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Abstract—Molecular communication has been identified as
a communication concept complementing radio communication
in some areas and being the unique solution in others. This
particularly includes communication between nano machines
but, more recently, also macroscopic application domains such
as in fluid systems in a chemical factory. We are interested
in simulating such macroscopic molecular communication both
accurately as well as on a large scale. In this work, we make use
of the concept of vector fields for efficient simulation of particle
movements in a fluid environment. Such vector fields can be pre-
computed so that the simulation of the communication itself is
very fast. We discuss both the concepts and the methodological
approach to outline the advantages of this idea and validate the
system compared to lab measurements. Going beyond previous
work, we also integrated both on-off keying (OOK) and pulse
position modulation (PPM) to demonstrate the feasibility of the
simulation concept even for more complex signal processing tasks.

Index Terms—Molecular communication, vector fields, particle
movement, modulation techniques

I. INTRODUCTION

Molecular communication (MC) has been intensively in-
vestigated in the last decade with a number of application
scenarios [1], [2]. Initially motivated by the need for commu-
nication between nano systems, e.g., within the human body,
there is now also a clear path for larger-scale application [1],
[3]–[6]. It is envisioned that MC will even be integrated with
future wireless networks, paving the road to 6G and beyond [5].
This research line is further supported by early standardization
in the scope of the IEEE 1906 framework [7].

Even though MC was initially primarily considered for nano
communication [1], recent research shows many promising
applications in much larger-scale systems, now investigated
as macroscopic MC. As one of the initial projects in this
field, our Macroscopic Molecular Communication (MAMOKO)
project1 aims at paving the road for industrial applications, e.g.,
for communication in fluid environments in large chemistry
factories.

Now, to support the development of systems, protocols, and
tools for such industrial applications, a deeper fundamental
understanding of the MC processes is needed. Channel mod-
eling so far mainly focuses on diffusion processes [8], [9].
However, MC is strongly affected by the physical properties
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of the carrier and the medium that transports it. Besides early
experimentation, simulation is the fundamental basis for gaining
more insights into the (macroscopic) MC processes because
it has the potential for greater flexibility (e.g., in terms of the
shape and scale of what types of channels can be used), lower
costs (no specialized equipment or chemicals), and better time
efficiency (e.g., by means of parallelization in large parameter
studies).

Previous approaches, unfortunately, lack both granularity
and scalability: Examples include NanoNS3 [10] (very low
computation costs, exploration of higher-layer protocols such
as routing), BiNS2 [11] (allowing to configure the environment
more freely), and AcCoRD [12] (more computationally efficient
mesoscopic domains). Furthermore, existing simulators tend to
focus on environments where diffusion is the dominant cause
of particle movement. While some simulators support uniform
flows or, like BiNS2, even realistic analytically determined
flow profiles in known objects like a straight tube, more
complex geometries like obstacles or intersecting tubes cannot
be realized easily in a flowing medium.

To fill this gap and enable the simulation of MC in complex
flow profiles, our idea is to complement such diffusion- and
uniform flow-based simulators using vector fields, which define
a possibly different flow speed vector for every point in space.
To this end, we recently proposed a workflow in which particles
follow a vector field pre-computed with existing computational
fluid dynamics (CFD) software [13]. In order to validate
our system, we prepared a setup exactly matching a testbed
experiment from Erlangen University [14].

In this paper, we go beyond our initial work [15] and
also integrate modulation into the simulator. In particular,
we integrate both on-off keying (OOK) and pulse position
modulation (PPM) to demonstrate the feasibility for more
complex MC systems on the physical layer. In a proof-of-
concept study, we demonstrate the capabilities of our simulator
and measure the bit error ratio over a macroscopic MC channel.

Our main contributions can be summarized as follows:
• We connect the concept of vector fields for simulating

macroscopic MC with physical layer protocols,
• we integrate higher layer modulation techniques using

OOK as well as PPM as a proof of concept, and
• we show results from initial simulations validated against

testbed results.

II. RELATED WORK

A number of different simulation approaches for MC have
been proposed in the past. For example, nanoNS3 is an
extension of the popular discrete-event network simulator ns-3
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and was specifically developed with bacterial MC in mind [10].
It thus supports an efficient analytical channel model for the
specific case of fluoresence-inducing bacteria in a microfluidic
environment, which would have to be re-developed for different
information carriers in macro-scale fluid channels. Other MC
simulators support a more granular, particle-based simulation
approach, which allows simulating the influence of particle
collisions, outside forces such as magnetism, or uniform flow
fields. Examples for such simulators include N3Sim [16],
BiNS2 [11], and AcCoRD [12]. However, we noted previously
that existing simulators specialized in diffusion-driven MC use
simplified flow models [13]. To the best of our knowledge,
simulating MC efficiently within a flowing medium is still
an open problem if the flow profile cannot be determined
analytically.

