
Dynamic Operator Replacement in Sensor Networks

Moritz Strübe∗, Michael Daum∗, Rüdiger Kapitza∗, Felix Villanueva† and Falko Dressler∗
∗Dept. of Computer Science, University of Erlangen, Germany

†School of Computer Science, University of Castilla-La Mancha, Spain
{struebe,daum,kapitza,dressler}@informatik.uni-erlangen.de, felix.villanueva@uclm.es

Abstract—We present an integrated approach for supporting
in-network sensor data processing in dynamic and heteroge-
neous sensor networks. The concept relies on data stream
processing techniques that define and optimize the distribution
of queries and their operators. We anticipate a high degree of
dynamics in the network, which can for example be expected in
the case of wildlife monitoring applications. The distribution of
operators to individual nodes demands system level capabilities
not available in current sensor node operating systems. In
particular, we present a system for seamless and on demand
operator migration between sensor nodes. Our framework,
which we implemented for Contiki running on TelosB nodes,
supports stateful module migration including selected parts of
the code and data sections.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) consist of nodes
that are widely distributed. In-network data processing is
considered as a key methodology to provide robustness and to
handle dynamics and heterogeneity in a resource and energy
efficient way [1], because, as data volume grows rapidly,
the typical central base station processing approach becomes
more and more impracticable. Distributed data processing
using operators like filtering and aggregation helps to reduce
communication in the vicinity of the sensors.

Data stream processing as it provided by Data Stream Man-
agement Systems (DSMSs) is also an option for distributed
processing in WSNs that is more efficient than sending all
data to a central processing unit [2]. If operator placement
decisions get disadvantageous at runtime, replacement and
migration of operators is required. Some DSMSs like
Borealis [3] support operator migration by switching the
flow of streams at the appropriate point in time without
state migration (pause-drain-resume strategy). Without state
migration, this is called pause-draine-resume strategy in the
related literature [4]. Others like CAPE [4] do real state
migration. These DSMSs run on full-fledged PCs.

In the scope of our Resource-constrained Distributed
Stream Processing (RDSP) project,1 a central server coor-
dinates distributed stream processing and organizes query
reorganization if necessary. We decided to apply stateful
operator migration as reorganization strategy in the WSN,
as we assume transmitting a module and its state to a
neighboring node being cheaper than the entire deployment

1http://rdsp.informatik.uni-erlangen.de

Query Definition
S1

Stateful Operator

Query Definition
S2

S3

Out
StreamStateless Operator

S3

Initial

Data Flow

Target Nodes Migration Decision

S1

S2 Out

Operator Placement

Dynamic Operator

g

S2

S3

Out Dynamic Operator 
Replacement

DeploymentS1 State Migration Deployment

This demo: 
St t

S2

S1

O1 O3

State Migration

Operator Migration
State‐aware
Operator MigrationS3

O2

GW

Figure 1. Mapping of queries and stateful operator migration based
redeployment: First, the global query is defined. Based on a global
optimization of the query into subqueries, the initial operator placement
is estimated. The key concept presented in this demo, however, is the
on-demand state-aware migration of operators.

process. Most importantly, loss of state might be a more
severe problem than arbitrarily deploying new nodes. Figure 1
outlines the distribution of a global query to a subset of nodes
within the sensor network.

We rely on Abstract Query Language (AQL) for describing
the queries in our framework. However, as the introduction
of our AQL is beyond the scope of this paper, the query’s
notation is a common directed query graph using some
stateless operators in the vicinity of the nodes that produce
data and a stateful operator that is placed between the stateless
operators and the query’s data sink. It is useful to place these
operators there if they help to reduce communication costs,
e.g. filter operators. After these filter operators, there is an
aggregating data-fusing operator that is stateful. Aggregation
operators help to reduce data rates, too. The placement
decision is made upon a cost model that considers all relevant
communication costs.

In this introductory example, both filtering and aggregation
operators are pushed as near to the data sources as possible.
Further, in this example, we assume that it is not possible to
place both filter and aggregation to one node. This capacity



issue can easily be decided by the central manager of the
RDSP project, as it knows both the modules’ sizes and the
available memory of each node.

