
Technical University Berlin

Telecommunication Networks Group

Validation of some Ensemble Flow
Congestion Management Control

Algorithms

Michael Savorić, Holger Karl
�
savoric,karl � @ee.tu-berlin.de

Berlin, January 2003

TKN Technical Report TKN-03-003

TKN Technical Reports Series

Editor: Prof. Dr.-Ing. Adam Wolisz

Abstract

In a current Internet end system the congestion and flow control of data streams is done individually
and separately for all data streams. Some of the data streams of an end system might be connected to
the same remote end system or to remote end systems in the same subnetwork. These data streams
form a (data stream) set. It is beneficial terms of improving the overall performance, i.e., throughput
and fairness, to establish a common congestion control between data streams of a data stream set
to continuously share network information between them. These jointly controlled data streams are
then combined into a (data stream) ensemble. In [6], we described one such common congestion
controller for TCP connections, called ensemble flow congestion management (EFCM) and show its
performance benefits.

An open question remained concerning the “aggressiveness” of this controller: Where the per-
formance benefits obtained by simply putting more packets onto the network than a corresponding
set of TCP connections would do — in essence, by violating congestion control principle? In this
technical report, we consider the algorithms of the current EFCM controller in more detail and show
that these algorithms are accurately chosen in terms of aggressiveness to the network. More pre-
cisely, we use the current aggregated congestion window size and the current aggregated slow start
threshold of an ensemble of � EFCM-controlled TCP connections and compare it with the aggregated
congestion window size and the aggregated slow start threshold of a virtual ensemble of � standard
TCP connections. We then analytically validate that under certain assumptions EFCM-controlled and
standard TCP connections have nearly the same aggregated congestion window size and nearly the
same aggregated slow start threshold, i.e., both controllers allow nearly the same overall number of
outstanding TCP segments for their TCP connections at any time. Therefore, EFCM-controlled TCP
connections are nearly as aggressive to the network as standard TCP connections.

Keywords: TCP, Congestion Control, Flow Control, Network Information Reuse, Common Conges-
tion Control

TU BERLIN

Contents

1 Introduction 2
1.1 Network information sharing in an Internet end system 2
1.2 Common congestion control in an Internet end system 2
1.3 Ensemble flow congestion management (EFCM) controller 3
1.4 Problem statement: Aggressiveness of EFCM compared to standard TCP 3

2 The EFCM control algorithms 5
2.1 The TCP variables jointly controlled by EFCM . 5
2.2 The EFCM control algorithms . 5

2.2.1 The network information reuse of the EFCM controller for a new TCP con-
nection . 6

2.2.2 The common congestion control of the EFCM controller for concurrent TCP
connections . 7

2.2.3 The pacing mechanism of the EFCM controller 8

3 Validation of some EFCM control algorithms 10
3.1 Introduction . 10
3.2 Standard TCP behavior after consecutive packet losses 11

3.2.1 Expected values for aggregated congestion windows and slow start thresholds 12
3.2.2 Relative behavior of TCP connections . 14

3.3 EFCM-controlled TCP behavior after consecutive packet losses 17
3.4 Comparison of standard TCP and EFCM-controlled TCP 18

3.4.1 Aggregated congestion window size . 19
3.4.2 Aggregated slow start threshold . 19

3.5 Summary . 21

4 Conclusion 23

A Source code 24

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 1

TU BERLIN

Chapter 1

Introduction

1.1 Network information sharing in an Internet end system

Standard TCP implementations perform flow and congestion control separately for each TCP con-
nection, in isolation from all other data streams of an end system. Some of the TCP connections of
an end system might be directed to the same remote end system or to remote end systems in the same
subnetwork. These TCP connections form a set.

As connections of such a set have essentially the same destinations, their packets are likely to use
the same data paths within the Internet and hence encounter the same congestion situations during
their transmission. It might therefore be advantageous in terms of improving the overall performance
of the TCP connections, i.e., the throughput and fairness, to share network information among the
TCP connections of belonging to such a set.

In the simplest case, this information sharing happens once: Network information can be shared
once between some existing (or recently closed) TCP connections and a new TCP connection. In this
case, the available network information is reused to initialize the flow, congestion, and error control
variables of the new TCP connection with more adequate values than it is proscribed by standard
TCP. However, such one-time information sharing is not the only possibility; a more advanced one is
discussed in the next section.

1.2 Common congestion control in an Internet end system

An extension of the one-time network information reuse is the continuous network information shar-
ing among connections belonging to the same set to jointly control them; this approach is called com-
mon congestion control. TCP connections that actively share network information form an ensemble
(in a sense, a set describes the potential to become an ensemble). The algorithms that determine
which, when, and how network information among the TCP connections of an ensemble is shared
form the actual controller of a common congestion control approach.

A common congestion controller’s job can be divided into two main tasks: First, a common
congestion controller has to manage the one-time network information sharing between existing (or
recently closed) TCP connections of an ensemble and a new TCP connection joining this particular
ensemble. This task is similar to the controller’s job in existing pure network information reuse
approaches like the ensemble or temporal TCP control block interdependence (TCBI) approaches [8,

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 2

TU BERLIN

5, 7]. Second, a common congestion controller is responsible for the continuous network information
sharing between concurrent TCP connections of an ensemble to reach a common congestion control
for this ensemble.

These two tasks can be fulfilled in a number of different ways. The main ideas and methods of the
four most relevant approaches have been described in [4]. One of these approaches, the ensemble TCP
(E-TCP) [2], has been identified as a good basis for our new common congestion control approach
called ensemble flow congestion management (EFCM).

1.3 Ensemble flow congestion management (EFCM) controller

In [6], we present the design goals and describe the algorithms of the EFCM controller. The EFCM
approach supports standard transport layer interfaces, i.e., sockets. Therefore, EFCM is transparent
to all applications and Internet services running on the end system. In previous work, we have shown
that the EFCM controller indeed is beneficial for the performance of an ensemble and improves upon
the behavior of a set of standard TCP connections. In particular, EFCM not only improves the total
throughput of an ensemble, it also ensures that the connections within the ensemble are allocated a
fair share of this throughput.

An open question so far is whether these benefits are achieved by behaving more aggressively
than standard TCP would do in corresponding situations—which would not be acceptable for a proper
coexistence of EFCM and TCP. The intuition behind “aggressiveness” is the amount of traffic that a
protocol is allowed to put on the network in a given situation (essentially captured by a connection’s
congestion window size and slow start threshold).

1.4 Problem statement: Aggressiveness of EFCM compared to stan-
dard TCP

The first question to consider is the level of acceptable aggressiveness of a common congestion con-
troller. The E-TCP [2] approach, for example, requires that an ensemble of � jointly controlled TCP
connections must be no more aggressive to the network than a single standard TCP connection. In
contrast, the algorithms of the EFCM controller are designed to ensure that an ensemble of � jointly
controlled TCP connections will be no more aggressive to the network than the entire set of � sepa-
rately controlled standard TCP connections.

As it turns out, simply stating that EFCM is no more aggressive than TCP (in this sense) is not
strictly true. The details are explained in the following chapters, but the intuition is as follows: A set
of TCP connections can consist of connections of widely differing aggressiveness. Some connections
might have a large current bandwidth allocation (relative size of congestion window), others a small
one. If, in such an unbalanced case, an aggressive connection suffers a packet loss, it will reduce its
aggressiveness (in particular, the congestion window size). As the total aggressiveness of the set is
largely determined by the aggressive connections, the aggregated aggressiveness is vastly reduced.
Compared against such a case, an EFCM controller would indeed be more aggressive; it would not
reduce the amount of packets to be put on the network as much as TCP would.

This, however, is not a fair comparison to make. As EFCM ensures fairness among TCP con-
nections, its aggressiveness should also be compared to case where the TCP connections fairly share
their bandwidth. While standard TCP has no means to ensure such fairness, it is nevertheless a valid,

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 3

TU BERLIN

legal, and possible behavior of a set of TCP connections which can happen by pure chance. Hence,
any legal behavior of TCP in such a situation is also a legal—for the network acceptable—behavior
of a common congestion controller. In fact, we will show that, compared against a fair-share scenario,
EFCM is about as aggressive to the network as a set of standard TCP connections.

Moreover, we will show that such a fair sharing is indeed a desirable behavior, even from a
throughput point of view. Suppose any distribution of relative throughput share for a set of standard
TCP connections is given. After packet losses occur, the total amount of packets to be sent on the
network is reduced, depending on which connections are hit by packet losses. How big is the expected
value of packets that can be sent to the network after a number of packet losses? We shall show that
this expected value is maximized if, initially, all connections have the same relative share of outstand-
ing packets. A large number of packets that a connection set is allowed to send will speed up the
transmission of data. Hence, fairness is not only a value in itself but also beneficial for performance.

In summary, our paper uses the following line of argument: First, fairness among standard TCP
connections is beneficial for performance. Second, EFCM ensures that an ensemble behaves in a fair
manner. Third, an EFCM-controlled ensemble are about as aggressive as a corresponding, fair set of
TCP-controlled connections.

The remainder of this technical report is organized as follows: Chapter 2 recapitulates and extends
the description of the algorithms of the current EFCM controller from [6]. In Chapter 3, we formally
define aggressiveness, show that fairness is optimal for standard TCP connections, and demonstrate
that EFCM ensembles are about as aggressive as standard TCP connections. Since it is impossible
to give an exact analytic model for the dynamic behavior of a set of standard TCP connections, this
result is valid only under certain assumptions. Chapter 4 concludes this technical report.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 4

TU BERLIN

Chapter 2

The EFCM control algorithms

The current version of the EFCM controller [6] performs both one-time network information reuse
between existing TCP connections and a new TCP connection similar to the ensemble TCBI approach
[7] as well as a common congestion control between concurrently existing TCP connections of an
ensemble. In this chapter, we describe the algorithms of the current EFCM controller in detail.

2.1 The TCP variables jointly controlled by EFCM

TCP uses the following variables for congestion control: congestion window size (CWND), slow start
threshold (SSTHRESH), round trip time (RTT), smoothed round trip time (SRTT), and round trip time
variance (RTTVAR). The first two TCP control variables restrict the load a single TCP connection
can send into the network, the last three TCP control variables lead to adequate retransmission timer
values for TCP segments sent from a single TCP connection.

The EFCM controller jointly controls the congestion window sizes, the slow start thresholds, the
smoothed round trip times, and the round trip time variances of the TCP connections in an ensem-
ble. Hence, the EFCM controller restricts the load the TCP connections of an ensemble can send
into the network. In addition, all TCP connections of an ensemble obtain the same value for their
retransmission timer.

