting: In our proof for the lower bound, we consider the well-known ϵ-Huber contamination, which
is just a special case of the ϵ-contamination model as we discussed in Section 2.3. Given the contamination parameter
ϵ ∈ (0, 1

2 ), for each pull of the base arm a, the observed feedback is either sampled independently from the true
distribution with probability 1 − ϵ, or sampled from some arbitrary and unknown contamination distribution.
Canonical bandit model: We review the general canonical bandit model. In general, a matroid bandit optimization
algorithm π is a mapping from an observation history to a probability distribution for choosing each supper arm.
Under the ϵ-Huber contamination model, the interaction between π and ν over a given horizon T can be denoted as
the observation history

HT := {(a(1), r̃(1)), (a(2), r̃(2)), · · · , (a(T ), r̃(T ))},

where a denotes the base arm selected and r̃ denotes the contaminated version of reward r. An observed history HT

is a random variable sampled from the following measurable space(
([N/K] × R)T ,B

(
([N/K] × R)T

)
,Pπν

)
,

where B
(
([N/K] × R)T

)
is the Borel set on ([N/K]×R)T and Pπν is the probability measure induced by the algorithm

π and the instance ν, which is defined as follows:

1. The probability of selecting a base arm a(t) = a at time t is dictated only by the algorithm π, and we denote the
probability by π(a|Ht−1).

2. The distribution of rewards r(t) in round t is f νa(t), which is dependent on a(t) and conditionally independent of
the previous observed historyHt−1.

3. Under the ϵ-Huber contamination model, the algorithm cannot observe r(t) directly, but a contaminated version
r̃(t) that only depends on the true reward r(t). We denote the conditional distribution of r̃ as M(̃r|r).

As a result, the distribution of the observed historyHT is

PT
πν(HT ) =

T∏
t=1

π(a(t)|Ht−1) f νa(t)(r(t))M(̃r(t)|r(t)) =
T∏

t=1

π(a(t)|Ht−1)gνa(t)(̃r)

where we let gνa(t) (̃r) B f νa(t)(r(t))M(̃r(t)|r(t)).
Lower bound proof With the above notations and preparation, we are now ready to prove the instance-dependent
lower bound. We have,

R(π, ν,T ) ≥
T∆ai

2
· Pπν

(
Nai (T ) ≥

T
2

)
,

R(π, νi, T ) ≥
T∆ai

2
· Pπνi

(
Nai (T ) ≤

T
2

)
.

Combining these two inequalities, we have

R(π, ν,T ) + R(π, νi, T ) ≥
T∆ai

2

(
Pπν

(
Nai (T ) ≥

T
2

)
+ Pπνi

(
Nai (T ) ≤

T
2

))
≥

T∆ai

4
exp

(
−KL

(
PT
πν||PT

πνi

))
, (27)

where in the second inequality we use the probabilistic Pinsker’s inequality [28]. By classical divergence decomposi-
tion lemma [29, Lemma 15.1], we have

KL
(
PT
πν∥PT

πνi

)
=

∑
a

Eπν [Na(T )] KL
(
gνa∥g

νi

a

)
= Eπν[Nai (T )]KL(gνai

∥gν
i

ai
), (28)
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where the second equality is due to the fact that ν and νi only differs in ai. By combing equation (27) and (28), we get

R(π, ν,T ) ≥
T∆ai

8
exp

(
−Eπν[Nai (T )]KL(gνai

∥gν
i

ai
)
)
.

Note that, according to Lemma 5, by setting ∆i = c · 2ϵ
1−ϵ ≤

1
2 for some constant c < 1, we have TV( f νai

∥ f ν
i

ai
) ≤ ∆i

2 ≤

c · ϵ1−ϵ , which leads to KL(gνai
∥gν

i

ai
) = 0. Therefore,

R(π, ν,T ) ≥ c
ϵ

1 − ϵ
T.

Recall the instance-dependent lower bound result for multi-armed Bernoulli bandit, see e.g., [29], an instance-
dependent lower bound of Ω(

∑
a∈A⋆∩Pk

log T
∆a

) holds for non-contaminated matroid bandit optimization. Thus, by com-
bining it with the contaminated lower bound we prove above, we obtain the following instance-dependent lower
bound

RT,Pk ≥ Ω

 ∑
a∈A⋆∩Pk

log T
∆a
+
ϵ

1 − ϵ
T

 ,
which concludes the proof.

