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Abstract—The popularity of electric vehicles is increasing, but
the public charging infrastructure is still insufficient. To reduce
extra time spent with charging on everyday trips, we introduce
a new charging infrastructure siting and sizing approach. We
analyze daily schedules of drivers to find suitable locations for
slow and fast charging stations. In simulation, we test how many
charge points to assign to each charging station. Vehicles can
be charged with either en-route or destination charging using
a realistic model for charging and energy consumption for five
electric vehicle models of different car segments. To reduce waiting
times at charging stations, we use a centralized charging station
database (CSDB), that coordinates charging between vehicles. We
found that a combination of a few centralized fast charging stations
and many distributed slow charging stations is the best option
to improve the average extra time spent with charging for all
vehicle types. We also found that by using the CSDB to coordinate
charging between vehicles, we were able to significantly reduce
the necessary number of charge points to achieve an acceptable
average extra time. In our scenario, to reach an average extra
time of 15 min, we only had to add 53 charge points when using
the CSDB, compared to 104 without.

Index Terms—Charging stations, electric vehicles, intelligent
vehicles, navigation, shortest path problem.

I. INTRODUCTION

The popularity of electric cars is ever-increasing. Global
sales of electric vehicles increased by 41 % in 2020 compared
to 2019, despite a downturn of car sales due to the COVID-19
pandemic [1]. Most vehicles are still charged at home (or at
work),1 but not everyone has the option to do so. Especially in
cities, many people do not have a garage or a designated parking
space where they could install a private charger. As electric
vehicles become more mainstream, many people will depend
on using the public charging infrastructure instead. Using the
public charging infrastructure for everyday charging requires
extra time compared to charging at home or occasionally filling
up the tank of a vehicle with an internal combustion engine.
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This extra time spent with charging is critical for the acceptance
of electric mobility [2], but the existing charging infrastructure
is often not yet sufficient to achieve acceptable extra times for
the majority of drivers [3].

The problem can be tackled in different ways. One way is
making vehicles smarter when using the charging infrastructure
by, e.g., planning optimized routes and charge stops, integrating
charge stops into the driver’s schedule [4], or scheduling charge
stops at charging stations [5]–[7]. Another way is improving the
charging infrastructure itself by creating new charging stations
or extending existing ones where they are most needed [8]–[10].

In this work, we combine both aspects in a new charging in-
frastructure planning approach. It is focused on the perspective
of drivers that can not charge their vehicles at home or at work.
The goal is to minimize the average extra time spent with
charging on everyday trips. We assume that smart vehicles are
able to plan routes and charge stops that are optimized for the
driver’s schedule. By combining such smart routes with charge
stop coordination among vehicles and intelligent placement
of charging infrastructure, we reduce the number of necessary
charge points to achieve acceptable extra times.

Due to the big differences in charging time, fast and slow
charging stations are used in a completely different manner [11].
We therefore distinguish two different kinds of charging that
have different effects on the extra time spent with charging:

En-route charging: Stopping at a charging station while en
route to another destination and waiting by the vehicle while
it charges, similar to using a gas station. It is only suitable
for fast charging, as slow charging would lead to unacceptable
waiting times for the driver. For en-route charging, the extra
time consists of the detour to the charging station, the waiting
time for a free charge point and the charge time itself.

Destination charging: Charging the vehicle while it is parked
at the intended destination. The driver visits the destination
while the vehicle charges and does not have to wait by the
vehicle. It is therefore suitable for slow charging, especially if
the driver is staying for several hours. If the charging station is
not next to the destination, the driver might have to walk from
the charging station to the destination and back. Thus, the extra
time additionally includes the walking time to and from the
destination, but does not include the charge time, because the
driver is staying at the destination while the vehicle charges.

Planning charge stops that take into account the driver’s
activities of the day can be used to minimize the extra time
spent with charging. The daily mobility pattern of drivers are
often modeled as activity plans [12]. An example of such an
activity plan could be driving from home to work, staying there



for a few hours, then driving to a mall to go shopping, and
finally driving home again. Optimizing an activity plan for the
driver of an electric vehicle does not only include the selection
of the charging station, but also picking the optimal route to
drive there. Taking the fastest route results in the shortest drive
time, but it might require significantly more energy than a more
energy efficient route and the additional energy increases the
charge time. As the charge time also depends on the charging
station, the optimal route should therefore be selected together
with the charging station, from the set of multi-criteria paths
for the criteria time and energy.

If all charge points are occupied when a vehicle arrives at
a charging station, it has to wait for a free charge point. To
minimize this waiting time, the vehicles could coordinate their
charge plans with each other. In our previous work [3], we
introduced this approach with our charge stop planner, which
takes into account the driver’s activities of the day. It can decide
between en-route and destination charging and selects optimal
routes to drive. We coordinated charging between electric
vehicles with a central charging station database (CSDB), which
substantially reduced waiting times and therefore extra times.
However, it was revealed in our evaluation, that the existing
charging infrastructure is not yet sufficient to achieve acceptable
extra times for the majority of drivers.

In this work, we go beyond and present an approach to extend
the existing charging infrastructure with the goal to optimize
the average extra time spent with charging on everyday trips.
Extending the charging infrastructure involves two problems:
siting and sizing. Siting means finding new locations (sites)
to install charging stations. As a baseline, we use locations
of normal gas stations, which were historically placed quite
optimal for refilling. Going beyond, we analyze daily schedules
of drivers to find suitable locations for slow and fast charging
stations. Sizing means finding the necessary number of charge
points at the charging stations to prevent long waiting times.
The overall concept is depicted in Figure 1. We use simulations
to test at which charging stations additional charge points
should be installed to reduce waiting times. In the simulations,
vehicles use the charge stop planner to plan trips based on their
driver’s schedule and coordinate charging with the CSDB.

Our main contributions can be summarized as follows:

• We present the charge stop planner, which uses en-route
charging and destination charging to plan charge stops
that fit the driver’s schedule and minimize the extra time
spent with charging. This includes coordinating charging
between vehicles with the CSDB to reduce waiting times.
The concept was introduced in our conference paper [3]
and is presented here again to make the paper self-
contained.

