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Abstract—Electric vehicles are becoming more popular all over
the world. With increasing battery capacities and a growing
fast-charging infrastructure, they are becoming suitable for long-
distance travel. However, queues at charging stations could lead
to long waiting times, making efficient route planning even more
important. In general, optimal multi-objective route planning is
extremely computationally expensive. We propose an adaptive
charging and routing strategy, which considers driving, waiting,
and charging time. For this, we developed a multi-criterion
shortest-path search algorithm using contraction hierarchies. To
further reduce the computational effort, we precompute shortest-
path trees between the known locations of the charging stations.
We propose a central charging station database (CSDB) that helps
estimating waiting times at charging stations ahead of time. This
enables our adaptive charging and routing strategy to reduce
these waiting times. In an extensive set of simulation experiments,
we demonstrate the advantages of our concept, which reduces
average waiting times at charging stations by up to 97 %. Even
if only a subset of the cars uses the CSDB approach, we can
substantially reduce waiting times and thereby the total travel
time of electric vehicles.

I. INTRODUCTION

HE capacity of batteries used by electric vehicles is
Tcontinuously increasing and the trend is projected to
continue for the coming years [1]. Together with a growing
fast-charging infrastructure, this makes electric vehicles more
suitable for long-distance travel. Nevertheless, if recharging on
a trip is necessary, the charging times can still be quite long
and as more electric vehicles utilize the charging infrastructure,
long waiting times are becoming a main challenge [2]. There
is a substantial heterogeneity in the charging infrastructure, for
example with respect to available charging power, location,
and potential waiting time. Thus, the total travel time of the
trip can be significantly impacted by the selection of charging
stations along the trip. We therefore need solutions helping to
plan long-distance trips and coordinating the use of charging
stations between vehicles.

In general, it has been discovered that, due to the need
to take recharging into account, route planning for electric
vehicles is more challenging compared to route planning for
conventional vehicles [3]-[5]. The recharging time of a vehicle
depends on multiple factors. Most importantly, these are the
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amount to recharge, which depends on the energy consumed
while driving, and the power of the charging station. The
driver has the option to take faster routes or more economic
routes, i.e. routes that require less energy. In order to minimize
the total travel time, the driver could take a more economic
route to save charging time — at the cost of a longer driving
time. The total travel time is also influenced by the concrete
amount of energy to be charged at the charging station. This
is particularly complicating the optimization problem as the
charging process is not linear: Lithium-ion batteries, as used
in most electric vehicles, are charged with a charging protocol
that decreases the charging speed considerably after the battery
capacity reaches about 80 % [6].

Waiting times due to fully occupied charging stations can
be a substantial part of the total travel time as well [7]. If the
potential waiting time at each charging station is known ahead
of time, it can be taken into account when planning the route.
It might take less time to take a detour to a different charging
station, if the waiting time there is substantially smaller. We
also think it would make sense to take a slower, more energy
efficient route, if it is known that the car has to wait at the
charging station anyhow.

To solve the problem of finding a route that minimizes the
total travel time for an electric vehicle, we have to select the
charging stations, the amount of energy to charge at each
charging station, and a route to get to and from the charging
stations. The charging station selection must take into account
the driving time, the potential waiting time and the charging
time. The driving time, as well as the charging time, depends
on the selected route to the charging station. These aspects
also mutually influence each other.

Our solution is to use a multi-criterion shortest-path search
for the criteria energy and time, revealing all Pareto-optimal
routes from the most economic to the fastest route. In a
second step, the alternatives are compared to identify the best
candidate. The key challenge is that such a multi-criterion
shortest-path search is rather expensive with respect to required
computational resources [8]. In our previous work [9], we
presented an approach to accelerate the search by focusing
on the most popular queries, which are between the (known)
locations of the charging stations. We selected the charge
amount and the route between charging stations with an
adaptive charging and routing strategy, to minimize the total
travel time.

In this paper, our main contributions can be summarized as
follows:

« we present a way for electric vehicles to coordinate their

(planned) charging station visits to reduce the waiting



time. We propose a central charging station database
(CSDB), to which the vehicles announce their planned
charge stops and which, in return, can estimate waiting
times at charging stations. The estimated waiting times are
used by our existing charging station routing algorithm to
minimize the total travel time, extending our prior work
in [9]. Using the database is not mandatory, but it provides
significant benefits to its users even if only a small subset
of all vehicles uses it; and

o we perform a simulation study to analyze the effect of
different penetration rates of the CSDB and of using histor-
ical data on the travel times to study our adaptive charging
and routing strategy compared to related strategies. We
show that by using the CSDB we can reduce the average
waiting time up to 97 %.

The rest of the paper is organized as follows. Related
works are discussed in Section II. In Section III, we describe
our charging station routing approach, introduced in [9]. In
Section IV we present the coordination of electric vehicle
charging with the CSDB and in Section V we do an extensive
performance evaluation. Lastly, Section VI concludes with a
summary and future work.

II. RELATED WORK

The classic route planning in a road traffic network is a
shortest path problem, where the best route to be found from
A to B is based on some criterion. Typically, the criterion to
optimize for is either driving distance (shortest route), travel
time (fastest route), energy consumption (economic route), or
a combination thereof. The best known solution is Dijkstra’s
algorithm [10]. Depending on the size of the graph, Dijkstra’s
algorithm can be too slow in practice, but several techniques
have been proposed to speed things up. For example, the A*
algorithm [11] uses a heuristic for a directed search. If the
heuristic is guaranteed not to overestimate the cost, A* will
find the optimal path.