Theorem 6 (Instance-Dependent Lower Bound). For any consistent matroid bandit optimization algorithm, there
exists a matroid bandit instance and an adversary with contamination fraction ϵ such that the expected regret RT is at
least

RT ≥ Ω

∑
a∈A⋆

log T
∆a
+

Kϵ
1 − ϵ

T

 . (29)

Proof of Theorem 6. Recall that, the hard instance we use is essentially equivalent to K multi-armed Bernoulli bandit
of the same arm size of N

K . The instance-dependent lower bound for regret of matroid bandit under contamination is
derived as follows

RT ≥ Ω

 K∑
k=1

∑
a∈A⋆∩Pk

log T
∆a
+

K∑
k=1

ϵ

1 − ϵ
T


= Ω

∑
a∈A⋆

log T
∆a
+

Kϵ
1 − ϵ

T

 ,
where in the first inequality we apply Lemma 1 separately to each Pk.

Next we give the instance-independent lower bound, which is also called min-max lower bound in some literature.
This lower bound characterizes the information-theoretic limit of regret with respect to contamination level.

Theorem 7 (Instance-Independent Lower Bound). For any matroid bandit optimization algorithm, there exists a
partition matroid bandit instance and an adversary with contamination fraction ϵ such that the expected regret RT is at
least

RT ≥ Ω

( √
(N − K)KT +

Kϵ
1 − ϵ

T
)
. (30)

Proof of Theorem 7. Actually, the contaminated lower bound of Ω( Kϵ
1−ϵT ) we provided in the proof of Theorem 6 is

independent on instances. So next we study lower bound for non-contaminated matroid bandit optimization, which
was left as an open problem in [6]. Consider the instance ξ described in Section 4 and note that ξ is equivalent to K
N/K-armed Bernoulli bandit, the instance-independent non-contamination lower bound is derived as follows:

RT ≥ Ω

 K∑
k=1

√(N
K
− 1

)
T

 = Ω ( √
(N − K)KT

)
,
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where in the first inequality we apply Lemma 4 separately to each partition Pk.
By combining with the lower bound of Ω

(
Kϵ
1−ϵT

)
under the ϵ-Huber contamination model we obtained before, we

finally obtain

RT ≥ Ω

( √
(N − K)KT +

Kϵ
1 − ϵ

T
)
,

which concludes the proof.

Remark 5. When ϵ = 0, Theorem 7 establishes the instance-independent lower bound for non-contamination matroid
bandit optimization, which solves the open problem left in [6].

Remark 6. Theorem 6 and Theorem 7 indicates that a linear term w.r.t. T in the regret is genuinely unavoidable for
matroid bandit under the ϵ-contamination model. As a result, the attained upper bounds in Theorem 4 and Theorem 5
are nearly optimal with respect to the dominant term T up to poly(log T ) factors.

5. Numerical Experiments

5.1. Experimental Setup

Implemented Algorithms. We evaluate the practical performance of the proposed algorithm ROMM, instantiated with
the three robust mean estimators discussed in Section 3.2: Median (Med), Trimmed Mean (TM), and Shorth Mean (SM).
As a baseline, we compare against the non-robust OMM algorithm from [6], which achieves near-optimal regret in the
absence of contamination.

Matroid Bandit Environment. We consider a partition matroid bandit instance of rank K = 3 over N = 9 base arms.
The arms are divided into three disjoint partitions P1, P2, P3, each containing 3 arms. The mean rewards in each
partition are configured as follows:

• P1: µ = 0.9, 0.5, 0.1

• P2: µ = 0.8, 0.5, 0.2

• P3: µ = 0.7, 0.5, 0.3

At each round, feedback from each arm is sampled from a Gaussian distribution with standard deviation σ = 0.5.

Contamination Model. We adopt the ϵ-Huber contamination model to generate adversarial feedback and vary the
contamination level ϵ ∈ 0, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.15, 0.2. A strong adversary is used to maximally mis-
lead the learner: when contamination occurs, the optimal arm in each partition returns a fixed negative value (−108),
while sub-optimal arms return a fixed positive value (108), effectively inverting their observed performance.

Performance Measurement. We measure performance using cumulative regret over time. Each experiment is repeated
over 10 independent trials using seeds 65283 + i for the i-th run. We report the mean cumulative regret along with
standard deviations to capture variability across trials.

5.2. Results and Discussions

The results in Figure 1 highlight the effectiveness of ROMM across varying contamination levels. In the clean setting
(ϵ = 0) presented in Figure 1(a), all ROMM variants slightly outperform the non-robust baseline OMM, achieving lower
cumulative regret. This suggests that robust mean estimators can enhance statistical efficiency even in the absence
of contamination, potentially due to their ability to suppress outliers in the reward distribution. In contrast, OMM was
primarily designed in [6] under the assumption of bounded rewards (e.g., in the [0, 1] interval), and may suffer in more
general settings with unbounded or heavier-tailed rewards.

As contamination increases, the performance gap becomes more pronounced. While the regret of OMM grows
rapidly, the robust variants of ROMM remain significantly more stable. Among them, the Median estimator (Med)
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consistently achieves the lowest regret across contamination levels, followed by Shorth Mean (SM) and Trimmed
Mean (TM).