• We introduce a siting and sizing approach, which uses the
drivers’ schedules to site slow and fast charging stations.
With our charge stop planner and the coordination of
charging between vehicles, it can minimize the necessary
number of charge points. It uses realistic charging and
energy consumption models of five vehicle types from
different car segments.

• We perform a simulation study to analyze the effect of

Drivers’ schedules Existing charging
infrastructure

Analyze schedules

Add slow CS sites Add fast CS sites

Charging infrastructure
with additional sites

Simulation

Vehicles

Charge stop planner

CS
DB

+1

Charging
infrastructure with
add. charge point

Extended
charging infrastructure

In
pu

t
Si

tin
g

Si
zi

ng

Figure 1. Charging infrastructure siting and sizing concept

our siting and sizing approach on en-route and destination
charging for different car segments and compare our
strategy to related approaches. We also show that by
coordinating charging with the CSDB, we can significantly
reduce the number of necessary charge points to reach an
acceptable average extra time.

The rest of this paper is organized as follows. After
discussing related work (Section II), we briefly introduce our
charge stop planner (Section III) and our approach to coordinate
vehicles (Section IV). We present our charging infrastructure
siting and sizing approach in Section V. Then, we discuss our
energy consumption and charging model for different vehicle
types in Section VI. We evaluate our approach in Section VII.
Finally, we draw some conclusions in Section VIII.



II. RELATED WORK

A. Electric Vehicle Route Planning

Electric vehicle route planning is a topic that has been
discussed in many works. In an urban city scenario, where
vehicles are often charged with destination charging, taking into
account mobility patterns and user behavior is important [13].
Mobility patterns are considered by some works that are focused
on smart grid, e.g., [14], [15], to forecast energy demand
and schedule the use of charging stations accordingly. For
destination charging, some works also consider that charging
stations may not be at the same location as the destination, but
close by, so the driver has to walk from the charging station
to the destination and back [16], [17]. Gerding et al. [17]
call this park ’n charge, and use it as a real-world scenario
to evaluate their system. They also separately considered
an en-route charging scenario, but did not combine both
approaches. Yang et al. [18] combine both in their route
selection and charging navigation strategy. It can use destination
charging, and, if necessary to reach the destination, en-route
charging at fast charging stations. However, to the best of our
knowledge, considering the driver’s schedule when making
charging decisions and selecting between en-route charging
and destination charging has not been presented yet.

Recharging the battery of an electric vehicle takes time,
even with fast charging. Each charging station only has a
limited number of charge points, and if many vehicles want
to charge there at the same time, this can lead to long queues
and waiting times. One way to prevent waiting times is a
reservation system, where drivers can reserve a time slot to
charge at the charging station. They can plan their trip around
available time slots and are guaranteed to be able to charge at
the reserved time. A reservation system is described in many
publications [19]–[24], sometimes with the option to update
the reservation, if needed [20]. The reservations are usually
assigned on a first-come-first-serve basis, but some works also
consider prioritized reservations [22]. Another approach is to
use a central server that makes charge stop recommendations to
drivers, by taking into account the current utilization of charging
stations [25]. In addition, the vehicles could announce their
intended charge stops to the server, so that it can predict the
utilization in the future. De Weerdt et al. [7] call this intention-
aware routing. Combined with historical data on charge stops,
they were able to reduce waiting times in some cases by about
80 %.

Some more recent works on route planning and charging
station selection are using deep reinforcement learning [5],
[24], [26]. By learning optimal policies they can make complex
decisions in stochastic environments with varying conditions,
e.g., traffic, weather, and dynamic charge prices. However, these
works also do not consider the driver’s schedule or compare
en-route charging with destination charging.

Route planning is more difficult for electric vehicles than
for conventional vehicles. The limited range has to be taken
into account, as well as the option to recharge the battery by
regenerative braking when slowing down or driving downhill,
also called recuperation. A shortest-path problem that includes
these additional constraints is a constrained shortest path (CSP)

problem [27]. Finding the fastest route that is still feasible with
the limited range can be done with a multi-criteria shortest-
path search. We can use the criteria travel time and energy
consumption to compute all Pareto optimal paths for these
criteria. Then, we exclude paths which violate the energy
constraint and, from the rest, select the path with the best travel
time. A multi-criteria shortest-path search can be performed
with a modified version of Dijkstra’s algorithm [28]. However,
it is much more computationally expensive, and not practical for
graphs of realistic sizes [29]. Geisberger et al. [30] introduced
contraction hierarchies, which can be used to speed up the
search. Originally developed for conventional shortest-path
searches, it can also be used to accelerate multi-criteria shortest-
path searches to solve the CSP [29]. The approach utilizes a
preprocessing step, where shortcuts are added to the graph.
These shortcuts can later significantly speed-up the search, by
reducing the number of edges that have to be traversed.

Even with contraction hierarchies, a multi-criteria shortest-
path search can be too slow in practice on realistically sized
graphs. To further accelerate the search, in our previous
work [31] we introduced shortest-path tree precomputing in
combination with contraction hierarchies. We perform an
additional preprocessing step, in which we explore the graph
from those nodes that are likely origins or destinations of
queries, and save the resulting shortest-path trees. We exploit
the fact, that most queries are between the known locations of
charging stations. This can reduce the query times by about
two orders of magnitude.

In this work, we go one step further by considering the
driver’s schedule of the day when making charging decisions.
We can select between en-route charging between two activities
and destination charging near an activity to minimize the time
the driver has to spend with charging the vehicle. Additionally,
we use our shortest-path tree precomputing approach to select
optimal routes and coordinate charging between the vehicles
to minimize waiting times. We already published an initial
version of this approach in [3].

B. Charging Infrastructure Siting and Sizing

So far, we assume that there is an existing charging infras-
tructure available that the vehicles can use. When extending
the charging infrastructure, we are faced with two problems.
Finding suitable locations for new charging stations (siting)
and determining how many charge points to install (sizing).

Some approaches use a list of criteria to evaluate potential
location candidates. Erbaş et al. [8] take 15 criteria from the
dimensions environmental/geographical, economic and urbanity
into account and map them with a GIS software to identify
location candidates. Król and Sierpiński [32] use existing
parking lots as initial location candidates and evaluate them
with criteria that only require easily accessible data as input.
They distinguish between different types of charging stations,
e.g., fast charging stations should be easily accessible from
major roads.

