
Technical University Berlin

Telecommunication Networks Group

Remote Socket Architecture
Service and Interface

of the
Last Hop Protocol for TCP

Morten Schläger and Tobias Poschwatta
{morten,posch}@ee.tu-berlin.de

Berlin, October 2001

TKN Technical Report TKN-01-016

TKN Technical Reports Series

Editor: Prof. Dr.-Ing. Adam Wolisz

Abstract

The Remote Socket Architecture is a RPC-like implementation of the well known BSD
socket interface for sockets of the AF INET family. Its purpose is to improve the quality
(e.g.: performance) of wireless Internet access. It is composed of two layer hierarchy. The
higher layer is technology independent and implements the export of the socket interface
while maintaining its syntax and semantic. The lower layer is technology dependent and is
responsible to provide the required transmission service and addressing functionality. The
service of the lower layer depends on the requirements of the application. In case of TCP
based application the lower layer must implement a reliable service while it can implement a
semi-reliable or unreliable service in case of UDP based applications.

This documents describes the service which is expected from the lower layer in case TCP
sockets are considered as well as the interface between these two layers.

TU Berlin

Contents

1 Introduction 2

2 Communication Subsystem 4
2.1 Service of the CS . 4
2.2 Addressing . 5
2.3 Abstract Interface Definition . 6

2.3.1 Registration . 7
2.3.2 Connection Management . 8
2.3.3 Data Transfer . 8
2.3.4 Miscellaneous . 9

2.4 CS API Definition . 10
2.4.1 Implementation of the interface . 10
2.4.2 ReSoA runtime environment . 12
2.4.3 Functions implemented by the service provider 13
2.4.4 Usage of the API . 17

A CS API Headerfile 19

B Error Codes (excerpt from include/asm-i386/errno.h) 25

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 1

TU Berlin

Chapter 1

Introduction

The Remote Socket Architecture is a RPC-like implementation of the Berkeley socket inter-
face, supporting sockets of the AF INET family. Its purpose is to improve the quality of
wireless Internet access, especially regarding performance in case of TCP. In case of UDP the
desired improvement is depended on the application.

ReSoA separates the operating system functionality into a communication stub at the
end-system and the actual Internet protocol stack within an access-point or edge router. The
end-system is called Remote Socket Client (RSC) and the access point or edge router is called
Remote Socket Server (RSS). The architecture is divided into two layers as shown in figure
1.1. The higher layer, called the Socket Export Layer (SEL), implements the functionality of
the socket interface. For this purpose it holds instances of Local Socket Modules (LSM) on
the RSC and Remote Socket Modules (RSM) on the RSS. Each BSD socket is implemented
by a LSM/RSM pair. LSM and RSM communicate with each user using the Export Protocol
(EP).

The EP relies on the service provided by the Communication Subsystem (CS) to exchange
messages between each other. The CS is ReSoA’s second layer. Although from ReSoA’s point
of view the CS is a single layer, it will mostly be composed out of several layers. It contains
technology dependent protocols (e.g.: in case of 802.11 WLAN a MAC protocol) and a Last
Hop Protocol (LHP). The LHP is responsible to adapt the service of the applied technology
to the demands of ReSoA. The LHP is not only dependent from the used technology but also
from the application. As an example figure 1.1 shows three application. The FTP-application
requires a reliable service, hence uses a TCP socket, while the VoIP und MPEG 4 application
are delay-sensetive and therefore are using a UDP socket.

To support this service requirements different LHPs are needed. In case of a TCP socket
the LHP must provide a reliabe service. In case of a UDP socket a reliable LHP could reduce
the quality of service seen by the application. As illustraded by the figure flow-specific LHPs
could be deployed.

However, this document deals only with TCP support. The purpose of this document
is to describe the service which the Socket Export Layer expects form the CS as well as to
describe the interface between these two layers in case the application uses TCP sockets.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 2

TU Berlin

VoIP

FTP MPEG 4

LSM
(UDP)

LSM
(TCP)

RSM

(UDP)(TCP)
RSM Socket Export

Layer

TCP/UDP

Export Protocol

Com
m

unication Subsystem

Remote Socket Client (RSC) Remote Socket Server (RSS)

LSM
(UDP)

RSM

(UDP)

Technology
specific

Protocol Stack

Technology
specific

Protocol Stack

LHP
(TCP)

LHP
VoIP

LHP
MPEG4

LHP
(TCP)

LHP
VoIP

LHP
MPEG4

Figure 1.1: Basic components of ReSoA

In this document the term service user always refers to either LSM or RSM. Only in
case a distinction is needed we use LSM or RSM instead of service user. The term service
provider always refers to a CS entity or to the implementor of the CS. Finally the term
interface always means the interface between the service user and the service provider, thus
between the two layers of ReSoA.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 3

TU Berlin

Chapter 2

Communication Subsystem

The communication subsystem is responsible for delivery of messages between RSC and
RSS. It is technology and application dependent and is composed out of a technology specific
protocol stack and an adaption layer which is called Last Hop Protocol (LHP). The LHP is
responsible to implement the interface between LSM/RSM and CS as well as to improve the
service of the technology specific protocol stack to meet the requirements of ReSoA. In case a
specific technology already meets the requirements of ReSoA the LHP must only implement
the interface. Although the Export Socket Layer demands a specific service from the CS, the
CS provider is free to implement an arbitrary protocol stack as long as the chosen protocol
stack meets the service specification given in section 2.1.

