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Abstract—In recent years, urban centers have increasingly
been equipped with sensing, storage, and computational capabil-
ities in the form of road infrastructure and intelligent vehicles,
making cities smarter. These advancements make it possible for
traffic management systems to provide enhanced traffic solutions
to people, thus, improving the quality of their daily life. In
this paper, we focus on an AI-based, human-centered traffic
management system in a smart city context, which represents a
core Metaverse application. The system considers both drivers’
and traffic flow requirements in order to route vehicles safely and
effectively. Our personalized route planner takes into account all
relevant factors, such as the use of virtual edge servers to obtain
real-time traffic data and vehicle sensing capabilities to estimate
human behavior and state of alertness to achieve personalized
and context-aware vehicle routing. The proposed system also aims
to satisfy the demand for virtual edge computing resources in the
context of smart cities and the Metaverse by re-routing vehicles
based on computing resource availability at the micro clouds.
One of the main challenges of the proposed system is ensuring
its adoption rate in the user’s daily life. We therefore argue
that, to increase the penetration rate of the proposed solution,
it is essential to inform the user about the reasoning behind
the decisions made by the AI-based route planning system with
explainable AI strategies and emphasize how adopting such a
system can improve their quality of life.

Index Terms—Metaverse, ITS, Vehicle route planner, Con-
nected vehicles, Micro clouds, Explainable AI

1. INTRODUCTION

Intelligent transportation systems (ITS) play a vital role in
the creation of smart cities that enhance and simplify the lives
of their inhabitants. To make cities smarter and safer, ITS
encompasses a wide range of services related to advanced
vehicle control systems (AVCS), advanced traveler informa-
tion systems (ATIS), and advanced traffic management sys-
tems (ATMS) [1]. The incorporation of sensing, storage, and
processing capabilities into vehicles and road infrastructures
facilitates the provision of such services pertinent to the ITS
context. In addition, the inception of connected vehicles with
the ability to exchange data with their surroundings provides
an added benefit to smart cities. With these advancements,
Dressler et al. [2] proposed a virtual edge architecture, named
V-Edge, that provides a means to share the resources of the
connected vehicles available in a specific geographic area to
host various applications. The data generated within the V-
Edge ecosystem have the potential to digitally represent the
physical world as digital twins, which have emerged as an
essential building block for Metaverse applications [3].

Automotive and transportation are the primary beneficiaries
of digital twin applications as they enable vehicles to make
context-aware decisions by overlaying their sensor data on a
virtual map. Vehicle route planning is one such application
that can assist people in reaching their destinations in a safe
and timely manner. Modern-day routing service providers
offer several routes to reach a destination, each of which is
optimized for multiple factors, such as travel time, distance,
and predicted traffic conditions. However, Ceikute and Jensen
[4] highlight that the time predicted by the service providers
to reach the destination significantly varies from the actual
time taken as the traffic scenarios around the driver varies
extensively. In addition, service providers do not consider the
preferences of individuals, or people have limited ways to
express their preferences in the process of route selection, such
as by avoiding tolls.

As a consequence, vehicle route planning is still a topic of
primary importance, and numerous approaches have been de-
veloped to provide an optimal route for vehicles. In particular,
Souza et al. [5], Dai et al. [6], and Abdelrahman et al. [7]
offer personalized route planning by factoring in the human
as one of the route-planning factors. Dai et al. [6] utilize the
driver’s historical trajectory data to comprehend the driver’s
preferences on travel costs regarding travel time, distance,
and fuel consumption. However, Dai et al. [6] do not take
into account real-time traffic data when planning routes that
are crucial for reaching the destination within the estimated
travel time. The study in Abdelrahman et al. [7] propose a
route planner that accounts for road quality and the driver’s
risk profile along a given route. It uses crowd-sourced data
to determine road quality and historical driver behavior on
road segments to determine risk factors. Nevertheless, the
proposed method relies on the routes provided by the service
providers such as Google Maps to suggest the routes, thereby
inheriting the problems of the standard service providers. In
terms of safety-based route planning, Souza et al. [5] propose a
comprehensive routing method that considers criminal activity
along the routes to provide the user with a safe route. However,
it estimates traffic conditions based on sporadic reports from
the vehicles, thereby ignoring unanticipated traffic situations
on the road network.