Distinguishing between slow and fast charging stations is
important, because they are used in a completely different
manner [11]. Due to the long charging times, slow charging is



mainly used for destination charging. For en-route charging,
where the driver waits by the vehicle, fast charging is more
suitable. Basically, slow charging stations need to be where cars
park and fast charging stations where cars drive. Locations for
fast charging stations are selected to maximize the capture of
traffic flow [9]. Gas station locations have a similar objective
and some works use them as candidates for fast charging
stations [10], [33], [34]. For slow charging stations, there are
several strategies to site locations. One is to deploy them near
potential customers, either minimizing the number of charging
stations required so that all customers can reach a station within
a specified distance, or deploying a fixed number of charging
stations in a way that minimizes the average or median distance
to the customers [9].

Another way is to use an agent-based simulation with electric
vehicles driving around and recharging their batteries at the
charging stations. The driver behavior can be modeled in
different ways. A simple behavior is to drive until the battery
state of charge (SOC) drops below a threshold and then start
driving to the nearest charging station [34], [35]. An alternative
is to plan the charge stops at the beginning of the trip [33],
[36]. The trips are sometimes simply random origin-destination
(OD) pairs [34]. Other works use activity chains with multiple
stops [4], [33], [35], [36], but only few of them simulate a
driver behavior that can select between en-route charging and
destination charging.

One such approach has been presented by He et al. [36].
They assume that drivers will simultaneously plan their tour
path and recharging plans to minimize their total travel time,
including charging. This allows them to deploy slow and fast
charging stations in a way that minimizes average travel times.
However, they do not consider the possibility that all charge
points are occupied at a charging station and a vehicle having
to wait.

Most works in the field of siting and sizing charging
infrastructure make simple assumptions about charge curves
and the energy consumption of the electric vehicles. The charge
power is often assumed to be constant ([4], [33]–[36]) and
the energy consumption is often a fixed amount of energy per
distance driven ([4], [34]–[36]).

This paper is an extension of our conference paper [3], where
we introduced the charge stop planner, to coordinate charging
between vehicles in order to minimize waiting time. It can
plan trips ahead of time, including charge stops with en-route
charging and destination charging, by taking into account the
drivers’ schedules of the day. Building upon this, we present
a new charging infrastructure siting and sizing approach, that
uses the charge stop planner as a basis for an agent-based
simulation. It uses realistic energy consumption and charging
models of five electric vehicles from different vehicle segments.
This enables us to site locations for new slow and fast charging
stations and extend existing ones in a way that minimizes the
extra time spent with charging, including waiting time. By
coordinating charge stops between vehicles, we can reduce the
necessary number of charge points significantly. To the best
of our knowledge, this is the first work that considers how
siting and sizing can be influenced by vehicles coordinating
their charge plans of the day with each other to reduce waiting
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Figure 2. Day’s schedule divided into segments

times.

III. CHARGE STOP PLANNER

Our charge stop planner is an approach to select charge
stops for the driver of an electric vehicle that fit into the
driver’s schedule, with the goal to minimize the extra time
spent with charging. The driver’s schedule is an activity chain,
containing the times and locations the driver visits throughout
the day, e.g., work, shopping, leisure activity. It is assumed
to be known, which is of course a simplification. In a real-
world scenario, either the on-board navigation system of the
vehicle or a smartphone app could create the schedules based
on a prediction from historical data, maybe combined with
analyzing the user’s calendar, or simply by user input. The
charge stop planner tries to find the optimal times and places
within the schedule to charge the vehicle to the desired level.
This could also mean to sequentially charge the vehicle at
multiple stops. We introduced this concept in [3] and present
it in this section to make the paper self-contained.

The day’s schedule has an initial start point and a final
destination, which might be the same, e.g., home. As we are
focusing on drivers that have no option to charge their vehicle
at home, charging has to happen during an activity or while
driving to one. To make charging decisions easier, we divide
the schedule into segments, each consisting of an activity and
the trip to it. The last trip to the final destination is an additional
segment. An example of a schedule divided into segments can
be seen in Figure 2.

The charge stop planner makes a charging decision for each
segment, for which there are three alternatives (cf. Figure 3).
The first (trivial) alternative is not to charge, in which case the
vehicle is driven directly to the activity and is parked there
for the duration of the activity. The second alternative is en-
route charging, in which case the driver stops en route to the
activity at a charging station, waits for the charge process to
be complete, and then continues to drive to the activity, similar
to using a gas station. To limit the time the driver has to
wait by the vehicle, only fast charging stations are considered,
and the battery is only charged to 80 % SOC, because the
charging speed typically decreases significantly after that point.
The third alternative is destination charging, in which case the
vehicle is charged near the activity (the intended destination).
The driver might have to walk from the charging station to
the destination and back, but will save time by not having to
wait at the vehicle while it charges. This makes it suitable for
slow charging, especially when the driver stays at the activity
for several hours. The vehicle might be charged to more than
80 % SOC, if the driver stays long enough. We do not assume
that the driver will interrupt the activity to unplug and repark
the vehicle, so it will block the charge point even after it has
reached 100 % SOC. This is because the option to unplug and
repark the vehicle would only cost extra time and therefore
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would never be selected by the charge stop planner, as it tries
to minimize the extra time spent with charging.

For each alternative, the planner also has to consider which
route to take when driving to an activity or a charging station.
Simply calculating the fastest route (or shortest path) minimizes
driving time, but the additional energy consumption, compared
to a more energy efficient route, might cause additional charging
time. The route must also respect the energy constraints of the
vehicle, i.e., keeping the battery SOC positive. To efficiently
calculate the shortest paths from fastest to most energy efficient,
we use shortest-path tree preprocessing [31]. The energy
consumption model can return negative energy consumption
values, e.g., when recuperating energy by driving downhill.
To deal with the negative edge weights, we use Johnson’s
algorithm [37].

For each segment, the planner iterates over all alternatives,
including charging stations and possible routes, and calculates
the time and SOC at the end of the segment. The SOC results
from the energy consumption of the selected route and the
charged energy at the charging station. The time is influenced
by the drive time of the route and the estimated waiting time
and charge time of the selected charging station. To estimate
waiting times, we use our CSDB (cf. Section IV). For the third
alternative, destination charging, the charge time is the sum of
the stay time at the activity and walking time to and from the
activity.

