
TKN Telecommunication
N etw or k s G r oup

Technische Universität Berlin
Telecommunication Networks Group

Adam – A DVE Simulator
Jan Sablatnig Sven Grottke Andreas Köpke

Jiehua Chen Ruedi Seiler Adam Wolisz

Berlin, February 8, 2008

TKN Technical Report TKN-08-004

TKN Technical Reports Series

Editor: Prof. Dr.-Ing. Adam Wolisz

Copyright 2007, 2008 Technische Universität Berlin. All Rights reserved.

Abstract

During the past 25 years, a large amount of distributed virtual environ-
ment (DVE) systems has been proposed. Each was built to support a single
scenario. This not only makes it impossible to rank these various DVEs, it
also obscures the effect of each of the algorithms used in those systems. This
makes it very hard to select the algorithms for a new scenario unless this
scenario is a fairly exact copy of one of the previous sample-scenarios.

To overcome this situation, we have created a modular simulator-based
DVE testbed namedAdamwith the ability to plug in different scenarios as
well as different algorithms. The testbed also contains a large set of mea-
suring tools to compare and rank the effect of each algorithm and to allow
finding optimal parameters for those algorithms.

Our testbed currently supports two scenarios and several of the most com-
mon consistency algorithms found in the literature. We can compare the solu-
tions on an objective scale and confirm that optimistic consistency typically
outperforms loose consistency.

Chapter I

Introduction
Distributed virtual environment (DVE) systems have been technically feasible since
the mid-1990s. Although there has always been large public and scientific interest
in the technology, there are, to date, almost no large-scale distributed virtual envi-
ronments in widespread use, the only exceptions being a few computer games.

The reason why DVEs have not found more distribution is unknown, but we
think it is because the experience to the user is still unsatisfactory in most cases,
when implemented with the still-limited network constraints. The quality of DVEs
was expected to improve when network resources improve. While some network
parameters (especially bandwidth) did in fact improve dramatically over the past 10
years (and will likely continue to improve), some have not improved a lot. Delay,
in particular, cannot improve much further as information exchange is limited by
light speed. For example, it is not possible to reach a ping value of less than 100ms
from Europe to Australia and back. Therefore, we believe the shortcomings of the
network will have to be compensated by better algorithms in the DVE itself. For
this reason it is useful to analyze and compare existing DVE solutions to find their
weak points and possibly improve on these systems.

It is difficult, however, to actually estimate the quality of any published DVE
since there is no quality standard or measure to compare it to quantitatively. Most
publications will simply cite that the final result was “satisfactory to the test-users.”
Since the experience of a virtual environment and the effect of its playout errors are
highly subjective, it is usually considered impossible to define such a comparison
measure beyond the simple satisfactory-statement.

While we agree that the final result of a DVE will always have to be judged
subjectively by users, we do think that a fair set of measures exist which allows a
system designer to estimate what the final quality should be, given the considered
algorithms. A few such measures were defined in [GSK+07].

1

To actuallyusethese measures, a standard measuring code is required. This
paper introduces such a code. The code implements some of the most common
algorithms used in DVEs, a few simple scenarios and of course a large set of mea-
surement tools.

The code will be downloadable and extensible so that other researchers can
rank their own algorithms and solutions.

ChapterII discusses other similar projects and related publications. ChapterIII
describes the principal setup of our testbed. ChapterIV details the implemented
consistency algorithms, while chapterV talks about the network models currently
installed. ChapterVI shows our scenarios and chapterVII lists the measurements
being performed. In chapterVIII we describe some standard experiments and how
to perform them. A few early results of those experiments are shown in chapterIX.
ChapterX explains what we are going to do next with the testbed. Finally, chapter
XI gives a short summary of the contributions of this paper.

Chapter II

Related Work
The first major DVE was SimNet/NPSNET, which became the DIS standard in
1993 [MZP+94]. A large array of research DVEs were built similar to DIS, with
some extensions. These extensions usually focused on exploiting locality, such as
SPLINE [BWA96] or DIVE [FS98]. DIS was originally designed for military bat-
tlefield simulations on dedicated networks and very few of the DIS-alikes are in
production use outside of this application.

On the other hand, computer games such as “X-Wing vs. TIE Fighter” (1997)
[Lin99] gauged Internet connected simulations early on. “Ultima Online” (1997)
connected thousands of players on a single server, “World of Warcraft” (2004) had
9 million subscribers in 2007. Surprisingly, the consistency algorithms used have
not changed much between the latter two programs and are akin to DIS, except that
centralized servers are used.

The research game application PaRADE (1997) was highly interactive and at-
tempted to solve the Internet-delay problem through optimistic consistency and
through prediction [RS97]. MiMaze (1999) was another very interactive research
game application, but it used DIS-like mechanisms [DG99]. More recently in 2002,
Cronin et al. researched algorithms to improve the consistency of an existing,
highly interactive game, using optimistic consistency to achieve this [CFKJ02].

Since the current research focus is most often on scalability, i.e. the ability of
a DVE to support many thousands of players at the same time, researchers have
started to abandon user tests as too expensive, running simulations instead. RING
already simulated 1000 users in 1995 [Fun95]. While Mercury (2002) simulated
only 100 hosts [BRS02], Knutsson (2004) simulated 4000 hosts [KLXH04]. How-
ever, all of these simulations were used to find the effect of a specific algorithmic
change or of an algorithmic parameter in an otherwise monolithic application and
are completely nontransferable to other scenarios or other algorithms.

2

Scenario

ha
nd

le
_m

es
sa

ge
()

World

Router

Host

Consistency

se
nd

()

qu
ee

n.
x=

nx

userEvent(id,v)

simulate()

setVariables()
getInstance(id).

send()

handle_message()

Figure 1: Modules in a Single Simulated Host

Chapter III

Architecture
Running and measuring the effectiveness of a large virtual environment is a difficult
problem. On the one hand, one cannot possibly find thousands of real users to
participate. On the other hand, there are many types of computers and networks
that may need to be tested for and one cannot provide all of those.