Another technique is the use of contraction hierarchies
introduced by Geisberger et al. [12]. In a preprocessing step,
shortcuts are added to the graph that can later speed-up the
path finding query significantly. This is done by contracting the
nodes of the graph one by one. Each node that is contracted,
is effectively removed from the graph. If the node was part
of the shortest path between two of its neighbors, a direct
edge between these neighbors (shortcut) is added to ensure that
the shortest path is maintained. Whether this is the case can
be determined by doing a shortest-path search with Dijkstra’s
algorithm from each neighbor to all other neighbors. Each
node is assigned a level based on the order of contraction.
A higher level indicates that the node was contracted later
and its shortcuts might have replaced shortcuts of lower level
nodes. To query the shortest path, a bidirectional search with
Dijkstra’s algorithm is done with both sides only traversing to
nodes that have a higher level until they meet. This way, the
number of nodes that need to be visited to find the shortest
path is reduced significantly. To further speed-up the query, A*
can be used instead of Dijkstra’s algorithm for the bidirectional
search [13].

Route planning for electric cars presents additional chal-
lenges. The constraints of the battery, especially the limited
range, have to be accounted for. This can further include
recuperation, also called regenerative braking, i.e., charging the
battery when slowing down or driving downhill. Finding the
shortest path that also considers such battery constraints is a
constrained shortest path (CSP) problem [14]. To find the fastest
route that is reachable with a limited range, a multi-criterion
shortest-path search can be performed using the criteria travel
time and energy consumption. This results in all Pareto optimal
paths for these criteria and we can, for example, choose the one
with the best travel time that still fulfills the energy constraints.
To calculate all Pareto optimal paths, a modified version of
either Dijkstra’s algorithm or the A* algorithm can be used;
however, due to the increased complexity, this is even less
practical than for a single criterion. Fortunately, contractions
hierarchies can also be used to speed-up multi-criteria path
finding and to solve the CSP in acceptable time [15].

The preprocessing step for contractions hierarchies for
multi-criteria path finding requires significant computational
effort for large (e.g., country-sized) maps. As more and
more nodes are contracted, the remaining uncontracted nodes
get more and more neighbors, which makes contracting the
last few nodes very expensive. It is possible to restrict the
preprocessing to only contract a subset of all nodes. For
example, Storandt [16] contracted only 99.5 % of the nodes
to achieve reasonable preprocessing times. The remaining
uncontracted graph is called a core graph [17]. This can
substantially save preprocessing time, but also causes higher
query times [9].

Another approach by Baum et al. [13] introduces a way to
solve the electric vehicle continuous adaptive speeds shortest
path (EVCAS) problem, which they define as finding a feasible
path that respects battery constraints, considers variable speed
and minimizes driving time. To speed-up queries, they use
contraction hierarchies together with A* and can compute
optimal solutions in less than a second even for large battery
sizes and country sized maps. For interactive applications,
very low query times are more important than getting optimal
solutions. By using a heuristic, query times can be improved
significantly at the cost of some inaccuracy [13], [18].

The problem becomes more complicated when recharging
on the way is also considered, to enable long-distance trips.
One solution is to limit the number of recharging events and
choosing the most economic route that is not more than 10 %
longer than the shortest route [15]. Morlock et al. [19] solve the
problem by first querying a number of potential routes ranging
from shortest to fastest from a conventional routing service and
treating the routes as a reduced graph. They then integrated
the charging stations into the graph and performed a multi-
objective shortest-path search to find the fastest route from
start to destination. Most publications assume a full recharge
at each charging station [7], [8], [15], [19], [20], only few also
consider partial charging [3], [5].

One assumption in these works is that they consider only
one vehicle and assume it can immediately start charging when
it arrives at a charging station. In reality, there will often be
multiple vehicles that want to charge at the same time, but the



number of vehicles that can charge concurrently is limited by
the number of charge points of the charging station. If there is
no coordination between the vehicles, this will lead to queues
and long waiting times. A possible solution to this problem is a
reservation system, where the vehicles can reserve a time slot at
a charging station in the future and can therefore plan their trip
accordingly to avoid waiting times. Many publications make
use of such a reservation system [21]-[26], sometimes with the
possibility to update the reservation, if needed [22]. Most of
these systems have a first-come-first-serve policy, but some can
also prioritize reservations, leading to cases where high-priority
vehicles can charge before others even if they arrive later at
the charging station [24]. Hou et al. [25] use a scheduler that
allocates reservations based on user given information about
their time preferences. Due to the assumption that users are
selfish and do not want to reveal their true time preferences to
avoid unfavorable time slots, they propose an iterative auction
which, by progressively eliciting the users’ preferences as
necessary, preserves their privacy.

Recently, some approaches for charging station and route
selection have been using deep reinforcement learning. It
enables them to make complex decisions in a stochastic
environment with changing conditions like traffic, weather,
dynamic charge prices etc. by learning an optimal policy. Qian
et al. [27] present a charging navigation solution which aims to
minimize the total travel time and charging cost. It can take into
account waiting times at charging stations, traffic conditions and
charge prices, thereby coordinating smart grid and intelligent
transportation systems. However, they do not consider direct
coordination between vehicles, but simply assume that charging
stations know how long the waiting times will be. Lee et al. [26]
propose a similar system where there is coordination between
vehicles with a reservation system and charging decisions are
made by a central service. However, both solutions suffer
from poor scalability. They evaluated very small instances with

graphs of only 39 nodes and three charging stations. Zhang et al.