The planner keeps all alternatives as possible candidates,
that are not dominated by other alternatives with a lower time
and higher SOC. The candidates’ time and SOC values are
then used as a basis for the calculation of the next segment.
Charging times depend on the vehicle’s SOC, and waiting time
estimates depend on the arrival time. Because a segment can
have several candidates, we have to calculate the next segment
for each candidate, thereby creating a result tree.

When the candidates for the final segment have been
calculated, we can select one of them as our end result. Because
each candidate has a predecessor candidate in the result tree,
this includes the selected alternatives for each segment that lead
to the end result, including routing and charging decisions. We
can select the result based on some criterion, such as having
a minimum battery SOC of 70 % at the destination or having
charged at least once.

In a real world scenario, the charge stop planner would have
to include a safety buffer, e.g. 5% or 10% of the battery state
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of charge, to account for unexpected events such as traffic
jams.

IV. COORDINATION OF VEHICLES

We coordinate the charging station visits of electric vehicles
with our CSDB approach that we introduced in [38]. We present
the concepts in this section to make this paper self-contained.

The concept of the CSDB can be seen in Figure 4. It
is a centralized service, that can estimate waiting times at
any charging station in the future, so they can be taken into
account by the charge stop planner of the vehicle when making
charging decisions. The vehicles that want to use it, have to
announce their planned charge stops to the service in advance.
It also receives information about the current utilization of
charging stations and stores historical data about charging
station utilization internally. The CSDB does not need any
information about vehicles’ trip histories or drivers’ schedules.
The drivers’ schedules are only used internally by the charge
stop planner and could be stored locally on a user’s device,
such as a smartphone or the vehicle’s on-board navigation
system.

Compared to a reservation system, it does not require
cooperation with charging station providers. Only information
about the current utilization of the charging stations is needed,
which many providers already provide as a service to potential
customers. The system also does not require every vehicle to
take part in it to be useful.

The estimation of waiting times is accomplished by combin-
ing three data sources. The current utilization of a charging
station is known to the database in the form of occupied charge
points and the time when the vehicles occupying the charge
points will depart. The announced planned charge stops of the
vehicles include an estimated arrival time and charge time at
the charging station. To fill in gaps of vehicles that do not
announce their planned charge stops, we use historical data of
the utilization of the charging station. The historical data is
gathered by the CSDB itself and contains the statistical average
utilization of the charging station for each hour of the day.
When we combine this data, we can forecast the utilization of
the charging station in the future and use it to estimate waiting
times.

The data in the CSDB can quickly change as additional
vehicles announce their planned charge stops. This means that
estimated waiting times, which were queried by the charge stop



planner at the beginning of the day, might have significantly
changed by the time the vehicle arrives at the charging stations.
Therefore, to keep the plan optimal, we update it at the
beginning of each trip segment.

V. CHARGING INFRASTRUCTURE SITING AND SIZING

Our main contribution in this paper is the introduction of a
siting and sizing approach for slow and fast charging stations.
We take into account en-route charging as well as destination
charging. Our approach directly builds on our charge stop
planner to minimize the average extra time with a minimal
number of charging stations and charge points.

In our approach, we strictly separate charging infrastructure
siting and sizing. The concept is depicted in Figure 1. In the
siting phase, we find locations for new charging stations, to
extend the existing charging infrastructure. We analyze typical
daily schedules of drivers to find locations that would best
improve the average extra time spent with charging. At the new
locations, we add charging stations to our existing charging
infrastructure, initially with only one charge point. In the sizing
phase, we use simulations to test which charging stations we
should extend with additional charge points, to best improve the
average extra time spent with charging. The charging stations
can either be the ones that were added in the siting phase, or
be part of the existing charging infrastructure.

A. Siting

Our siting algorithm tries to find suitable locations for new
charging stations within the graph of the road network. Each
node of the graph is a potential location for a charging station.
We analyze the drivers’ schedules and assign each node a score,
based on how much a new charging station at that location
would potentially improve the average extra time, compared to
the existing charging infrastructure. The node with the highest
score is selected as a site for a new charging station. To find
multiple sites, we have to iteratively calculate the node scores,
add a charging station to the node with the highest score, and
repeat. This is necessary, because each new charging station
influences the score of the nodes around it by satisfying the
charging demand in its vicinity.

Because slow and fast charging stations are used in a
completely different manner, we process them separately and
use two different ways to calculate the node scores.

1) Slow Charging Score Calculation: The score for slow
charging stations is calculated by using the stops at activities
of the drivers’ schedules. The idea is to assess locations based
on how many vehicles park nearby for long enough to charge
a considerable amount with slow charging, and how much
walking time the drivers could save compared to existing
charging stations.

Let V be the node set of our graph and S the set of stops.
The function d(v1, v2) returns the linear distance between the
nodes v1, v2 ∈ V . Each stop s ∈ S is located at a node vs ∈ V .
The distance from a stop to the closest existing charging station
is defined as

dmin,s = min
c∈C

d(vc, vs) , (1)

where C is the set of charging stations and vc is the node
where the charging station c ∈ C is located.

Potential locations for new charging stations must be closer
than already existing charging stations. We also assume that
the driver is not willing to walk very long distances from the
charging station to the activity. We therefore define the search
radius around the stop s as

dsearch,s = min(dmin,s, dmaxwalk) , (2)

where dmaxwalk is the maximum walking distance.
For each node v ∈ V , we can calculate a score, based on

all stops for which this node is in their search radius, as

xslow,v =
∑

s∈S|d(v,vs)<dsearch,s

xt(ts) · xd(d(vs, v)) , (3)

where xt() is a time score based on the stop duration time
ts and xd() is a distance score based on how close the stop
location is to the node. The time score is defined as

xt(ts) =

{
ts

tcharge80
if ts < tcharge80

1 else
, (4)

where tcharge80 is the time it takes to charge to 80 % SOC
with slow charging. The distance score is defined as

xd(d) = dsearch,s − d . (5)

It can be thought of as the walking distance that could be
saved if a charging station would be installed at that node.