We have therefore decided to rather simulate the entire network on a single
computer. The user input to be simulated at each simulated host is generated by a
scenario-specific artificial intelligence.

Adam, our testbed, is built on top of the discrete event simulator OMNet++
[Var01] in conjunction with the MRIP engine Akaroa [EPM99].

During the simulation, our testbed creates a host-module for each host to be
simulated and connects them via OMNet++ network connections, allowing OM-
Net++ to simulate the entire connecting network. Each host-module then creates a
number of modules, the most important of which are shown in figure1:

Host: A representation of a single physical host the DVE runs on. It instantiates
and controls the other modules and is also the OMNet++ interface.

Router: The network layer on a host. Implements reliable transfer algorithms as
well as message aggregation if needed.

Consistency: The consistency layer on a host. This decides when to send update
information to other hosts and what to do with incoming information. Often,
this will hold additional, internal world views.

World: The world view on this host. All objects in this world and their states are
collected here as a set of named variables.

Scenario: The scenario-specific code. This contains the rules dictating how ob-
jects in this world move about or interact. It also contains a scenario-specific
artificial intelligence (AI) that issues user-commands.

3

All modules are called at regular intervals (calledticks) to update themselves
and clean up any outstanding operations. Amongst other things, this allows the
scenario to update the world view according to the scenario rules, thus progressing
the virtual environment. Also, the AI decides on new actions during these calls.

When the scenario needs to change the values of any variable in the world
view, it can simply do the change directly. If the scenario’s AI, however, performs
a user event, it will ask the consistency algorithm to perform the event instead.
The consistency algorithm can then apply the event directly or delegate it for later
application. The consistency may create a message to inform other hosts of this
event. If so, the message is passed to the router which then decides when and how
to send this message to other hosts via the host’s OMNet++ interface.

When a message arrives at a host, it is passed to the consistency layer. The
consistency layer analyzes the type of message. Depending on the algorithm in
use, it may then drop the message, or add it to its message history, or implement
the effect of the message directly by applying it to the world view. Afterwards, it
may also call the scenario to update the world view.

The modules described above are implemented as C++ objects. The actual im-
plementations (e.g. a Swarm scenario, or a loose consistency) are then inherited
from these base modules, overloading their major interface functions. By using
OMNet++ configuration files the user then decides which combination of objects
to combine and sets their parameters. This allows easy access to any mix of avail-
able network features, algorithms and scenarios.

We have programmed several different scenarios (see chapterVI) and con-
sistency algorithms (see chapterIV). The choice between these modules is made
through a few lines of glue-code, linking and OMNet++’s .ned files. The code itself,
however, is in general not specialized for a specific combination of these modules.
Thus, a given scenario’s code simply uses predefined consistency callbacks when
it changes state. Which consistency algorithm then implements those callbacks and
by what strategy is normally unknown and of no interest to the scenario. While this
prevents a few optimizations that are very specific to the consistency in use, it does
allow us to compare different combinations of codes fairly.

There is a set of measurement tools to evaluate the quality of the system, these
measurements are explained more thoroughly in chapterVII . It should be men-
tioned that these tools do have the ability to look at the exact internal state of all
hosts at all times. On a real network, this is never possible. The measurements are
used for final analysis of the test only and are not visible inside the simulation.

On each simulated host, we perform only the core calculations necessary to find
the current state of the virtual world and the AI-calculations to create human-like
input from what a humanwouldsee if this were a real host. Rendering, waiting for
user input, file-system accesses, firewalls etc. are not simulated. There is, however,
a mode in which the current state of the world as seen by that host can be logged.
These logs can later on be used by external, scenario-specific utilities we provide
to create a visualization of the simulation. The visualization can even incorporate
the views of several different hosts at the same time by drawing each view in a
different color on top of each other. The visualizations have proven to be very
helpful in debugging.

One of the few things implicitly shared between the hosts is an exact notion

4

of time (i.e. all hosts use OMNET++’s simTime()). This is not possible in the
real world, and in fact it is somewhat difficult to keep a large set of hosts close
to the wall-clock time. It is, however,possibleto do so, at least with respect to
message causality [Lam78]. The NTP protocol usually reaches a synchronization
of around 10 ms ([Mil06]). We have therefore decided to abstract (i.e. ignore) from
this problem.

Our code simulates a kernel system where the virtual world is advanced at a
predefined frequency, just as in real DVEs. The ticks currently occur every 50ms,
corresponding to 20Hz. Network requests are answered at any time and network
timeouts and batching are polled for every 1ms. In a real application, the time
outside of the tick would be spent mostly to render graphics and gather user-input.

Chapter IV

Consistency Algorithms

1 Loose Consistency

Loose consistency as implemented in Adam is inspired by the algorithms used in
DIS and related systems [MZP+95]. For an algorithmic description, see [GSK+07].

In our implementation of loose consistency, we support regular full updates at
any given frequency (note, however, that regular updates are only sent out during a
tick, so it is currently not useful to choose an update frequency that is higher than
the tick frequency). Note that even for a full update, messages are only sent out for
objects this host owns (see below).

We also perform player/ghost analysis on all instances in the virtual world. Ac-
tions caused on the local system (a.k.a. user-input) change only the player-instance.
During each tick, the Euclidian distance between the ghost-instance and the player-
instance is calculated (velocity is not used). If this distance exceeds a certain, per-
object-configurable threshold, an individual update for this object is sent. When-
ever an update is sent for an object for any reason, the state of the player-instance
is copied onto the ghost-instance.

When a network message arrives at a host, dead-reckoning is performed on
the data in that message before overwriting the local state of the instance. Dead-
reckoning extrapolates the state of an object from the time a message was sent to
the current time. In Adam, dead-reckoning is performed by callbacks from the sce-
nario, which will in general implement a linear approximation, but more intelligent
approaches are possible.