2.2 The EFCM control algorithms

In the next two sections, we describe the proposed algorithms of the EFCM controller for its two
tasks, i.e., initializing the jointly controlled TCP variables of new TCP connections and updating the
jointly controlled TCP variables of concurrent TCP connections. To avoid a bursty sending behavior
of jointly controlled TCP connections, the EFCM controller uses a rate-based pacing mechanism for
consecutive TCP segments. This rate-based pacing mechanism is described in a following section. In
addition, the EFCM controller is equipped with a joint ack clocking mechanism for every ensemble
of TCP connections. This ensemble ack clocking (EAC) allows a fair partitioning of the sent but
currently not acknowledged TCP segments, i.e., the outstanding TCP segments, between the TCP
connections in an ensemble.

In the following, the values
�����������
	
	
	

indicate points in time with
�����
������	
	
	

where events
occur which have an effect on jointly controlled TCP variables of an ensemble. These ensemble

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 5

TU BERLIN

events are: a TCP connection enters or leaves the ensemble, an acknowledgment arrives at a TCP
connection of the ensemble, or a packet loss event (retransmission timer timeout, dupack) occurs in
one of the TCP connections in the ensemble.

2.2.1 The network information reuse of the EFCM controller for a new TCP connec-
tion

If useful network information is available for a new TCP connection, it will reuse this network in-
formation and will start with more adequate values for the load the network can cope with and the
retransmission timer value. The algorithms of the EFCM controller for the network information reuse
between ��� � existing TCP connections of an ensemble and a new TCP connection joining this
ensemble are described in the following list. Here,

���
is the time when the new connection is estab-

lished,
����� �

is the last point in time where the jointly controlled TCP variables in the ensemble have
been adapted due to an ensemble event.

Congestion window size: The EFCM controller computes the sum of all current congestion window
sizes of the existing TCP connections of the ensemble plus the standard initial congestion win-
dow size of 2, representing the new TCP connection. This sum is used to calculate a fair share,
i.e., an arithmetic mean value, of the congestion window size for the TCP connections in the
ensemble including the new one. All these TCP connections of the ensemble are assigned this
fair share as their new current congestion window size:

CWND AGG � �	��

� ����� � �� �
� � CWND

�
� ����� �

����� ��� � �
�
�
CWND

�
� ����

� CWND AGG � ����

�
(2.1)

Slow start threshold: The EFCM controller computes the sum of all current slow start thresholds of
the existing TCP connections of the ensemble plus the standard initial slow start threshold 64,
representing the new TCP connection. This sum is used to calculate a fair share of the slow start
threshold for all TCP connections in the ensemble including the new one. All TCP connections
are assigned this slow start threshold fair share as their new current slow start threshold:

SSTHRESH AGG � �	��
�� "!#� � � �� � � � SSTHRESH

�
� ����� �

����� �$� � �
�
�
SSTHRESH

�
� ����
�� SSTHRESH AGG � �	��

�
(2.2)

Smoothed round trip time: The EFCM controller uses the current value of an aggregated smoothed
round trip time of the existing TCP connections of an ensemble as the initial smoothed round
trip time of the new TCP connection. If the new TCP connection is the only connection in
its ensemble then the initial smoothed round trip time of the new TCP connection is set to the
standard value:

SRTT � � ����

�
SRTT AGG � �	��� �
 (2.3)

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 6

TU BERLIN

Round trip time variance: The EFCM controller uses the current value of an aggregated round trip
time variance of the existing TCP connections of an ensemble as the initial round trip time
variance of the new TCP connection. If the new TCP connection is the only connection in
its ensemble then the initial round trip time variance of the new TCP connection is set to the
standard value:

RTTVAR� � ����

�
RTTVAR AGG � �	� � �
 (2.4)

2.2.2 The common congestion control of the EFCM controller for concurrent TCP
connections

Whenever a standard TCP implementation would change the value of one of the four jointly controlled
variables of the � TCP connections in an ensemble, EFCM uses this change to trigger updates to this
variable to all TCP connections within the same ensemble, according to the following rules:

Congestion window size: After every change of the congestion window size of one of the existing
TCP connections in an ensemble, e.g., TCP connection

�
, an aggregated congestion window

size for this ensemble is computed by adding all current congestion window sizes of the TCP
connections in the ensemble. The computation for the individual connection follows standard
TCP rules. This value is used to calculate a fair share of congestion window size. This conges-
tion window size fair share is the new congestion window size of every TCP connection in an
ensemble:

CWND� � ����
�� ���� ��� CWND� � ����� �
	� � if an ACK arrived, SS

CWND� � ����� �
	� 1
CWND� (��� � �) if an ACK arrived, CA�

a packet loss is detected

(2.5)

CWND AGG � ����

�
CWND� � ����
 � ��	� � � ��
 �
�� �CWND

�
� ����� �

��� � ��� � �
�
�
CWND

�
� ����

� CWND AGG � �	��

�
(2.6)

Slow start threshold: After every change of the slow start threshold of one of the existing TCP
connections in an ensemble, e.g., TCP connection

�
, an aggregated slow start threshold for this

ensemble is computed by adding all current slow start thresholds of the TCP connections in the
ensemble. This value is used to calculate a fair share of slow start threshold. This value is the
new slow start threshold of every TCP connection in an ensemble:

SSTHRESH� � ����
���� SSTHRESH� � ����� �
 if an ACK arrived������� CWND� � ����� �
���� � ��� a packet loss is detected
(2.7)

SSTHRESH AGG � �	��
 �
SSTHRESH� � ����
�� ��	� � � ��
 �
�� �SSTHRESH

�
� ����� �

����� ��� � �
�
�
SSTHRESH

�
� ����
 � SSTHRESH AGG � ����

�
(2.8)

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 7

TU BERLIN

Smoothed round trip time: After every change of the smoothed round trip time of one of the � TCP
connections in an ensemble, e.g., TCP connection

�
, an aggregated smoothed round trip time

of this ensemble is updated by a weighted calculation of � � � �
�� � times the last value of the
aggregated smoothed round trip time plus

� �
� times the new smoothed round trip time. All

TCP connections in an ensemble get this calculation result of the smoothed round trip time as
their new smoothed round trip time:

SRTT AGG � �	��
 � � � �
�

� SRTT AGG � ����� �
	� �
�
� SRTT� � ����
����� �$� � �

�
�
SRTT

�
� ����
 �

SRTT AGG � �	��
 (2.9)

Round trip time variance: After every change of the round trip time variance of one of the � TCP
connections in an ensemble, e.g., TCP connection

�
, an aggregated round trip time variance

of this ensemble is updated by a weighted calculation of � � � �
�� � times the last value of the
aggregated round trip time variance plus

� �
� times the new round trip time variance. All TCP

connections in an ensemble get this calculation result of the round trip variance as their new
round trip time variance:

RTTVAR AGG � �	��

� � � �
�

� RTTVAR AGG � �	��� �
�� �
�
� RTTVAR� � ����
����� � � � �

�
�
RTTVAR

�
� ����

�

RTTVAR AGG � �	��
 (2.10)

If one of the TCP connections in an ensemble is affected by a packet loss, all TCP connections of
the ensemble will fairly reduce their congestion window size and slow start threshold to the newly
calculated values.

If one of the TCP connections leaves the ensemble, i.e., the TCP connection
�

has been closed,
the current aggregated congestion window size and the current aggregated slow start threshold are
fairly shared among the remaining � � � TCP connections in the ensemble.

CWND AGG � ����
��
CWND AGG � ����� �
����� �$� � �

�
� ���� � �

CWND

�
� ����
�� CWND AGG � ����

� � � (2.11)

SSTHRESH AGG � �	��
��
SSTHRESH AGG � �	� � �
����� � � � �

�
� ���� � �

SSTHRESH� � ����
�� SSTHRESH AGG � �	��

� � � (2.12)

2.2.3 The pacing mechanism of the EFCM controller

The pacing mechanism used in the EFCM controller is implemented by using a rate-based mecha-
nism: Every TCP connection in an ensemble can send at most two TCP segments in a burst. The time���

between two consecutive packet bursts of a TCP connection is calculated by using the aggregated
smoothed round trip time and the aggregated congestion window size of an ensemble:

��� � ����
��
	 pacing
� SRTT AGG � ����
�� CWND AGG � ����
 (2.13)

In the current version of the EFCM controller the factor
	

is set to the fixed value 2 to send at least
CWND AGG TCP segments during one (smoothed) round trip time. Simulation results [6] have

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 8

TU BERLIN

shown that this value is too conservative for shorter round trip times, i.e., round trip times much
shorter than 100 ms. In these cases, the factor

	
should be set to smaller values, e.g., 1 or even lower.

In fact, the optimal value for the factor
	

is a function of the current (smoothed) round trip time, i.e.,

	 �
	 � SRTT � ����

 	 (2.14)

Further research should be done on this topic to find an appropriate mathematical expression for
	

.

Evidently, the EFCM algorithms impose some overhead in time and space. A rough estimate of the
additional time and space complexity of the EFCM controller compared to standard TCP is given in
[6].

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 9

TU BERLIN

Chapter 3

Validation of some EFCM control
algorithms

3.1 Introduction

In this chapter, we analytically show that the EFCM control algorithms are nearly as aggressive to the
network as a set of � standard TCP connections. For this analysis, we use the aggregated congestion
window size and the aggregated slow start threshold, i.e, the maximum number of (future) outstand-
ing TCP segments, of the ensemble or the set of TCP connections as a metric for aggressiveness to
the network. More specifically, we are interested in the number of packets that either a set of standard
TCP connections or a corresponding ensemble can inject into the network. We capture this intuitive
notion formally by considering the expected values of the aggregated congestion window and slow-
start threshold for a set or an ensemble. We will show that the difference between these two values
for either the standard or the EFCM-controlled case is small. Formally:

Definition 1 (Virtual ensemble). A set of � TCP connections that could form an ensemble if it were
under EFCM control is called a virtual ensemble of size � .

Definition 2 (Aggregated congestion window and slowstart threshold). For a virtual ensemble of
size � , the virtual aggregated congestion window and virtual aggregated slowstart threshold are the
sum of the individual values for each connection.

CWND AGG ���
� � �� � � � CWND

�
(3.1)

SSTHRESH AGG ���
� � �� � � � SSTHRESH

�
(3.2)

Definition 3 (Aggressiveness). Two flow/congestion control mechanisms are said to have the same
aggressiveness if, starting from the same aggregated congestion window and slowstart threshold and
experiencing the same sequence of acknowledgment arrivals or packet loss events, their aggregated
congestion window and slowstart threshold are still identical.