Since the service and not the protocols of the CS are important for ReSoA this chapter
describes only the service and the interface to the CS. However, please note that the design
of the CS decides about the achievable performance. The chapter is divided into three parts.
We start with the service description. Then we give an abstract definition of the service
interface and finally we present an API.

2.1 Service of the CS

The service provided by the CS is connection oriented and accessible through a single service
access point as shown in figure 2.1. The service user (either LSM or RSM) creates a local
communication end-point upon initialization and closes this communication endpoint at the
end of the session (e.g. when the computer is shutdown, or when the ReSoA module is
removed). The RSM, in addition, creates a new communication endpoint for every client it
support. The shutdown of a communication endpoint can either be graceful or abrupt. In
the former case the CS must make sure that both the local send and local receive queues
are empty before the communication endpoint is released. In case of a abrupt connection
termination the CS must discard all queued messages.

The core functionality of the CS is reliable transport of messages (CS-SDUs) between
RSC and RSS as well as addressing. Reliability here means that every message passed to the
CS is delivered exactly once in the correct order to the service user at the peer node. Further,
the CS is responsible for the detection of transmission errors. All messages delivered to the
receiving service user should be error free (at least with a high (state of the art) probability).

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 4

TU Berlin

Appl 1 Appl 2

Communication Subsystem

LSM 1 LSM 2 LSM 3 LSM 4 LSM 5

SAP

LHP

Figure 2.1: One to one relation between LSM and CS instances

It is CS’s responsibility to chose and implement the protocol mechanisms like error control,
flow control, which are appropriate to offer this service in an efficient manner. The design of
the CS has a high impact on the performance of the whole system.

Beside the reliable service the CS should support an un- or semi reliable service. This
will be used for sockets which are attached to unreliable protocols like UDP sockets.

The CS must prevent message boundaries and must be able to accept CS SDUs of a
length up to 65600 bytes 12. The LHP must support segmentation and reassembly in case
the deployed technology is not able to carry messages of such length.

Since the service user needs to protect some of her requests by timers to avoid deadlocks
but is not able to measure the RTT between the RSC and RSS due to a very limited number
of bidirectional data traffic the CS is responsible for estimating the RTT of CS-SDUs. The
measured value must be offered to the service user on request.

Further, it is CS’s task to note when the peer(s) are not longer available/reachable. In
case that the CS detects an interception in the connectivity of certain length it has to inform
the service user. Thus, the CS must implement some kind of keep-alive functionality.

Finally, the CS has to inform the service user about any kind of errors like that it was
not able to deliver a message or that the peer entity has reseted a connection.

2.2 Addressing

The CS must provide an addressing scheme which allows the RSC and RSS to address each
other. For example, IP addresses could be used if the CS were IP based. However, the imple-
mentation of the RSM and RSS are address format independent, which opens the question
how can they address each other when they do not know the addressing format.

1The size of data chunks passed via the socket interface is limited by the length parameter of the socket
interface. This parameter allows for passing data chunks of up to 232 bytes. However, most protocols limit
this size to 65535 bytes. Therefore we decided to support only the latter size. Since the LHP-PDU must carry
the data of the socket call as well as the header of the Export Protocol the maximal size of a LHP-SDU must
be larger than 65535.

2This figure is of theoretical interest only, as long as one considers only prototypes. In case of a smaller
SDU size one must make sure that test applications do not try to send too much data with a single call.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 5

TU Berlin

LHP_REGISTER

LHP_REGISTER_OK

CSService user

LHP_REGISTER

CSService user

LHP_REGISTER_FAILED

CSService user

LHP_UNREGISTER

LHP_UNREGISTER_OK

CSService user

LHP_UNREGISTER

LHP_UNREGISTER_FAILED

Figure 2.2: LHP service primitives for registering

CSService user

LHP_CONNECT_REQ

LHP_DISCONNECT_IND

CSService user

LHP_PASSIVE

LHP_FAILURE

LSM RSM

LHP_CONNECT_REQ LHP_PASSIVE

LHP_CONNECT_IND

LHP_CONNECT_RESP

LHP_CONNECT_CONF

CS CS

LSM RSM

LHP_CONNECT_REQ LHP_PASSIVE

LHP_CONNECT_IND

LHP_CONNECT_REJ

LHP_DISCONNECT_IND

CS CS

CSService user

LHP_CLOSE_REQ

CSService user

LHP_DISCONNECT_IND

Figure 2.3: LHP service primitives for connection management

To solve this problem the LSM and RSM read their local addresses in a coded repre-
sentation from some configuration file. The exact procedure how to obtain the addresses is
implementation dependent and not part of the abstract interface description. In addition to
this the LSM must also read the address of an available RSS from a second file. In order to
allow for an (relative) address format independent design the LSM and RSM just read the
binary coded address without interpreting them. For example in case of an IP based CS the
LSM would read two 4 byte integers in network byte order.

The maximum size of such an encoded address is defined by the interface.