We currently allow passive replication only, meaning each object has a distinct
host as its owner-host. This owner may send updates for the object, which all other
hosts will accept and use to overwrite their instances of the object. Other hosts will
neither send updates, nor will the owner accept updates for the object. In some
cases, when an object does not specifically belong to any host, the ownership is
passed around the participating hosts in a round-robin manner, switching every
few seconds or so to insure fair playout.

Out of order messages (i.e. messages for an object where a newer message has

5

already arrived) are simply discarded in loose consistency.
The parameters that configure loose consistency are:

Regular Update Interval: The interval after which a new full update is sent out.
Given in seconds.

Player Ghost Distances:If the Euclidian distance between the state of an instance
in the virtual world and where this host believes other hosts believe this
object to be exceeds this number, an individual update is sent. The exact
number and unit of these parameters are scenario specific, but usually the
unit is screen-pixels.

2 Optimistic Consistency

Optimistic consistency as implemented in Adam is inspired by some of the newer
approaches to distributed game consistency as seen in [RS97] or [MVHE04]. This
sort of algorithm is already in broad use in multiprocessor applications [MT01] and
distributed real time data bases. For the exact algorithm, refer to [GSK+07].

In our version of optimistic consistency, we implement reliable communication
via an ACK-based ARQ protocol with selective repeat. The timeout of the repeat is
configurable. Using this protocol, we are assured that messages will arrive at some
point, though they may be very late.

In many cases, the relevant limiting factor for netload is the amount ofpackages
sent per second, not the size of those packages. To exploit this, several messages
can be aggregated into one message. Our testbed supports batching, meaning the
message router can collect several distinct messages (to the same host) and simply
pack them into one package. As messages are not usually sent at the same time,
the first message of such a batch will have to be delayed for a specified time (the
batching timeout) to gather more messages with which to pack it. The longer the
batching timeout is set, the more messages will usually be collected and the smaller
the package bandwidth. At the same time, an additional delay is added to message
sending, which will decrease the quality of the simulated DVE.

Late messages are not discarded in optimistic consistency. Rather, they are
added to the message history at their intended time-slot and then the entire world-
view on this host is rolled back to that time-slot and recalculated, this time in-
cluding the previously missing message. The rollback mechanism is based on a
so-called trailing state system synchronization scheme as described by [CFKJ02].
Currently, eight trailing states are calculated. These are spaced in decreasing den-
sity up to 25 seconds, but both the number and the spacing can be adjusted easily.

In order to fully leverage optimistic consistency’s ability to arrive at the same
world-view on all hosts eventually, we limit the sent-out messages entirely tonon-
deterministicinformation. Thus, the current state of instances is never transmitted.
Only user-input (as determined by the AI) is transmitted.

We also support local lag as suggested by [MVHE04]. Actions locally decided
on by the AI are sent out to other hosts normally but are not applied immediately
but rather are delayed for a short time (configured in seconds). Since a human
quickly adapts to such a situation by subconsciously pre-planning his input, we

6

also gave the AI the ability to preplan, i.e. to chose the best move for a situation as
it would probably play out in the future when this action will actually be applied.

Finally, a configurable reception delay exists that acts like a jitter-buffer. If a
received message is younger than the configured delay, this message is delayed
until it has the required age.

The parameters that configure optimistic consistency are:

Time-Out: The interval after which a message is repeated if no ACK has been
received for it yet. Given in seconds.

Local Lag: The interval by which local AI-decisions are delayed before applying
them. Given in seconds.

Reception Delay: The minimum age of a received message. If a message is younger
than this, it is delayed until it has reached the required age. Given in seconds.

Batching: How long to delay sending a message in order to collect other messages
to combine into a single package. Given in seconds.

3 Ideal

For comparison purposes, we also provide an ideal consistency, in which all vari-
ables are kept consistent on all hosts. To achieve this, we need to set the network
delay and message drop rate to zero. This is not achievable on a real network, the
corresponding consistency is only used as an upper-bound comparison.

Chapter V

The Replication/Network Model
OMNet++ itself provides rich functionality to connect different simulated hosts
via simulated connections. We use these connections as abstractions to the entire
network between the two hosts. While this keeps the model very general and easy to
use, one of the things we thereby give up is congestion modeling on the network.
We do measure network traffic (both average and maximum) on each simulated
host, though, so it is possible to catch possible congestion situations a posteriori.
As long as the traffic generated by the considered DVE would not be a substantial
part of the overall traffic on the Internet, this abstraction is sane.

At the time of this writing, we implemented a flat connection model, every
host automatically knows and is connected to every other host. Such a model is
only feasible for a small numbers of hosts. Our next step in the development of
Adam is therefore a dynamic connection model where each host has to keep his
own list of other known hosts and may create or destroy connections to such hosts
(see chapterX).

The currently implemented delay distributions for messages are

7

Pareto: The delay distribution has a probability density of the form:

f(x) :=

0 xmin > x
k·xk

min

x−xk+1
shift

xmin ≤ x ≤ xcutoff

0 x > xcutoff

, which is a version of the standard Pareto function except with an added
cutoff.

The parameters are fully configurable, but in general, we setxcutoff = 5s and
the shape parameterk = 1.5. The last free parameter,xmin, is not usually
configured directly but rather calculated from the requestedE =< f(x) >
(the expectation value off(x)).

Exponential: The delay distribution has a probability density of the form:

f(x) :=

{
exp −x

E
E x ≥ 0

0 x < 0

, whereE is the configured parameter for the expectation value off(x).

Spike: Our measurements of actual Internet pings [KW07] showed that neither
of the above two distributions is a particularly good fit. Therefore, we also
provide an Internet modeling distribution with the cumulative probability
distribution:

F (x) :=

0 x < T
0.99 x = T

0.99 + x−T
20ms · 0.0099 T < x < T + 20ms

0.9999 + x−T−20ms
1.980s · 0.0001 T + 20ms ≤ x < T + 2s

1 x >= T + 2s

, whereT is a threshold, which is usually calculated from the requested
E =< f(x) >. This model represents an almost certain fixed delay with
an improbable, but existing, long tail.