In our study, we propose a robust AI-based, human-centered
traffic management system that factors in real-time traffic
information received from virtual edge servers and an estimate



of the driver’s behavior, preferences, and level of attentiveness,
in order to route vehicles safely and effectively. The proposed
system is also designed to be robust to data dynamics, es-
pecially in the case where, due to environmental conditions,
real-time data from traffic and vehicle sensors may not be
available or be heavily affected by noise.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses the problem statement and motivation behind
the proposed approach. Section 3 illustrates the proposed
methodology in detail. Finally, Section 4 presents the future
research directions of the work.

2. PROBLEM DEFINITION AND MOTIVATION

Vehicle route planning is a multi-objective problem that
includes balancing a variety of factors in order to find the
optimal route. In addition, route planning algorithms must be
able to handle dynamic data, as road conditions vary over
time. In general, they recommend a user the path that requires
the shortest amount of time and/or distance to reach the
destination. Clearly, the shortest route may not necessarily be
the fastest route to the destination, as the travel time depends
upon the anticipated traffic conditions along the routes. Google
Maps, for instance, uses crowd-sourced data to estimate traffic
conditions on the suggested routes and then ranks the routes
based on the estimated travel time. In addition to traffic
conditions, the traffic light phases can also be considered
inputs, as they play a significant role in increasing vehicles’
and pedestrians’ travel time.

An important aspect that may be accounted for is the energy
toll or the carbon footprint (e.g., CO2 emissions) associated
with a given route. As an example, Green Light Optimal Speed
Advisory (GLOSA) methods [8] suggest the optimal speed for
cars, taking into account the phases of the traffic lights, so that
cars can go through the intersection without stopping and, so
doing, reduce CO2 emissions. Similarly, Liu et al. [9] suggest
a route planner that optimizes fuel consumption by factoring in
the traffic light phases as one of its inputs. In addition to them,
the route planner ought to prioritize routes according to the
individual driver’s preferences, which may include the number
of traffic lights or roundabouts along the route, to improve the
overall experience of commuting.

Augmented reality is one of popular applications of the
Metaverse that requires low latency and large data rate, both of
which can be provided by the V-Edge ecosystem [2]. In this
context, it is interesting to note that vehicle route planners
can also aim at optimizing the resources made available by
vehicles or pedestrians on the virtual edges, as one of the
factors to aid such Metaverse applications.

To this end, we propose a human-centered route planning
system that meets both the needs of the driver and the needs of
traffic flow. The proposed personalized vehicle route planner
can take into account human behavior, state of alertness,
and traffic-related information like traffic light phases, road
works, and real-time congestion, to offer a better alternative
for the vehicular user. Furthermore, the proposed framework
uses driving and vehicle sensing data to estimate the drivers’

behavior and level of attention in real time. In particular,
during the route-selection process, the routes with less aggres-
sive drivers are given higher preference to ensure people can
travel safely. The driving style of the user requesting a route,
instead, is used as a mean to estimate the need of the user
for a short travel time towards the desired destination. On the
other hand, the driver’s attention level is used to recommend
simple to complex driving routes, i.e., less attentive drivers
will be assigned to routes with fewer turns and twists to avoid
potential traffic accidents.

Real-time traffic information such as traffic light phases
and congestion levels is obtained through the communication
between vehicles and micro clouds. Micro clouds are formed
by clustering the cars present on a road into groups to share the
on-board storage, sensing, and computational resources with
each other. In this way, the route planner can choose an optimal
route with fewer cars and let a vehicle cross the intersection
without waiting at the traffic lights for too long.

In addition, the route selection process relies on a com-
plicated set of algorithms to choose the best route for the
requesting vehicle, but, if the rationale behind the choice is
not conveyed to the driver, people will less likely trust the
selection process. This may happen in particular with local
drivers, who prefer to take a different route in the early stages
of adoption. Using an Explainable AI (XAI) strategy [10]
is therefore necessary. Additionally, the proposed approach
can educate commuters and help overcome their mistrust of
AI models. Several are the strategies that can be enacted,
including systems leveraging onboard dashboards and visual
cues to demonstrate the reason for choosing a particular route
to reach the destination.

3. PROPOSED METHODOLOGY

In the proposed human-centered route planning system,
we achieve personalized and context-aware route planning
by utilizing human behavior and real-time traffic data. The
proposed system relies on two primary data sources: vehicle
and environmental data. The vehicle-related data is required
for the estimation of driving behavior and level of alertness,
whereas environment-related data provides information on
traffic signal phases, road congestion, and roadwork.