[28] use deep reinforcement learning for planning charging
scheduling at a larger scale. They evaluated instances of a big
city with more than 1000 charging stations. However, they use
Dijkstra’s algorithm for route selection and a simple energy

consumption model, which only depends on the driven distance.

While this may be sufficient for inner-city navigation, more
sophisticated models are needed for long-distance navigation.

A different approach is a centralized service that knows
about the current charging station utilization and can give
vehicles advice on where to charge [29]. The vehicles could
also announce their charging intentions to this service, so
that it can predict the waiting time in the future. De Weerdt
et al. [7] call this intention-aware routing. They combined the
information about charging intentions with historical data and

were able to reduce waiting times in some cases by about 80 %.

However, they do not consider long trips with multiple charge
stops or partial charging and assume charge stops always take
a fixed time.

We go one step further and combine adaptive charging and
routing strategies for long trips with a centralized service
that can estimate waiting times at charging stations with the
current utilization, planned charge stops of other vehicles, and

historical data. In contrast to a reservation system, it does not
require cooperation from charging station providers and is not
mandatory for the vehicles to use. In addition, we also make
use of a realistic nonlinear charging model to consider partial
charging of the batteries.

III. CHARGING STATION ROUTING

This section describes our initial approach [9] for the
ease of the reader to understand our novel concept presented
in Section IV.

The goal of our charging station routing approach is to
minimize the total travel time of an electric vehicle on a long-
distance trip. This includes finding a route from the origin
to the destination and selecting charging stations along the
way to recharge the vehicle if necessary. The total travel time
consists of the driving time as well as the waiting and charging
time at the charging stations. The selection of the charging
stations has a big influence on the route, because the consumed
energy while driving has to be recharged. Depending on the
charge power of the charging station, this can lead to significant
charging time. Choosing a slower but more energy-efficient
route might be faster overall if it reduces the charging time
at the charging station enough. When finding the route, we
therefore can not simply optimize for the criterion time, i.e. take
the fastest route. Instead, we find all multi-criterion shortest
paths for the criteria time and energy, i.e. all routes from the
fastest to the most energy efficient. We then select the route
that minimizes the total travel time in combination with charge
time and waiting time.

Taking all this into account, our approach consists of two
parts. The first part is an approach for multi-criterion shortest-
path finding that accelerates the search between the known
locations of the charging stations. It enables us to query all
Pareto-optimal routes from the fastest to the most energy-
efficient route.

The second part is the selection of charging stations and
routes that minimize the total travel time. We compare the
route alternatives, returned by the multi-criterion shortest-
path finding, between charging stations and the origin and
destination. Our adaptive charging and routing strategy then
selects the optimal combination of charging stations and routes.

A. Multi-Criterion Shortest-Path Finding

Dijkstra’s algorithm can be modified to be used for multi-
criterion shortest-path finding. Instead of setting a single label
per node to denote the predecessor node and the minimum cost
to this node, we maintain a Pareto set of labels at each node.
A label contains the costs for all criteria and the predecessor
node. The path finding query is a lot more computationally
expensive than for a single-criterion shortest-path search. The
nodes have to be visited multiple times and new labels have
to be checked with existing labels for dominance to maintain
the Pareto set.

We use contraction hierarchies to accelerate the path finding.
Even though this improves the query times significantly, they
might still be in the order of seconds or even minutes, especially
for long distances of >200km on a dense street network. Using



only this, the total computation time of our algorithm would
be unacceptable, because it makes many queries between the
origin, destination and the charging stations.

B. Shortest-Path Tree Precomputing

Most of the query time is used to explore the graph and
maintain the Pareto sets of labels at the nodes. Our algorithm
queries only the routes between the charging stations and the
origin and destination. Because the charging station locations
are always the same, we would explore the graph from the
same nodes over and over again. We can avoid this, by
exploring the graph from all locations of the charging stations
once in a preprocessing step. The result of an exploration
is a shortest-path tree, which contains the sets of labels of
all explored nodes. The exploration can be limited to an
energy consumption equal to the maximum battery capacity of
the vehicles. Because the query of contraction hierarchies is
bidirectional, we have to create the shortest-path trees twice for
each charging station: Once exploring the graph forwards, and
once exploring backwards. Precomputing the shortest-path trees
for all charging stations is only feasible because the contraction
hierarchies significantly reduce the number of nodes that have
to be explored.

To perform a query with the shortest-path trees, we use
the forward explored tree of the origin node and backward
explored tree of the destination node. We then identify the
nodes that are covered by both trees, i.e., nodes with Pareto
sets of labels in both trees. We create the sumset of both Pareto
sets for each of these nodes and remove all dominated elements.
Each set contains the costs of all shortest-paths from origin to
destination via that node. To get the costs of all Pareto optimal
shortest-paths from origin to destination, we combine the sets
of all nodes and again remove all dominated elements.

An example of such a query with shortest-path trees for two
criteria is depicted in Figure 1. Each label contains the costs
for both criteria and the predecessor node, which is needed
to reconstruct the path later. The common nodes, which are
covered by both trees, are identified and the sumsets for these
nodes are created. The elements of the sumset contain the sum
of the costs, as well as the predecessor nodes of both labels.
Then, the elements of all sumsets are combined into one Pareto
set, with each element also storing the node of the sumset.
This set contains the costs of all Pareto optimal paths and the
information necessary to reconstruct them.