In addition to the delays specified above, there is a configurable chance a packet
may be lost altogether. On the modern Internet, this chance appears to be rather
small, no more than 1 ‰ [KW07].

Chapter VI

The Scenarios

4 Pong

The first scenario we implemented was Pong, akin to the famous video-game from
1972. A rough computer model of tennis, two players each move a racket with the
ability to deflect the ball. If a player fails to catch the ball with his racket and the

8

Figure 2: Visualization of Pong
The ball just bounced off the top sideline. Consequently,
the right racket just started to move down to intercept it.

ball moves across his baseline, the other player scores a point and the ball is tossed
back in.

The drawing in figure2 should give you a rough idea about how the game
works. Note that there are also actual visualizations (videos) of the game at work
1.

Compared to the original Pong, our version has two complications. First, the
ball accelerates by 5% every time it is reflected by a racket. Second, the rackets
have 3 zones. If the ball hits the middle third of a racket, it is reflected normally,
but in the upper (lower) third, it is deflected more towards the top (bottom, respec-
tively).

When passive replication is used (for loose consistency), each player’s score
is owned by his opponent for fairness reasons. The ball’s ownership changes over
time, the owner is always the host that the ball moves away from. Thus the ball is
never owned by the host trying to catch it with its racket.

The scenario-specific yield-measure for Pong is points per second. The moti-
vation is that the better the DVE is, thelesspoints will be scored, as it is easier to
catch the ball with the racket. If the DVE’ quality gets worse, the real position of
the ball is sometimes not known, and even if it becomes known, it may be too late
to catch it, resulting in a score for the opponent.

The AI is kept very simple in this scenario, whenever the ball is moving to-
wards a racket, the racket will move to the expected collision point,not taking into
account whether the ball will bounce off the top or bottom wall. When the ball does
bounce off, the racket starts to move again to try and intercept at the new expected
collision point. While this simple strategem does cause a lot of unnecessary racket
movement, it is a fair model of human players, who often readjust after a bounce.

1http://www.math.tu-berlin.de/condel/visuals/

9

http://www.math.tu-berlin.de/condel/visuals/

5 Swarm

The Swarm models a non-cooperative game forN players, each controlling a
bee and trying to stay as close to the queen-bee as possible. Every tick, honey
is awarded to each bee depending on their distance to the queen, with higher dis-
tance getting less of a reward. When a bee collides with another or with the queen,
the bee is penalized by being considered dead for a few seconds. While dead, a bee
receives no honey and cannot control its flight.

Q

1

2

3

4

5

6

7

8

Figure 3: Visualization of Swarm
The queen (the circle with the Q in it) does a random walk, while all players steer
their bees to be as close to the queen as possible without colliding with anything.
The bee carrying the number 1 belongs to host 1 (and therefore, player 1) etc.

There are eight bees/players in the drawing in figure3, plus the queen (marked
with a q). Again, note that there are also actual visualizations (videos) of the game
at work2.

The game employs a physical model. Players cannot simply set position or
speed of their bees, only the direction and amplitude of acceleration. Collisions
between bees/queen/walls are resolved as they would for ideal, fully elastic balls
of the radius shown in the screenshot. In particular a crash often leads to more
crashes as the bees bounce on uncontrollably.

When passive replication is used (for loose consistency), each bee’s score is
owned by the next bee for fairness reasons. The queen’s ownership is passed round-
robin every two seconds.

The scenario specific yield-measure for Swarm is honey per second. If the DVE
is good, it may be feasible for the individual bees to move quite close together to
gather more honey. If the DVE is not as good, it will frequently misinform a host
(and its AI) as to the other bees’ and the queen’s true position. This either results
in more frequent crashes or the bees will have to stay further away from each

2http://www.math.tu-berlin.de/condel/visuals/

10

http://www.math.tu-berlin.de/condel/visuals/

other and the queen in order to avoid those crashes. Either way, less honey will be
collected.

The AI for this scenario is considerably more complicated than Pong’s. A sim-
ple version of a potential-field steering is installed which attempts to solve the
trade-off between trying to move near the queen while trying to keep a safe dis-
tance from other bees and the queen, so as not to collide with anything. A human
player would quickly adapt to the game and simulation quality and adjust his safety
margins accordingly. Therefore, the AI was also outfitted with a simple learning
mechanism to tune its safety margins.

Chapter VII

Measurements Tools
As the purpose of the code is to rank different solutions, a good array of measure-
ment tools is provided to compare the solutions.

6 Divergence

This measure estimates how similar the world views are on the different hosts.
For each variablea, we define as the divergence measure at timet

da(t) :=

√
1
N

∑
h

(va,h(t)− va(t))
2

whereva,h(t) is the value of variablea on hosth, N is the number of hosts, and
the average value of variablea is

va(t) :=
1
N

∑
h

va,h(t)

. Thus,da(t) is simply the standard deviation of that variable across the entire
distributed system. Note that this formula is the simplification of the formula (3.1)
in [GSK+07] for total replication, i.e. allra,h = 1. In addition, we calculate the
system’s total divergence at timet

d(t) :=
∑

a

wa∑
a wa

· da(t)

, wherewa are configurable weighting factors that allow us to emphasize the more
important variables (such as spacial differences, readily visible) versus the less
important variables (such as acceleration differences, which are almost invisible to
the naked eye). Finally, there is a total divergence over the entire system history
given by

D := d(t)

. Since we calculate and(t) at every tick, calculation ofD is simply

D =
1
T

∑
t

d(t)

11

, whereT is the number of ticks elapsed.
The value given byD is an objective judgment of how well the world views

of the different hosts coincided during the DVE’s lifetime. A smallerD indicates
better consistency.

We should mention that the choice of thewj factors has a rather large impact on
the final result. There is unfortunately no well-defined scheme to find good values
for these factors. We strove to set these factors analogous to how a user would rate
the differences, i.e. variables that are more visible (or looked at) have higher factors
than those that are not readily observable.

Also, we have normalized all values to their natural domains before using them.
These normalizations, like the weighting factorswj , also allow some adjustment
of the result.