The architecture of the proposed human-centered route
planning system includes the modules depicted in Figure 1
and detailed below.

Vehicular data: Modern vehicles are equipped with many
sensors that can extract data pertaining to both internal and ex-
ternally conditions, enabling the collection of comprehensive
information. Particularly, the engine control unit logs every
minute data, including acceleration, speed, yaw rate, pedal
positions, and steering input. Furthermore, vehicles may have
long- and short-range radars, cameras, and lidars to gather
information about their surroundings. Importantly, wireless
communication interfaces are currently being installed in ve-
hicles to enable vehicle-to-everything (V2X) communication.
Through such communication, vehicles can exchange sensory
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Figure 1. Human-centered route planning system: Route planner queries the road information database for the list of routes considering the destination location
and service module request. Driver profiling is done with the help of driver behavior and attention level estimators. The dynamic data module provides the
latest traffic-related information for the available routes. Personalized route planner gets input from all modules to provide the route that best suits the driver.

information and, doing so, extend their sensing horizon and
achieve cooperative perception [11], [12].

The information received and generated onboard can then
be stored aboard vehicles, leveraging the storage and com-
putational capabilities with which they are equipped. These
capabilities help a vehicle implement its ADAS-related ap-
plications, such as adaptive cruise control and lane-keeping
assistance, to make driving safer and more comfortable for
the driver [13]. In this suite of applications, we propose to
use driver behavior and attention estimation to provide a per-
sonalized, context-aware route planning service by leveraging
vehicle data.

Driver behavior detection: Detection of driver behavior is
one of the key components of the proposed system, as it
helps determine the risk associated with the driving style of
the human being. We combine historical data with real-time
vehicle data, as the momentary data alone is not sufficient to
identify the driver behavior. In addition, we also gather the
data of the surrounding vehicles using sensors such as radar
or cameras. The reason for this is that, e.g., a high-speeding
vehicle on a road where there are no other vehicles is not
perceived as aggressive as it would be in a situation with
other vehicles in the vicinity. Specifically, a proper machine
learning (ML) model can be trained to determine the driver’s
behavior by utilizing acceleration, speed, headway, and traffic-
related information as features. During the inference phase, the
ML model will then provide a prudent driving score and an

eager driving score, thus allowing the framework to assess
how sensible the driving style of the human being is and how
anxious the driver is to reach the desired destination.

Driver attention estimator: Similarly, the driver attention
estimator helps the system to estimate driver fatigue level. The
study by Sikander and Anwar [14] presents a comprehensive
survey for the driver fatigue detection methods. In our system,
we use such features as steering angle, lane wavering, and in-
cabin camera to detect the driver’s alertness based on real-time
and historical data. For instance, the vehicle data with sporadic
spikes on the steering wheel input indicates that the driver is
not alert. The driver fatigue prediction assists in determining
the difficulty of the recommended route for the driver. It
also assists in distributing the possible route among multiple
drivers in a balanced manner, as opposed to recommending the
shortest route to everyone, which would result in a congested
road network.

Environmental data: We collect environmental data via
communication between vehicles and micro clouds established
at intersections. The architecture of the vehicular micro cloud
that we consider is shown in Figure 2. Similarly, vehicles at
an intersection form a micro cloud to share resources and
storage capacities, and to store information such as traffic light
phases and congestion levels in a cooperative way. Thanks
to data exchange with a micro cloud [15], the personalized
route planner can acquire the environmental information that
is necessary for efficient route planning. It is worth to highlight



Figure 2. Vehicular micro cloud architecture [16]. Vehicles on the road form
a cluster to share their storage and computation capabilities. Micro clouds
act as virtual edge servers and have the ability to connect with physical edge
servers and back-end data centers.

that a trade-off has to be made when deciding how far a
micro cloud providing input information to the planner can
be located. On the one hand, using information coming from
micro clouds allows for the collection of more data and, hence,
for a larger perception horizon. On the other hand, as the
micro cloud is further away from the route request location,
the situation reported by the micro cloud will likely change by
the time the vehicle reaches the intersection where the micro
cloud is operating. In this case, the information from a distant
micro cloud may result to be ineffective for route planning.
Finally, we remark that in the propose framework micro clouds
provide not only traffic information, but also dynamic road-
related information such as road construction, time-based route
restrictions, and weather-related information.