If they are not identical, the difference in aggregated congestion window and slowstart threshold
is a measure of their difference in aggressiveness.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 10

TU BERLIN

We intend to show that EFCM only marginally differs in aggressiveness from standard TCP.
To simplify our investigation, we do not consider the influence of the pacing and the ensemble ack

clocking mechanism of the EFCM controller (cf. Chapter 2) on the aggregated congestion window
size or on the aggregated slow start threshold of � jointly controlled TCP connections. We also
disregard the algorithms of the EFCM controller that calculate the aggregated smoothed round trip
time and the aggregated round trip time variance for these TCP connections.

Aggressiveness after acknowledgment arrival Looking at the description of the EFCM control
algorithms from the previous chapter, when an acknowledgment arrives, standard TCP and EFCM
perform the same operations on the values of congestion window size and slowstart threshold for a
single connection. The aggregated congestion window size of � EFCM-controlled and of � standard
TCP connections is increased by at most one, depending on the current aggregated slow start threshold
of the ensemble or the slow start threshold of the TCP connection in the set which receives this TCP
acknowledgment. This also holds if a number of acknowledgments arrive in a row.

Hence, after an acknowledgment for a so far unacknowledged TCP segment has arrived, the
EFCM controller is as aggressive to the network as standard TCP.

Aggressiveness after packet loss event In the case of a single or multiple packet loss event like
duplicated acknowledgments or a retransmission timer timeout, the behavior of standard TCP is much
more complicated and the comparison with EFCM case is not easy. The remaining sections of this
chapter are devoted to answer this question.

In our investigation of standard TCP and EFCM-controlled TCP, we only consider TCP connections
which have always TCP segments to send and which have as much outstanding TCP segments as
they are allowed to send according to their congestion window size. For simplicity in the following
mathematical expressions, we assume that a packet loss event reduces the congestion window size of a
TCP connection to the smallest possible value 1, i.e., we do not consider features like fast retransmit
or fast recovery [1, 3] of current TCP implementations like TCP Newreno. Otherwise, we have
to adapt the following mathematical expressions that we can distinguish between different possible
packet loss events and their probabilities. This will be considered in a future version of this technical
report.

In the following sections, the values
��� �������
	
	
	

indicate points in time with
��� � ��� � 	
	
	

. We start
our investigation in

���
and consider the points in time

���
where

�
consecutive packet loss events occur

which have an effect on TCP variables in the set of standard TCP connections or on jointly controlled
TCP variables in an ensemble. During this packet loss event burst of length

�
, no acknowledgments

occur in the meantime. These points in time are used as an index to congestion window and slowstart
threshold variables, i.e., we will use variables like CWND AGG � �

� � � �
 etc. .

3.2 Standard TCP behavior after consecutive packet losses

For the behavior of a set of standard TCP connections, we have to establish two results: one are
expressions of the expected values for (aggregated) congestion windows and slow start threshold, the
second is a consideration about how the relative behavior of these connections impacts the expected

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 11

TU BERLIN

value of congestion window / slow start threshold after a number of consecutive packet loss events
occur.

3.2.1 Expected values for aggregated congestion windows and slow start thresholds

We start our investigation of a set of � standard TCP connections at time
� �

. After a packet loss event,
e.g., a retransmission timer timeout, at time

� �
in TCP connection

�
of the set, the basic algorithms

for the congestion window size and slow start threshold computation in standard TCP work as follows
[1]:

��� � ��� � �
�
�
CWND

�
� ���

� � � � � �

CWND

�
� � �
 ���� � (3.3)

����� ��� � �
�
�
SSTHRESH

�
� ���

� � � ��� � CWND

�
� � �
���� � ��� � � �

SSTHRESH

�
� � �
 ���� � (3.4)

In the following, we investigate how the aggregated congestion window size and the aggregated slow
start threshold of a set of � standard TCP connections decreases after a burst of

�
consecutive packet

loss events occurs. For the analysis of standard TCP, we use a combinatorial model that describes
how the

�
consecutive packet loss events are distributed over the � standard TCP connections of the

set. For this combinatorial model, we assume that� all congestion window sizes CWND

�
� � �
 and slow start thresholds SSTHRESH

�
� � �
 of the set

of � TCP connections are integers,� the probability � for each outstanding TCP segment to get lost is equal to all other outstanding
TCP segments of the set of � standard TCP connections,� all time-dependencies regarding the point in time when each of the outstanding TCP segments is
sent and when a packet loss event that we can assign to this TCP segment, e.g., a retransmission
timer timeout, will occur are neglected.

Under these assumptions, we can use an urn model that gives us probabilities for the distribution of
�

consecutive packet loss events among � TCP connections in a set: If CWND AGG ���
� � � �
 TCP seg-

ments are outstanding, the probability � �
 �
 � , � � � � � , � ��� � � � �
max

�
CWND AGG ���

� � � �
 ,
that TCP connection

�
is affected by

�
of the

�
consecutive packet loss events, follows the hypergeo-

metrical distribution:

� �
 �
 � ��� CWND

�
� � �
� � � � CWND AGG � �

� � � �
 � CWND

�
� � �
� � � �

� CWND AGG ���
� � � �
� � 	

(3.5)

The analogy for this formula is the following problem: suppose there are CWND

�
� � �
 red balls and

CWND AGG ���
� � � �
 � CWND

�
� � �
 blue balls in an urn. What is the probability that red appears

�
times if balls are drawn

�
times without replacement?

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 12

TU BERLIN

The probability that each TCP connection
�

of the � TCP connections in the set is affected by exactly� �
of the

�
consecutive packet loss events,

� ��� � � � � � � � �
, is a generalized hypergeometrical

distribution:

� � � � � � �
	
	
	�� � �
�� �
CWND

� � � �
� � � � 	
	
	 � � CWND � � � �
� � �
� CWND AGG ���

� � � �
� � 	
(3.6)

The analogy for this formula is the following problem: suppose there are CWND AGG � �
� � � �

balls of � different colors in an urn, for color
�

we have CWND

�
� � �
 balls in the urn. What is the

probability that a specific color
�

appears
�

times if balls are drawn
�

times without replacement?

Starting from these formulas, we want to deduce expected values for the aggregated congestion win-
dow size and the aggregated slow start threshold after every of the

�
consecutive packet loss events.

After
�

consecutive packet loss events, the expected value of the congestion window size
CWND

�
� � �
 of TCP connection

�
can be computed as follows:

E
�
CWND

�
� � �
���� � �
 �
 � � CWND

�
� � �
��CWND � ����� ��� � � �

�
 �
 � � � � � �
 �
 � � CWND

�
� � �
 � � � � � �
 �
 �
 	 (3.7)

After
�

consecutive packet loss events, the expected value of the aggregated congestion window size
CWND AGG ���

� � � �
 of the set of � TCP connections can be computed as follows:

E 	 CWND AGG � �
� � � �
�
 � �����
�������
���� � �� � � � � ���
	
	
	 � � �
 ���� �

��� � � ��� � ��� � � � �
��� � � ��� � � � � CWND

�
� � �
���

� �� � � � E
�
CWND

�
� � �
�� 	 (3.8)

Equation (3.8) shows that the expected value of the aggregated congestion window size after
�

con-
secutive packet loss events can be calculated in two different ways: by a sum over all possibilities of
valid packet loss distributions over the � TCP connections in the set or by a sum over the expected
congestion window sizes of each of the � TCP connections in the set.

With the same considerations, we can deduce formulas for the expected values of the slow start
threshold of a single TCP connection and the aggregated slow start threshold of the set of � TCP
connections:

E
�
SSTHRESH

�
� � �
�� � � �
 �
 � � SSTHRESH

�
� � �
��� �
 �
 � � ����� � CWND

�
� � �
���� � ��� � � � � � � � �
 �
 � � � �
 �
 �
 (3.9)

and

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 13

TU BERLIN

E 	 SSTHRESH AGG ���
� � � �
�
 � �� ��
 ������
 ��� � �� � � � � ���
	
	
	 � � �
 �

�� �
��� � � ��� � � � � � � �

��� � � ��� � � � � ������� CWND

�
� � �
���� � ����� �

��� � � ��� � � � � SSTHRESH

�
� � �
���

� �� � � � E
�
SSTHRESH

�
� � �
�� 	 (3.10)

3.2.2 Relative behavior of TCP connections

These values for the expected aggregated congestion window size and slow start threshold serve as a
starting point for a consideration about the relative fairness of � TCP connections.

For a set of � standard TCP connections, there is no mechanism that would ensure fairness be-
tween them: one connection could have a large amount of outstanding packets, another one only a
small number. In essence, the aggregated congestion window size and slow start threshold can be
arbitrarily shared between this set of TCP connections. Essentially, any combination of congestion
window sizes CWND

�
� � �
 and slow start thresholds SSTHRESH

�
� � �
 that meet the following equa-

tions ��� � ��� � �
�
� ���

CWND

�
� � �
 � CWND AGG ���

� � � �
 � � � � �
 � (3.11)

CWND AGG ���
� � � �
�� �� � � � CWND

�
� � �
 (3.12)

��� � ��� � �
�
� � �

SSTHRESH

�
� � �
 � SSTHRESH AGG � �

� � � �
 � � � � � � �
 �
SSTHRESH AGG � �

� � � �
�� �� � � � SSTHRESH

�
� � �
 (3.13)

represents a legal instance of TCP behavior. But how do these values influence the behavior of a
set of connections after a burst of

�
consecutive packet loss events occurred? More specifically:

Starting from any fixed set of CWND

�
� � �
 ’s and SSTHRESH

�
� � �
 ’s, how does the expected value

for aggregated congestion window sizes and slow start threshold look like after
�

consecutive packet
loss events? We intend to show that the expected aggregated congestion window size after errors
is maximized in nearly all cases if �CWND

�
� � �
 � CWND� � � �
 � � �

—the result does not hold in
general as there are some extreme combinations of values for which this property is slightly violated;
numbers are given later.

In addition, we consider the overall expected aggregated congestion window size:

E 	 CWND AGG ���
�
 � �

max�
� � �����

� � � � � � E 	 CWND AGG � �
� � � �
�
 (3.14)

� �
max�
� � � gmp � � � � � �
 � E 	 CWND AGG ���

� � � �
�
 � (3.15)

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 14

TU BERLIN

where � is the packet loss probability � in the Internet and
�

is the random variable representing the
number of consecutive packet losses —

�
is geometrically distributed with parameter � , ��� � � �

� � �
gmp � � � � � �
 — and

�
max

�
CWND AGG ���

� � � �
 is the maximum number of outstanding
and hence potentially lost packets. We will show that this overall expected value is maximized if
�CWND

�
� � �
 � CWND� � � �
 � � � , ��� � � � ��� � � � � � .