In Figure 5, we show an example of the score calculation
for a node. The score of node v is influenced by the stops s2
and s3. Stop s1 is not used, because the distance to the node is
greater than the stop’s search radius d(vs1 , v) > dsearch,s1 (cf.
Equation (3)). The time score for stop s2 is 0.5, because the
stop duration is only half the time needed to charge to 80 %
SOC (tcharge80), and 1.0 for stop s3, because the stop duration
is greater than tcharge80 (cf. Equation (4)). The distance score
represents how much walking distance could be saved compared
to the existing charging infrastructure. The distance of stop s3
to the nearest charging station is 450 m, the distance to the
node is 250 m, which results in a distance score of 200. There
is no charging station within the maximum walking radius of
600 m around stop s2, and the distance to the node is 500 m
therefore the distance score for s2 is 100 (cf. Equations (2)
and (5)). The total score of the example node is xslow,v =
0.5 · 100 + 1.0 · 200 = 250.

2) Fast Charging Score Calculation: The score for fast
charging stations is calculated by using the trips to activities
of the drivers’ schedules. The idea is to assess locations based
on how much time vehicles would save in detours compared
to existing fast charging stations.

Let R be the set of trips of all schedules, we define the
driving time of the shortest path of a trip r ∈ R with a detour
via node v as tr,v . The minimum time required to drive the trip
with a detour to an existing fast charging station is determined
as

tmin,r = min
c∈Cfast

tr,vc , (6)

where Cfast ⊆ C is the set of fast charging stations. We assign
a score to each node based on the time a potential new charging
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Figure 5. Slow charging infrastructure siting. Example calculation of a node
score based on stops s2 and s3. Stop s1 is not used because the node is not
within the stop’s search radius.
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7.9− 7.5 + 9.2− 7.8 = 1.8

Figure 6. Fast charging infrastructure siting. Example calculation of a node
score based on trips r1 and r3. Trip r2 is not used because the condition
tr2,v < tmin,r2 is not met.

station would save compared to existing fast charging stations
as

xfast,v =
∑

r∈R|tr,v<tmin,r

tmin,r − tr,v . (7)

In Figure 6, we outline an example of the score calculation
for a node. The score of node v is influenced by the trips r1 and
r3. Trip r2 is not used, because the condition tr2,v < tmin,r2

is not met (cf. Equation (7)), which means driving by the node
would result in a bigger detour than driving by one of the
existing fast charging stations. For trip r1, driving by the node
would result in a shorter detour of 7.9 − 7.5 = 0.4 minutes
compared to the existing fast charging stations and for trip r3
it would save 9.2− 7.8 = 1.4 minutes. The total score of the
example node is therefore 1.8.

To calculate the node score, we have to calculate the detour
time for each trip. This involves finding the shortest path from
the trip’s origin to the node and from the node to the destination
of the trip. It would be computationally expensive to calculate
this for every node in a typical graph of a street network. To
limit the computation time, we preselect a small number of

Table I
VEHICLE TYPES

Segment Vehicle
model

Battery
capacity
(kWh)

Average
consumption
(kWh/100km)

Max charge
power (kW)
AC / DC

A (city) VW e-up! 32 14.8 7.2 / 40
B (small) BMW i3 42 15.5 11 / 50

C (medium) VW ID.3 58 15.9 11 / 100
D (large) VW ID.4 77 18.6 11 / 125
J (SUV) generic 70 23.7 11 / 150

nodes as candidates, based on how many vehicles would drive
by the node in one of their trips without detours. This can be
easily counted by once finding the shortest paths of all trips.
In our experiments, we preselected 2500 of the 100 790 nodes
of our graph.

B. Sizing

In the first phase, the siting algorithm has found sites for new
slow and fast charging stations, but it did not define the number
of charge points for these charging stations. The number of
charge points, that a charging station has, influences the waiting
time of arriving vehicles for a free charge point. The waiting
time cannot simply be calculated with the static analysis of the
drivers’ schedules by the siting algorithm, because it depends
on complex charging decisions made by the drivers and their
vehicles, that can also influence each other. To account for this,
we have to run simulations in a separate sizing phase. The
vehicles in the simulations use the charge stop planner for their
charging decisions, and they can coordinate charging between
each other using the CSDB. This allows us to evaluate how
changes in the number of charge points affect the waiting time
and the average extra time spent with charging.

At the beginning, we initialize the new charging stations
with one charge point. We then iteratively extend the charging
stations with additional charge points to improve the average
extra time spent with charging. To select the most suitable
charging station to extend, we run |C| parallel simulations,
each temporarily adding a charge point to one of the charging
stations. We compare the results of all simulations, to see
which charging station extension caused the best improvement
of extra time and permanently add a charge point to that
charging station. We repeat this process until a fixed number
of charge points has been added, or the average extra time is
below some threshold.

VI. ELECTRIC VEHICLE MODELING

The charge stop planner and our charging infrastructure
siting and sizing approach need precise energy consumption
and charging models of the electric vehicles. But, as there
are many different types of vehicles on the road today, we
cannot simply create one model that fits all. To get a realistic
coverage, we use five vehicle types from different car segments
ranging from city cars (A segment) to SUVs (J segment), as
first introduced in [39]. Table I shows an overview of theses
vehicle types.



Table II
ENERGY CONSUMPTION CORRECTION OFFSETS

Segment Factor priority
junction
(Wh)

priority-to-
the-right
junction (Wh)

traffic light
junction
(Wh)

A 1.057 4.6 3.4 0.0
B 1.038 6.3 3.9 16.7
C 1.000 11.3 0.0 0.0
D 1.074 12.5 10.0 0.0
J 1.082 9.0 6.0 10.0

A. Energy Consumption Model

The energy consumption varies significantly between vehicle
types. To get accurate vehicle type specific consumption values,
we use the energy consumption model introduced in [39]. It was
developed for the traffic simulator SUMO and contains a precise
physics-based model of individual powertrain components’
characteristics. Consumption models for five different vehicle
types from different car segments were created. Four are based
on real vehicles and were validated against manufacturer data
and test bench measurements, and one (J segment) is a generic
consumption model for SUVs. We selected our five vehicle
types to match those in the publication, to be able to use the
same consumption models.