Personalized route planner: The aim of the proposed frame-
work is to personalize the route planner based on the pref-
erences of the drivers, with the assistance of the modules
that have been presented. Upon receiving a request from the
vehicle to search for a route to a desired location, the road
information database is queried to identify the best routes to
reach the destination. The road information database contains
comprehensive details about the nodes and edges of the road
network. In addition, the route planner incorporates informa-
tion from the micro cloud resource optimization module when
querying the database for suitable routes [17]. The role of
this module is to maintain adequate resources at each micro
cloud. It will examine the computing resources available at
each micro cloud in the road network and provide the route
planner with information about them. It is an opt-in service
in the proposed human-centered navigation system, which
means that the user has the flexibility to choose whether
or not to take part in it. The database is then queried to
retrieve a list of available routes to the desired location.
The environmental data module provides current traffic-related
information for all available routes, including the current level
of traffic congestion, the phases of the traffic lights, and the
roadwork specified for each route. In addition, we extract
information like the number of traffic lights, the number

Figure 3. Different routes to reach the destination. Route B is better than
Route A, as the latter exhibits longer traffic light phases despite Route A
being the shortest one.

of turns, and the number of roundabouts on each route to
estimate the degree of difficulty and travel time. Furthermore,
the driver’s behavior and attention estimator modules provide
information regarding the driver’s driving style and attention
level based on current and historical data. The personalized
route planner must consider the data from these modules
when determining the optimal route for the driver to reach the
destination. The planner must also be able to deal with data
dynamics, especially if real-time data from traffic and vehicle
sensors is affected by external factors. Given the complexity
of the proposed planner, we leverage AI-based techniques
that can deal with the inputs from multiple data sources.
Finally, the driver and corresponding route information are
then transmitted to the cloud storage for further processing.

With the proposed system, we intend to select routes based
on the driver’s preferences and traffic statistics, as opposed
to choosing the most direct route to the destination. For
example, the generic route planner would recommend route
A in Figure 3 because it is the shortest distance. However,
the traffic light phases are longer on route A than on route
B, which makes the average waiting time at the intersection
longer. As a result, the proposed system would select route
B as a suitable route in this case, taking advantage of traffic-
related information and offering a better traveling experience.
On the other hand, Figure 4 illustrates the role of the micro
clouds resource optimization module. When making micro
clouds work efficiently is set as a priority, the vehicle would
be routed through route A, in order to keep the micro cloud
operational.

One of the main challenges of the proposed system is
ensuring that drivers adopt the proposed routes. The study in
[18] highlights that human drivers are typically unwilling to
alter their route to avoid traffic congestion. Educating the user
on the rationale behind the route change is a crucial factor
in enhancing the rate of adoption of the proposed approach.
Similarly, the rate of users willing to change the route to
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Figure 4. Resource optimization for micro clouds: Re-routing the vehicle to
keep the data alive at the micro cloud.

optimize the micro clouds architecture may be low. Thus, a
reasonable business model for this service has to be defined
to motivate the user to be part of the resource optimization of
the micro clouds.

4. RESEARCH CHALLENGES AND FUTURE DIRECTIONS

The development of the human-centered navigation system
aims to provide personalized and context-aware routing solu-
tions to reach a destination preferred by the driver. Several
challenges must be dealt with to envision such a navigation
system. In this section, we discuss some of the significant
difficulties associated with the proposed human-centered nav-
igation system.

1) Reliable Detection of Driver Behavior and Attention:
The proposed system has two main components, i.e., hu-
man driver behavior and an attention estimator, which are
fundamental to accounting for human behaviors in achiev-
ing personalized and context-aware vehicle routing. These
two components require carefully annotated datasets to train
models that account for the driver’s eye movements, facial
expressions, location, vehicle movements, and surrounding
environmental data for estimating the driver’s attention and
behavior. However, the creation of such models is difficult as
it requires both hardware elements (a vehicle sensor array)
and software abilities (CPU and GPU) to train and evaluate
the models with this heterogeneous data. Furthermore, the pro-
posed system also intends to ascertain the driver’s eagerness
to reach the destination in emergency situations. To properly
train the model and correlate the driver’s intent and behavior,
the system requires datasets associated with the purpose of
the trip and the time of the travel to ensure the driver is
given the most efficient route in terms of time to reach their
destination. Due to external factors such as the driver’s age,
experience, road traffic conditions, and emotional state that

influence driving styles, it is challenging to formulate a generic
model that incorporates all drivers. Given the intricate nature
of gathering data, labeling it, and correlating it with diverse
driving scenarios and drivers, further research is necessary to
tackle these challenges and provide a robust solution.