We will also show that the expected aggregated slow start threshold after a burst of
�

packet
loss events is independent from the partition of the current aggregated slow start threshold
SSTHRESH AGG � �

� � � �
 if CWND

�
� � �
 � CWND� � � �
 , ��� � � � �$� � � � � � .

Lemma 1. The expected aggregated congestion window size after
�

packet loss events
� �

CWND AGG � �
� � � �
�� is maximized in nearly all cases if �CWND

�
� � �
 � CWND� � � �
 � � �

.
The expected overall aggregated congestion window size E

�
CWND AGG ���

� �
is maximized if

�CWND

�
� � �
 � CWND� � � �
 � � � , ��� � � � ��� � � � � � .

Proof. We have � TCP connections in our set, each of them with a current congestion window size
CWND

�
� � �
 , �$� � � � , and the current aggregated congestion window size CWND AGG � �

� � � �
��
CWND

� � � �
�� 	
	
	 �
CWND � � � �) of the set. What we investigate is how the expected aggregated

congestion window size of the set of � TCP connections is influenced by
�

consecutive packet loss
events,

� � � � �
max

�
CWND AGG ���

� � � �
 , depending on the choice of the current congestion
window sizes, i.e., we consider the following mathematical expression:

E 	 CWND AGG ���
� � � �
�
 ��� � � � CWND

� � � �
 �
	
	
	�� CWND � � � �)
 (3.16)

To reach this aim, we consider only two TCP connections of the whole set, w.l.o.g., TCP connection
1 and TCP connection 2, in more detail. These two TCP connections have an aggregated congestion
window size

CWND AGG � ���
� � � �
 � CWND

� � � �
	� CWND ��� � �
 (3.17)

and can be affected by
�

consecutive packet loss events, with
� � � � �

�max
�

CWND AGG � ���
� � � �
 .

We investigate how their expected aggregated congestion window size

E 	 CWND AGG � ���
� � � �
�
 ��� � � � CWND

� � � �
 � CWND � � � �

 (3.18)

after
�

consecutive packet loss events depends on the choice of the current congestion window sizes
CWND

� � � �
 and CWND � � � �
 .
The probability � �
 � that

�
of the

�
packet loss events occur in TCP connection 1 and

� � � of the
�

packet loss events occur in TCP connection 2, is:

� �
 � � � CWND
� � � �
� � � � CWND ��� � �
� � � �

� CWND
� � � �
 � CWND � � � �
� � (3.19)

Let
� �

be the point in time where the
�
-th consecutive packet loss event occurs. The expected aggre-

gated congestion window size E 	 CWND AGG � � �
� � � �
�
 after

�
packet loss events, is:

E 	 CWND AGG � ���
� � � �
�
 � � �
 � � � � � CWND � � � �

��� �
 � � � � � CWND

� � � �

	� � � � � � � �
 � � � �
 �
 (3.20)

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 15

TU BERLIN

In the following, we fix the current aggregated congestion window size CWND AGG � � �
� � � �
 and

investigate how the expected aggregated congestion window size E
�
CWND AGG � ���

� � � �
�� changes
under different partitions of CWND AGG � � �

� � � �
 , i.e., we consider all possible cases���
CWND

� � � �
 � CWND ��� � �
 � CWND AGG � � �
� � � �
 � � �

CWND
� � � �
	� CWND � � � �
 � CWND AGG � ���

� � � �
 (3.21)

Numerical calculations (see Appendix A) show that in nearly all cases the expected aggre-
gated congestion window size E

�
CWND AGG � � �

� � � �
�� after
�

consecutive packet loss events
reaches its maximum, if CWND

� � � �
 �
CWND � � � �
 for even CWND AGG � ���

� � � �
 or
�CWND

� � � �
 � CWND � � � �
 � � �
for odd CWND AGG � ���

� � � �
 . There exist only a few other
partitions of the current aggregated congestion window size which have a slightly larger expected
aggregated congestion window size after a specific number of consecutive packet loss events. For
example, if we have a current aggregated congestion window size of 32 and consider two partitions� �$� � CWND

� � � �
 � � �
CWND � � � �
 � �

and
�
�
� � � ��� �
 , the expected aggregated conges-

tion window size after 17 consecutive packet loss events is exactly 2 for partition
� �

and �
� 	 � �����

as
the maximum possible value for partition

�
� .

But

E 	 CWND AGG � ���
�
 � ���

max�
� � � gmp � � � � � �
 � E 	 CWND AGG � ���

� � � �

 � (3.22)

with
�
�max

�
CWND AGG � � �

� � � �
 , is maximized only if CWND
� � � �
 � CWND � � � �
 for even

CWND AGG � ���
� � � �
 or if �CWND

� � � �
 � CWND � � � �
 � � �
for odd CWND AGG � � �

� � � �
 For
the example above and an exemplarily chosen packet loss probability of � � � � �	� in the Internet, we
get �

� � 	�
�
�
��
for partition

� �
as the maximum possible value and �

� � 	�
�
����
for partition

�
� as the

third smallest possible value. Of course, in this consideration, the expected value is dominated by the
value for the error-free case as the packet loss probability is here rather small.

Therefore, to reach the maximum expected overall aggregated congestion window size the current
aggregated congestion window size of the two TCP connections has to be fairly partitioned, e.g.,
CWND

� � � �
�� CWND � � � �
 for even CWND AGG � � �
� � � �
 . Since we have chosen the two TCP

connections w.l.o.g., this result is valid for any pair of two TCP connections of the set. Hence, the
expected overall aggregated congestion window size E

�
CWND AGG ���

� �
reaches its maximum only

for CWND
� � � �
 � 	
	
	 �

CWND � � � �) if CWND AGG ���
� � � �
 is divisible by � without remainder

or for
��� � � � ��� � � � �

�
� �CWND

�
� � �
 � CWND��� � �
 � � � in all other cases.

Lemma 2. In the special case CWND

�
� � �
 � CWND��� � �
 � CWND � � �
 , ��� � � � � � � � � �

� ,
the expected value of the aggregated slow start threshold after

�
consecutive packet loss events is

independent of the partition of the current aggregated slow start threshold SSTHRESH AGG ���
� � � �
 .

Proof. In the case of a fairly shared current aggregated congestion window size, the probability that
TCP connection

�
is affected by

�
of the

�
packet loss events is equal to the probability that TCP

connection
�

is affected by
�

of the
�

packet loss events, i.e. (cf. Equation 3.5):� � � � � ��� � � � �
�
� � �
 �
 � � � �
 �
 � � � �
 � (3.23)

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 16

TU BERLIN

It follows (cf. Equations 3.9 and 3.10):

E � SSTHRESH AGG ���
� � � �
���� �� � � � E

�
SSTHRESH

�
� � �
����

�� � � � � � �
 � � SSTHRESH

�
� � �
	� � �
 � � ������� CWND � � �
���� � ����� � � � � � � �
 � � � �
 �

��

� �
 � � �� � � � SSTHRESH

�
� � �
�� � �
 � � � � ������� CWND � � �
���� � ����� � � � � � � � � �
 � � � �
 �
 �� �
 � � SSTHRESH AGG ���

� � � �
 � � �
 � � ������� CWND AGG ���
� � � �
���� � � � ��� �� � � � � � � � �
 � � � �
 �
 (3.24)

Since Equation 3.24 is independent of the partition of the current aggregated slow start threshold
SSTHRESH AGG � �

� � � �
 , the lemma holds.

From the end system’s point of view, the special case, i.e. the case where all congestion window
sizes and slow start thresholds of a set of TCP connections are equal, is the best case for a set of �

standard TCP connections regarding the expected overall aggregated congestion window size. The
special case is also the expected case of a set of � standard TCP connections regarding the aggregated
slow start threshold. From the network’s point of view, the special case represents one possible
standard-conforming congestion control behavior of � separately controlled TCP connections of an
end system.

3.3 EFCM-controlled TCP behavior after consecutive packet losses

We start our investigation of an ensemble of � EFCM-controlled TCP connections at time
� �

. The
variables CWND AGG � � �
 and SSTHRESH AGG � � �
 are the current aggregated values for the con-
gestion window sizes and the slow start thresholds of � EFCM-controlled TCP connections in an
ensemble. The variables CWND

�
� � �
 and SSTHRESH

�
� � �
 are the current values for the congestion

window size and the slow start threshold of a single TCP connection in that ensemble:

CWND AGG � � �
�� �� � � � CWND

�
� � �
 (3.25)

SSTHRESH AGG � � �
�� �� � � � SSTHRESH

�
� � �
 (3.26)

and
� � � � � �$� � � � �

� :

CWND

�
� � �
��

CWND� � � �
 (3.27)

SSTHRESH

�
� � �
��

SSTHRESH� � � �
 (3.28)

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 17

TU BERLIN

After a packet loss event, e.g., a retransmission timer timeout, in TCP connection
�

of the ensemble,
the basic algorithms for the congestion window size and slow start threshold computation in the
EFCM controller work as follows (cf. Section 2.2.2):

CWND AGG � � �
��
CWND AGG � � �
 � CWND� � � �
	� ������ �$� � �

�
�
CWND

�
� ���
�� CWND AGG � � �

�
(3.29)

(3.30)

or writing this as a recursive formula:

CWND AGG � � �
 �
 �
CWND AGG � � �
 � CWND AGG � � �

�

� �
(3.31)

(3.32)

and solving for
�

yields

CWND AGG � � �

� � � � �
�
� � � CWND AGG � � �
��

� � �� �
� � � � � �

�
�
�

(3.33)

� � � � �
�
� � � CWND AGG � � �
�� � ��� � � � � � �

�
� ��� (3.34)

The slowstart threshold behaves as follows:

SSTHRESH AGG � � �

�
SSTHRESH AGG � � �
 � SSTHRESH� � � �
	������ � CWND� � � �
���� � ��� (3.35)��� � ��� � �

�
�
SSTHRESH

�
� � �

� SSTHRESH AGG � � �

�
(3.36)

Note that these are not expected values, but the precise values—there is no random element as it
does not matter which connection encounters the packet loss. An additional advantage of EFCM is
thus is much simpler and easier to analyze behavior.

If
�

consecutive packet loss events occur in an ensemble of � TCP connections, the values
CWND AGG � � �
 and SSTHRESH AGG � � �
 for the aggregated congestion window size and the ag-
gregated slow start threshold after the packet loss event burst have to be numerically determined by
an
�
-fold iteration of this algorithm. This has been done with a tcl-script (cf. Appendix A).