Moreover, the results reveal a clear phase transition between the low and high contamination regimes. In the
no-contamination and small contamination settings (Figure 1(a)-1(c)), the regret grows sublinearly—approximately
logarithmically—with the number of rounds, consistent with theoretical guarantees. In contrast, for higher contamina-
tion levels (Figure 1(d)-1(h)), the regret grows nearly linearly, indicating that robust estimators are forced to continue
exploring without being able to confidently distinguish optimal arms due to adversarial corruption. This transition
aligns with the additive linear regret term predicted by our theoretical findings.
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(a) ϵ = 0
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(b) ϵ = 0.0001
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(c) ϵ = 0.001
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(d) ϵ = 0.01
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(e) ϵ = 0.05
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(f) ϵ = 0.1
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(g) ϵ = 0.15
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(h) ϵ = 0.2

Figure 1: Comparison of cumulative regret for ROMM and OMM. Top: Feedback generated from small contamination case (including no contamina-
tion) with contamination rate ϵ varying in {0, 0.0001, 0.001, 0.01}. Bottom: Feedback generated from large contamination case with contamination
rate ϵ varying in {0.05, 0.1, 0.15, 0.2}.

6. Conclusion

In this paper, we studied the problem of matroid bandit optimization under the ϵ-contamination model, where a
fraction of the feedback are corrupted by an arbitrary adversary. We proposed a robust algorithmic framework, ROMM,
which leverages robust mean estimation techniques to cope with the adversarial perturbations. We established both
instance-dependent and instance-independent regret lower bounds for the problem and showed that ROMM achieves
near-optimal regret bounds up to polylogarithmic factors. We also revealed a sharp phase transition between the
small contamination regime and the large contamination regime, where the regret behavior changes drastically. We
conducted extensive experiments on synthetic and real-world datasets to demonstrate the effectiveness and robustness
of our algorithm compared with existing methods.

Our work opens up several interesting directions for future research. First, it would be interesting to extend
our framework to other combinatorial structures beyond matroids that admit a greedy algorithm with a provable
approximation guarantee, such as submodular functions or knapsack constraints. Second, it would be desirable to
design more efficient and practical robust mean estimation algorithms that can handle high-dimensional or heavy-
tailed distributions. Third, it would be worthwhile to explore other adversarial models for matroid bandit optimization,
such as bandit feedback or adaptive adversaries.
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Appendix A. Useful Facts for (Matroid) Bandits

Lemma 2 (Bijection [6]). For the optimal matroid basis A⋆ and any chosen basis A(t), there exists a bijection ι :
A(t) 7→ A⋆ such that:

{a1(t), · · · , ak−1(t), ι(ak(t))} ∈ I,∀k = 1, · · · ,K. (A.1)

In addition, ι(ak(t)) = a⋆i when ak(t) = a⋆i for some i ∈ [K].

Lemma 3 (Regret Decomposition [6]). Define

Rt =
∑
a∈A⋆

xa(t) −
∑

a∈A(t)

xa(t)

be the instant regret incurred by choosing A(t) in round t. We have

E[Rt] ≤
∑
a∈A⋆

Ha∑
k=1

∆a,k1a,k(t), (A.2)

where the indicator function 1a,k(t) is defined as

1a,k(t) := 1{∃i : ai(t) = a, ι(ai(t)) = a⋆k }. (A.3)

Moreover,

∑
a∈A⋆

Ha∑
k=1

1a,k(t) ≤ K,∀t ∈ [T ], (A.4)

Ha∑
k=1

1a,k(t) ≤ 1,∀t ∈ [T ], a ∈ A⋆. (A.5)

Lemma 4 (Instance-Independent Lower Bound for Stochastic n-Multi-Armed Bandits [29, theorem15.2]). There
exists a stochastic n-armed bandit instance such that the expected regret of any algorithm is Ω

(√
(n − 1)T

)
.

Appendix B. Probability and Statistics Tools

Lemma 5 (Theorem 5.1 in [30]). Let P1 and P2 be two distributions over any set X. If for some ϵ ∈ [0, 1/2), we have
that TV(P1, P1) = ϵ

1−ϵ , then there exists two distributions Q1 and Q2 on the same probability space such that

(1 − ϵ)P1 + ϵQ1 = (1 − ϵ)P2 + ϵQ2. (B.1)

Lemma 6 (Hoeffding’s Inequality). Let Z1, . . . ,Zn be independent bounded random variables with Zi ∈ [a, b] for all
i, where −∞ < a < b < ∞. Then

P

∣∣∣∣∣∣∣1n

n∑
i=1

(Zi − E [Zi])

∣∣∣∣∣∣∣ ≥ t

 ≤ 2 exp
(
−

2nt2

(b − a)2

)
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