2) Externalities: The development of an AI-based, human-
centered traffic management system with the capability to
collect and process real-time data of heterogeneous formats
(images, videos, numerical) is a challenging task as it suffers
from several external effects arising from the integration
of various subsystems with different sampling periods and
environmental aspects that can lead to data unavailability or
erroneous data. In addition, the system also relies on the
vehicular micro cloud to gather traffic-related information,
such as traffic light phases. However, the vehicular micro
cloud might not be available at all intersections, particularly
during non-peak hours. To make the system resilient in such
instances, the system needs to have an estimator that leverages
past data to infer such information. In addition to data-
related challenges, human preferences and desires sometimes
lead them to deviate from the suggested route, presenting a
difficult challenge to capture and model through the planner.
The reluctance to trust automated systems is a significant
hurdle to the more widespread adoption of these services.
The development of a user-friendly, effective, and interactive
in-vehicle Human-Machine-Interface (HMI) is essential for
helping people overcome doubts about the proposed system
and maximize the system’s acceptance rate.

3) Robust Route Planner: The proposed human-centered
route planner encompasses multiple sub-modules to consider
human behavior, providing a tailored route for individuals. The
route planner aims to utilize machine learning algorithms to
analyze and interpret underlying data patterns, suggesting im-
proved routes. Nevertheless, from the various ML paradigms,
such as semi-supervised, unsupervised, and reinforcement
learning, a suitable one has to be selected that can adapt to
data dynamicity. It involves extensive testing and evaluation of
different algorithms to ensure the accuracy and reliability of
the system. One of the main challenges for the route planner
is to factor in the importance of each module carefully when
planning their route. For instance, an aggressive driver can be
mistakenly identified as a driver who needs to reach their des-
tination quickly. It would wrongly motivate aggressive drivers
to use the system to their advantage, pretending to be eager
drivers trying to reach their destination because of emergencies
and receiving the fastest routes available, which would be
detrimental to the proposed system. Furthermore, although the
route planner prioritizes a user-centric experience, it must also
consider the overall traffic flow to enhance network-wide im-
provements in traffic flow. The system additionally emphasizes
resource optimization for the micro clouds, requiring a detour
from the standard route. A comprehensive study is necessary
to comprehend the influence of the detour on the change in
time duration to reach the destination versus the optimization
of micro cloud resources in order to determine whether the
detour yields a substantial advantage. A detailed analysis has



to be performed to determine the efficiency of the proposed
system in finding new routes in a time-sensitive manner and to
assess the feasibility of implementing the system in real-world
scenarios.

4) Explainable AI (XAI): To further strengthen the pro-
posed approach, a significant future research direction is to
provide users with human-interpretable AI decisions. In gen-
eral, data-driven models generated by AI-based algorithms are
referred to as “black box” models because their outcomes are
difficult to interpret. The primary objective of XAI is to pro-
vide interpretable AI decisions to end users by summarizing
the results of “black box” models with human-comprehensible
explanations, one of the main building blocks of the Metaverse
[3]. In the proposed system, for instance, the change of the
current route can be explained by showing visuals of traffic
congestion in segments of the current route associated with
the time required to reach the destination if the route is not
adjusted according to the recommendations. Explaining the
decisions made by data-driven models based on decision tree
algorithms is relatively straightforward. During the inference
phase, the decision tree algorithms begin at the root node and
move through intermediate nodes based on specific conditions
to reach the decision node or leaf node, based on the input
data. It is possible to ensure the decision’s explicability by
examining the decision tree’s path. However, input data with
complex structures are typically trained using Deep Neural
Networks (DNN), and the results of DNN models are harder to
interpret. Therefore, techniques such as Layer-wise Relevance
Propagation (LRP) [19] are utilized to explain the decisions
made by the DNNs. The LRP technique determines the logic
behind decisions by propagating each neuron’s relevance value
from its output to the respective input features. Utilizing such
XAI strategies to explain the results increases the end user’s
trust in AI models and encourages them to adopt the data-
driven model in their daily lives without hesitation.
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