A known challenge of MC is intersymbol interference (ISI),
which is exacerbated by residual particles left in the channel
after each transmission, resulting in a memory effect [17].
Therefore, in order to transmit information efficiently, robust
modulation and demodulation schemes are required. One
solution to reduce ISI, for example, is to combine concentration
shift keying (CSK) and molecule shift keying (MSK) by using
different particle types to indicate whether a sequence of 1-
valued bits continues or whether it transitions back to a 0-
valued bit [18]. However, the requirement of MSK to be able
to both emit and detect different types of particles is not
always given, as the physical implementation of a transmitter
or receiver typically becomes more complex if more particle
types are to be supported. In these cases, OOK is a popular
choice in diffusion-based MC. On the receiving end, it is often
realized by comparing samples against a threshold [19]. While
this approach is useful for validating testbeds or a simulator
such as the one here presented due to its straight-forward
implementation, there is a potential for improvement by opting
for a thresholdless solution [20]. This is especially the case
if residual particles that have accumulated over some time
eventually exceed such thresholds on their own, even without
any recent particle emissions. For the present study, however,
we implemented the threshold-based OOK modulation scheme
that was used for demonstrating the aforementioned testbed
from Erlangen University [14]. This is explained in more detail
in Section V.

III. THE POGONA SIMULATOR

We aim at simulating large-scale fluid-based MC. Thus, we
need to assess both the flow characteristics of the fluid itself
and the movement of MC particles within the fluid. To prepare
a simulation, our approach takes the following steps.

(1) Pre-Computation of Vector Fields To generate a pre-
computed vector field, first a geometry needs to be modeled in
which the particles can later move. This may be a simple tube
or more complex shapes such as a Y-piece as shown in Figure 1.
For modeling, any CAD software capable of producing files in
the STL format compatible with the CFD tool can be used. We
choose the open-source tool Blender since we also use it for
visualizing particle traces in a later step. Given a 3D model of
the surface, we then use the OpenFOAM tool SnappyHexMesh

Figure 1. Conceptual trajectory of a simulated particle in a vector field model
of a Y-piece. Background flow enters the tube from the left, the particle
solution is injected from the bottom, and the resulting flow exits on the right.

to split this geometry into cells, which, in turn, can be used
by OpenFOAM to find a numerical solution for the flow speed
and pressure in each cell based on initial parameters for the
inlets and outlets. Once this CFD simulation converges, we
can export and use the final vector field of flow speeds in our
MC simulator.

(2) Flow Processing and Particle Simulation As the next
step, parameters for the MC simulation need to be defined, e.g.,
the number and rate of particles to inject, locations of sensors,
and simulation duration. When the simulation runs, particle
positions are updated and logged in discretized time steps based
on the flow speeds of vector field cells in their vicinity. A typical
simulation will have particles entering the scene in some sub-
volume, for instance injected from a syringe or another tube,
in which particles are spawned in a longitudinal section of
the same tube. In principle, it would be possible to infer the
number of simulated particles from the size of this sub-volume,
an experimentally determined density of particles in the testbed,
and a reduction factor. However, defining the injection flow rate
and the number of particles independently as a more generalized
implementation makes it easier, for example, to switch from a
volume to a point injection. After instantiation, the particles
are transported to and observed by a sensor, which can access
information on all particles in its domain. At the sensor, typical
communication metrics can be obtained, based on particle
density and travel time from source to sensor. This way, we can
easily measure, e.g., the channel impulse response or we can
add additional higher-layer simulation models, e.g., to support
modulation/demodulation of digital information on the particle
flow. To achieve this, the modularity of the simulator allows
adding new demodulation classes, for example, which can in
turn access the sensor readings. Alternatively, demodulation
scripts can use the sensor log files and process the output of
the same simulation run in different variations after the fact.
An example of the channel impulse response measured at such
a sensor is shown in Figure 2.

To achieve acceptable computation times, we make some
simplifying assumptions. In the testbed, several billion physical
particles are involved in each injection. We therefore simulate
only a small fraction of the real number of particles, though
large enough for results that are sufficiently stable between
simulation runs for a given analysis. We give these particles a
uniformly distributed random starting position in an injector
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volume. We update each particle position in discrete time
steps. For adaptive step sizes and better integration accuracy in
larger time steps we use the Runge-Kutta-Fehlberg (RKF45)
method [21].

