
Stateful Mobile Modules for Robust In-network Processing
Moritz Strübe (PhD student), Rüdiger Kapitza, Klaus Stengel (Master student),

Michael Daum (PhD student), Falko Dressler
Department of Computer Science, University of Erlangen-Nuremberg, Germany

Abstract—Most sensor-network applications are dominated by
the acquisition of sensor values. Due to energy limitations and
high energy costs of communication, in-network processing has
been proposed as a means to reduce data transfers. As application
demands may change over time and nodes run low on energy, get
overloaded, or simply face debasing communication capabilities,
runtime adaptation is required. In either case, it is valuable to be
able to migrate computations between neighboring nodes without
losing runtime state that might be costly or even impossible to
recompute.

We propose stateful mobile modules as a basic infrastructure
building block to improve adaptiveness and robustness of in-
network processing applications. Stateful mobile modules are
binary modules linked on the node itself. Even more importantly,
they can be transparently migrated from one node to another,
thereby keeping statically as well as dynamically allocated mem-
ory. This is achieved by an optimized linking process and an
advanced programming support.

I. INTRODUCTION

A large fraction of Wireless Sensor Network (WSN) applica-
tions target long-term monitoring of environmental conditions.
Typical examples are monitoring of trees, volcanoes, glaciers,
and buildings [1]. All these applications collect various sensor
values and transport them to more powerful gateway nodes
at the edge of the sensor network. Energy is commonly the
limiting factor of long-term monitoring experiments in the
context of WSNs. Therefore, reducing communication, which is
one of the most energy-intensive tasks in this domain, is crucial.
In-network processing, the pre-processing of sensor data inside
the network is a powerful technique to significantly reduce the
amount of data to be transferred [2]. In many scenarios the
optimal pre-processing strategy has to be determined at runtime.
Furthermore, nodes in this domain can run low on energy, get
overloaded, or face debasing network conditions. In all these
cases, the relocation of operators performing the pre-processing
is an essential building block to continue service provisioning.
Especially challenging in the context of in-network processing
is the demand to keep application state, despite relocation.
Otherwise, the result is data loss, which can cause blind spots
in monitoring experiments decreasing the overall data quality
and in the worst case losing important events thereby rendering
them useless. Even if it is possible to replace lost data, this
can take a considerable amount of time and resources.

In order to address the aforementioned demands for adapt-
ability and to minimize data loss, resource-efficient system
support has to be provided that enables the dynamic deployment
and migration of applications in a state preserving manner.
Taking these facts into account, we propose the concept
of stateful mobile modules. It enables dynamic migration
of native modules and their associated state inside a WSN.
This is achieved by a unique set of measures: Firstly, a

programming model supporting the migration of statically as
well as dynamically allocated memory. Secondly, an optimized
binary format as well as a node-level linking process. Thirdly
a migration framework, which is built on top.

II. PROVIDING STATFUL MOBILE MODULES

We implemented stateful mobile modules and the associated
programming model as a resource-efficient layer using the
Contiki Operating System (OS) [3] but are not strictly tied to
it.

Programming support. Similar to high-level programming
languages such as Java, we decided to provide programming
directives and extended API support to make important state
serializable. Accordingly, variables and pointers that should be
preserved during migration have to be tagged using dedicated
macros. These macros instruct the compiler to place the
variables into special memory sections (variables into one
section and pointers into another) being part of a custom
object file format. For dynamically allocated memory and
pointer variables therein, we support a smart-pointer approach
provided by an easy to use API. This is needed to register
and manage pointers placed in memory allocated at run-time
such as needed for implementing dynamic data structures (e. g.,
linked lists).

Memory-efficient linking process and optimized binary
format. After compilation, the object files are converted
into an optimized binary format that is small1 and can be
efficiently linked due to including relocation information. This
way, a module can be directly integrated on the target node
while memory sections containing variables and pointers are
preserved.

Migration. Assuming the code is not already there, a module
migration starts with a code transfer and its linking at the
target. Next, the source node sends the two memory sections
containing variables and pointers, as well as all dynamically
allocated memory. It also transmits the old addresses of all
sections and the state of the thread executing the module.
The two memory sections are then copied to the memory
already allocated by the linker. Knowing the previous memory
location, the statically allocated pointers can be adjusted to the
new memory layout. Finally, the list of registered in-dynamic
memory pointers is transmitted and their addresses are adapted.

III. STREAM PROCESSING EXAMPLE AND DEMO SETUP

Fig. 1 depicts a distributed stream processing query targeting
the long-term monitoring of micro climate changes on a rock.
The query is composed of a set of connected stream operators

1The minilink format’s overhead is less than half the size of CELF [4],
which can be considered the state of the art.