Although the model was developed to calculate the dynamic
energy consumption of a vehicle with acceleration and de-
celeration in traffic, we only use it to get static consumption
values for the edges of the road network, because that is all
we need for our route planning approach. Apart from vehicle
specific characteristics, the energy consumption model takes
speed, acceleration, and slope as input parameters to calculate
the energy consumption at a given time. To calculate the
static energy consumption of an edge, we set the speed and
slope to the speed limit and slope of the edge and set the
acceleration to zero. This would, of course, underestimate the
travel time and energy consumption, because we are omitting
traffic effects, especially slowing down and waiting at junctions.
To compensate for this, we add a correction offset and factor
to the energy consumption and travel time at different types of
junctions. We distinguish between priority junctions, priority-
to-the-right junctions, and traffic light junctions.

To calibrate the correction offsets for the vehicle types, we
have simulated several thousand trips with each vehicle type in
the traffic simulator SUMO. We have then adjusted the offsets
in such a way, that the travel time and energy consumption
of our static edge weights match the corresponding values of
the simulated trips. As a result, for the travel time, we apply
a factor of 1.02 and an offset of 0.5 s for priority junctions,
2 s for priority-to-the-right junctions and 10 s for traffic light
junctions. The energy consumption offsets are vehicle type
specific and can be seen in Table II. We are still omitting
dynamic traffic effects, and therefore, the static edge weights
can not always exactly match the result of the traffic simulation.
But, as we can see in Figure 7, in the majority of cases the
static edge weights match the results of the traffic simulation
within ±10 %.

Travel time
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Figure 7. Correlation of travel time and vehicle type specific energy
consumption of trips between our calibrated edge weights and the results
of the SUMO simulation.

B. Charging Model

Many authors in the field of electric vehicle route planning
and charging infrastructure siting and sizing assume that electric
vehicles charge with constant power [4], [6], [15], [33]–[36],
[40]. In reality, however, the charge rate is very nonlinear
and depends on the type of charging station and the vehicle’s
charging capabilities. Electric vehicles are charged with either
alternating current (AC) or direct current (DC). Charging with
AC is limited by most charging stations to 22 kW and many
vehicles are only capable of charging with up to 11 kW or
even less. For our purposes, we define AC charging as slow
charging, because it can take several hours to completely charge
the battery. DC charging stations are capable of much faster
charging, usually ranging from 50 kW to 350 kW. We define
DC charging as fast charging, although it should be noted that
not every vehicle is capable of DC charging and that the actual
charge power can vary significantly between vehicles. Also,
the maximum charge power can only be held up to a certain
battery SOC, after which it decreases considerably.

Modern electric vehicles use lithium-ion batteries, which
are most commonly charged with a CC-CV (constant current
– constant voltage) charging protocol, although alternative
charging protocols exist to increase fast charging speeds [41].
The CC-CV protocol begins to charge with constant current,
during which the cell voltage continuously rises until it reaches
its maximum voltage uhigh. After that, it switches to constant
voltage, during which the current steadily decreases until it falls
to near zero. A common alternative is the CP-CV (constant
power - constant voltage) protocol, where the first phase charges
with constant power instead of constant current, but is otherwise
very similar.

In this work, we use the following battery charging model
for slow charging, which supports both the CC-CV and the
CP-CV approach. We already introduced this model in our
previous work, where we also validated it against real world
measurements [31]. We assume that the voltage increase is
linear in the first phase and, for simplicity, the current decrease
is also linear in the second phase, which is consistent with the
literature [42]. For our model, we use the following variables:
The maximum charging power of the charging station is defined
as pmax. The SOC of the battery is defined as soc in the range
0 ≤ soc ≤ 1. In the first phase (constant current/power), the



charging voltage increases from ulow = 3.8V to uhigh = 4.2V.
The phase switch happens exactly at soc = 0.8. The maximum
current can be calculated as imax = pmax

uhigh
. Now, the current

i(soc) and voltage u(soc) for the CC-CV charging approach
can be calculated based on the SOC of the battery as

i(soc) =

{
imax for soc < 0.8
1−soc
0.2 · imax for soc ≥ 0.8

, (8)

u(soc) =

{
ulow + soc

0.8 (uhigh − ulow) for soc < 0.8

uhigh for soc ≥ 0.8
, (9)

pcc-cv(soc) = u(soc) · i(soc) . (10)

Similarly, the power pcp-cv(soc) can be calculates as

pcp-cv(soc) =

{
pmax for soc < 0.8

u(soc) · i(soc) for soc ≥ 0.8
. (11)

In our model, we estimate the power every second and terminate
the charging process when SOC reaches soc = 0.99.

The model works well for slow charging, but for fast
charging, we cannot make the same assumptions. Some vehicles
might use a different charging protocol for fast charging, or if
they use CC-CV or CP-CV, the switch between phases may
happen a lot earlier than at 80 % SOC. To get realistic fast
charging curves, we used data from the charging infrastructure
operator Fastned, who published fast charging curves for four
of our vehicle types.2 For our generic SUV vehicle type (J
segment), we created a generic charging curve similar to the
others. As can be seen in Figure 8, most vehicles can only keep
up the fast charging speed for a short range of the battery SOC.
It can also be seen that even though the maximum charge speed
varies by more than a factor of three between the vehicle types,
the difference between charge times is significantly lower. This
is due to the fact, that the vehicles with slow charge speeds
also have smaller batteries.

VII. PERFORMANCE EVALUATION

A. Experiment Setup

In our experiments, we simulate one day (24 h) of drivers
driving to various activities of their day’s schedule and wanting
to charge their electric vehicle at some point using the public
charging infrastructure. We assume the electric vehicle has a
60 kWh battery and an initial SOC of 20 %. The goal is to
minimize the extra time spent with charging and to reach the
final destination with an SOC of at least 70 %. This allows the
vehicle to charge to 80 % at a fast charging station and then
still drive to the destination. For simplicity, we assume there
is no limit on the maximum walking distance.