Our charging station routing algorithm makes queries be-
tween the charging stations and the origin and destination. With
the shortest-path trees precomputed for all charging stations,
we just need to create the shortest-path trees for the origin and
destination and can then answer all queries without exploring
the graph again. We do not have to reconstruct all paths; in
order to save time, we can select a path based on the costs
and only reconstruct the selected one.

C. Adaptive Charging and Routing Strategy

Our adaptive charging and routing strategy tries to find a
route from the origin to the destination that minimizes the
total travel time. If necessary, it selects charging stations along
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Figure 1. Example query with precomputed shortest-path trees

the way and determines the amount of energy to recharge.
The selection of the charging stations is done with a shortest-
path search on a dynamically generated graph that connects
origin, destination and charging station nodes that are reachable
within the vehicle’s range. We use an A* search to perform
the shortest-path search on the graph. The edge weights are
generated by querying all Pareto optimal paths between the two
nodes and selecting the one with the lowest sum of charging
time, driving time and waiting time. The heuristic is not the
linear distance to the destination, but determined with a single
criterion shortest-path search.

The charging time is calculated by our charging model
(cf. Section V-C) and depends on the power of the charging
station as well as the amount of energy to recharge. Many
publications assume a full charge at every charge stop. Our
adaptive charging strategy selects the amount to recharge based
our charging model and the maximum charge power of the
next charging station. We continue to charge as long as the
maximum charge power of the next charging station is below
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the current charge power. We, of course, always charge at
least the energy required to be able to reach the next charging
station.

In our dynamically generated graph, each edge weight
contains the charging time at the current charging station, the
driving time to the next charging station, and also the expected
waiting time and charging time at the next charging station.
We include the charging time at the next charging station, so
that the route selection is influenced by how much time it
takes to recharge the spent energy. Because we do not know
at this point how much we will charge at the next charging
station, we temporarily assume to fully recharge. The time
for the full recharge will be replaced by the actual charging
time that is determined when calculating the next edge weight.
While exploring the graph, we propagate the batteries state of
charge (SOC).

Shortest-path tree precomputing reduces the query time
significantly, but it is still orders of magnitudes slower than
a single-criterion shortest-path search. To keep the number of
multi-criterion queries as low as possible, when we explore a
node and have to calculate the edge weights to all neighbors,
we set it to a temporary heuristic value based on two single-
criterion shortest-path searches for the fastest and most energy-
efficient routes. Only when the edge is about to be travelled as
part of the A* graph exploration, because the corresponding
node is at the top of the open list, do we replace the value with
the accurate value from a multi-criterion shortest-path search.
It might happen that the node is then no longer at the top of
the open list, in which case the process has to be repeated.

IV. CHARGING STATION DATABASE (CSDB)

To coordinate charging station visits between the electric
vehicles, we propose the use of a centralized CSDB (please
note that our algorithm can also be executed using mobile edge
computing [30]). It can estimate waiting times at charging
stations in the future, which can be used by the vehicles when
they calculate their route. To be able to do this, the vehicles have
to announce their planned charge stops to the database. It also
gets information about the current utilization of the charging
stations and stores statistical data about past utilization. The
principle of our CSDB approach is depicted in Figure 2.

With the adaptive charging and routing strategy, the charging
station routing algorithm can easily take advantage of the

Table 1
DESCRIPTION OF SYMBOLS

Symbol  Description

S Set of charging stations

Cs Set of charge points of charging station s
to Query time

td . Queried arrival time

tfuait Resulting waiting time of query

tgtm,t Resulting charge start time of query

Ps Set of planned charge stops of charging station s

th Arrival time of planned charge stop p

tftm,t Charge start time of planned charge stop p

tf o Charging time of planned charge stop p

tsep Departure time of planned charge stop p

cp Charge point assigned to planned charge stop p

T Period of charge stops for statistical utilization

tenr Charging time of charge stops for statistical utilization
u Statistical utilization of charging station

n Number of charge points of charging station

waiting time information as an additional time cost at each
charge stop. For instance, if a vehicle will have to wait at a
charging station anyway, it might as well drive a slower but
more energy-efficient route. Even though it arrives later, it
will start charging at the same time and the reduced energy
consumption saves charging time, improving the overall total
travel time. Another example might be to make a detour to a
different charging station if the saved waiting time is greater
than the additional driving time.

Compared to a reservation system, it does not require
cooperation with charging station providers. Only information
about the current utilization of the charging stations is needed,
which many providers already provide as a service to potential
customers. The system also does not require every vehicle to
take part in it to be useful.

Apart from being able to be used with charging stations from
all charging station providers, our system provides potential
advantages to long-distance trip planning. When planning long-
distance trips, charge stops might be planned hours in advance
and the arrival time at the charging stations might deviate from
the originally planned time, due to, e.g., traffic congestions.
Deviations from the planned arrival time could be a problem
for a reservation system. If a vehicle is late, depending on how
the reservation system is implemented, the reserved charge
point might be blocked for other vehicles even though it is
unused, which could be a frustrating experience for other
drivers. Additionally, there might not be enough time left to
finish charging, if the following time slots are also reserved.
Our system, on the other hand, is only using information about
the vehicles’ charging intentions, and assumes that the vehicles
are charged on a first-come, first-served basis. This makes
it potentially more flexible, because it does not matter if a
vehicle is a few minutes early or late. It also means that we
can simply change our planned charge stops on the fly, and
that the charging stations can easily be used by vehicles not
taking part in the system.