S3

FUNCTION_MERGE AGGREGATE

AGGREGATE

X
JOIN

S2

S1

O1

O2

O3

GW

Fig. 1. Migrating an operator module from one sensor node to another

1 MIGRATABLE POINTER s t a t i c u16 ∗ i n ;
MIGRATABLE s t a t i c u8 pos ;

3 MIGRATABLE s t a t i c u8 window ;

5 PROCESS(p migagg , ”Mig . Aggr ”) ;
AUTOSTART PROCESSES(&p migagg) ;

7 PROCESS THREAD(p migagg , ev , d a t a)
{

9 PROCESS BEGIN () ;
whi le (1) {

11 PROCESS WAIT EVENT () ; / / Wait f o r an e v e n t
i f (ev == EV MODULE CMD) { / / A command e v e n t

13 i f (∗ d a t a == MOD CMD SIZE) { / / R e s i z e window command
window = ∗(++ d a t a) ; / / S e t window s i z e

15 pos = 0 ; / / R e s e t w r i t e p o s i t i o n
i f (i n != NULL) migmem free (i n) ; / / Free o l d window

17 i n = migmem alloc (window ∗ 2) ; / / A l l o c a t e new window
}

19 e l s e i f (ev == EV MODULE DATA) { / / Handle incoming da ta
i n [pos ++ % window] = ∗(u16 ∗) d a t a ; / / Copy da ta

21 / / C a l c u l a t e average and send i t
} } }

23 PROCESS END () ;
}

Listing 1. An example for a data aggregation operator

distributed over seven nodes: one taking the role of a gateway
to the sensor network and six additional nodes that build the
actual WSN. Besides receiving data from the network, a server
connected to the gateway (GW) controls the placement and the
wiring of the stream processing operators. These operators
are structured as stateful mobile modules so they can be
dynamically distributed.

Scenario outline. In our demo scenario, we want to compare
the temperature on top of a rock (sensor S1, S2) with the
temperature beneath (sensor S3). The values of the upper
sensors might be erroneous due to insolation (e.g., one sensor is
exposed to direct sunlight). Both nodes send their measurements
to node O1. Here, the FUNCTION_MERGE operator reduces
the data based on a minimum function. Afterwards, the
AGGREGATE operator smoothes the result to limit the influence
of outliers by calculating the mean of a configurable number
of samples. The result is then forwarded to O2 where the value
is joined with the measurements of the node beneath the rock,
and forwarded to the gateway.

Next, the migration of the AGGREGATE operator instance
is described. For example, due to energy reasons and debasing
communication, the central server decides to integrate a
neighboring node (O3) into the distributed query by initiating
the migration of this operator. This includes transferring the
module and its state, and rerouting the data flow. Other
scenarios might include the migration of FUNCTION_MERGE
or relocation of the JOIN operator. In all these cases stateful
mobile modules enable a code and run-time state migration
that is transparent from an operator’s point of view.

Programming support. Listing 1 shows the simplified

listing of the AGGREGATE operator. It takes a number of
samples (window), calculates the average, and forwards the
result. The number of samples taken to calculate the average
can be adjusted at runtime. Therefore, the memory used to
save these variables is dynamically allocated. Our data-stream
framework abstracts the network traffic and sends commands
either directly to an operator or broadcasts incoming data to
all operators hosted by the node. In the first three lines, the
necessary variables are defined. The in-variable is a pointer
and is therefore marked as such. The other two save the window
size and the position to write the next incoming data. Lines
5-7 and 23 contain macros generating the structures needed
by the Contiki OS to manage the lightweight protothread. In
line 11, the operator waits for an incoming event. If the event
is a command, the data pointer contains additional data. If the
operator is instructed to resize its window size, the old memory
is freed (l. 16) and a new memory is allocated (l. 17). For
simplicity of the example, the data is lost upon window resize.
As connection handling and all further system-dependent tasks
are performed by our framework, there is no need to inform the
operator about a migration. Thus, due to migration support of
statically as well as dynamically allocated memory, a migration
is fully transparent to the operator.

Preliminary results. Including debugging statements, the
aggregate-operator module has the size of 1164 B and its
linking on a TelosB mote takes about 150 ms. Thereby, our
binary format provides a much smaller module compared to
ELF (2956 B) and CELF (1611 B [4]). The time to migrate
a module from one node to another strongly depends on the
underlaying communication layer. While the overall migration
of the aggregate-operator takes up to 1 s, the actual (de-)serial-
ization of the state accounts only for 1 ms.

IV. CONCLUSION AND ONGOING WORK

Stateful mobile modules build a powerful abstraction to
improve robustness and adaptivity of in-network sensor pro-
cessing, enabling the dynamic (re-)deployment of stateful
operators. This is achieved by a set of system measurers
including advanced programming support, a tailored object
format, a memory-efficient linking process and framework
support controlling the process of migration. We are currently
about to finish our prototype implementation and extensively
evaluate its system characteristics. In the course of the EuroSys
poster session we will perform a live demo showing the
principle functioning of our approach based on the outlined
monitoring scenario.

REFERENCES

[1] J. K. Hart and K. Martinez, “Environmental sensor networks: A revolution
in the earth system science?” Earth-Science Reviews, vol. 78, pp. 177–191,
2006.

[2] J. Gehrke and S. Madden, “Query Processing in Sensor Networks,” IEEE
Pervasive Computing, vol. 3, no. 1, pp. 46–55, Jan. – March 2004.

[3] A. Dunkels, B. Grnvall, and T. Voigt, “Contiki - a lightweight and flexible
operating system for tiny networked sensors,” in 1st IEEE Workshop on
Embedded Networked Sensors (Emnets-I), Tampa, FL, Nov. 2004.

[4] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time dynamic linking
for reprogramming wireless sensor networks,” in 4th ACM Conference on
Embedded Networked Sensor Systems (SenSys 2006), Boulder, CO, Nov.
2006, pp. 15–28.