B. Paderborn Scenario

The schedules of the drivers in this work are based on
the Paderborn traffic simulation scenario [43]. It is a road
traffic simulation scenario for SUMO [44] and models the
City of Paderborn, a typical mid-sized European city of around

2https://support.fastned.nl/hc/en-gb/sections/
115000180588-Vehicles-charging-tips (visited on 07/27/2021)
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Figure 8. Fast charging curves of vehicle types at a fast charging station with
at least 150 kW charge power

Figure 9. Overview of the Paderborn traffic scenario with slow charging
stations (blue) and fast charging stations (red)



Table III
DISTRIBUTION OF VEHICLE TYPES

Segment Proportion

A 17.0 %
B 30.7 %
C 20.4 %
D 11.2 %
J 20.7 %

150 000 inhabitants. The scenario contains the core of the city as
well as outskirts (cf. Figure 9). It includes both major highways
(e.g., the Autobahn A33 and Bundesstrassen B1, B64, and B64)
as well as urban roads and residential areas. The traffic demand
of the scenario consists of more than 200 000 trips over a 24-
hour period, with up to 3000 simultaneously active vehicles. It
is derived from the daily activities of a population simulated
with SUMO’s ACTIVITYGEN tool. Each trip models an
individual activity, e.g., going to work or University, taking kids
to school, driving into the city for shopping, etc. Individuals
of the simulated population then each have a day plan of these
activities. Statistics such as car ownership, age distributions
and typical work hours were fed into the model to make these
daily activity plans realistic. Furthermore, specifics like parking
spaces, school locations, and distributions of local housing and
workplace density were incorporated. The resulting daily traffic
demand curve resembles real-world measurements and exhibits
phenomena like early-morning rush hours and increased traffic
— with some temporary jams — on afternoon commutes.

In our experiments, we randomly select a small number
of vehicles from the total population to be electric vehicles
that have to be charged that day. The vehicle type is assigned
according to the distribution in Table III which is based on
the actual proportion in Germany in 2020. The majority of
vehicles are assumed to not have to charge that day using the
public charging infrastructure, because they either charge at
home, or because they are vehicles with internal combustion
engines. As these vehicles do not affect the public charging
infrastructure, they are not considered in our simulation.

We have extended the Paderborn scenario with the existing
charging infrastructure of Paderborn.3 This includes 15 slow
charging stations with a power of 22 kW and two charge points
each, and two fast charging stations with a power of 150 kW
and four charge points each.

C. Experiments

1) Impact of the number of slow and fast charging station
sites: In our experiments, we want to evaluate how well our
charging infrastructure siting and sizing approach works. In
the first experiment, we analyze the effect of the number of
slow and fast charging station sites on the extra time spent
with charging. This will later enable us to select a suitable
number of slow and fast charging station sites to extend the
existing charging infrastructure of the Paderborn scenario.

3Ladesaeulenkarte, https://www.bundesnetzagentur.de/DE/Sachgebiete/
ElektrizitaetundGas/Unternehmen_Institutionen/E-Mobilitaet/start.html (visited
on 02/14/2021)
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Figure 10. Comparison of extra time for numbers of fast and slow charging
station sites. The dashed line in (a) is our baseline for siting fast charging
stations. It represents the extra time, if we were using the 24 gas stations of
Paderborn as fast charging station sites.

We use our siting algorithms to find new locations for fast
and slow charging stations and simulate one day with a varying
number of sites. We run simulations with 1 to 50 fast charging
station sites and 1 to 100 slow charging station sites. In this
first step, we assume an infinite number of charge points at
each charging station, so there will never be any waiting time,
because we are only interested in the number of sites and not
in sizing the charging stations themselves, which is a separate
step.

In Figure 10, we show the number of charging station sites
and the average extra time for slow and fast charging stations.
Fast charging stations are primarily used with en-route charging,
i.e. the vehicle stops en-route on one of its trips and the driver
waits by the vehicle until it has finished charging, similar to
how gas stations are used. Because the driver waits by the
vehicle, the extra time is made up mainly from the charging
time in addition to the detour to drive to the charging station.
Additional fast charging station sites in the city only influence
the detour time, but have no effect on the charging time. We
can see that after about 5 fast charging sites, the extra time
only decreases marginally. As a baseline, we also simulated



Figure 11. New charging station locations for fast and slow charging stations
from our charging station siting algorithm. Slow charging stations are shown
as blue and fast charging stations as red, existing charging stations opaque
and new locations half transparent.

the same scenario with the 24 gas stations in Paderborn as
fast charging station sites. Because fast charging stations are
used somewhat similarly to gas stations, they are considered as
locations for fast charging stations by several works [10], [33],
[34]. We can see that our siting algorithm achieves roughly
the same outcome with 10 fast charging station sites.

Slow charging stations on the other hand are primarily
used with destination charging, i.e., the vehicle is parked at
a charging station near the destination of an activity and the
driver visits the destination while the vehicle charges. The extra
time in this case is made up mainly of walking time from the
charging station to the destination and back. Each additional
slow charging station site can reduce the average walking time.
We can see that after about 50 slow charging sites, the extra
time only decreases marginally.

Based on these results, for the following experiments, we
extended the existing charging infrastructure of our Paderborn
scenario with 50 slow charging stations and 5 fast charging
stations. The new charging station locations can be seen in
Figure 11.

2) Impact of the new charging stations: In our second
experiment, we analyze the effect of the new charging stations
on the travel times of our vehicle types and also compare our
strategy of selecting between destination charging and en-route
charging with only allowing one of these options. The results
can be seen in Figure 12.

For the existing charging stations, only allowing destination
charging leads to significant average walking times of about
20 min. This can be attributed to the fact, that only so few
charging stations exist, that in most cases there are not any
suitable ones nearby. For our extended charging stations, this
value is lowered to about 5 min. In both cases, we see a large
stay delay time. This is the time, the drivers have to extend
their stay at the destination in order for the vehicle to charge
enough to fulfill the goal to reach the final destination with
70 % SOC. It varies considerably between vehicle types, and

we can see that the vehicles with smaller batteries tend to also
have a lower stay delay time, because the time required to
charge the battery is lower. Except for the B segment vehicle
(BMW i3), which has a lower stay delay than the A segment
vehicle (VW e-up!) even though it has a larger battery. This
can be attributed to the fact, that the A segment vehicle’s
slow-charging speed is lower. Overall, this shows that only
destination charging with slow charging stations is not suitable
for all schedules, as many drivers simply do not stay long
enough at their activities. Only allowing en-route charging has
a different problem. With the existing charging stations, the
vehicles have to drive detours of about 5 min, and with the
extended charging stations this is reduced to about 1 min. But
the biggest contributor to the travel time is the charging time,
which is not significantly influenced by the location of the
charging station. Especially vehicles from the smaller segments
have only limited fast charging capabilities and suffer from
long charging times.