7 Discontinuity

This measurement estimates how much the DVE appears to change discontinu-
ously. The motivation is that when a host receives a network message from another
host, the host has to change his own view of the world. If the current world view
is visible to the user, this change is also visible. Most humans are very sensible to
such effects and find them very unpleasant.

Whenever a network message causes a change in variablea on hosth’s world
view, the change is expressed by

ga,h(m) := |vnew
a,h (m)− vold

a,h(m)|

, wherem indexes the discontinuous changes. The total discontinuous change for
a single variable is then

Ga,h :=
1
T

∑
m

(ga,h(m))2

. The total discontinuous change for an entire host is

Gh :=
1
T

∑
m

∑
a

w′
a∑

a w′
a

· (ga,h(m))2

. w′
a are weighting factors similar to the ones in chapter6. In both of the above, the

square makes sure that larger discontinuities are emphasized, just as they are by a
human observer. Finally, the system’s total discontinuity is

G :=
1
H

∑
h

Gh

.
G describes the average discontinuity on the entire system. Smaller values in-

dicate a smoother play out.

12

8 Yield Measures

Each scenario also has scenario-specific measures to estimate the DVE’s quality.
These use an in-scenario success statement to measure how well the users’ in-
scenario goal was reached. Typical examples would be average score, or average
number of bad passes per second. These yield-measures are explained as part of
their scenarios in chapterVI .

9 Cost Measures

The most important costs of a DVE is network load. Our testbed automatically
measures network packages (and bytes) sent/received, both average and maximum,
per host and per second. In most cases, we will report the average number of pack-
ages sent, averaged again over all hosts.

Another important factor for a DVE is computational complexity, which we
also measure by counting pseudo-ops while running consistency, scenario, or net-
work algorithms. Complexities of the AI and of the OMNet++ overhead arenot
measured. While maximum and average CPU pseudo ops are measured per host,
we will usually report average CPU ops per tick, averaged again over all hosts.

Finally, memory requirements of consistency, network and scenario code are
measured in bytes, both average and max. Note this is done by estimating pseudo-
memory for a relatively optimized version of the algorithm, not the actual memory
usage by this implementation.

10 Other Measures

In virtual environments, the local reaction time is of particular importance to re-
tain the impression of immersion. With both loose and optimistic consistency, the
local reaction time is usually zero, i.e. local decisions are performed immediately.
However, thelocal lag parameter we installed in optimistic consistency improves
overall system consistency at the cost of also increasing local reaction time (making
the local system less responsive). This is not a real measurement, as the parameter
is specified to the system. However, the local reaction time, and therefore the local
lag, is a very important quality measure for the system.

Chapter VIII

Experiments
Since most of the algorithms plugged into Adam come with parameters it is essen-
tial to have some way to find optimal values for these parameters given the problem.
To do this, one needs to search the parameter space, rerunning the simulation with
different settings and then comparing the results.

To get a better idea of what each parameter does, we currently simply scan the
parameter space along the axes of each parameter, leaving all other parameters on

13

their defaults. At particular areas of interest, we add more search-rays with altered
defaults.

While it is possible to simply run the testbed on the current machine, this only
gives the result of a single run. Statistic aberrations exist, so in most cases, one
would want to run the experiment several times with different random seeds, aver-
aging the results. Currently, we run each experiment seven times via Akaroa.

While Pong runs for 50.000 simulated seconds per experiment, Swarm’s higher
complexity limits us to 5.000 simulated seconds per experiment.

We are running Adam on standard desktop PCs. The computational complex-
ity of the Swarm scenario isO(N3), whereN is the number of hosts. For practical
purposes, this limits the number of hosts that can be simulated to sixteen. The the-
oretical complexity of the simulation isO(N2), but Adam has not been optimized
to this respect yet.

We currently run the following six standard combinations of scenarios and con-
sistency plugins:

Pong Ideal The Pong scenario with ideal consistency. No parameters.

Pong LooseThe Pong scenario with loose consistency. Configurable parameters
[with their defaults] are:

loss rate [0.001] ([KW07])

avg. delay [0.1s] 100ms delay on all connections. This corresponds to a
200ms ping.

regular update [1s] Send a full update every second.

ball update distance [5] If the ball is 5 pixels away from its ghost, send an
update for the ball.

racket update distance [25] If the racket is 25 pixels away from its ghost,
send an update for the racket.

Pong Opt The Pong scenario with optimistic consistency. Configurable parame-
ters with their defaults are:

loss rate [0.001]

avg. delay [0.1s]

timeout [0.25s] If no acknowledgment message is received within 0.3s after
sending a message, the message is repeated.

local lag [0s] Do not delay local actions.

reception delay [0s] Do not use a jitter buffer.

batching delay [0s] Do not wait to combine messages.

Swarm Ideal The Swarm scenario with ideal consistency.

nr. of bees [8] Currently, simulate only a small amount of bees/hosts.

Swarm Loose The Swarm scenario with loose consistency. Configurable parame-
ters with their defaults are:

14

loss rate [0.001]

avg. delay [0.1s]

nr. of bees [8]

regular update [0.35s]

bee update distance[5] If a bee is 5 pixels away from its ghost, send an
update for this bee.

Swarm Opt The Swarm scenario with optimistic consistency. Configurable pa-
rameters with their defaults are:

loss rate [0.001]

avg. delay [0.1s]

nr. of bees [8]

timeout [0.25s]

local lag [0s]

reception delay [0s]

batching delay [0s]

Chapter IX

Results

11 Rate-Quality Characteristics of Loose and Opti-
mistic Consistency

We defined the two quality measures divergence and discontinuity and it can be ar-
gued that two DVEs that show the same same values for these two quality measures
would also have approximately the same quality. To use these measures quantita-
tively, we would like an intuition of what the qualities of two DVEs withdifferent
values in these measures are. In other words, we would like to understand by how
much quality of the DVE really decreases if these measures, say, double. Since
quality in a distributed system is extremely hard to quantify, it is impossible to an-
swer this question this way. There is, however, another way to gain a quantitative
understanding about these measures: How much do the quality measures increase
if the network bandwidth used by the DVE increases? This information, the rate-
quality characteristic, not only allows us to quantify the quality information given
by these measures, it also allows an implementor of a distributed system to quickly
calculate required network bandwidths for given target quality levels.