2.3 Abstract Interface Definition

Figure 2.3 through 2.5 show the available service primitives. Beside the classical primitives
for connection management and data communication some special primitives are defined to
collect statistics or to implement an interface flow control. An important property of the
interface is that no message may get lost, since the service user does not implement an own
error control. To achieve this an interface flow control is needed.

The abstract interface specification does not define whether the interface is synchronous
or asynchronous. However, some of the request need some kind of confirmation as indicated
in figure 2.3 through 2.5. This is described in more detail below.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 6

TU Berlin

LHP_DATA_OK

CSService user

LHP_DATA_REQ

LHP_XOFF

CSService user

LHP_DATA_REQ

LHP_DATA_OK

Data Packet
CSService user

LHP_DATA_IND

Data Packet

LHP_XOFF

CSService user

LHP_DATA_IND

Figure 2.4: LHP service primitives for data exchange

CSService user

LHP_FAILURE

LHP_RTT

Service user CS

LHP_GET_STAT

Service user CS

LHP_XON

Service user CS

LHP_XOFF

Figure 2.5: LHP service primitives - Miscellaneous

The different primitives can be classified into four categories, namely communication
endpoint management, connection-management, data transfer and miscellaneous.

2.3.1 Registration

LHP REGISTER

The LHP REGISTER primitive is used to create a new local communication end-point by a ser-
vice user. This primitive should not trigger any data exchange between the peer hosts. In case
the primitive succeeds then a connection identifier is returned using the LHP REGISTER OK-
primitive. This identifier must be used for all later requests belonging to this communication
endpoint. In case the communication end-point could not be created an error reason is re-
turned using the LHP REGISTER FAILED. With the LHP REGISTER primitive the service user
must specify which service (e.g. reliable,semi-, un- reliable) it requests and which provider
is asked to provider the service3. In case either the service or the provider are unknown the
creation of the new endpoint fails.

LHP UNREGISTER

The LHP UNREGISTER primitive is used to a release a communication endpoint. If the commu-
nication endpoint is valid then the service provider confirms the request using the LHP UNREGISTER OK
primitive, otherwise the service user answers with the LHP UNREGISTER FAILED primitive.

3Currently, only a reliable service must be supported.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 7

TU Berlin

2.3.2 Connection Management

Connection Establishment

A connection is either active or passive established. The active end initiates the establishment
of a new connection using the LHP CONNECT REQ primitive while the passive end (the RSS is
waiting for incoming connections) of a connection uses the LHP PASSIVE-primitive to inform
the service provider that it should accept incoming connection requests.

When a CS-entity receives a connection request (initial packet of a new connection) and
when it is set to accept incoming connections it informs its service user about the new
connection using the LHP CONNECT IND-primitive. If the CS was not configured to accept new
connections it must deal with the request locally, without notifying the service user (e.g.:
send a reset packet).

After the passive end of a CS connection has received a connection request from its peer
entity, it must create a new communication end-point for this new connection. The old
communication end-point must stay ready to process further incoming connection requests.

The service user (at the passive end) can either accept a new connection using the
LHP CONNECT RESP primitive or reject it using the LHP CONNECT REJ primitive. In the former
case the CS sends a connection confirmation to its peer entity. In the latter case it sends a
disconnect indication. The initiator of a CS connection is informed with LHP CONNECT CONF-
primitive when the connection establishment is completed. If the LHP could not fulfill a
connect request, then it informs its service user using the LHP DISCONNECT IND-primitive.
This can either mean that the peer CS entity has rejected the connection (the local CS has
received something like a reset packet) or that the initiating CS has received no response at
all after a number of retransmissions.

Connection Release

To release a connection three primitives are available. The LHP CLOSE REQ-primitive is used
to initiate a connection release, while the LHP DISCONNECT IND primitive is used to inform
the service user about the fact that a CS connection was terminated. In general, only the
LSM (RSC) should use this primitive.

The LHP RESET-primitive should be used by the service user to trigger an abrupt connec-
tion release. Upon this request the CS should send some kind of reset packet rather then to
start a normal connection termination sequence.

2.3.3 Data Transfer

LHP DATA REQUEST

The LHP DATA REQUEST primitive is used to request the transparent delivery of a CS SDU.
The SDU can have an arbitrary length up to 65600 octets.

The CS responds to a data request with one of the following primitives

• LHP DATA OK: This response indicates success. A positive result, however, does not
mean that the message was delivered to the peer nor that the request was consumed

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 8

TU Berlin

by the peer service user but only that the request was accepted. The service user is not
informed when the message was successfully delivered.

• LHP XOFF: This response tells the service user that the CS currently is not able to accept
further requests. However, this is only temporary. The CS will inform the service user
when it is able to process further requests using the LHP XON primitive.

LHP DATA INDICATION

The LHP DATA INDICATION primitive is used to deliver messages to the service user.
All messages for which the service user on the peer host has requested reliable delivery

must be delivered in the same order as they have been sent. It is the task of the CS to
preserve the message boundaries. A message must not be removed from the receive buffer
before it was successfully delivered to the service user. Thus no messages may be lost at the
interface.

The LHP DATA INDICATION primitive is acknowledged with one of the following primitives.

• LHP DATA OK to indicate success.

• LHP XOFF to signal that the service user is at the moment not able to accept the
message. In this case the service user will later trigger the service provider to deliver
all queued messages.