Our strategy can select between destination charging and
en-route charging. To limit charging time, we preferably use
destination charging and only use en-route charging to avoid
stay delay at the slow charging stations or if there is no charging
station close to the destinations. In Figure 13 we can see that for
the existing charging infrastructure we use destination charging
in 67–85 % of all cases. By adding many new slow charging
opportunities, with the extended charging infrastructure we use
destination charging in 83–91 % of all cases. Overall, we can
see that our strategy leads to significantly lower travel times for
all vehicle types and that the extended charging infrastructure
reduces the average extra time from about 20 min to under
10 min.

3) Impact of sizing approach: In the first two experiments,
we evaluated our siting approach and assumed infinite charge
points at each charging station and therefore no waiting time.
Now, we want to test our sizing approach, which mainly
means figuring out how many charge points are needed at
each charging station to prevent long waiting times. We can
reduce waiting times at the charging stations by coordinating
charge stops between vehicles with our CSDB. In our third
experiment, we evaluate our sizing approach and compare its
results with and without using the CSDB. As an additional
comparison, we also tested a spontaneous selection approach
that does not use the charge stop planner. Instead of planning
their charge stops for the entire day in advance, the drivers
select a (random) time within their schedule to charge, and
then spontaneously select the charging station with the least
expected waiting time, based only on the current occupancy
of the charging stations. This way we avoid long waiting
times without any coordination between the vehicles. All new
charging stations are initialized with one charge point, and
then charge points are added to the charging stations by our
sizing algorithm one by one to reduce the extra time spent
with charging.

The sizing algorithm runs simulations to test extending each
charging station. For the simulations, we assume that 250 of
the 121 176 vehicles, about 0.2 %, of our scenario are electric
vehicles without an option to charge at home that have to
charge that day using the public charging infrastructure. We
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repeat the algorithm until we have added 200 charge points. In
total, we run 20 iterations with different vehicles and average
the results.

The results can be seen in Figure 14. We can observe, that
with our CSDB approach, we can reduce the average extra
time spent with charging considerably, especially with only
few installed charge points. This means, that we would need
to install significantly fewer charge points to serve the same
amount of vehicles with acceptable extra times. For example,
to reach an average extra time of 20 min, we would need to
add 97 charge points without using the CSDB, but only 22
charge points when using the CSDB. To reach an average extra
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Figure 14. Sizing charging stations with and without using CSDB and with
spontaneous selection. Dashed lines at 15 min and 20 min extra times for easier
comparison.

time of 15 min, we would only have to add 53 charge points
when using the CSDB, instead of 104 without. Eventually, after
adding about 125 charge points, the average extra time stays
just under 10 min in both cases. At this point, there are enough
charge points available, so that there are no significant waiting
times anymore, even without any coordination. When using
spontaneous selection, we can observe much lower waiting
times compared to the charge stop planner without using the
CSDB. This is because when using the charge stop planner,
some charging stations at bottlenecks will be selected by
many vehicles. Without coordination, this leads to queues and
long waiting times. By spontaneously checking the occupancy
of charging stations, long queues and waiting times can be



avoided. At the same time, this does not allow the optimization
of charge stops for the driver’s schedule. The charge stop
planner taking into account the drivers’ schedules, therefore
outperforms spontaneous selection in the coordinated case, and
also in the uncoordinated case if enough charge points are
available.

VIII. CONCLUSION

We introduced a new charging infrastructure siting and sizing
approach with the goal to optimize the average extra time spent
with charging electric vehicles. We can find locations for slow
and fast charging stations by analyzing typical daily schedules
of drivers. To determine the number of charge points necessary
to prevent long waiting times at charging stations, we test
extending charging stations in simulations and compare the
average extra time. In the simulations, we planned charge stops
with either en-route or destination charging using a realistic
model for charging and energy consumption for five electric
vehicle types of different car segments. To reduce waiting times
at charging stations, we can use our CSDB, which coordinates
charging between vehicles.

We evaluated our approach with the Paderborn scenario,
which gives us 24 h of realistic traffic with daily trips for
individual vehicles in a mid-sized city. We found that smaller
vehicles, which have small batteries and only limited fast
charging capabilities, are not well suited for en-route charging
at fast charging stations and are better off using destination
charging. The opposite is true for larger vehicles. They
are less suitable for destination charging, because charging
large batteries takes a long time with slow charging, but
their better fast charging capabilities make en-route charging
a viable option. Having the choice between en-route and
destination charging significantly improves the extra time
spent with charging for all vehicle types, which makes a
combination of slow and fast charging stations the best option.
We also found that while we only need a few centralized fast
charging stations, we need a large number of slow chargers
to significantly improve the average extra time, but that the
possible improvement in that case is better than with only
fast charging stations. By extending the existing charging
infrastructure of our scenario with 5 fast charging and 50 slow
charging sites, we were able to reduce the average potential
extra time for all vehicle types by about 50 %, from 20 min to
10 min. When evaluating our sizing approach, we found that
by using our CSDB to coordinate charging between vehicles,
we were able to significantly reduce the necessary number of
charge points to achieve an acceptable average extra time spent
with charging. For example, to reach an average extra time of
15 min, we only had to add 53 charge points when using the
CSDB, instead of 104 without.

Overall, our solution can help make electric mobility a
viable choice even for drivers that have no option to charge at
home. By extending the existing charging infrastructure with a
combination of slow and fast charging stations that can be used
by drivers on their daily trips and by coordinating charging
between vehicles, we can reduce the extra time spent with
charging to an acceptable level. For future work, we want to

address monetary constraints as well. The cost of installing
and operating charging stations and charge points can vary
significantly among different locations and charging station
types. To incentivize drivers to charge their vehicle at low
demand charging stations or off-peak hours, dynamic pricing
can be used. We also plan to include a fee for blocking the
charging station after the charge is complete to motivate drivers
to unplug and repark the car.

In a real-life scenario, drivers’ schedules will likely not be
exactly accurate, especially if they are generated from historical
data. We want to analyze the effects inaccuracies have on the
performance of the system.
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