In order to support stateful operator migration in the
domain of sensor networks, either abstraction layers or virtual
machines would be needed, or direct system level support is
required for the operator migration, which is clearly better
suited for memory-constrained sensor nodes. Among others,
popular sensor network operating systems such as Contiki,
TinyOS, and SOS support a modular programming model.
Depending on the implementation, modules can even be
loaded at runtime. However, none of these systems support a
programming model for stateful module migration between
sensor nodes.

Our presented framework extends our earlier work to
support Contiki [5] as a reference system. The theoretic
foundations of the system level support are outlined in
[6]. We developed this framework explicitly to support
dynamic operator replacements in the scope of DSMSs.
This demo presents the current state of seamless operator
migration among TelosB sensor nodes at runtime including
state information of running threads.

II. SYSTEM ARCHITECTURE

Our system architecture can essentially be split in two
different parts: First, a central server that controls and
coordinates the placement and inter-connection of operators
for in-network stream processing; secondly, a set of sensor
nodes forming the actual network that are collecting and
preprocessing data from a set of available sensors. The
data-stream processing is achieved by providing run-time
support for dynamic deployment of native modules that
encapsulate stream operators, so-called operator modules that
are dynamically wired with each other. The initial deployment
and successive (re-)deployment steps are coordinated by the
central server that can also make adjustments to the topology
of the data streams.

From a system perspective, the operator deployment is sup-
ported by an optimized node-based runtime linker, thus giving
the freedom of re-using the same module on different nodes
without restrictions to kernel versions, memory allocation or
the need of a reboot. Our deployment protocol contains
a set of basic operations to deploy, configure, and start
operator modules. In addition, we extended the deployment
protocol by operations for migration and provide system-level
support to migrate stateful operator modules from one node
to another while preserving their state of execution. Such a
migration is typically transparent to the operator module and
the whole distributed application.2 This is achieved by system
support for re-directing event streams, but more importantly

2We assume that the operator module does not access device and system
APIs directly. Otherwise, the operator module is notified about the imminent
migration and can act appropriately.

by an advanced programming model and extended execution
support.

Similar to high-level programming languages such as Java,
we decided to provide programming directives and extended
API support to make modules serializable. In our solution,
variables have to be marked, so their value is kept once a
module is transferred to a different node. We also provide
an API to allocate memory dynamically from heap. This
memory is tied to the module and gets copied to the target
node upon migration. To allow the use of dynamic memory,
not only migration of data, but also the use of pointers must
be supported. In the course of migration of stateful operator
modules, it cannot be guaranteed that the data is placed
at the same physical memory location. While all addresses
within the linked code are correctly set by the linker, all
pointers pointers copied during the migration process must
be adjusted, too. To adjust the pointers, our framework must
know the addresses of the pointers. We provide two ways
of making pointers known to the framework. Static pointers
can be tagged, just like variables, whereas pointers within
memory allocated from heap must be registered using our
API.

Besides the memory management, the state of the
thread itself needs to be transferred. Contiki uses so-called
protothreads, which are very similar to coroutines and loose
the contents of their stack when returning to the operating
system. Therefore, only the state of the protothread, which
does not contain any pointers or node-specific information,
needs to be transferred.

In summary, the migration of an operator is organized as
follows: In a first step, the target node must be prepared. This
is done by transferring a copy of the module to the node,
which is then linked into available memory. Next, the source
node is told to migrate the operator to the new node. Before
migration, the operator gets a migration event, which allows
the operator to cleanup system functions such as timers.
Afterwards, the different memory sections are serialized and
transferred to the new node including information about their
placement on the old node. Finally, the protothread state and
the list of registered pointers are transferred. At the target
node, the pointer-sections are adjusted first. In a second step,
the new placement of the registered pointers is calculated
and they are adjusted as well. In a last step, the operators
sending data to the module must be rerouted to the new
node.

III. STREAM PROCESSING EXAMPLE

This section outlines the idea of stream processing based
in-network data operation; furthermore, the dynamic operator
migration is demonstrated. The module to be migrated
contains stateful operators that are part of a demo query
outlined in Figure 1.