2.3.4 Miscellaneous

LHP GET STATS

With this primitive the service user can request some of the statistics of the underlying
communication system, like the round trip time (RTT). Such information might be required
to set private timers or to learn about the state of the CS.

Currently only a single return value is specified, namely the measured RTT of a SDU.

LHP XON

This service primitive can be used by both the service user and the service provider. It signals
that originator of this signal is ready to accept further data.

LHP XOFF

This service primitive is used to stop the data exchange via the local interface until new
resources become available.

LHP FAILURE IND

When the communication subsystem detects an error situation it must inform its service
users. Triggering errors are for example that a message could not be delivered to the peer
(after a certain number of attempts), that the keep-alive function signals communication
problems or when the peer resets a connection.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 9

TU Berlin

The indication should inform the service user about the error reason and whether it affects
all entities or only a specific entity, e.g.: when the link between RSC and RSS is intercepted
all entities are affected but the failure of delivery of a single message affects only the origin
of this message. The latter is especially important on the RSS when the communication to
a single RSC is not possible but all other RSC are still reachable.

2.4 CS API Definition

This section describes one specific Linux kernel implementation of the interface in C-language
notation. This API is used by the current ReSoA implementation.

The main idea behind choosing a two layered approach for ReSoA was to separate technol-
ogy dependent operation from technology independent one. With such a design it is possible
to use the same implementation of the LSM and RSM on top of different technologies as long
as the API is protocol and address format independent.

In user space, the socket interface meets these requirements. Although it would be pos-
sible to have a socket based implementation of the ReSoA/CS API implementation, such an
interface would come along with too much overhead. The socket interface was designed to
be used from the user space and not from inside the kernel. Therefore we decided to design
a new socket-like data structure which is tailored for our needs. This new object is named
LHP s. Appendix A gives all the details about the new object.

Table 2.1 shows the association behind the abstract interface given section 2.3 and the
API defined in this chapter. The abstract interface is implemented using function calls. Thus,
the implementation of the interface is synchronous. When a call to a function of the API
returns, however, this does not mean that the call was completed but only that the service
provider has either accepted the request or rejected it. The usage of function calls allow for
realizing some of the service primitives by return values of function calls. For example in
case the service user calls a function to transmit data (LHP DATA REQ) the return value of the
function indicates whether the service provider could accept the send request or not.

The service provider is responsible to implement all the functions which are not marked
as callback, while the service user must implement the callbacks. The service user must call
the callbacks when appropriate as described in section 2.4.3. However, please note that the
table shows only function pointers. This means that the CS designer is free to chose names
for the different functions.

2.4.1 Implementation of the interface

The interface should be implemented for Linux kernel version 2.4.x as loadable kernel module.
It is only intended to use this interface from inside the kernel. The service provider is
responsible to implement the functions referenced in the struct LHP provider s and to call
the appropriate callbacks as explained in section 2.4.3.

Operation inside the kernel requires very precise declaration about the execution context
of every function call. In particular, distinction between process context and interrupt time
has to be done. Generally, a task that is executable in interrupt handlers can be safely
performed with process context (e.g.: in a schedule task function or kernel thread). Knowing

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 10

TU Berlin

Abstract Interface API Callback
LHP REGISTER int (*init) (struct LHP s*) -

LHP REGISTER OK return value of (*init)() function is zero -
LHP REGISTER FAILED return value of (*init)() function is negativ -

LHP UNREGISTER void (*cleanup) (struct LHP s*) -
LHP UNREGISTER OK return value of cleanup function is zero -

LHP UNREGISTER FAILED return value of cleanup function is negativ -
LHP CONNECT REQ int (*connect) (struct LHP s*,struct sockaddr*) -

LHP PASSIVE int (*passive) (struct LHP s *,struct sockaddr*) -
LHP CONNECT IND int(*connect indication)(struct LHP s*,struct

LHP s*)
X

LHP CONNECT RESP return value of connect indication callback is zero -
LHP CONNECT REJ return value of connect indication is negative -

LHP CONNECT CONF int (*connect confirm)(struct LHP s*) X
LHP CLOSE REQ void (*close)(struct LHP s*,int) -

LHP DISCONNECT IND void (*disconnect indication)(struct LHP s*,int) X
LHP DATA REQ int (*send)(struct LHP s*, struct sk buf*) -
LHP DATA OK return value of LHP DATA REQ is zero -

LHP XOFF return value of LHP DATA REQ is EAGAIN -
LHP DATA IND int (*receive)(struct LHP s,struct sb buf**) -
LHP GET STATS int (*getoption)(struct LHP s*,int, void*,int); with

option = LHP OPT RTT
-

LHP RTT return value of getoption function -
LHP XON void (*send ready)(struct LHP s*) and void (*re-

ceive ready)(struct LHP s*)
X

LHP XOFF Return message of send call -
LHP FAILURE void (*disconnect indication)(struct LHP s*,int) X

Table 2.1: Association between abstract interface and API

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 11

TU Berlin

LHP_CONNECTED

LHP_IDLE

LHP_CONNECTING LHP_PASSIVE

LHP_CONNECT

LHP_CONNECT_CONFIRM
LHP_CONNECT_INDICATION

LHP_CLOSE
LHP_DISCON NECT_IND

LHP_CLOSE

LHP_PASSIVE

LHP_DISCONNECT_IND
LHP_CLOSE

Figure 2.6: State machine of the LHP interface

that, it is only necessary to mention those functions that must have a process context for
their execution.