To find these characteristic curves, we measured parametric curves for our in-
consistency measures over network load. For this, we stepped through a single
parameter in the Swarm experiment, leaving the other parameters at their defaults.
For loose consistency, we stepped through regular update rate, while for the op-
timistic case, we stepped through the message aggregation timeout. The resulting
network load and inconsistency measurements from each sub-experiment are then

15

plotted in figures4 and5 for a network delay of 100ms, in figures6 and7 for a
network delay of 200ms, and8 and9 for the 400ms case.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 5 10 15 20 25 30 35 40 45 50

di
ve

rg
en

ce
 D

avg. # of packets sent /s

100ms network delay

loose opt

Figure 4: Divergence Characteristic
for 100ms Network Delay

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 5 10 15 20 25 30 35 40 45 50
di

sc
on

tin
ui

ty
 __ G

avg. # of packets sent /s

100ms network delay

loose opt

Figure 5: Discontinuity Characteristic
for 100ms Network Delay

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 5 10 15 20 25 30 35 40 45 50

di
ve

rg
en

ce
 D

avg. # of packets sent /s

200ms network delay

loose opt

Figure 6: Divergence Characteristic
for 200ms Network Delay

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 5 10 15 20 25 30 35 40 45 50

di
sc

on
tin

ui
ty

 __ G

avg. # of packets sent /s

200ms network delay

loose opt

Figure 7: Discontinuity Characteristic
for 200ms Network Delay

From the figures we can immediately see optimistic consistency’s major down-
side, namely that it cannot be configured to cover a very large network load range.
The network load is pretty much determined by the player action frequency, with
batching only providing an effective load reduction of less than a factor of 2. Con-
sequently, there is a certain network load below which optimistic consistency will
just not work and loose consistency is therefore better by default. This point lies
around 12 packets/s for swarm. This point will vary for other scenarios, user num-
bers, and even variant AIs.

Optimistic consistency also has a high point beyond which it cannot use utilize
more bandwidth. In our setting, this point was reached at around 20 packets/s.
However, the consistency at that point is already significantly better than loose’s
consistency at any network load.

On the other hand, optimistic consistency also yields significantly better results
for the entire range of bandwidth> 13 packets/s, in all three sub-experiments.

16

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 5 10 15 20 25 30 35 40 45 50

di
ve

rg
en

ce
 D

avg. # of packets sent /s

400ms network delay

loose opt

Figure 8: Divergence Characteristic
for 400ms Network Delay

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30 35 40 45 50

di
sc

on
tin

ui
ty

 __ G

avg. # of packets sent /s

400ms network delay

loose opt

Figure 9: Discontinuity Characteristic
for 400ms Network Delay

There does not appear to exist any easy fit on the curves, as the exact type of
the curves depends on the consistency in use as well as the delay and the quality
measure. However, divergence curves for loose consistency appear to consist of a
x−1 part at low bandwidth connected to a saturation part where the consistency is
constant.

For the discontinuity measure, loose displays an odd behavior that has long
increasing branches at high bandwidth. This attests to loose consistency’s inabil-
ity to actually increase the quality when using more bandwidth. This is because
each additional message results in an additional discontinuity, while the size of the
discontinuities does not decrease similarly because of loose consistency’s builtin
flaws.

For optimistic consistency, the curves form a distinct spike in all cases. This
hints that batching is not very beneficial in many ranges. In fact, there are usually
only two points of interest. In our scenario, these lie at the no-batching point at
20 packets/s and at the 13 packets/s point. All other points either cost a lot more
bandwidth for similar quality or yield worse quality for the same bandwidth.

12 Optimistic Consistency vs. Loose Consistency

Up to now, no testbed or system was ever able to directly compare the effect of
loose consistency to a system employing optimistic consistency. It is easy to do
this with Adam. In the following experiment, we ran two series of experiments,
one with loose, the other with optimistic consistency. Both ran theswarmscenario
with total replication.

In the experiment series, we varied the simulated network’s delay time and
plotted netload, divergence, discontinuity, cpu-load and honey-gathered as a direct
comparison between the two methods.

Note that the parameters were chosen so that the netload of the two experiments
was equal.

Again, it’s obvious from the data in figures10 and11 that for the swarm sce-
nario at least optimistic consistency works alot better than loose consistency, The

17

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 0.1 0.2 0.3 0.4 0.5

di
ve

rg
en

ce
 D

network delay [s]

loose opt

Figure 10: Divergence Comparison
at 20 packets/s

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5

di
sc

on
tin

ui
ty

 __ G

network delay [s]

loose opt

Figure 11: Discontinuity Comparison
at 20 packets/s

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5

yi
el

d
[h

on
ey

/s
]

network delay [s]

loose opt ideal

Figure 12: Score Comparison
at 20 packets/s

 0

 5

 10

 15

 20

 25

 0 0.1 0.2 0.3 0.4 0.5

av
g.

 #
 o

f p
ac

ke
ts

 s
en

t /
s

network delay [s]

loose opt

Figure 13: Netload Comparison
at 20 packets/s

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 0.1 0.2 0.3 0.4 0.5

C
P

U
 lo

ad
 [o

ps
/ti

ck
]

network delay [s]

loose opt

Figure 14: CPU Load Comparison
at 20 packets/s

18

quality is better when looking both at divergence and at discontinuity, so there
does not seem to be a user-visible drawback. Optimistic consistency rates about
five times as good as loose consistency. Both divergence and discontinuity behave
roughly linear in delay, therefore an improvement in these values by a factor five
has a similar effect as if the delay was reduced by a factor five, which signifies
an extremely strong improvement. A more telling comparison would be to set the
parameters so that loose and optimistic consistency perform equally well in our
quality measures and then compare their bandwidth. As one can see from the fig-
ures in chapter11, there simply is no amount of bandwidth that will allow loose
consistency to perform as well as optimistic consistency without batching because
of the saturation branch.