3.4 Comparison of standard TCP and EFCM-controlled TCP

In this section, we compare the analytical results from the special case of � standard TCP connections
in a set with the numerical results of � EFCM-controlled TCP connections in an ensemble. In the

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 18

TU BERLIN

following Tables 3.1 and 3.2, we exemplarily show the analytical and numerical results for a cur-
rent congestion window size of 32 and a current slow start threshold of 64 for each of the � TCP
connections in the set or in the ensemble before the packet loss event burst occur, i.e.:

CWND AGG � �
� � � �
 � CWND AGG � � �
��

� �
���

SSTHRESH AGG ���
� � � �
 � SSTHRESH AGG � � �
��

� �
 "!

3.4.1 Aggregated congestion window size

Using the tcl-scripts from Appendix A, we have compared the aggregated congestion window size
of standard TCP and of EFCM-controlled TCP connections. In this comparison, we have varied the
number � of TCP connections and the current congestion window sizes of the TCP connections before
the packet loss event burst occur. We achieve the following result: For every number

�
of consecutive

packet loss events the expected aggregated congestion window size of � standard TCP connections in
a set is equal to or slightly lower than the aggregated congestion window size of � EFCM-controlled
TCP connections in an ensemble, i.e.:� � �

E 	 CWND AGG ���
� � � �
�
 � CWND AGG � � �
 (3.37)

The absolute differences
� CWND��
 � of the aggregated congestion window sizes of a set of � standard

TCP connections and an ensemble of � EFCM-controlled TCP connections after
�

consecutive packet
loss events are shown for the example case in the following Table 3.1. For other current congestion
window sizes and for other current slow start thresholds the results are comparable to the stated ones.
For a single EFCM-controlled TCP connection and for realistic numbers of jointly controlled TCP
connections the congestion window size is at most 0.30 larger than the congestion window size of a
single standard TCP connection.

3.4.2 Aggregated slow start threshold

Using the tcl-scripts from Appendix A, we have compared the aggregated slow start threshold of stan-
dard TCP and of EFCM-controlled TCP connections. In this comparison, we have varied the number

� of TCP connections, the current congestion window sizes, and the current slow start thresholds of
the TCP connections before the packet loss event burst occur. The absolute differences

� SSTHRESH��
 �of the aggregated congestion window sizes of a set of � standard TCP connections and � EFCM-
controlled TCP connections after

�
consecutive packet loss events are shown for the example case in

the following Table 3.2.
We have performed extensive investigations with various realistic current congestion window

sizes in the range from 1 to 128, with various realistic current slow start thresholds in the range from
2 to 64, and with different numbers � of standard TCP connections in a set and EFCM-controlled
TCP connections in an ensemble. For most other current congestion window sizes and current slow
start thresholds the results are comparable to the stated ones. Only in some academic cases, where
the current congestion window sizes are very low and the current slow start thresholds are very high,
e.g., all � TCP connections of the set or ensemble are recently started, the aggregated slow start
threshold of � EFCM-controlled TCP connections is (much) more reduced than the aggregated slow
start threshold of � standard TCP connections. But since the congestion window sizes of � EFCM-
controlled TCP connections are decreased comparably as the congestion window sizes of � standard

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 19

TU BERLIN

Table 3.1: Analytical and numerical results for the aggregated congestion window size of a set of
� standard TCP connections and an ensemble of � EFCM-controlled TCP connections — after

�

consecutive packet loss events
� CWND��
 � denotes the difference of the expected aggregated congestion

window size of a set of � standard TCP connections compared to the aggregated congestion window
size of an ensemble of � EFCM-controlled TCP connections
� � CWND�
 � � CWND

�
 � � CWND�
 � � CWND�
 � � CWND�
 � � CWND� �
 � � CWND
�
�
 � � CWND� �
 �� � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � �� � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � �� � 	 � � � � � � � 	 �"! � � � � 	 � �����"! � � 	 �
�� � � � � 	 � ����
�� � � 	 �
���! � � 	 � ! �
 � � 	 � �
 � �

� � 	 � � � � � � � 	��� �
 � � � � 	 ! �� � �� � � 	 ! � ���� � � 	���������� � � 	 ���� ���
 � � 	 � � � !
 � � 	 � ����
�
! � 	 � � � � � � � 	��� � � � � � 	���
��� �
 � � 	 �� � ! � � � 	 � ����� � � 	 ! �� ���� � � 	 ��� � � ! � � 	 � �
����
� � 	 � � � � � � � 	 ��
�
�
�
 � � 	 "! ���� � � 	 ������! � � 	�
 � ! � � � � 	 "! �
�� � � 	���
� ���� � � 	 ����
 � ! � 	 � � � � � � � 	 � �
���
 � � 	 "! ��� � � � 	�
���! ��� � � 	�
� ���
"! � � 	�
� � ���
 � � 	��� �� �
 � � 	 �� �����

� � 	 � � � � � � � 	 � !
"! � � � 	���
� � � � � 	�
 � ���� � � 	 �
 �
�� � � 	 �
���
 � � � 	 ������� � � � 	��� � ���

 � 	 � � � � � � � 	 �
"!
�� � � 	����"!�! � � � 	�
 � ���"! � � 	 � ��� � � � � 	�� � �� �
 � � 	�
����� �
 � � 	 ! �������

 � 	 � � � � � � � 	 � ����
�� � � 	 !�! �� �
 � � 	�
��� � �
 � � 	 �
"! � � � � 	���� � � � � � 	 � ������ � � 	���
��"! �� � � 	 � � � � � � � 	 � �"! � ! � � 	��� ���
 � � � 	�
 � �
�
 � � 	 �
 � �
 � � 	 � ��� ��� � � 	���
������ � � 	 ����
� ��� � � 	 � � � � � � � 	 � � � �� � � 	 �
�
�
�� � � 	 ! ��
���� � � 	�
�
 � ��
 � � 	�����
��� � � 	�� �
"! � � � 	��"! � ���� � � 	 � � � � � � � 	 � � � � � � 	 � �
���� � � 	 � �
�� � � � 	 !
�
� "! � � 	�� � �
 � � � 	�� �
�
�� � � 	������"!
��� � 	 � � � � � � 	 � � � � � � � 	 � � � �
 � � 	 � �� �
 � � 	 �"! ��� ! � � 	���� � � ! � ! 	�� � ����! � � 	 �
���

� � � 	 � � � � � � 	 � � � � � � � 	 � � � ! � � 	 � � � �� � � 	 � � !
 � � � 	�
� ��� � � ! 	�
��� �� � � ! 	 ���� �
�

��� � 	 � � � � � � 	 � � � � � � � 	 � � � � � � 	 � � ! ��� � � 	 � ! ���"! � � 	������� �
 � � 	 � � � �
 � � 	�
� ������! � � 	 � � � � � � 	 � � � � � � � 	 � � � � � � � 	 � � ��� � � 	 � � � � � � 	 ����� � � � � 	 � ��� �� � 	�
��"! ���! � � 	 � � � � � � 	 � � � � � � 	 � � � � � � � 	 � � � ��
 � � 	 � � ��
 � � � 	�
���
�� � � � 	 � ����� � � � 	�
�
"!
 �
� � � 	 � � � � � � 	 � � � � � � 	 � � � � � � � 	 � � � � � � � 	 � � � � � � � 	 � ���� � ! 	�
 � �� "! �
 	�
��� "! � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � � 	 � � � ��� � � 	 ��
���
�� � ! 	 ��� ! �� � � � 	�����
 �

� � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � � 	 � � � � � � � 	 � �����"! � � 	�� � ! ��� � ��� 	 ��� � ! �

 � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � � 	 � !
�
"! � � 	�������
�� � � � 	�������
"!

 � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � � 	 � �
"!
 � � 	�
�������� � � � 	 � �
 � �� � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � � 	 � � ���"! � � 	��"!�!
 � � � � 	 ��� �����

TCP connections even in these cases, the overall possible number of outstanding TCP segments af-
ter the packet loss event burst is similar until new TCP acknowledgments arrive. Then, the running
EFCM-controlled TCP connections will increase their aggregated congestion window size (much)
faster than the running standard TCP connections, but much lower than new standard TCP connec-
tions will do. Therefore, the EFCM controller does not violate any congestion control mechanisms of
standard TCP.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 20

TU BERLIN

Table 3.2: Analytical and numerical results for the aggregated slow start threshold of a set of �

standard TCP connections and an ensemble of � EFCM-controlled TCP connections — after
�

con-
secutive packet loss events

� SSTHRESH��
 � denotes the difference of the expected aggregated slow start
threshold of a set of � standard TCP connections compared to the aggregated slow start threshold of
an ensemble of � EFCM-controlled TCP connections
� � SSTHRESH�
 � � SSTHRESH

�
 � � SSTHRESH�
 � � SSTHRESH�
 � � SSTHRESH�
 � � SSTHRESH� �
 � � SSTHRESH
�
�
 � � SSTHRESH� �
 �� � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � �� � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � �� � 	 � � � � � � � 	 !
 � � � � 	 �� � ! � � � 	 ����! � � � � 	 � ��
�
�� � � 	 � �"! �
 � � 	 � �"!�! � � � 	 � �
 �

� � 	 � � � � � � � 	�
���
���� � � 	���
 � ��� � � 	 ! ������
 � � 	����� "! � � � 	 � !
�
�� � � 	 � � � ��� � � 	 � ��� � �! � 	 � � � � � � � 	����"!
�
 � � 	�
�� �
 � � � 	 � � ����� � � 	��� � � � � � 	 ����! �� � � 	 � �"! �� � � 	 � ��� �

� � 	 � � � � � � � 	 � ��� � � � 	 ���� �
�� � � 	 � � � �� � � 	�
 �
 � � � � 	 ! �"! � � � � 	 � � �"! � � � 	 �
� �
� � 	 � � � � � � � 	 �����"! � � � 	 ���� � � � 	�� � � � � � � 	 �
 �
�
 � � 	���
���� � � � 	�� � � �"! � � 	 � ��
����
� � 	 � � � � � � � 	���
���
�� � � 	�
��"! � � � 	 �� � �� � � 	���������� � � 	 ������
�
 � � 	 ! �
���
 � � 	 ���� ����

 � 	 � � � � � � � 	 �
�� � � � 	 ���
�
� � � 	�
� � �"! � � 	 ��� ��"! � � 	�
����"! � � � 	�������� � � � 	 ��� � ��

 � 	 � � � � � � � 	 � ��� � � � � 	 ��
�
���
 � � 	 ��
��� � � � 	�
�
� "! � � � 	 �
 � ! � � � 	 � � ��� � � 	 ��
���
 �� � � 	 � � � � � � � 	 � � � !
 � � 	�
"! ����� � � 	 ��
� � � � 	�� � � � � 	���
�
 � � � � 	�
 � � � � � � 	��� � �� � � � 	 � � � � � � � 	 � � � ��� � � 	 �
 �
�� � � 	�
�
�� � � � � 	 �"! ��� � � � 	 �����
�
 � � 	 � � ��� � � 	 ������
�
� � � 	 � � � � � � � 	 � � � �
 � � 	 � � ����� � � 	 � ! � � � � � 	�
�
�� ��� � ! 	 � ���� � � � 	��� �
���
 � � 	�� �
�
 ���� � 	 � � � � � � � 	 � � � � � � � 	 � � ����� � � 	 � � � ! � � � 	 � � � � � � 	 ����! � � � � 	 � � � � � � 	�
��"! �

� � � 	 � � � � � � 	 � � � � � � � 	 � � ��� ! � � 	 � ������� � � 	 � � � � � ! 	�����
���
 � ! 	�
���
��"! � � 	 ����� �

��� � 	 � � � � � � 	 � � � � � � � 	 � � � �
 � � 	 � � ��
�
 � � 	 � �����"! � � 	 �
�
�
�� � 	 � � !�! � � � 	 ! �
�� �! � � 	 � � � � � � 	 � � � � � � � 	 � � � � � � � 	 � � �� � � � 	 � � � �
 � � 	�
�������� � � 	 �� � � � � ! 	 �"! � �
! � � 	 � � � � � � 	 � � � � � � 	 � � � � � � � 	 � � � ��! � � 	 � � � � � � � 	 �
� � �
 	 � "!�!
 � � 	 � ����� �
� � � 	 � � � � � � 	 � � � � � � 	 � � � � � � � 	 � � � �
 � � 	 � � ! ��� � � 	�������� � � � � 	 �
��� � � 	 �
"! � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � � 	 � � � � � � � 	 � � � � � � 	 � ����!
 �
 	 � ������� �
 	 � ! � �
� � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � � 	 � � � � � � � 	 � "! �
 � 	�� � � � � � � 	 ! � � � �

 � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � � 	 � � � � � � � 	 � �"! ��� � ! 	 � �� ���� � � � 	�
 � � � �

 � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � � 	 � � � ! � � � 	��"! ����
 � � � 	��� � �
��� � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � 	 � � � � � � � 	 � � ! ��
 � � 	 ������ �
 � �
 	���
�
� �

3.5 Summary

If the aggregated congestion window size and the aggregated slow start threshold is fairly shared
among the TCP connections of a set or an ensemble, EFCM-controlled TCP and standard TCP have
nearly the same aggressiveness to the network regarding the aggregated congestion window size and
the aggregated slow start threshold after a burst of

�
consecutive packet losses. A set of � standard

TCP connections will have an expected aggregated congestion window size equal or slightly lower
than the aggregated congestion window size of � EFCM-controlled TCP connection. In contrast, a
set of � standard TCP connections will have an aggregated slow start threshold that is in most cases

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 21

TU BERLIN

equal or (slightly) larger than the expected aggregated slow start threshold of � EFCM-controlled
TCP connections. The differences in the aggregated congestion window sizes are much lower than
the differences in the aggregated slow start thresholds. Therefore, a set of � standard TCP connections
is slightly more conservative as an ensemble of � EFCM-controlled TCP connections in sending new
TCP segments after a burst of packet loss events, but it is (slightly) more aggressive in sending new
TCP segments after the reception of a new TCP acknowledgment.

In general, in a real Internet end system the standard TCP connections of a set do not have equal
congestion window sizes and slow start thresholds at the beginning of a packet loss event burst. In this
case, the standard TCP connections will also have different probabilities for occurrence of packet loss
events in a single TCP connection. Standard TCP connections with a larger congestion window size
will have a higher probability for packet loss events than standard TCP connections with a smaller
congestion window size. Hence, in the real Internet the aggregated congestion window size of �

standard TCP connections will be much smaller than in the considered special case. Therefore, the
main reason for the performance gain of the EFCM controller in our simulations is in the built-in fair
sharing of the aggregated congestion window size and the aggregated slow start threshold among the

� TCP connections of an ensemble.
In addition to the algorithms considered in this chapter, the EFCM controller jointly controls also

the smoothed round trip time and the round trip time variance of � TCP connections in an ensem-
ble. With these control algorithms a more adequate value for the current retransmission timer can be
calculated. This results in an extra improved performance for the jointly controlled TCP connections
of an ensemble compared to standard TCP connections in a set without increasing the aggressive-
ness to the network of EFCM-controlled TCP connections by violating any standard-conform TCP
congestion control algorithms.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 22

TU BERLIN

Chapter 4

Conclusion

In this technical report, we have analytically shown that an ensemble of � EFCM-controlled TCP
connections is nearly as aggressive to the network as a set of � standard TCP connections. For our
analysis, we have used the aggregated congestion window size and the aggregated slow start threshold
of the set and the ensemble as metrics for the aggressiveness to the network. Hence, we could show
that the performance benefits of EFCM are not due to simply increasing aggressiveness, the average
number of outstanding packets.

Rather, the analysis indicates that the performance gain of the EFCM approach compared to
standard TCP is mainly based on the fairness of the EFCM controller to all TCP connections of an
ensemble.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 23

TU BERLIN

Appendix A

Source code

The tcl-script (a) is used to numerically proof that for two TCP connections the special case with
equal congestion window sizes maximizes the expected aggregated congestion window size after

�

consecutive packet loss events in most cases and maximizes the expected overall aggregated conges-
tion window size in all cases.

The following tcl-scripts are used to numerically determine the values for the aggregated conges-
tion window size and the aggregated slow start threshold (b) for a set of � standard TCP connections
and (c) for an ensemble of � EFCM-controlled TCP connections in the general special case, i.e., all
TCP connections of the connection set have the same congestion window size and slow start thresh-
old. In addition, the tcl-script in (d) is used to numerically compare the standard TCP and the EFCM
congestion control algorithms. The values for the initial and current congestion window size and the
initial and current slow start threshold in the tcl-scripts are exemplarily chosen.

(a) standard TCP (2 connections) in a general case

##############################
ttcpc.tcl
written by Michael Savoric
#
date: 11.12.2002
last update: 13.12.2002
##############################

set tcl_precision 17

set cal_mode 0

set dis_mode 0

set l_start 0

if {$dis_mode == 0} {
set cal_mode 1

}

set packet_loss_probability 0.0001

proc log_fac {n} {
set sum 0.0

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 24

TU BERLIN

for {set index 2} {$index <= $n} {incr index} {
set sum [expr $sum+log($index)]

}

return $sum
}

proc probability_for_packet_loss_events {cwnd_1 cwnd_2 k l} {
set cwnd_agg [expr $cwnd_1+$cwnd_2]

if {$l > $cwnd_agg || $k > $cwnd_1 || [expr $l-$k] > $cwnd_2} {
return 0.0

} else {
set temp [expr [log_fac $cwnd_1]- \

([log_fac [expr $cwnd_1-$k]]+[log_fac $k])+ \
[log_fac $cwnd_2]- \
([log_fac [expr $cwnd_2-($l-$k)]]+[log_fac [expr $l-$k]])- \
([log_fac $cwnd_agg]- \
([log_fac [expr $cwnd_agg-$l]]+[log_fac $l]))]

return [expr exp($temp)]
}

}

proc geometrical_distribution {k p} {
if {$k < 1 || $p > 1} {
return 0.0

} else {
set temp [expr pow(1-$p,$k-1)*$p]

return $temp
}

}

proc binomial_distribution {k n p} {
if {$k > $n || $p > 1} {
return 0.0

} else {
set temp [expr [log_fac $n]-([log_fac [expr $n-$k]]+[log_fac $k])]

return [expr exp($temp)*pow($p,$k)*pow(1-$p,$n-$k)]
}

}

for {set cwnd_agg 2} {$cwnd_agg <= 64} {incr cwnd_agg} {
puts ""

if {$cal_mode == 0} {
set p [expr 1.0/$cwnd_agg]

} else {
set p $packet_loss_probability

}

for {set l $l_start} {$l <= $cwnd_agg} {incr l} {
puts ""

for {set cwnd_1 1} {$cwnd_1 <= [expr $cwnd_agg-1]} {incr cwnd_1} {
set cwnd_2 [expr $cwnd_agg-$cwnd_1]

set p_l_l [probability_for_packet_loss_events $cwnd_1 $cwnd_2 $l $l]
set p_0_l [probability_for_packet_loss_events $cwnd_1 $cwnd_2 0 $l]

set cwnd_agg_after_l_errors($cwnd_1) \
[expr $p_l_l*(1+$cwnd_2)+$p_0_l*(1+$cwnd_1)+2*(1-p_l_l-p_0_l)]

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 25

TU BERLIN

puts [format "P_L_L = %8.6lf, P_0_L = %8.6lf, Rest = %8.6lf" \
$p_l_l $p_0_l [expr 1-$p_l_l-$p_0_l]]

if {$l == $l_start} {
if {$dis_mode == 0} {

set sum($cwnd_1) [expr [geometrical_distribution [expr $l+1] [expr 1-$p]]* \
$cwnd_agg_after_l_errors($cwnd_1)]

} else {
set sum($cwnd_1) [expr [binomial_distribution $l $cwnd_agg $p]* \

$cwnd_agg_after_l_errors($cwnd_1)]
}

} else {
if {$dis_mode == 0} {

set sum($cwnd_1) [expr $sum($cwnd_1)+ \
[geometrical_distribution [expr $l+1] [expr 1-$p]]* \
$cwnd_agg_after_l_errors($cwnd_1)]

} else {
set sum($cwnd_1) [expr $sum($cwnd_1)+ \

[binomial_distribution $l $cwnd_agg $p]* \
$cwnd_agg_after_l_errors($cwnd_1)]

}
}

if {$cwnd_1 == 1} {
set maximum($l) $cwnd_agg_after_l_errors($cwnd_1)

} else {
if {$cwnd_agg_after_l_errors($cwnd_1) > $maximum($l)} {

set maximum($l) $cwnd_agg_after_l_errors($cwnd_1)
}

}
}

for {set cwnd_1 1} {$cwnd_1 <= [expr $cwnd_agg-1]} {incr cwnd_1} {
puts -nonewline [format "CWND_1 = %3d, CWND_2 = %3d: CWND_AGG(%3d) = %12.8lf " \

$cwnd_1 [expr $cwnd_agg-$cwnd_1] $l $cwnd_agg_after_l_errors($cwnd_1)]

set difference [expr $maximum($l)-$cwnd_agg_after_l_errors($cwnd_1)]

puts [format "(Difference to the Maximum = %12.8lf)" $difference]
}

}

puts ""

for {set cwnd_1 1} {$cwnd_1 <= [expr $cwnd_agg-1]} {incr cwnd_1} {
puts [format "CWND_1 = %3d, CWND_2 = %3d: Mean CWND_AGG = %12.8lf " \

