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Abstract

We analyze burst assembly process, as the main building block of optical burst switching
(OBS) paradigm. The analysis is performed for time-based, volume-based as well as hy-
brid burst assemblers. Under the assumption that packets arrival to the assembly buffer
is Poisson, exact analytical expressions are derived for length and interdeparture time of
bursts that are generated by these three classes of assembly algorithms. Furthermore, we
consider the issue of generating burst traces, which arises during performance evaluation of
OBS networks through discrete-event simulation. In such a simulation study a significant
part of the simulation time, particularly in case of a network with a large number of ingress
nodes, is used by the implementation of the burst assembly algorithms. This is due to the
fact that each data burst is result of aggregating several short-length packets which - in a
straightforward approach - have to be generated individually and afterwards ”melted” into
the burst. We present a novel approach to fast generation of bursts, which is based on the
analytical models developed for burst length and interdeparture time distributions as well as
an efficient generation technique (composition) supporting generation of these distributions.
The analysis is followed by numerical results that validate the accuracy of developed models
and demonstrate the speed-up gains of using proposed burst generation algorithms.
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Chapter 1

Introduction

Advances in optical technology and wavelength division multiplexing (WDM) have resulted
in a huge amount of capacity available for transmission over optical links. Unfortunately the
possibilities of efficient usage of this capacity for data and multimedia traffic are frequently
limited by the fact, that switching techniques with fine switching granularity – like packet
switching – cannot be efficiently realized in the optical domain using current technology. The
reason being that switching times of optical devices are still too large compared with the
average packets length and that there is no equivalent to random access memory (RAM) in
optical domain to realize the so-called store-and-forward switching technique. To address the
issue, optical burst switching (OBS) has recently been proposed ([1], [2]) and attracted much
attention from the networking research community.

OBS is a switching paradigm that allows for dynamic allocation of resources in the optical
domain at sub-wavelength granularity. It does so by combining three principles, namely burst
assembly at the edge, one-way out-of-band signaling and cut-through switching in the core.
Burst assembly refers to the process of aggregating small-size packets into bursts at ingress
edges of the optical network. By increasing the size of data units this aggregation makes it
possible to relax the requirements on the speed of optical switching. Once a new data burst
is ready for transmission at an ingress node, a signaling message is generated and released
to the network ahead of the burst. The data burst then follows the message an offset time
after it has been sent without waiting for an acknowledgement, i.e., one-way reservation. The
role of the signaling message is to inform all switching nodes along the path of exact arrival
time of the burst so they can configure their ports so as to switch the burst in a cut-through
fashion upon its arrival. To that end, each signaling message is processed electronically at
every intermediate node after passing through an opto-electrical conversion. However, in
order that data bursts can bypass such conversions at intermediate nodes, signaling messages
are transmitted on dedicated WDM channels, i.e., out-of-band signaling.

In this report we focus on the burst assembly process as one of the main building blocks
of OBS architecture. Assembly algorithms change the statistical characteristics of the input
traffic that, in turn, influences the performance of the network. In order to thoroughly
analyze performance implications of the assembly process in OBS networks, the first step
would be to study the burst assembly algorithm itself. Nevertheless, only few analytical
studies exist in this direction, which have resulted in using simulative investigations as the
main tool to understand the performance implications of different burst assembly algorithms.
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Yu et al. [4] investigate the assembly process and its implication on the performance of
the network, however, they only discuss the approximate distributions of bursts length and
interdeparture time under time-based and volume-based algorithms. Laevens [6] provides
an approximation of burst length distribution for the slotted-time Bernoulli packet arrival
to the assembly buffers. Also, authors in [13] study a variation of hybrid burst assembly
which is periodic and bursts are generated only at the end of each period. They present an
approximate expression for the distribution of number of bursts that are generated at the
end of each assembly period.