1 MIGRATEABLE_POINTER static uint16_t * pData; // Pointer to buffer
2 MIGRATEABLE static uint8_t pos; // Position within buffer
3 MIGRATEABLE static uint8_t window_size; // Size of the buffer
4
5 PROCESS_THREAD(agg_process, event, event_data)
6 {
7 PROCESS_BEGIN();
8 while(1) {
9 PROCESS_WAIT_EVENT(); // Wait for an event

10 if(event == EVENT_RESIZE) { // A command-event
11 window_size = *event_data; // Set window_size
12 pos = 0; // Reset write position
13 if(pData != NULL) migmem_free(pData); // Free old buffer
14 pData = migmem_alloc(window_size * 2); // Allocate new buffer
15 }
16 else if(event == EVENT_MODULE_DATA) { // A data-event
17 pData[pos] = * (uint16_t *) event_data; // Write data to buffer
18 pos += (pos + 1) % window_size; // Move to next position
19 sp_send(avg(pData)); // Send data
20 }
21 }
22 PROCESS_END();
23 }

Listing 1. An example for a migratable data aggregation operator

Our query model is oriented to the box-and-arrow model
as it is used for example by Borealis. In the sensor network,
the nodes create three input streams: S1, S2, and S3. These
input streams have temperature fields amongst others. The
demo query creates output items if the temperature of S3 is
lower than in the area of S1 and S2. It delivers these items
to a sensor node that is connected to the gateway. We assume
that the values of S1 and S2 might be erroneous, so we
implemented a simple way of sensor data cleaning by using
a minimum function as spatial granule and an aggregate
operator for smoothing outliers.

In this example, we migrate operators between nodes. In
the following, the migration of the AGGREGATE operator
instance is described. It calculates the mean of a configurable
number of samples. For a fictive reason, e.g. if there is a
severe shortage of system resources, the central server decides
to migrate this operator to a neighboring node. This includes
transferring the module and its state, and rerouting the data
flow.

The routing between the operators is done by our frame-
work. Incoming data is received by the operators using the
event system provided by Contiki. Outgoing data must be
sent using special functions which route the data to the next
operator.

Listing 1 shows a simplified excerpt of the aggregate
module. It needs three main variables to store the win-
dow size, the position within the window and a pointer
to reference the memory allocated from heap. As the
window size and position are normal variables, they are
marked with the MIGRATABLE keyword. For the pointer the
MIGRATABLE_POINTER keyword is required, as the value
of the pointer needs do be adjusted during the migration
process.

When the operator gets a resize event (line 10), previously
allocated memory is freed, just like normal heap memory,
but using our API. Afterwards new memory is allocated from
the heap space to store the incoming 16-bit samples. When
data arrives (line 16), this memory can be accessed using

Figure 2. Demo setup:Three nodes are used to produce sensor data, three
additional nodes represent potential positions for the operators, and a further
gateway node connects the network to an attached PC.

the pointer, just like normal memory allocated from heap.
As the operator does not use any resources provided by the

operating system (e.g. timers) no further actions are needed
upon migration. Otherwise the operator would have to handle
the migration-request event and free theses resources, before
the migration can take place.

The demo shows the migration results by clearly outlining
the current data stream configuration as well as the processing
results using a set of TelosB sensor nodes. The demo setup
is outlined in Figure 2.

REFERENCES

[1] P. Edara, A. Limaye, and K. Ramamritham, “Asynchronous
in-network prediction: Efficient aggregation in sensor networks,”
ACM Transactions on Sensor Networks, vol. 4, no. 4, pp. 1–34,
August 2008.

[2] L. Ying, Z. Liu, D. Towsley, and C. H. Xia, “Distributed
Operator Placement and Data Caching in Large-Scale Sensor
Networks,” in IEEE INFOCOM 2008, Phoenix, AZ, April 2008.

[3] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cher-
niack, J.-H. Hwang, W. Lindner, A. S. Maskey, A. Rasin,
E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik, “The Design
of the Borealis Stream Processing Engine,” in CIDR, Asilomar,
CA, January 2005.

[4] Y. Zhu, E. Rundensteiner, and G. Heineman, “Dynamic Plan
Migration for Continuous Queries over Data Streams,” in ACM
SIGMOD Conference 2004, Paris, France, June 2004, pp. 431–
442.

[5] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight
and flexible operating system for tiny networked sensors,” in
IEEE LCN 2004, Tampa, FL, November 2004, pp. 455–462.

[6] M. Strübe, R. Kapitza, K. Stengel, M. Daum, and F. Dressler,
“Stateful Mobile Modules for Sensor Networks,” in IEEE/ACM
DCOSS 2010. Santa Barbara, CA: Springer, June 2010, pp.
63–76.