All functions and callbacks are expected to be executable during interrupt time. Provider
implementations may use in interrupt() kernel function to schedule the work, that cannot
be executed within the interrupt handler.

A communication end-point is implemented by the data structure struct LHP s. This
data structure includes references to two data structures, namely LHP provider s and LHP user s
which glue together the service user and service provider as explained in the chapter ReSoA
run time environment (see figure 2.7). The LHP user s object holds pointers to the required
callbacks and some management information. This datatype is maintained by the service
user. The LHP provider s object holds references of the primitives and some management
information. This object is maintained by the service provider.

Interface state machine

The service provider is responsible implement the state machine shown in figure 2.4.1. The
state LHP UNCONNECTED is the initial state.

2.4.2 ReSoA runtime environment

One of the features of ReSoA is that the CS should be chose-able form a set of CSes. To
allow for this ReSoA provides functionality to dynamically register new communication sub-
systems. Further it provides wrapper function that hide all the function pointers. This
wrapper functions for example test whether a function pointer is not null before it is called.

In order to register a new communication subsystem the service provider must implement
a protocol according to the service specification. Further the protocol implementation must
support the function as shown in table 2.1 and must call the described callbacks. Next a
struct LHP provider s data structure must be created and initialized with references to
the functions. Beside the function pointers, this data structure holds a unique identifier for
the provider (e.g.: LHP PROVIDER SIEMENS or LHP PROVIDER TKN), a type (e.g.:
RELIABLE) and the amount of private data space required by the CS.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 12

TU Berlin

LHP_s

LHP_user_s

LHP_provider_s

LHP_provider_s

LHP_user_s

User private data

Provider private data

Callbacks

Service primitives

Figure 2.7: LHP-interface objects

After the service provider has set-up this data structure he must register his CS with
ReSoA. For this purpose the runtime environment provides the following two functions.

• int LHP register provider(struct LHP provider s *lhp) function is used to reg-
ister a new CS. The lhp parameter must point to a initialized struct LHP provider
data structure. The (provider,type) tuple of the referenced data structure must be
unique. The service provider must call this function for every LHP he wants to make
available to ReSoA.

• int LHP unregister provider(struct LHP provider s *) function must be used
to remove a CS from the ReSoA runtime environment.

2.4.3 Functions implemented by the service provider

Registration

The init-function is called to create a new communication endpoint. It must follow the
following prototype:

int (*init) (struct LHP s* lhp).
The lhp parameter is initialized to point to a valid LHP if object which in turn references

a LHP provider s-object.
The function must return 0 on success and a negative number otherwise. The number of

a negative return value should be inline with the system defined errno value (see Appendix
B).

The following error codes are defined:

• ENOMEM: Insufficient memory is available.

• EINVAL: Invalid argument.

However, the service user does not call this function directly but uses the int LHP create(int
provider, int type, struct LHP user s *user, int allocation, struct LHP s **lhp)

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 13

TU Berlin

wrapper function. This function locates the appropriate LHP provider s data type using the
provider and type parameter. Further it creates the LHP s object and initializes it. The
wrapper function alloctes the memory required for the service user private area as well
as the memory needed for the service provider private are. After initialization the void
*provider private member points to valid memory area of the size as requested by the
service provider when the LH provider s object was set-up. Finally, the wrapper function
calls the init function of the selected LHP provider s object. The idea behind allocating the
memory for the service user and service provider private data in a single chunk is to save
resources.

The cleanup-function is called to release a communication endpoint and must follow the
following prototype:

void (*cleanup)(struct LHP s *lhp)
Again, it is not directly called but using the wrapper function void LHP relase(struct

LHP s*).

Connection Management

• int (*connect)(struct LHP s *lhp, struct sockaddr *remote addr)

This function corresponds to the LHP CONNECT REQ-primitive of the generic interface. It
must implement an active open. The service user specifies the address of the peer end-
system as well as the connection endpoint which is asked to establish a new connection.
The function call should return immediately (non-blocking behavior) with either a
return value 0 to indicate that the CS establishes the connection or with a negative
result indicating an error (according to the system wide errno values).

The following return values are defined:

– EAFNOTSUPPORT : The used address format was not valid.

– EINPROGRESS: The call is non-blocking and the connection cannot be com-
pleted immediately.

– EALREADY: The LHP object is non-blocking and a previous connection at-
tempt has not yet been completed.

– EINVAL: Invalid argument.

The service user must be informed about the success of the connection establishment
by calling the int (*connect confirm)(struct LHP s *lhp) callback or about a failure by
calling the int (*disconnect indication)(struct LHP s *lhp, int reason) callback.

The CS must not accept any data requests before the CS connection is established.

• int (*passive)(struct LHP s *lhp, struct sockaddr *local addr)

This function corresponds to the LHP CONNECT P-primitive. The service user must spec-
ify on which local address it wants to receive new connections as well as the communi-
cation end-point which should be set to the passive open mode.