The main service that the CSDB provides is estimating



waiting times at charging stations for an arrival time in the
future. The estimate is created by combining data about the
current utilization of the charging station, planned charge stops
of other vehicles, and the statistical utilization of the charging
station. Vehicles can query estimates for any charging station
and any point of time in the future. To ease the reading of
the following part, we provide a list of the used symbols in
Table 1.

The current utilization of a charging station is known to the
database in the form of occupied charge points and the time
when the vehicles occupying the charge points will depart. For
each charge point ¢ € C; of a charging station s € S, we
denote the departure time of the occupying vehicle as tg,,,. In
case the charge point is not occupied by a vehicle, we define
tGep = to. With ¢o being the time the query is made.

The database also contains planned charge stops P for all
charging stations. Each of the planned charge stops p € P
consists of an announced arrival time ¢£ . and charging time
t?, .. The charging start time ¢£,,,, depends on the arrival time
at the charging station (cf. Equation (6)). If we add the charging
time, we get the departure time ¢/,

dep:
t?tart = tstart(tgrr> s (1)
tsep = t.lsjtart + tlc)hr . (2)

A planned charge stop is assigned to the charge point ¢ € C,
which, regarding its arrival time, would be free soonest:

¢p = argmin(ty, .. (7,..)) 3)
ceCly
The search iterates over all charge points at the charging
station Cs. In practice, this is a very small number so that
the search terminates very quickly. The time when a charge
point ¢ would be free, from a given arrival time, is returned by
function t5,.,.(t2,,) (cf. Equation (5)) based on information
about other planned charge stops in the database.
We denote planned charge stops assigned to the charge point
c with an arrival time earlier than the arrival time t,,., as:

Pc(tarr) =peF, cp =¢tg < tgmn <tarr - 4

We can now define the time a charge point becomes free for
an arrival time ¢, as the last departure time of these planned
charge stops or, in case there are none, the departure time of
the vehicle currently occupying it as

MaXpe P (torr tZA
t?ree(tarr) = { . PEP:(tarr) Ydep
dep

iftP.(torr) # @
else '

®)

The charging start time is the soonest time a charge point
becomes free, but cannot be before the arrival time:

tstart(tarr) = HlaX(tm«T, ?EHCI} (t;ree (tarr))) . (6)

For a queried arrival time ¢, we can then simply calculate
the charging start time t?

. and thereby the waiting time

q star

twait:
tgtart = tstart(tgrr) 5 (7)
t?uait - tgtart - tgrr . (8)

The database also stores statistical data about the utilization
of charging stations in the form of average utilization percent-
age per hour of a day. The information can easily be compiled
by regularly querying the current utilization of the charging
stations. To account for this statistical utilization in the waiting
time estimation, we periodically add short additional charge
stops. The period depends on the charging time .5, of the
charge stops, the utilization u, and the number of charge points
of the charging station n:

tchr
u-n

T= )
In our experiments, we set t., to one minute. This means for
a 25 % utilization at a charging station with two charge points,
we would add a charge stop every two minutes. An example of
the waiting time estimation with additional short charge stops
can be seen in Figure 3.

The use of the CSDB is not mandatory, and therefore not all
vehicles will announce their charge stops to it. This creates the
potential problem, that vehicles that do not use the CSDB and
visit a charging station unannounced, may cause significant
errors in the waiting time estimation. The statistical data is
therefore especially useful, because it is based on past charging
station utilization and includes all vehicles regardless of using
the CSDB. Additionally, we can update the vehicle’s route
when the waiting time estimation changes.

The estimated waiting times, which are queried in the
beginning of a vehicle’s trip, might significantly change by
the time the vehicle arrives at the charging stations. Apart
from the arrival of unannounced vehicles at charging stations,
the change can be due to additional vehicles announcing their
planned charge stops to the database. Therefore, to keep the
route optimal, we might want to update the route while we are
on the trip. Updating the route on the trip requires additional
computational resources and communication between vehicles
and the CSDB. We have defined three levels of when route
updates could take place:

Level 1 The route is only calculated once at the beginning
and never updated. The vehicle only communicates with the
CSDB once to query waiting time estimates and to announce
its planned charge stops.

Level 2 The route is updated every time we arrive at a
charging station with the option to skip charging at the charging
station. In addition to the initial route calculation, the vehicle
communicates with the CSDB at every charge stop to ask for
current waiting time estimates. In case of differences to the
previous estimates, the route is recalculated. If the planned
charge stops have changed as a result, the CSDB has to be
informed.

Level 3 The route may be updated at any point in time on
the road, i.e., the charging station database informs the vehicle
of any changes in the estimated waiting time. The vehicle is
in constant communication with the CSDB. In contrast to the
first two levels, the CSDB actively checks the waiting time
estimates it created for the vehicles and sends updates in case
of a change. The vehicles then recalculate their route from the
current position on the road. If the planned charge stops have
changed as a result, the CSDB has to be informed.
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Figure 3. Waiting time estimation example

V. PERFORMANCE EVALUATION
A. Experimental Setup

All experiments were run on a 64 core AMD Ryzen

Threadripper 3990X CPU at 2.9 GHz and 256 GB of memory.

We implemented our algorithm in C and compiled with GCC
7.5.0 with the highest optimization setting (-O3).