CFD software commonly works on a volumetric three-
dimensional mesh and produces outputs in the form of a
vector field indicating the flow speed at discrete locations.
A necessary discretization is therefore the division of the flow
volume into cells. To accelerate the CFD pre-computation and
vector field lookups, the mesh resolution should not be much
higher than necessary. The mesh resolution can be kept lower
by using appropriate interpolation methods for particle positions
in the space between known flow speeds at the cell centers.
We implemented a local variant of inverse distance weighting
(IDW) [22], which means that we only need to look up the
cells closest to a particle rather than iterating over the entire
mesh.

We improve computation efficiency further by using a k-d
tree for vector field lookups in, on average, O(log n) in a spatial
data structure [23]. Additionally, we introduce a scene system
for connecting and reusing multiple vector fields. If the same
geometry appears multiple times in one scene with matching
flow rates, the number of expensive CFD pre-computations
in larger-scale networks can be kept low. Further efficiency
can be gained when assuming stationary sensors, in which
case sensors can subscribe to individual vector field cells and
avoid being addressed by each particle in each time step [15].
Sensor subscriptions are initialized in a pre-processing step
before the actual simulation starts, the result of which is a list
of references to all relevant sensors for each vector field cell.
Instead of iterating over all sensors, this way, each particle
only needs to determine its closest cell by means of a k-d
tree lookup, after which the list of relevant sensors can be
determined in constant time.

We strive to reduce mistakes in the process of defining
simulation scenarios and to allow easy inspection of particle
traces within the scene. This is especially critical in complex
scenes in which many vector field objects and components
like sensors need to align precisely. We achieve this with an
optional Blender add-on which can export an arrangement of
simulation components to a configuration file, and which can
import simulated particle traces for visualization.

IV. VALIDATION AGAINST TESTBED DATA

We compared the full width at half maximum (FWHM)
and root mean square (RMS) delay spreads of the channel
impulse response after 5 cm in our simulator with data from a
testbed [14]. For the result shown in Figure 2, we simulated 16
independent Y-piece injections of 5000 particles each. 26 µL
of particle solution were injected at a rate of 10 mL/min
into a background flow of 5 mL/min. In total, the scenario
consisted of 1 292 703 vector field cells (646 883 for the Y-
piece, 327 910 for a connected 15 cm long tube 2.5 cm after
the point of injection, and again as many for the same tube
connected to the particle inlet). The tube radius was 0.76 mm
and the sensor was placed with its center at 5 cm after the
point of injection. On average, the simulator showed a FWHM
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Figure 2. Average channel impulse response from 16 Y-piece injections of
5000 particles compared to testbed data [14]. Individual simulation runs are
shown in gray. Susceptibility values are scaled according to the respective
maximum of the average channel impulse responses.

of 689.6 ms (standard deviation (SD) = 31.3ms), which is
81.8 % of that of the testbed at 842.8 ms (40 injections,
SD = 100.0ms). The RMS delay spreads, however, are as
yet significantly underestimated by a factor of 5, with an
average of 0.439 s (SD = 0.024 s) in the simulator compared
to 1.874 s (SD = 0.409 s) in the testbed. This is in line with
our previous results for a comparison of testbed and simulation
data over different channel lengths [15]. These differences
may be caused by several physical phenomena which we do
not yet simulate, like turbulence at the point of injection,
diffusion, or sedimentation. However, the channel impulse
responses between simulation and testbed are arguably already
similar enough to motivate using this approach for simulating
communication.

V. INTEGRATING OOK AND PPM MODULATION

In a next step, we demonstrate the possibility to use our
simulator for simulating the transmission of binary information.
As a proof of concept, we replicated a testbed experiment in
which on-off keying (OOK) was used to transmit the letters
‘FAU’ [14]. We re-used the scenario of the channel impulse
response experiment above, but this time with an injection
rate of 5 mL/min and an injection volume of 14 µL to more
closely match the original OOK experiment. We configured
2000 particles to be spawned for each injection. The symbol
duration was 4 s and each character of the letter sequence
was ASCII-encoded in respective sequences of 8 bits, whereas
the first 3 bits of the upper-case ASCII alphabet (010) were
used for synchronization. More specifically, the preamble is
detected if a predetermined threshold c = 1

3 is exceeded,
which approximately corresponds to the threshold used in the
testbed [14]. Afterwards, the greatest-valued sample within
the next half of a symbol duration is taken to be the peak of
the preamble. Subsequently, the signal is sampled in intervals
of the symbol duration after the initial preamble peak. If the
sampled susceptibility is above c, the corresponding bit is
decoded as 1, otherwise it is 0. Figure 3 shows a successful
transmission using this method for a symbol duration of 4 s.
The long symbol duration and comparatively short injection
times make the peaks easily discernible, resulting in a reliable
transmission of the letter sequence.
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Figure 3. Proof-of-concept OOK transmission of the letters ‘FAU’ with a
symbol duration of 4 s. Diamonds indicate the detected peak of a 010 preamble.
Circles indicate the sampled values for each payload bit. The threshold is
indicated by a gray horizontal line.
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Figure 4. OOK with a symbol duration of 0.25 s.
Received data: 01001110 01000001 01010111 01000000,
expected data: 01000110 01000001 01010101.