Since the service user has no idea about the address format which is used by the CS it
reads the address from some configuration file without interpreting it.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 14

TU Berlin

This function is non-blocking. Its purpose is to just configure the attached protocol
to accept new connections. This function returns zero on success and a negative value
otherwise. The error code is defined by the system defined errno file.

The following error codes are defined:

– EINVAL: Invalid argument.

• void (*close) (struct LHP s *, int reason)

This function corresponds to the LHP DISCONNECT REQ-primitive of the generic interface.
The service user must specify the communication endpoint for which it requests to close
the connection.

This function has no return value, since success is always assumed.

Data exchange

• int (*send)(struct LHP s* lhp, struct sk buff *skb)

This function corresponds to the data request primitive of the abstract interface. The
service user must specify the communication endpoint and a sk buf which holds the
data to be transmitted.

The function is non-blocking. The return value is positive (and equals the length of
the transmitted data chunk) when the CS was able to accept the message for delivery
otherwise a negative value is returned. The return values should follow the system
defined errno file. In case of an temporarily lack of resources EAGAIN should be returned.
This corresponds to the interface flow control described by the abstract interface.

In case the attached protocol is not connected the CS should return an error.

The following error codes are defined:

– EMSGSIZE: The size of the EP-SDU is not supported.

– EAGAIN: The outgoing queue is full. The service user is informed when resources
become available.

– EINVAL: Invalid argument passed.

– ENOTCONN: Data request called for a communication endpoint which is not
connected.

• int (*receive)(struct LHP s *lhp, struct sk buff **skb)

This function is used to consume data by the service user. It has no direct correspondent
function in the abstract interface. It is called by the service user after he was informed
by the LHP receive ready callback that new data is pending. The function is non-
blocking. In case no data are waiting it should return ENODATA.

The service user must provide an address at which the CS can store a reference to the
sk buff that holds the data.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 15

TU Berlin

On success the receive function returns a positive number indicating how many byte
were received otherwise a negative number is returned which must be inline with the
following error codes.

– EINVAL: Invalid argument

– ENOTCONN: Communication endpoint was not connected yet.

– ENODATA: The received function was called but no data were available.

Miscellaneous

• int (*setoption)(struct LHP s *lhp, int name, void *optval, int optlen))

This function is used to configure the communication endpoint.

This function is not used at the moment.

• int (*getoption)(struct LHP s *lhp, int name, void *optval, int *optlen)

This function is used to read information about the configuration of the communication
end-point or to receive statistics. The following information are available

– RTT : To get the RTT of a CS connection.

– VENDOR STRING : To get information about the provider.

–

Callbacks

Callbacks are used to inform the service user about the occurrence of asynchronous events
like the the reception of new data. The callbacks are implemented by the service user.

The CS never directly invokes any callback but uses a wrapper function. This wrapper
functions are implemented by the ReSoA environment. In following we discuss which callback
is triggered by which event and which wrapper function should be called.

• int LHP connect indication(struct LHP s *lhp, LHP s *new) This callback must
be called by CS when it has received a connect request and has been configured to
accept incoming connection requests using the passive function call. The parameter
references a new communication endpoint. The service user can either accept this
connection by returning 0 or refusing the connection by returning a negative value.

The service user must set this callback when it performs a passive open but can leave
it uninitialized when it is the active end.

• void LHP connect confirm(struct LHP s *lhp)

With this callback the CS informs the active end of a connection that its connection
request invoked with the connect function has succeeded.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 16

TU Berlin

• void LHP disconnect indication(struct LHP s *lhp, int reason)

This callback informs the service user that a connection request has failed or when the
peer entity has closed a connection. The reason parameter should show the reason.
The following reasons are defined: ...

• void LHP receive ready(struct LHP s * lhp)

The callback is used to indicate that the CS has received some data which can be read
by the service user using the receive-primitive.

• void LHP write ready(struct LHP s *lhp)

This callback should be called by the CS when space becomes available in its send
queue.

2.4.4 Usage of the API

The service user (LSM or RSM) use this API to access the service of the CS without knowing
who (which provider) implements the CS or what protocol or addressing format is used.

To allow for such an independent implementation the service user must achieve the re-
quired parameters from some management interface. The service provider is responsible to
provide these information. For example after the service provider has registered its CS using
the register provider function it can set-up a database (file) with the provider identifier
and the service type. Further the address of the server is required.

The service user does not directly call the functions implemented by the service provider
but uses some wrapper functions provided by the ReSoA runtime environment.

When a new service user is created it reads this configuration and creates the required
communication endpoints. Since the operation differ on the Remote Socket Client and the
Remote Socket Server we consider both separately.

The Remote Socket Server creates a single communication endpoint upon start-up using
the create function. After the communication endpoint was successfully created it initializes
the required callback functions and uses the passive function to inform the CS that it is
ready to accept new connections. Then it remains idle until it is triggered by the connect ind
callback.

When the RSS has received the connect ind callback it either accepts the new connection
or refuses it. In the former case it returns zero and in the latter case it returns a negative
value. The connect ind callback comes along with a reference to a new created communication
end-point. If the RSS accepts the new connection it uses this communication end-point to ex-
change message with the new client. The initial communications endpoint stays unconnected
and is ready to accept further connections.