The parameters were adjusted beforehand so that both experiments would uti-
lize the same amount of netload (i.e. send the same amount of packages, see figure
13). The CPU-load for calculating the world-state is, however, noticeably higher
(about four times as high, see figure14) for the optimistic case.

From the graphs, one can also see that the yield-measure (i.e. average honey
gathered) is unfortunately not a very good meter for quality, as the bees’ good AI
makes up for bad consistency in the system and lets the bees gather more or less
the same amount of honey regardless of the DVE’s quality.

13 Local Lag

Delaying local actions is an effective method of increasing consistency for dis-
tributed systems in general but for optimistic systems especially. The delay gives
other hosts a chance to receive the message describing this action before the action
is due, which will often result in the action being performed simultaneously on
all hosts. This method, termedlocal lag [MVHE04] is often used in one form or
another (e.g. [DG99]) and is reported to be quite good.

We have run the swarm scenario with optimistic consistency and total replica-
tion. The experimental series was done with the delay distribution spike (see chap-
terV), an average delay of 100ms, a loss rate of 1 ‰, and a timeout for the reliable
ARQ algorithm with a 250ms timeout. Eight bees were simulated, no batching or
reception delay was used.

As one can see from figures15 and16, local lag really is as effective as cited
previously by other groups. Use of local lag of about the average network delay
time cuts both discontinuity and divergence by a factor of seven. Since both di-
vergence and discontinuity behave roughly linear in delay (see figures10 and11),
this means that a locally-lagged DVE behaves similar as if the network delay was
cut by seven. Comparison with the graphs in chapter11 shows that a similar ef-
fect could also be achieved via (roughly) doubling network bandwidth. As noted
in chapter11, however, there is a maximum bandwidth for optimistic consistency
beyond which additional bandwidth cannot be utilized any more. In the experiment
in figures15and16, this maximum bandwidth is reached already.

Note that in Adam, actions are only created and evaluated during a tick. Since
ticks are spaced 50ms apart, using a local lag of any value above 50ms will usually
cause the action to be evaluated two ticks later, at which time it will have just been

19

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0 0.05 0.1 0.15 0.2

di
ve

rg
en

ce
 D

local lag [s]

Figure 15: Divergence under Local Lag

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 0.05 0.1 0.15 0.2

di
sc

on
tin

ui
ty

 __ G

local lag [s]

Figure 16: Discontinuity under Local Lag

received if the average delay is 100ms.
It should be pointed out here that local lag is still not the solution to all prob-

lems, as the resulting decreased local reactiveness may not be suitable to the sce-
nario. For virtual environments, the maximum allowable local lag has been re-
ported as between 100ms and 225ms ([Hen01]).

Chapter X

Further Work
The biggest challenge in the industry and scientific research on the subject of vir-
tual environments is currently the question of how to create a truly scalable solu-
tion, i.e. one where millions of users can interact at the same time. To reach this
goal, the complexity and amount of network messages both have to scale either
by O(1) or perhapsO(logN), whereN is the amount of hosts participating in the
DVE. There are already a number of solutions regarding this subject. Our testbed
was always intended to benchmark these solutions, as well.

To allow us to test these kinds of solutions, partial replication has to be imple-
mented, so each host no longer replicates the entire world, but rather just a small
part of it (e.g. the area within the view-range of his avatar). This requires objects
to dynamically join and leave a host’s world view and allows independence of the
total world size in calculation complexity. Changes in world state need only be
messaged to other hosts nearby in the virtual world, which allows independence of
the total population size in network costs.

A prerequisite to achieve such a solution is that each host only knows a subset
of other hosts (no host can know all other hosts), which may change over time. Thus
hosts must be able to create and destroy connections to new hosts. This requires an
extension to our currently flat network model.

When these preliminaries are done, we are going to install a few of the more
important algorithms running partial replication schemes. These range from classic
multicast approaches to the latest peer to peer systems. Our goal is to implement the

20

different replication schemes in the form of pluggable add-ons, just like everything
else in Adam. This would allow us to compare any combination of replication
scheme and consistency algorithm for a given scenario.

There is a difficult sub-problem involved with the combination of partial repli-
cation and optimistic consistency, if exploiting determinism. Basically, what ap-
pears deterministic to one host may seem non-deterministic to another. For exam-
ple, suppose host A replicates object X, which is influenced by an object Y that
host A doesnot replicate. The host B replicating object Y must then send a mes-
sage about this interaction to A. On the one hand, it may not be very easy to even
notice when this situation occurs. On the other hand, the message sent by B ap-
pears deterministic to B. Due to the optimistic playout, it may later be necessary to
invalidate the deterministic messages by anti-messages. One must take great care
to prevent anti-message avalanches in such a situation.

In another subfield, it is possible to define an objective target functionZ by
something akin toZ(η) = Q(η)−K(η), whereQ would be a measure of quality,
whileK would be a measure of cost. It is then possible to find a local or even global
maximum ofZ in the parameter space using the well-known array of nonlinear
numerical optimization techniques. Thus, one could quickly and automatically find
the “optimal” parameter settings for a given combination of scenario, consistency,
and network model. This has not yet been implemented. The problem is that we
currently have no agreed-uponZ-function. This function would have to include
most of the quality measures we defined in chapterVII and their weighting to each
other. Similarly, all costs have to be included and weighted. This is very subjective
and we have not yet found a general approach to defineZ.

Lastly the currently used timeouts are configured via a single, fixed number.
Shorter timeouts mean increased traffic and therefore higher network costs. On
the other hand, shorter timeouts cause shorter overall delay and thus better consis-
tency. There is a tradeoff between these two factors whose solution depends on the
given problem, i.e. the allowed network capacity, the required quality, etc. How-
ever, if the messages are not all of equal importance, the optimal tradeoff varies
from message to message. We are preparing a paper providing the tools, functions,
and approximations to find a near-optimal tradeoff for every message.