On the other hand, in a simulative experiment, the process of burst generation takes a
significant amount of simulation time, since each data burst can be created only by generating
multiple individual packets. This issue becomes especially crucial when OBS networks with
a large number of ingress nodes have to be simulated over longer operational time periods.
The most common approach to overcome the problem is to oversimplify it by ignoring the
impact of burst assembly process on traffic characteristics, and simply assuming that burst
traffic has the same statistical characteristics as the packet traffic - in fact it is usually
assumed that bursts arrive at an OBS core node according to the Poisson process with burst
lengths exponentially distributed. This approach, however, may undermine the credibility
of simulation results and produce misleading results. In [7], we have demonstrated that the
impact of the assembly process on the data loss rate at a core OBS node may be as high as
several orders of magnitude!

The contribution of this report is two-fold. First, we derive analytical models for length
and interdeparture time distributions of the bursts that are generated by the most popular
assembly algorithms. Namely, we will consider time-based, volume-based as well as hybrid
burst assembly algorithms. Then, we apply a technique, which is referred to as composition
technique, to the models in order to develop simple algorithms that mimic real assembler’s
behavior by generating burst traffic of the same statistical characteristics. The algorithms
can be exploited as burst traffic generator in a per flow basis in discrete event simulation
models to accelerate the simulation.

In developing analytical models in this work, we shall make the common assumption
that packet-level traffic arrives at the assembly buffer according to the Poisson process and
packet lengths are exponentially distributed. The assumption of Poisson packet arrivals
can be justified taking into account that, as we will observe in the next Chapter, burst
assemblers multiplex packet-level traffic of a large number of micro flows. Moreover, there
are some recent measurements of traffic in the Internet suggesting that at sub-second time
scales packet arrivals in the core network follow the Poisson process [5]. We note here that
the time scale associated with the burst assembly process is indeed far below a second. In
addition, while exponential assumption for packets length distribution allows us to develop
tractable models, through simulation we will present results for the case where arriving IP
packets have real measurement-based trimodal distribution, and show that the developed
models provide a good approximation also for this case.

The rest of this report is structured as follows. In Chapter 2 we discuss popular algorithms
for burst assembly and their operation. In Chapter 3, we present our analytical models for
probability density functions of interdeparture time and length of the bursts generated by
different types of assembly algorithms. In Chapter 4 we apply the composition technique
to the models of Chapter 3 to develop fast burst generators that can be used in simulation
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models. In Chapter 5 we present numerical results that validate the accuracy of developed
models and demonstrate that large speed-up gains can be achieved by employing proposed
burst generators. Final comments included in Chapter 6 conclude the work.
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Chapter 2

Burst Assembly in OBS

Burst assembly process is one of the distinguishing features of OBS architecture that could
largely influence performance of the network. In order to generate bursts, each OBS ingress
node contains a burst assembly unit. The unit receives packet-level traffic, which is usually
collected from low speed links, at its input and aggregate them into bursts. In its simplest
form, an assembly unit is composed of a packet classifier, an assembly controller and several
assembly buffers, see Fig. 1. Once a packet arrives to the unit, its destination address (and
possibly the QoS class that it belongs to) is checked by the packet classifier. According to the
result of the classification, the packet is enqueued in one of the available virtual destination
queues (VDQs), where each VDQ is a buffer dedicated to packets destined to a certain egress
node and is referred to as an assembly buffer. Therefore, the unit should contain one assembly
buffer per destination (and per QoS class). Note that the term destination here refers to an
egress node in the OBS cloud, thus packets of the same attributes from different micro flows
can be multiplexed into the same assembly buffer.

The assembly controller is responsible for making the decisions regarding when contents
of each assembly buffer should be aggregated into a burst and released to the network. The
controller takes care of scheduling burst generations based on several criteria, of which some
are imposed by the network, e.g., maximum and minimum burst length, and others are
imposed by QoS requirements of incoming packet traffic, e.g., maximum delay that a packet
can tolerate in an assembly buffer. Accordingly, various proposals have been presented and
investigated for this purpose, see e.g., [3], [4]. The controller may apply different algorithms
to different assembly buffers.