After the connection is accepted the RSS can send and receive data on this communi-
cation end-point. There will be a single communication end-point for every client. This
communication end-point is used for all communication between the RSS and RSC. When
the client closes a session the RSS is informed by the disconnect ind callback.

The Remote Socket Client also creates a communication endpoint upon start-up. After
the endpoint was successfully created it uses the connect function to establish a connection

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 17

TU Berlin

to the RSS. The address of the RSS is taken form some configuration file. After initiat-
ing the connection the RSC is idle until it is triggered either by the connect conf or the
disconnect ind callback. In the former case the RSC is allowed to send and receive data
from this communication endpoint. At the end of the session the client releases the commu-
nication end-point with the release function.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 18

TU Berlin

Appendix A

CS API Headerfile

/*
* ReSoA
* Last Hop Protocol Interface
*
* Copyright (c) 2001 Telecommunication Network Group, Technical University of Berlin
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgment:
* This product includes software developed by the Telecommunication Network
* Group of Technical University Berlin.
* 4. Neither the name of the University nor of the Laboratory may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 19

TU Berlin

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*
* Tobias Poschwatta <posch@ft.ee.tu-berlin.de>
* Morten Schläger <morten@ee.tu-berlin.de>
*
* Technische Universität Berlin
* Telecommunication Network Group
* Berlin, 2001
*
* Version:
*
*/

#ifndef _RESOA_LHP_H
#define _RESOA_LHP_H

#include <linux/errno.h>
#include <linux/skbuff.h>

enum {
LHP_IDLE = 0,
LHP_CONNECTING = 1,
LHP_CONNECTED = 2,
LHP_PASSIVE = 3

};

struct LHP_s;

struct LHP_user_s {

int private_size;

/* connection management */
void (*connect_confirm)(struct LHP_s *lhp);
int (*connect_indication)(struct LHP_s *lhp, struct LHP_s *new);
void (*disconnect_indication)(struct LHP_s *lhp, int reason);

/* data transfer */
void (*send_ready)(struct LHP_s *lhp);
void (*receive_ready)(struct LHP_s *lhp);

};

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 20

TU Berlin

struct LHP_provider_s {

int provider;
int type;

int private_size;

int headroom;

/* service instances */
int (*init)(struct LHP_s *lhp);
void (*cleanup)(struct LHP_s *lhp);

/* connection management */
int (*connect)(struct LHP_s *lhp, struct sockaddr *remote_addr);
int (*passive)(struct LHP_s *lhp, struct sockaddr *local_addr);
void (*close)(struct LHP_s *lhp, int reason);

/* data transfer */
int (*send)(struct LHP_s *lhp, struct sk_buff *skb);
int (*receive)(struct LHP_s *lhp, struct sk_buff **skb);

/* options */
int (*setoption)(struct LHP_s *lhp, int name, void *optval, int optlen);
int (*getoption)(struct LHP_s *lhp, int name, void *optval, int *optlen);

/* used by LHP registry */
struct LHP_provider_s *next;
int refcount;

};

struct LHP_s {

int state;

struct LHP_provider_s *provider;
void *provider_private;

struct LHP_user_s *user;
void *user_private;

/* used by passive instances */
struct LHP_user_s *child_user;
int backlog;

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 21

TU Berlin

};

/*
* provider registry
*
*/

enum {
LHP_PROVIDER_TKN = 1,
LHP_PROVIDER_SIEMENS = 2,
LHP_N_PROVIDERS

};

extern int LHP_register_provider(struct LHP_provider_s *provider);
extern void LHP_unregister_provider(struct LHP_provider_s *provider);
extern struct LHP_provider_s *LHP_lookup_provider(int provider, int type);

/*
* service instances
*
*/

extern int LHP_create(int provider, int type, struct LHP_user_s *user, int allocation,
struct LHP_s **lhp);

extern void LHP_release(struct LHP_s *lhp);

/*
* connection management
*
*/

extern int LHP_connect(struct LHP_s *lhp, struct sockaddr *remote_addr);
extern void LHP_connect_confirm(struct LHP_s *lhp);
extern int LHP_passive(struct LHP_s *lhp, struct sockaddr *local_addr, int backlog,

struct LHP_user_s *child_user);
extern int LHP_connect_indication(struct LHP_s *lhp, struct LHP_s *new);
extern void LHP_disconnect_indication(struct LHP_s *lhp, int reason);

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 22

TU Berlin

extern void LHP_close(struct LHP_s *lhp, int reason);

/*
* data transfer
*
*/

static inline void LHP_send_ready(struct LHP_s *lhp)
{
if (lhp->user && lhp->user->send_ready)
lhp->user->send_ready(lhp);

}

static inline void LHP_receive_ready(struct LHP_s *lhp)
{
if (lhp->user && lhp->user->receive_ready)
lhp->user->receive_ready(lhp);

}

extern int LHP_send(struct LHP_s *lhp, struct sk_buff *skb);
extern int LHP_receive(struct LHP_s *lhp, struct sk_buff **skb);

/*
* options
*
*/

enum {
LHP_OPT_VENDOR_STRING = 1,
LHP_OPT_RTT = 2

};

static inline int LHP_setoption(struct LHP_s *lhp, int name, void *optval, int optlen)
{
if (lhp == NULL)
return -EINVAL;

return lhp->provider->setoption(lhp, name, optval, optlen);
}

static inline int LHP_getoption(struct LHP_s *lhp, int name, void *optval, int *optlen)
{