$cwnd_1 [expr $cwnd_agg-$cwnd_1] $sum($cwnd_1)]
}

}

(b) standard TCP in the special case

tcp_algo_new.tcl
written by Michael Savoric
#
date: 30.10.2002
last update: 26.11.2002

number of TCP connection in a virtual ensemble:

set n 3

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 26

TU BERLIN

minimum values for cwnd and ssthresh:

set minimum_cwnd 1.0

set minimum_ssthresh [expr $minimum_cwnd+1.0]

initial and current cwnd:

set initial_cwnd 2.0
set current_cwnd 32.0

if {$current_cwnd < $minimum_cwnd} {
set current_cwnd $minimum_cwnd

}

initial and current ssthresh:

set initial_ssthresh 64.0
set current_ssthresh 64.0

if {$current_ssthresh < $minimum_ssthresh} {
set current_ssthresh $minimum_ssthresh

}

define helper functions:

proc log_fac {n} {
set sum 0.0

for {set index 2} {$index <= $n} {incr index} {
set sum [expr $sum+log($index)]

}

return $sum
}

proc probability_for_packet_loss_events {k l n cwnd} {
if {$k > $l || $k > $cwnd || $l > ($n > 1 && $l > [expr ($n-1)*$cwnd])} {
return 0.0

} else {
if {$n == 1} {

if {$k < $l} {
return 0.0

} else {
return 1.0

}
} else {

set temp [expr [log_fac $l]- \
([log_fac [expr $l-$k]]+[log_fac $k])+ \
[log_fac [expr $n*$cwnd-$l]]- \
([log_fac [expr ($n-1)*$cwnd-$l+$k]]+[log_fac [expr $cwnd-$k]])- \
([log_fac [expr $n*$cwnd]]- \
([log_fac [expr ($n-1)*$cwnd]]+[log_fac $cwnd]))]

return exp($temp)
}

}
}

calculate cwnd and ssthresh using the standard TCP control algorithms:

set cwnd $current_cwnd

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 27

TU BERLIN

set cwnd_agg [expr $n*$cwnd]

set current_cwnd_agg $cwnd_agg

set ssthresh $current_ssthresh

set ssthresh_agg [expr $n*$ssthresh]

set current_ssthresh_agg $ssthresh_agg

number of packet loss events (e.g., retransmission timer timeouts):

set number_of_packet_loss_events $cwnd_agg

set packet_loss_counter 0

puts ""

puts [format " CWND_AGG = %15.10lf (CWND_AGG reduction-factor = %13.10lf)" \
$current_cwnd_agg [expr $current_cwnd_agg/$cwnd_agg]]

puts [format " SSTHRESH_AGG = %15.10lf (CWND_AGG reduction-factor = %13.10lf,\
SSTHRESH_AGG reduction-factor = %13.10lf)" \

$current_ssthresh_agg [expr $current_ssthresh_agg/$cwnd_agg] \
[expr $current_ssthresh_agg/$ssthresh_agg]]

while {$packet_loss_counter < $number_of_packet_loss_events} {
incr packet_loss_counter

set p_0 [probability_for_packet_loss_events 0 $packet_loss_counter $n $cwnd]

set current_cwnd_agg [expr (1.0-$p_0)*$n*$minimum_cwnd+$p_0*$cwnd_agg]

set p_1 [probability_for_packet_loss_events 1 $packet_loss_counter $n $cwnd]

set temp [expr $cwnd/2.0]

if {$temp < $minimum_ssthresh} {
set temp $minimum_ssthresh

}

set current_ssthresh_agg [expr (1.0-p_0-p_1)*$n*$minimum_ssthresh+ \
p_1*n*$temp+ \
p_0*ssthresh_agg]

puts ""

puts [format "packet loss event no. %3d:" $packet_loss_counter]

puts [format " CWND_AGG = %15.10lf (CWND_AGG reduction-factor = %13.10lf)" \
$current_cwnd_agg [expr $current_cwnd_agg/$cwnd_agg]]

puts [format " SSTHRESH_AGG = %15.10lf (CWND_AGG reduction-factor = %13.10lf,\
SSTHRESH_AGG reduction-factor = %13.10lf)" \

$current_ssthresh_agg [expr $current_ssthresh_agg/$cwnd_agg] \
[expr $current_ssthresh_agg/$ssthresh_agg]]

}

(c) EFCM-controlled TCP

efcm_algo.tcl
written by Michael Savoric

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 28

TU BERLIN

#
date: 29.10.2002
last update: 19.11.2002

number of TCP connection in an ensemble:

set n 3

minimum values for cwnd and ssthresh:

set minimum_cwnd 1.0

set minimum_ssthresh [expr $minimum_cwnd+1.0]

initial and current cwnd:

set initial_cwnd 2.0
set current_cwnd 32.0

if {$current_cwnd < $minimum_cwnd} {
set current_cwnd $minimum_cwnd

}

initial and current ssthresh:

set initial_ssthresh 64.0
set current_ssthresh 64.0

if {$current_ssthresh < $minimum_ssthresh} {
set current_ssthresh $minimum_ssthresh

}

calculate cwnd and ssthresh using the EFCM control algorithms:

set cwnd $current_cwnd

set cwnd_agg [expr $n*$cwnd]

set current_cwnd_agg $cwnd_agg

set ssthresh $current_ssthresh

set ssthresh_agg [expr $n*$ssthresh]

set current_ssthresh_agg $ssthresh_agg

number of packet loss events (e.g., retransmission timer timeouts):

set number_of_packet_loss_events $cwnd_agg

set packet_loss_counter 0

puts ""

puts [format " CWND_AGG = %11.6lf (CWND_AGG reduction-factor = %9.6lf)" \
$current_cwnd_agg [expr $current_cwnd_agg/$cwnd_agg]]

puts [format " SSTHRESH_AGG = %11.6lf (CWND_AGG reduction-factor = %9.6lf,\
SSTHRESH_AGG reduction-factor = %9.6lf)" \

$current_ssthresh_agg [expr $current_ssthresh_agg/$cwnd_agg] \
[expr $current_ssthresh_agg/$ssthresh_agg]]

while {$packet_loss_counter < $number_of_packet_loss_events} {
incr packet_loss_counter

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 29

TU BERLIN

set temp [expr $cwnd/2.0]

if {$temp < $minimum_ssthresh} {
set temp $minimum_ssthresh

}

set current_ssthresh_agg [expr $current_ssthresh_agg-$ssthresh+$temp]

set ssthresh [expr $current_ssthresh_agg/$n]

if {$ssthresh < $minimum_ssthresh} {
set current_ssthresh_agg [expr $current_ssthresh_agg+$n*($minimum_ssthresh-$ssthresh)]

set ssthresh $minimum_ssthresh
}

set current_cwnd_agg [expr $current_cwnd_agg-($cwnd-$minimum_cwnd)]

set cwnd [expr $current_cwnd_agg/$n]

if {$cwnd < $minimum_cwnd} {
set current_cwnd_agg [expr $current_cwnd_agg+$n*($minimum_cwnd-$cwnd)]

set $cwnd $minimum_cwnd
}

puts ""

puts [format "packet loss event no. %3d:" $packet_loss_counter]

puts [format " CWND_AGG = %11.6lf (CWND_AGG reduction-factor = %9.6lf)" \
$current_cwnd_agg [expr $current_cwnd_agg/$cwnd_agg]]

puts [format " SSTHRESH_AGG = %11.6lf (CWND_AGG reduction-factor = %9.6lf,\
SSTHRESH_AGG reduction-factor = %9.6lf)" \

$current_ssthresh_agg [expr $current_ssthresh_agg/$cwnd_agg] \
[expr $current_ssthresh_agg/$ssthresh_agg]]

}

(d) Comparison of standard TCP in the special case with EFCM-
controlled TCP

tcp_efcm_delta_new.tcl
written by Michael Savoric
#
date: 20.11.2002
last update: 26.11.2002

set tcl_precision 17

number of TCP connection in an ensemble:

set n 3

minimum values for cwnd and ssthresh:

set minimum_cwnd 1.0

set minimum_ssthresh [expr $minimum_cwnd+1.0]

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 30

TU BERLIN

initial and current cwnd:

set initial_cwnd 2.0
set current_cwnd 32.0

if {$current_cwnd < $minimum_cwnd} {
set current_cwnd $minimum_cwnd

}

initial and current ssthresh:

set initial_ssthresh 64.0
set current_ssthresh 64.0

if {$current_ssthresh < $minimum_ssthresh} {
set current_ssthresh $minimum_ssthresh

}

define helper functions:

proc log_fac {n} {
set sum 0.0

for {set index 2} {$index <= $n} {incr index} {
set sum [expr $sum+log($index)]

}

return $sum
}

proc probability_for_packet_loss_events {k l n cwnd} {
if {$k > $cwnd || $k > $l || ($n > 1 && $l > [expr ($n-1)*$cwnd])} {
return 0.0

} else {
if {$n == 1} {

if {$k < $l} {
return 0.0

} else {
return 1.0

}
} else {

set temp [expr [log_fac $l]- \
([log_fac [expr $l-$k]]+[log_fac $k])+ \
[log_fac [expr $n*$cwnd-$l]]- \
([log_fac [expr ($n-1)*$cwnd-$l+$k]]+[log_fac [expr $cwnd-$k]])- \
([log_fac [expr $n*$cwnd]]- \
([log_fac [expr ($n-1)*$cwnd]]+[log_fac $cwnd]))]

return exp($temp)
}

}
}

calculate cwnd and ssthresh using the standard and the EFCM control algorithms:

set cwnd_tcp $current_cwnd

set cwnd_agg_tcp [expr $n*$cwnd_tcp]

set current_cwnd_agg_tcp $cwnd_agg_tcp

set ssthresh_tcp $current_ssthresh

set ssthresh_agg_tcp [expr $n*$ssthresh_tcp]

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 31

TU BERLIN

set current_ssthresh_agg_tcp $ssthresh_agg_tcp

set cwnd_efcm $current_cwnd

#

set cwnd_agg_efcm [expr $n*$cwnd_efcm]

set current_cwnd_agg_efcm $cwnd_agg_efcm

set ssthresh_efcm $current_ssthresh

set ssthresh_agg_efcm [expr $n*$ssthresh_efcm]

set current_ssthresh_agg_efcm $ssthresh_agg_efcm

number of packet loss events (e.g., retransmission timer timeouts):

set number_of_packet_loss_events $cwnd_agg_tcp

set packet_loss_counter 0

puts ""

puts [format " CWND_AGG (TCP) = %15.10lf (CWND_AGG (TCP) reduction-factor = %13.10lf)" \
$current_cwnd_agg_tcp [expr $current_cwnd_agg_tcp/$cwnd_agg_tcp]]

puts [format " SSTHRESH_AGG (TCP) = %15.10lf (CWND_AGG (TCP) reduction-factor = %13.10lf, \
SSTHRESH_AGG (TCP) reduction-factor = %13.10lf)" \