Chapter XI

Conclusions
We have introduced Adam, a testbed to estimate the quality of a distributed vir-
tual environment. We have shown that this testbed is practical and can be used to
directly compare algorithms with each other, leaving other algorithms in place.

To achieve this, we first had to define quality measures for distributed virtual
environments. We then implemented various consistency schemes, scenarios, mea-
surements and standard experiments.

We used these experiments to show that optimistic consistency performs a lot
better than loose consistency except at extremely low network bandwidths. Also,
local lag is a very efficient way to improve optimistic consistency’s performance

21

further.

References

[BRS02] Ashwin R. Bharambe, Sanjay Rao, and Srinivasan Seshan. Mercury: a scal-
able publish-subscribe system for internet games. InProceedings of the first
workshop on Network and system support for games, pages 3–9, 2002.

[BWA96] J. Barrus, R. Waters, and D. Anderson. Locales and beacons: Precise and
efficient support for large multi-user virtual environments. InProceedings of
VRAIS’96, pages 204–213, 1996.

[CFKJ02] Eric Cronin, Burton Filstrup, Anthony R. Kurc, and Sugih Jamin. An Efficient
Synchronization Mechanism for Mirrored Game Architectures. InNetGames
’02: Proceedings of the 1st workshop on Network and system support for
games, pages 67–73, 2002.

[DG99] Christophe Diot and Laurent Gautier. A Distributed Architecture for Mul-
tiplayer Interactive Applications on the Internet.IEEE Network magazine,
13(4):6–15, July/August 1999.

[EPM99] G. C. Ewing, K. Pawlikowski, and D. McNickle. Akaroa2: Exploiting Net-
work Computing by Distributing Stochastic Simulation. InProc. European
Simulation Multiconference ESM’99, pages 175–181. International Society
for Computer Simulation, June 1999.

[FS98] Emmanuel Fŕecon and M̊arten Stenius. DIVE: A Scalable Network Architec-
ture for Distributed Virtual Environments.Distributed Systems Engineering
Journal, 5(3):91–100, September 1998.

[Fun95] Thomas A. Funkhouser. RING: A client-server system for multi-user virtual
environments. InSymposium on Interactive 3D Graphics, pages 85–92, 209,
April 1995.

[GSK+07] Sven Grottke, Jan Sablatnig, Andreas Köpke, Jiehua Chen, Ruedi Seiler, and
Adam Wolisz. Consistency in distributed systems. Technical Report in prepa-
ration, TU-Berlin, 2007.

[Hen01] Tristan Henderson. Latency and User Behaviour on a Multiplayer Game
Server. InNGC ’01: Proceedings of the Third International COST264 Work-
shop on Networked Group Communication, pages 1–13, London, UK, 2001.
Springer-Verlag.

[KLXH04] Björn Knutsson, Honghui Lu, Wei Xu, and Bryan Hopkins. Peer-to-Peer Sup-
port for Massively Multiplayer Games. InProceedings of the 23rd Annual
Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM), volume 1, 2004.

[KW07] Andreas K̈opke and Adam Wolisz. Delay Measurements on the Internet.
Technical Report in preparation, TU-Berlin, 2007.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system.Commun. ACM, 21(7):558–565, 1978.

[Lin99] Peter Lincroft. The Internet Sucks: Or, What I Learned Coding X-Wing vs.
TIE Fighter. InProceedings of the Game Developer’s Conference, September
1999.

[Mil06] David L. Mills. Network Time Protocol Version 4 Reference and Implemen-
tation Guide. Technical Report 06-06-1, University of Delaware, Electrical
and Computer Engineering, June 2006.

[MT01] Jośe F. Mart́ınez and Josep Torrellas. Speculative locks for concurrent execu-
tion of critical sections in shared-memory multiprocessors. InWorkshop on

22

Memory Performance Issues (WMPI), at International Symposium on Com-
puter Architecture (ISCA), Gothenburg, Sweden, June 2001.

[MVHE04] Martin Mauve, J̈urgen Vogel, Volker Hilt, and Wolfgang Effelsberg. Local-
lag and Timewarp: Providing Consistency for Replicated Continuous Appli-
cations.IEEE Transactions on Multimedia, 6(1):47–57, February 2004.

[MZP+94] Michael R. Macedonia, Michael J. Zyda, David R. Pratt, Paul T. Barham, and
Steven Zeswitz. NPSNET: A Network Software Architecture for Large-Scale
Virtual Environments.Presence, 3(4):265–287, 1994.

[MZP+95] Michael R. Macedonia, Michael J. Zyda, David R. Pratt, Donald P. Brutz-
man, and Paul T. Barham. Exploiting Reality with Multicast Groups: A Net-
work Architecture for Large-scale Virtual Environments. InProceedings of
the 1995 IEEE Virtual Reality Annual Symposium, pages 2–10, 1995.

[RS97] David J. Roberts and Paul M. Sharkey. Maximising concurrency and scalabil-
ity in a consistent, causal, distributed virtual reality system, whilst minimis-
ing the effect of network delays. InProceedings of the IEEE Workshops on
Enabling Technology: Infrastructure for Collaborative Enterprise ’97, pages
161–166, 1997.

[Var01] András Varga. The OMNet++ Discrete Event Simulation System. InProceed-
ings of the European Simulation Multiconference (ESM 2001), June 2001.

23

	I Introduction
	II Related Work
	III Architecture
	IV Consistency Algorithms
	Loose Consistency
	Optimistic Consistency
	Ideal

	V The Replication/Network Model
	VI The Scenarios
	Pong
	Swarm

	VII Measurements Tools
	Divergence
	Discontinuity
	Yield Measures
	Cost Measures
	Other Measures

	VIII Experiments
	IX Results
	Rate-Quality Characteristics of Loose and Optimistic Consistency
	Optimistic Consistency vs. Loose Consistency
	Local Lag

	X Further Work
	XI Conclusions
	References