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 23

TU Berlin

if (lhp == NULL)
return -EINVAL;

return lhp->provider->getoption(lhp, name, optval, optlen);
}

/*
* skb allocation
*
*/

static inline struct sk_buff *LHP_alloc_skb(struct LHP_s *lhp,
unsigned int size, int allocation)

{
struct sk_buff *skb;

if (lhp == NULL)
return NULL;

skb = alloc_skb(size + lhp->provider->headroom, allocation);

if (skb != NULL)
skb_reserve(skb, lhp->provider->headroom);

return skb;
}

#endif

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 24

TU Berlin

Appendix B

Error Codes (excerpt from
include/asm-i386/errno.h)

#ifndef _I386_ERRNO_H
#define _I386_ERRNO_H

#define EPERM 1 /* Operation not permitted */
#define ESRCH 3 /* No such process */
#define EINTR 4 /* Interrupted system call */
#define EIO 5 /* I/O error */
#define ENXIO 6 /* No such device or address */
#define E2BIG 7 /* Arg list too long */
#define ENOEXEC 8 /* Exec format error */
#define EBADF 9 /* Bad file number */
#define EAGAIN 11 /* Try again */
#define ENOMEM 12 /* Out of memory */
#define EACCES 13 /* Permission denied */
#define EFAULT 14 /* Bad address */
#define EBUSY 16 /* Device or resource busy */
#define ENODEV 19 /* No such device */
#define EINVAL 22 /* Invalid argument */
#define ENFILE 23 /* File table overflow */
#define EMFILE 24 /* Too many open files */
#define EFBIG 27 /* File too large */
#define ENOSPC 28 /* No space left on device */
#define EDEADLK 35 /* Resource deadlock would occur */
#define ENOLCK 37 /* No record locks available */
#define ENOSYS 38 /* Function not implemented */
#define EWOULDBLOCK EAGAIN /* Operation would block */
#define ENOMSG 42 /* No message of desired type */
#define EIDRM 43 /* Identifier removed */
#define ECHRNG 44 /* Channel number out of range */

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 25

TU Berlin

#define ELNRNG 48 /* Link number out of range */
#define EUNATCH 49 /* Protocol driver not attached */
#define EBADE 52 /* Invalid exchange */
#define EBADR 53 /* Invalid request descriptor */
#define EBADRQC 56 /* Invalid request code */

#define ENODATA 61 /* No data available */
#define ETIME 62 /* Timer expired */
#define ENONET 64 /* Machine is not on the network */
#define EREMOTE 66 /* Object is remote */
#define ENOLINK 67 /* Link has been severed */
#define EADV 68 /* Advertise error */
#define ECOMM 70 /* Communication error on send */
#define EPROTO 71 /* Protocol error */
#define EBADMSG 74 /* Not a data message */
#define EOVERFLOW 75 /* Value too large for defined data type */
#define ENOTUNIQ 76 /* Name not unique on network */
#define EREMCHG 78 /* Remote address changed */
#define EUSERS 87 /* Too many users */
#define ENOTSOCK 88 /* Socket operation on non-socket */
#define EDESTADDRREQ 89 /* Destination address required */
#define EMSGSIZE 90 /* Message too long */
#define EPROTOTYPE 91 /* Protocol wrong type for socket */
#define ENOPROTOOPT 92 /* Protocol not available */
#define EPROTONOSUPPORT 93 /* Protocol not supported */
#define ESOCKTNOSUPPORT 94 /* Socket type not supported */
#define EOPNOTSUPP 95 /* Operation not supported on transport endpoint */
#define EPFNOSUPPORT 96 /* Protocol family not supported */
#define EAFNOSUPPORT 97 /* Address family not supported by protocol */
#define EADDRINUSE 98 /* Address already in use */
#define EADDRNOTAVAIL 99 /* Cannot assign requested address */
#define ENETDOWN 100 /* Network is down */
#define ENETUNREACH 101 /* Network is unreachable */
#define ENETRESET 102 /* Network dropped connection because of reset */
#define ECONNABORTED 103 /* Software caused connection abort */
#define ECONNRESET 104 /* Connection reset by peer */
#define ENOBUFS 105 /* No buffer space available */
#define EISCONN 106 /* Transport endpoint is already connected */
#define ENOTCONN 107 /* Transport endpoint is not connected */
#define ESHUTDOWN 108 /* Cannot send after transport endpoint shutdown */
#define ETIMEDOUT 110 /* Connection timed out */
#define ECONNREFUSED 111 /* Connection refused */
#define EHOSTDOWN 112 /* Host is down */
#define EHOSTUNREACH 113 /* No route to host */
#define EALREADY 114 /* Operation already in progress */

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 26

TU Berlin

#define EINPROGRESS 115 /* Operation now in progress */
#define EREMOTEIO 121 /* Remote I/O error */

#define ENOMEDIUM 123 /* No medium found */
#define EMEDIUMTYPE 124 /* Wrong medium type */

#endif

Copyright at Technical University
Berlin. All Rights reserved.

TKN-01-016 Page 27