In general, burst assembly algorithms may be classified into three major categories,
namely time-based, volume-based and hybrid algorithms. In a time-based algorithm, the
controller is equipped with a timer. Once a packet arrives to an empty assembly buffer, the
timer associated to the buffer is set to a time threshold TTh. This threshold is determined
considering maximum delay that a packet can tolerate in the ingress node. Then, as soon
as the timer expires, all packets in the buffer are aggregated into a burst and sent out. The
timer is deactivated when the buffer is emptied. If length of the burst generated in this
way is below a given level Lmin, padding has to be used to fulfill the minimum burst length
requirements. The value of Lmin is dictated by the network architecture [3], and depends
on the ratio between number of data and control channels of WDM links in the network.
Specifically, Lmin has to be selected large enough so as to avoid possible conflicts between
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Figure 2.1: Burst assembly unit in an ingress OBS node.

reservation messages of different data bursts over the control channel.
In a volume-based algorithm, the controller checks the aggregate length of packets in the

assembly buffer each time a new packet arrives. As soon an the aggregate length exceeds
a predefined threshold LTh all packets in the buffer are assembled into a new burst. This
threshold should clearly be larger than the minimum burst length requirement of the network
and is usually selected with respect to maximization of utilization of resources over the
network [3]. Algorithms of this category are usually not recommended for delay-sensitive
traffic, because there is no guarantee on the upper-bound delay that a packet may experience
in the buffer.

Alternatively, in a hybrid assembly algorithm, the control unit keeps track of both aggre-
gate volume of packets in the buffer and the time elapsed since the first packet has arrived.
That is, the timer is set to TTh once a packet arrives and finds the buffer empty, and length
of the queue is compared against a length threshold LTh upon each new arrival. Then, a new
burst will be generated when either the timer expires or the volume threshold is exceeded. In
either case, the timer will be deactivated after the buffer is emptied. In an algorithm of this
category load intensity determines which criterion, between time and volume, will be used to
generate a new burst at a given time. That is, if the load intensity is below a specific level,
a new burst will be generated TTh units of time after the first packet has arrived; however,
if the load intensity is heavy enough, bursts of length LTh will be generated back to back
so that no packet will encounter maximum assembly delay of TTh. In the former case, it is
likely that the timer expires while the aggregate length is less than the minimum burst length
requirement. If such does happen, padding has to be used.
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Chapter 3

Burst Traffic Modeling

In this chapter, we consider modeling of burst traffic generated by the time-based, volume-
based and hybrid assemblers. Consider a single assembly buffer in an OBS ingress node. Let
packets arrive to the buffer according to the Poisson process with rate λ, and also packet
lengths be exponentially distributed with mean µ−1, i.e., the offered load to the assembler is
ρ = λµ−1. In the following analysis we let X and Z be random variables denoting the length
and interdeparture time of the bursts leaving the assembler’s output, respectively.

3.1 Time-Based Algorithm

Consider a time-based assembly algorithm with the assembly parameter and the minimum
burst length requirement set to TTh and Lmin, respectively . According to Fig. 2, from the
instant of time that first packet arrives to the buffer (i.e., t), it takes TTh units of time until a
new burst will be generated. Thus, we can assume that each burst contains (N + 1) packets
where N is the total number of packets that arrive during the interval after the first packet
has arrived and before the timer expires. Hence, N would be a random integer that follows
the Poisson distribution with mean λTTh. That is,

PT [N = n] =
(λTTh)n

n!
e−λTTh (n = 0, 1, . . .). (3.1)

The average number of packets per burst is equal to λTTh + 1. If total number of packets
in a burst is given by k, then length of the burst is sum of k i.i.d. exponentially distributed
random variables that is known to follow the Erlang distribution [9] with the density function
given by

fT (x|k) =
µ(µx)k−1

(k − 1)!
e−µx. (3.2)

Accordingly, the total volume of the packets in the buffer when the timer expires would have
the following density function.

fT (x) =
∞
∑

n=0

µ(µx)n

n!
e−µx.PT [N = n] (x > 0). (3.3)
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Figure 3.1: Burst formation process under the time-based assembly algorithm.