For our experiments, we extracted the road network of
Germany from OpenStreetMap excluding very small streets.’

'Downloaded from download.geofabrik.de on 2020-02-10. All OSM ways
with "highway" tag except for path, steps, elevator, corridor, platform, bridleway,
footway, cycleway, pedestrian, proposed, construction, raceway, emergency_bay,
rest_area, unclassified, residential, living_street, service, tertiary, tertiary_link
or track.
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Figure 4. Departure time distribution (based on distribution of trips on a
weekday (Mon—Fri) [31])

It has a total of 4,318,497 nodes, of which many only have
decorative purposes to model the shape of the road, only
2,356,510 nodes have more than two edges. In the preprocessing
step, we contracted 4,317,962 (99.99 %) of the nodes.

We consider the charging stations from the list provided
by German Bundesnetzagentur.” It contains 9,066 charging
stations with a total of 21,780 charge points all over Germany.
Because we are only interested in long-distance travel, we
used only the fast charging stations of which there are 1,051
with 3,791 charge points, with charging powers ranging from
50-350 kW. We precomputed the shortest-path trees for these
charging stations.

For all tests, we simulated one day with a total of 5,000
electric vehicles doing long-distance trips. Each vehicle was
assigned an origin/destination pair with a distance of 500 km
and a battery capacity ranging from 20-40 kWh, uniformly
distributed. This gave the vehicles a range of about 100-300 km,
depending on the battery size and their driving speed, ensuring
that recharging on the trip was necessary, often multiple times.
The departure time was selected from a distribution of trips
on a weekday (Mon-Fri) in Germany [31] (see Figure 4). We
ran each simulation 10 times and averaged the results.

The simulations are computationally expensive, because
as part of the charging station routing we have to evaluate
all Pareto optimal paths between the origin, destination and
charging stations. By using precomputed shortest-path trees for
all charging stations, we only have to explore the graph once
for the origin and destination nodes to create shortest-path trees.
Querying the Pareto optimal paths is then about two orders
of magnitude faster than with plain contraction hierarchies,
which would explore the graph for each combination again [9].
However, the query time is still in the order of milliseconds and
most queries are between the known locations of the charging
stations. To further improve performance, we precomputed all
Pareto optimal paths between all combinations of charging
stations and stored the costs of the paths in a lookup table. The
lookup table with the cost of all Pareto optimal paths between
all 1,051 charging stations has a size of 36.3 GB.

Zhttps://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitactundGas/
Unternehmen_Institutionen/Handelund Vertrieb/Ladesaeulenkarte/
Ladesaeulenkarte_node.html (visited on 01/04/2020).



The simulation of 5,000 vehicles without using the CSDB
took on average 18.6h or about 13.4 s per vehicle. Vehicles that
use the CSDB levels two or three might have to recompute
their route many times, increasing computation times. The
simulation runs mostly in serial on a single thread, apart from
exploring the graph to create shortest-path trees for origin and
destination nodes, which is done in parallel. For our tests,
we ran 64 simulations simultaneously, with the precomputed
shortest-path trees and lookup tables being shared between
simulations and held completely in RAM. The total memory
usage of all 64 simulations was between 150-200 GB.

B. Energy Consumption Model

An energy model is required to estimate the energy con-
sumption of an electric vehicle. The energy consumption is
certainly the most important criterion when it comes to optimize
the routing of electric vehicles. For a simplified model, the
most important input is the driving speed of the vehicle. The
driving speed impacts the energy consumption due to friction
and air drag, which are a function of the speed. In addition,
other energy consuming components of the vehicle need to be
considered, e.g., entertainment system, air conditioning, and the
head and tail lights. These components are speed-independent
and therefore dominate the energy consumption per km at
lower speeds.

We updated our initial energy model [9] to make it more
realistic, by fitting the model to the energy consumption of two
real electric vehicles. We used data available from Renault [32]3
and Tesla [33]. This resulted in the following energy model:

v? 2

90000 + v
The model is plotted in Figure 5 together with the energy
consumption of the two real electric vehicles. As can be
seen, our energy model very closely matches their energy
consumption on a wide range of speeds. Please note that some
factors such as the traffic density or the change in elevation
are not incorporated into the model. However, we believe that
the accuracy of the model is sufficient to study and evaluate
our proposed approach.

B =0.05+

(10)

C. Battery Charging Model

Traditionally, many authors assumed that the charging speed
of a (typical lithium-ion) battery is constant [3], [5]. However,
in reality, this speed is very nonlinear after reaching about
80 % of the battery’s SOC. It actually decreases considerably
at that point [6].

Modern lithium-ion batteries are charged with the CC-CV
(constant current - constant voltage) charging protocol [6],
[34], [35]. The charging process now follows a two-phase
approach. In the first phase, a constant current approach is used
for charging the battery. During this time, the charge voltage
continuously rises. This process continues until the charge
voltage reaches 4.2V and the SOC is at about 80 %. Now the
second phase starts using a constant voltage approach to prevent

3Driving range calculator for Renault ZOE with 52kWh battery. Eco mode
off, temperature 20 °C, air conditioner and heater off, 15" wheels
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Figure 5. Energy model compared to energy consumption of two real electric
vehicles

overcharging. In this phase, the current steadily decreases. The
charging process is assumed to be complete when the current
falls below a predefined threshold. Alternatively, a CP-CV
(constant power - constant voltage) protocol can be used. Here,
the charge power is constant in the first phase. Otherwise, it is
very similar to the CC-CV approach.