As ISI is known to be an important constraint in MC, we
next sought insights into the robustness of the modulation
scheme and how it compares to PPM. Illustrating the effect of
ISI, Figure 4 shows an unsuccessful transmission of the letter
sequence ‘FAU’ for a symbol duration of 0.25 s. Especially
when many 1-valued bits are transmitted in close succession,
it can be seen that susceptibility levels barely have time to
fall back below the threshold. After 4 s, peaks appear to grow
successively higher as new and residual particles combine.

PPM is another modulation scheme that has been proposed
for diffusive [24] and macroscopic [25] MC. For M -ary PPM,
the duration of one symbol is divided into M chips of equal
duration. To transmit a symbol of value m, a pulse is generated
in the m-th chip. In contrast to OOK, for which we expect at
most one peak per symbol, PPM therefore guarantees exactly
one transmitted pulse for every symbol. The receiver uses the
maximum likelihood (ML) decoding technique as described,
e.g., in [24]: For each chip of a symbol, the detected numbers
of particles in each sample are accumulated. Since we simulate
the response of a susceptibility sensor rather than counting
particles [15], we accumulate the susceptibility samples. Then
we compare the M resulting values and decode as the symbol
value the index of the chip with the maximum value.

We see the ISI effects described above for Figure 4 also in
Figure 5, where we transmitted random bit sequences to obtain
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Figure 5. Bit error ratios for different symbol durations.

the bit error ratio (BER) for different symbol durations. In
order to make the modulation schemes OOK, 2-ary, and 4-ary
PPM comparable, we disabled the synchronization technique
that was used in the testbed for OOK and instead synchronize
only on the first detected peak in all modulation schemes. For
each tested symbol duration and modulation scheme we ran 4
simulations and in each we transmitted 48 random bits. On an
AMD Ryzen™ 7 3800X CPU, one single-threaded simulation
run of this setup in our current Python implementation took
about 7 h in the case of OOK.

We observe consistently fewer bit errors with 2-ary PPM
compared to OOK, which in turn produced significantly fewer
bit errors than 4-ary PPM in our simulations. At the lowest
symbol duration of 0.2 s, 2-ary PPM produced 48, OOK 74,
and 4-ary PPM produced 84 bit errors out of 192 transmitted
bits. This corresponds to BERs of 25 %, 39 %, and 44 %,
respectively. We did not investigate lower symbol durations
in this case, as the injection duration for the given injection
rate and volume was 0.17 s. For a symbol duration of 0.45 s,
we observed only one bit error with 2-ary PPM and 5 with
OOK. For symbol durations beyond 0.5 s, we did not see any
bit errors with either modulation scheme. 4-ary PPM, however,
only achieves BERs below 5 % with a symbol duration of 0.9 s
and one bit error out of 192 for 1 s. The improvement we see
in 2-ary PPM over our implementation of OOK may for a
large part be due to the decoding technique. While OOK here
relies on the detected susceptibility to be either high or low
enough in one specific sample for each symbol, PPM takes
the aggregate of multiple samples into account. However, as
this improvement is consistent but small, OOK may still be
the preferred choice in some applications of MC due to its
lower expected number of transmitted pulses and thereby fewer
used-up particles. The low performance of 4-ary PPM can be
explained by the higher precision that is required in both the
shape of the peaks and time synchronization, due to the greater
subdivision of the same symbol durations.

VI. CONCLUSION

Simulation of macroscopic MC needs fine-grained yet
scalable models and methods to evaluate and better understand
communication effects on the physical layer (and above). Using
a fluid-based MC channel as an example, we investigated the
use of vector fields for efficient simulation of such macroscopic
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MC. We suggest the use of pre-computed vector fields to
substantially speed up the simulation of particle flow in a
fluid environment. Validating our system against a wet-lab
testbed, we show that our approach can achieve a very high
accuracy. Further investigations are required to determine under
which conditions our approach is feasible and in which cases
additional physical phenomena such as turbulence, diffusion,
or gravity have to be considered.

We furthermore showed that our system can simulate
macro-scale OOK and PPM transmissions while realistically
recreating real-world effects like ISI due to residual particles.
In future work, this may be useful in exploring the efficacy of
communication schemes originally developed for nano-scale
MC, for the development of new schemes, i.e., novel types
of transmitter particles or novel modulation techniques, or for
investigating higher-layer protocols in complex fluid networks.
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