The probability that the burst length is smaller than Lmin, i.e., padding is required, would
be equal to:

PT,Pd = P (X < Lmin)

=

∫ Lmin

0
fT (x)dx

=
∞
∑

n=0

γ(n + 1, µLmin)

n!
PT [N = n] (3.4)

where γ(a, x) =
∫ x
0 ta−1e−tdt is the incomplete gamma function. Therefore, the density

function of bursts after padding would be given by

fT,Pd(x) = PT,Pdδ(x − Lmin) +
∞
∑

n=0

µ(µx)n

n!
e−µx.PT [N = n] (x ≥ Lmin) (3.5)

where δ(.) is the Dirac delta function.
Now, we turn to the burst interdeparture time. As depicted in Fig. 2, by making use

of the memoryless property of the packet arrival process, we notice that the interdeparture
time between two consecutive bursts is composed of a random value t1 that is exponentially
distributed with mean λ−1 plus a deterministic value TTh. The exponential part accounts for
the time required until a new packet arrives to the buffer after the previous burst has been
sent. In fact, the burst interdeparture time distribution is the same as the distribution of
packet interarrival time, shifted by the assembly parameter. Therefore, the density function
of burst interdeparture time can be written as the shifted-exponential density given in (3.6).

fT (z) = λe−λ(z−TTh) (z ≥ TTh). (3.6)

Note that fT (z) is independent of µ−1. In addition, while the random part would have a
negligible effect on interdeparture times in a heavily loaded assembler, it plays an important
role under the light load situations. That is, under the small arrival rates the random part
may be comparable to the fixed part TTh.

3.2 Volume-Based Algorithm

Let us now consider traffic generated by a volume-based assembly algorithm with assem-
bly parameter LTh. It is assumed that packet-level traffic with the same characteristics
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as described in the previous section arrives to the assembly buffer. Let us first derive the
distribution function of burst interdeparture times.

Since both packet lengths and interarrival times are assumed to be exponentially dis-
tributed, the problem of finding distribution of burst interdeparture times can be regarded as
equivalent to that of finding the burst length distribution for the time-based assembler with
the assembly parameter LTh, in which packet arrival process is Poisson with mean µLTh and
packet lengths are exponentially distributed with mean λ−1. Therefore, the density function
of burst interdeparture times is given by

fL(z) =
∞
∑

n=0

λ(λz)n

n!
e−λz.PL[N = n] (z > 0). (3.7)

where PL[N = n] is given by

PL[N = n] =
(µLTh)n

n!
e−µLTh (n = 0, 1, . . .). (3.8)

Similar to the burst interdeparture times under the time-based assembler, burst length
distribution in this case is the same as the distribution of packet length, shifted by the
assembly parameter LTh. Thus, the density function of burst length can be written as

fL(x) = µe−µ(x−LTh) (x ≥ LTh). (3.9)

In this case, f(x) is independent of the packet arrival rate. Note that in viewing the process
from this perspective, N , which has the Poisson distribution, is the total number of arrivals
during an interval of length LTh. However, as described in Chapter 2 a new burst will be
generated upon arrival of the packet that makes the aggregate length exceed LTh. Thus,
the burst interdeparture time should be calculated using an Erlang distribution with (n + 1)
phases. This also accounts for the exponential term in calculating the burst length. As a
result, the average number of packets per burst in this case is equal to µLTh + 1.