For our purposes, we use the following battery charging
model, which supports both the CC-CV and the CP-CV
approach. We assume that the voltage increase is linear in the
first phase and, for simplicity, the current decrease is also linear
in the second phase, which is consistent with the literature [6].
For our model, we use the following variables: The maximum
charging power of the charging station is defined as pj,q.. The
SOC of the battery is defined as soc in the range 0 < soc < 1.
In the first phase (constant current/power), the charging voltage
increases from o, = 3.8V t0 upign = 4.2V. The phase
switch happens exactly at soc = 0.8. The maximum current
can be calculated as 7,4, = —r |

Uhigh
Now, the current i(soc) and voltage u(soc) for the CC-CV
charging approach can be calculated based on the SOC of the
battery as

. Tmaz for soc < 0.8
’L(SOC) = l—soc , (1 1)
05" " tmaz for soc > 0.8
u(soc) = Uiow + 3% (Unigh — Ulow) for soc < 0.8 ,
Uhigh for soc > 0.8
(12)
Dec-cv(80€) = u(soc) - i(soc) . (13)
Similarly, the power pcp.c,(soc) can be calculated as
Pmaz for soc < 0.8
-cv(s0C) = . 14
Pep-cu (30¢) {u(soc) -i(soc) for soc > 0.8 (14

In our algorithm, we estimate the power every second and
terminate the charging process when the SOC reaches soc =
0.99.
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Figure 6. Comparison of CC-CV and CP-CV charging protocols with
measurement data.

In a first validation step, we compared our battery charging

model with published measurements of an electric vehicle [36].

The results are shown in Figure 6. Even though the charging
protocol is not mentioned for the measurement data, we can see
that the CP-CV approach in our model very closely matches
the measurement results. Actually, the CP-CV approach has
a relative error of *+2 %, whereas the CC-CV protocol has
a relative error of more than 10% at the beginning of the
charging process. We conclude that the vehicle was charged
using the CP-CV approach.

D. Experiments

In our first experiment, we examined the influence of the
percentage of vehicles that use the CSDB (penetration rate)
on the total travel time. We tested penetration rates from
0-100% in 10 % steps. The vehicles using the CSDB were
divided equally among the three CSDB levels. As can be seen
in Figure 7, the total travel time of all vehicles is reduced
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Figure 7. Total travel times of all vehicles for different CSDB penetration
rates

6 9 —o— Level 0
—m— Level 1
—e— Level 2
—*— Level 3
24
Q
£
1]
£
2 94
0 + + + + ;
0 20 40 60 80 100

CSDB penetration rate (%)

Figure 8. Waiting times of vehicles with different CSDB levels and CSDB
penetration rates

significantly by the use of the CSDB. The reduction is mainly
due to decreased waiting times at the charging stations, with
only small differences in driving time and charging time.
Without the CSDB (0 % penetration rate), the average waiting
time is 06:03 hours and with all vehicles using it (100 %
penetration rate), it is reduced to 11 minutes, which is an
improvement of about 97 %.

In Figure 8, we compare the waiting times for the different
CSDB levels. For easier comparison, we refer to not using
the CSDB, as CSDB level 0. It can be seen, that the CSDB
level has a big influence on the average waiting times of the
vehicles. At a 10 % penetration rate, levels 0 and 1 are very
close with 5.7h and 5.4h waiting time, respectively, while
levels 2 and 3 have significantly lower waiting times with
2.1h and 1.7h, respectively. This is due to the fact, that the
initially planned optimal route for vehicles using CSDB level
1, becomes outdated as more and more vehicles announce their
planned charge stops. By updating the route at every charge
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Figure 9. Average utilization of each charging station in peak hours (15-18h)
for CSDB penetration rate of 0% and 100 %, sorted by utilization

stop, vehicles using CSDB level 2 improved their waiting times
substantially. Vehicles using CSDB level 3 improved slightly
over level 2, by updating the route while driving. Obviously,
the effect is dependent on the length of the trip and therefore
the total travel time. We tested long distances that likely require
multiple charge stops. For shorter trips with only one charge
stop, we would expect the difference to be much smaller. It can
also be observed, that the waiting times of vehicles not using the

CSDB also improves significantly with higher penetration rates.

The vehicles benefit from the more evenly utilized charging
stations, with less hot spots causing long waiting times for all
vehicles.

As can be seen in Figure 9, the average utilization during
peak hours (15-18h) at a penetration rate of 0 % is very uneven
among the charging stations. The vast majority of charging
stations have a low utilization, only a few hot spots of charging
stations are utilized 100 % during peak hours and contribute
to the long waiting times. At 100 % penetration rate, the load
from the hot spots is shifted to other charging stations, making
the utilization of charging stations more even and reducing
waiting times significantly. Even then, the charging stations are
very unevenly utilized. Part of the reason are big differences
in charging speed and many charging stations not being close

to highways, making them undesirable for long-distance travel.