$current_ssthresh_agg_tcp [expr $current_ssthresh_agg_tcp/$cwnd_agg_tcp] \
[expr $current_ssthresh_agg_tcp/$ssthresh_agg_tcp]]

puts [format " CWND_AGG (EFCM) = %15.10lf (CWND_AGG (EFCM) reduction-factor = %13.10lf)" \
$current_cwnd_agg_efcm [expr $current_cwnd_agg_efcm/$cwnd_agg_efcm]]

puts [format " SSTHRESH_AGG (EFCM) = %15.10lf (CWND_AGG (EFCM) reduction-factor = %13.10lf,\
SSTHRESH_AGG (EFCM) reduction-factor = %13.10lf)" \

$current_ssthresh_agg_efcm [expr $current_ssthresh_agg_efcm/$cwnd_agg_efcm] \
[expr $current_ssthresh_agg_efcm/$ssthresh_agg_efcm]]

while {$packet_loss_counter < $number_of_packet_loss_events} {
incr packet_loss_counter

set p_0 [probability_for_packet_loss_events 0 $packet_loss_counter $n $cwnd_tcp]

set current_cwnd_agg_tcp [expr (1.0-$p_0)*$n*$minimum_cwnd+$p_0*$cwnd_agg_tcp]

set p_1 [probability_for_packet_loss_events 1 $packet_loss_counter $n $cwnd_tcp]

set temp_tcp [expr $cwnd_tcp/2.0]

if {$temp_tcp < $minimum_ssthresh} {
set temp_tcp $minimum_ssthresh

}

set current_ssthresh_agg_tcp [expr (1.0-p_0-p_1)*$n*$minimum_ssthresh+ \
p_1*n*$temp_tcp+ \
p_0*ssthresh_agg_tcp]

puts ""

set temp_efcm [expr $cwnd_efcm/2.0]

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 32

TU BERLIN

if {$temp_efcm < $minimum_ssthresh} {
set temp_efcm $minimum_ssthresh

}

set current_ssthresh_agg_efcm [expr $current_ssthresh_agg_efcm-$ssthresh_efcm+$temp_efcm]

set ssthresh_efcm [expr $current_ssthresh_agg_efcm/$n]

if {$ssthresh_efcm < $minimum_ssthresh} {
set current_ssthresh_agg_efcm \

[expr $current_ssthresh_agg_efcm+$n*($minimum_ssthresh-$ssthresh_efcm)]

set ssthresh_efcm $minimum_ssthresh
}

set current_cwnd_agg_efcm [expr $current_cwnd_agg_efcm-($cwnd_efcm-$minimum_cwnd)]

set cwnd_efcm [expr $current_cwnd_agg_efcm/$n]

if {$cwnd_efcm < $minimum_cwnd} {
set current_cwnd_agg_efcm [expr $current_cwnd_agg_efcm+$n*($minimum_cwnd-$cwnd_efcm)]

set $cwnd_efcm $minimum_cwnd
}

puts ""

puts [format "packet loss event no. %4d:" $packet_loss_counter]

set cwnd_rf_tcp [expr $current_cwnd_agg_tcp/$cwnd_agg_tcp]
set ssthresh_cwnd_rf_tcp [expr $current_ssthresh_agg_tcp/$cwnd_agg_tcp]
set ssthresh_rf_tcp [expr $current_ssthresh_agg_tcp/$ssthresh_agg_tcp]

puts [format " CWND_AGG (TCP) = %15.10lf \
(CWND_AGG (TCP) reduction-factor = %13.10lf)" \
$current_cwnd_agg_tcp $cwnd_rf_tcp]

puts [format " SSTHRESH_AGG (TCP) = %15.10lf \
(CWND_AGG (TCP) reduction-factor = %13.10lf, \
SSTHRESH_AGG (TCP) reduction-factor = %13.10lf)" \
$current_ssthresh_agg_tcp $ssthresh_cwnd_rf_tcp $ssthresh_rf_tcp]

set cwnd_rf_efcm [expr $current_cwnd_agg_efcm/$cwnd_agg_efcm]
set ssthresh_cwnd_rf_efcm [expr $current_ssthresh_agg_efcm/$cwnd_agg_efcm]
set ssthresh_rf_efcm [expr $current_ssthresh_agg_efcm/$ssthresh_agg_efcm]

puts [format " CWND_AGG (EFCM) = %15.10lf \
(CWND_AGG (EFCM) reduction-factor = %13.10lf)" \
$current_cwnd_agg_efcm $cwnd_rf_efcm]

puts [format " SSTHRESH_AGG (EFCM) = %15.10lf \
(CWND_AGG (EFCM) reduction-factor = %13.10lf,\
SSTHRESH_AGG (EFCM) reduction-factor = %13.10lf)" \
$current_ssthresh_agg_efcm $ssthresh_cwnd_rf_efcm $ssthresh_rf_efcm]

puts ""

set delta_cwnd_agg [expr $current_cwnd_agg_tcp-$current_cwnd_agg_efcm]
set delta_cwnd_rf [expr $cwnd_rf_tcp-$cwnd_rf_efcm]
set delta_ssthresh_agg [expr $current_ssthresh_agg_tcp-$current_ssthresh_agg_efcm]
set delta_ssthresh_cwnd_rf [expr $ssthresh_cwnd_rf_tcp-$ssthresh_cwnd_rf_efcm]
set delta_ssthresh_rf [expr $ssthresh_rf_tcp-$ssthresh_rf_efcm]

puts [format " Delta CWND_AGG = %15.10lf \

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 33

TU BERLIN

(Delta CWND_AGG reduction-factor = %13.10lf)" \
$delta_cwnd_agg $delta_cwnd_rf]

puts [format " Delta SSTHRESH_AGG = %15.10lf \
(Delta CWND_AGG reduction-factor = %13.10lf, \
Delta SSTHRESH_AGG reduction-factor = %13.10lf)" \
$delta_ssthresh_agg $delta_ssthresh_cwnd_rf $delta_ssthresh_rf]

if {$packet_loss_counter == 1} {
set max_cwnd_packet_loss_counter 1
set max_delta_cwnd_agg $delta_cwnd_agg

set min_cwnd_packet_loss_counter 1
set min_delta_cwnd_agg $delta_cwnd_agg

set max_ssthresh_packet_loss_counter 1
set max_delta_ssthresh_agg $delta_ssthresh_agg

set min_ssthresh_packet_loss_counter 1
set min_delta_ssthresh_agg $delta_ssthresh_agg

} else {
if {$delta_cwnd_agg < $min_delta_cwnd_agg} {

set min_cwnd_packet_loss_counter $packet_loss_counter
set min_delta_cwnd_agg $delta_cwnd_agg

}

if {$delta_cwnd_agg > $max_delta_cwnd_agg} {
set max_cwnd_packet_loss_counter $packet_loss_counter
set max_delta_cwnd_agg $delta_cwnd_agg

}

if {$delta_ssthresh_agg < $min_delta_ssthresh_agg} {
set min_ssthresh_packet_loss_counter $packet_loss_counter
set min_delta_ssthresh_agg $delta_ssthresh_agg

}

if {$delta_ssthresh_agg > $max_delta_ssthresh_agg} {
set max_ssthresh_packet_loss_counter $packet_loss_counter
set max_delta_ssthresh_agg $delta_ssthresh_agg

}
}

}

puts ""

puts [format " MAX Delta CWND_AGG = %15.10lf \
(MAX Delta CWND_AGG reduction factor = %13.10lf) \[%4d\]"\
$max_delta_cwnd_agg [expr $max_delta_cwnd_agg/$cwnd_agg_tcp] \
$max_cwnd_packet_loss_counter]

puts [format " MIN Delta CWND_AGG = %15.10lf \
(MIN Delta CWND_AGG reduction factor = %13.10lf) \[%4d\]"\
$min_delta_cwnd_agg [expr $min_delta_cwnd_agg/$cwnd_agg_tcp] \
$min_cwnd_packet_loss_counter]

puts [format "MAX Delta SSTHRESH_AGG = %15.10lf \
(MAX Delta SSTHRESH_AGG reduction factor = %13.10lf) \[%4d\]"\
$max_delta_ssthresh_agg [expr $max_delta_ssthresh_agg/$ssthresh_agg_tcp] \
$max_ssthresh_packet_loss_counter]

puts [format "MIN Delta SSTHRESH_AGG = %15.10lf \
(MIN Delta SSTHRESH_AGG reduction factor = %13.10lf) \[%4d\]"\
$min_delta_ssthresh_agg [expr $min_delta_ssthresh_agg/$ssthresh_agg_tcp] \
$min_ssthresh_packet_loss_counter]

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 34

TU BERLIN

Acknowledges

The work presented in this technical report has been partially supported by a research contract with
Ericsson Eurolab, Aachen, Germany.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 35

TU BERLIN

Bibliography

[1] M. Allman, V. Paxson, and W. Stevens. TCP congestion control. RFC 2581, April 1999.

[2] L. Eggert, T. Henderson, and J. Touch. Effects of ensemble TCP. ACM SIGCOMM Computer
Communication Review, 30(January):15–29, 2000.

[3] S. Floyd and T. Henderson. The new reno modification to TCP´s fast recovery algorithm. RFC
2582, 1999.

[4] M. Savorić. Identifying and evaluating the potential of reusing network infor-
mation from different flows. Technical report, TKN-01-019, http://www-tkn.ee.tu-
berlin.de/publications/papers/ccc tr.pdf, 2001.

[5] M. Savorić. The TCP control block interdependence in fixed networks — some performance
results. In Proceedings QOFIS 2001, LNCS 2156, pages 261–272, 2001.

[6] M. Savorić and H. Karl. Performance evaluation of an improved common congestion controller
for TCP connections — new simulation results. Technical report, TKN, http://www-tkn.ee.tu-
berlin.de/publications/papers/efcm tr 3.pdf, 2003.

[7] M. Savorić, H. Karl, and A. Wolisz. The TCP control block interdependence in fixed networks
— new performance results. to be published in Computer Communications, 2002.

[8] J. Touch. TCP control block interdependence. RFC 2140, 1997.

Copyright at Technical University Berlin. All
Rights reserved.

TKN-03-003 Page 36