As we focus only on long-distance travel in our simulation, the
utilization by vehicles doing shorter trips is not considered.
The driving times and charging times are also slightly
influenced by using the CSDB. As can be seen in Figure 10,
the average driving time correlates with a higher penetration
rate and a higher CSDB level. As more vehicles use the CSDB,
the vehicles have more information about planned charge stops
of other vehicles in the future and are therefore more likely
to drive detours to alternative charging stations with lower
waiting times. This is especially true for vehicles using higher
CSDB levels, as they can update their route, which may lead
to additional detours based on planned charge stops that have
been announced in the meantime. This is not a problem, as
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Figure 11. Charging times of vehicles with different CSDB levels and CSDB
penetration rates

the additional driving time is only small and is more than
compensated by the saved waiting time. The average charging
times can be seen in Figure 11. Vehicles using CSDB levels 2
and 3 have a slightly higher charging time at low penetration
rates. This is caused by the vehicles changing their selected
charging stations to less optimal ones, in case there are other
unexpected vehicles at the selected charging station. As more
vehicles use the CSDB, encountering unexpected vehicles
becomes less likely.

In our second experiment, we compared using statistical data
about the charging station utilization with only using the current
utilization and planned charge stops. We generated the statistical
data from the charging station utilization of simulation runs
of the first experiment. In Figure 12, we compare the average
waiting times with and without using statistics for vehicles
using CSDB Level 3. It can be seen that using statistical data
approximately halves the waiting times.

Interestingly, it not only improves the waiting times for low
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Level 3

penetration rates, where many vehicles are not accounted for
by the CSDB, but also for high penetration rates including

100 %, where all vehicles announce their planned charge stops.

When a vehicle initially plans its trip at departure time, the
CSDB will only know about planned charge stops of vehicles
that have already departed. Even though the vehicle can update
its route while driving, by the time it becomes known that it
is on a suboptimal path, it might already be too late to change
it. It is therefore beneficial to account for vehicles departing
in the future by using statistical data.

In our third experiment, we compared our adaptive charging
and routing strategy with alternative strategies often found in
literature. For each strategy, we ran a set of simulations with
vehicles using CSDB level 3 and statistics at penetration rates
10-100 % in 10 % steps. In Figure 13, the total travel time of
the strategies over all penetration rates and the composition of
the total travel time for the penetration rates 30 % and 70 %
are shown.

We can see that using the adaptive strategy results in the
least total travel time in all cases. It is very closely followed
by always doing a minimum charge, just to get to the next
charging station (min charge). The adaptive charging strategy
only has an advantage over min charge in cases where the first
charge is at a fast charging station and then a second charge
is at a slower charging station. As there are plenty of fast
charging stations available, this is a rare case. Always doing an
80 % charge or always doing a full charge, causes significantly
more charging time, because more energy than necessary is
being charged. This makes choosing a fast charging station
more important to the algorithm, which results in additional
driving time due to detours and additional waiting time due to
higher utilizations at fast charging stations.

The adaptive routing strategy selects the route out of the
set of Pareto optimal routes that minimizes driving, charging
and waiting time. We compared this with always choosing
the fastest route and always choosing the most economic
route. Always choosing the fastest route reduces the driving
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Figure 13. Comparison of adaptive charging and routing strategy to other
strategies (CSDB level 3 with statistics)

time, but leads to more charging time due to more energy
consumption, which in turn leads to more waiting time due
to higher charging station utilization. The opposite can be
observed when always choosing the most economic route.
The charging time is reduced significantly due to less energy
consumption, which also leads to a very short waiting time
due to lower charging station utilization, but the driving time
is significantly longer, making it the strategy with the highest
total travel time.

In all cases, we can see that a higher penetration rate of the
CSDB reduces the waiting time and the total travel time.



VI. CONCLUSION

We presented an approach to minimize waiting times at
charging stations for long-distance trips with electric vehicles by
announcing planned charge stops to a central charging station
database (CSDB). We integrated the waiting time estimates of
the CSDB into our adaptive charging station routing approach
to minimize the total travel time of electric vehicles. In our
evaluation, we considered the map of Germany and simulated
one day with a large number of vehicles doing long-distance
trips. The existing heterogeneous charging infrastructure with
its differences in charge power and number of charge points
was used together with a realistic non-linear charge model. We
showed that the utilization of charging stations is very uneven
and can cause long waiting times, but that by using the CSDB,
average waiting times can be reduced by up to 97 %. As the
waiting time estimates can become outdated after a while, the
route of long-distance trips should be updated at least at every
charge stop. Updating the route while driving further improves
the waiting time. By using statistical data about the utilization
of the charging stations derived from historical data, we could
additionally reduce the waiting time by about half. Furthermore,
we compared using the CSDB with our adaptive charging and
routing strategies to other strategies often found in literature.
We could clearly show, that while using the CSDB is beneficial
to reducing waiting times in all cases, the combination with
our adaptive strategies provides the best total travel times.

In future work, we want to better take human behavior
and individual preferences into account. Human drivers might
be frustrated by frequent route changes or need to rest some
time after a long drive. We mentioned in Section IV that
the CSDB is different than a reservation system and that we
assume that it is more flexible when dealing with early or late
arrivals. Further studies are needed to verify that assumption
by making a thorough comparison between the approaches. We
also want to look into using the CSDB and adaptive strategies
for short-distance trips where recharging is not necessary to
reach the destination, but the driver simply wants to recharge the
vehicle and could either stop at a charging station on the way
or charge near his destination, which might entail additional
walking time. In this context, we want to compare having many
slow charging stations to having few fast charging stations.
Additionally, we want to improve the energy consumption
and battery charging models. Our current universal model
does not fit all existing vehicles equally well. There are many
different electric vehicle models on the market, which can have
very different energy consumption profiles and charge curves,
especially for fast charging. We therefore want to incorporate
individual vehicle models with model specific charge curves
and energy consumption profiles.
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