3.3 Hybrid Algorithm

Consider a hybrid algorithm that its minimum burst length requirement, volume threshold
and time threshold are set to Lmin, LTh and TTh, respectively. In our analysis we assume
that Lmin < LTh. As depicted in Fig. 3, once a packet enters an empty assembly buffer,
the timer is set to TTh. Therefore, the probability that the timer expires before the volume
criterion, i.e., LTh, is met can be expressed as

PT = 1− P (τ < TTh) (3.10)

where τ is the random variable characterizing the time needed until enough packets arrive
to the assembly buffer so that a burst can be generated using the volume criterion. We
recall from the volume-based assembler that the conditional density of τ given the number
of arrivals follows the Erlang distribution. That is,

f(τ |n) =

{

δ(τ), n = 0
λ(λτ)n−1

(n−1)! e−λτ , n ≥ 1
(3.11)
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Figure 3.2: Burst formation process under the hybrid assembly algorithm.

where n is the number of arrivals during a period of LTh with the probability function given
in (3.8). Note that n = 0 is associated with the situation that size of the first arrival to
the buffer is larger than the volume threshold. In that case, the timer will be deactivated
immediately after it is set, thus τ is equal to zero. For the case of n ≥ 1 we would have

P (τ < TTh |n) =

∫ TTh

0

λ(λτ)(n−1)

(n− 1)!
e−λτdτ

=
γ(n, λTTh)

(n− 1)!
(n ≥ 1). (3.12)

Therefore, PT can be computed as

PT = 1− e−µLTh −
∞
∑

n=1

γ(n, λTTh)

(n− 1)!
PL[N = n]. (3.13)

Now, let us derive the density of length of the bursts that are generated by the assembly
buffer under study. Those bursts that leave the assembly buffer before the timer expires would
be larger than LTh, thus their density would be equivalent to that of the bursts generated
by the pure volume-based algorithm, as given in (3.9). However, if the timer does expire,
the burst length would be smaller than LTh. Therefore, the density function of bursts length
before possible padding would be equal to

fH(x) =

{

PT fa(x), x < LTh

(1− PT )µe−µ(x−LTh), x ≥ LTh
(3.14)

where fa(x) is the density of the bursts length when the timer expires, which is equal to the
conditional density of fT (x), as given by (3.3) , given (x < LTh). That is,

fa(x) = fT (x |x < LTh)

=
fT (x)

K1
(x < LTh) (3.15)

where K1 is the normalization factor and can be computed as, (see (3.4))

K1 = P (X < LTh)

=
∞
∑

n=0

γ(n + 1, µLTh)

n!
PT [N = n]. (3.16)
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Accordingly,

fa(x) =

∑

∞

n=0
µ(µx)n

n! e−µxPT [N = n]
∑

∞

n=0
γ(n+1,µLTh)

n! PT [N = n]
(x < LTh). (3.17)

To calculate the probability that padding is applied we can write,

PH,Pd = P (X < Lmin |X < LTh)P (X < LTh) (3.18)

where P (X < LTh) = PT and

P (X < Lmin |X < LTh) =

∫ Lmin

0
fa(x)dx

=

∑

∞

n=0
γ(n+1,µLmin)

n! PT [N = n]
∑

∞

n=0
γ(n+1,µLTh)

n! PT [N = n]
. (3.19)

Finally, the density function of bursts length after padding padding can be expressed as

fH,Pd(x) =

{

PH,Pdδ(x − Lmin) + PT fa(x), Lmin ≤ x < LTh

(1− PT )µe−µ(x−LTh), x ≥ LTh.
(3.20)

Now we turn to the bursts interdeparture time. As depicted in Fig. 3 bursts interdeparture
time is composed of two parts, namely t1, which is the time required until a packet arrives
after the last burst has been sent out, and τ , which is the time between the first packet arrives
and the new burst is generated. That is,

Z = t1 + τ. (3.21)

For those bursts that are released due to the timer expiration, τ would be deterministic and
equal to TTh, thus the density of bursts interdeparture time would be equal to that of the
pure time-based assembler, as given in (3.6). For other bursts, however, interdeparture time
would be equal to sum of t1 and τ given τ < TTh. Therefore,

fH(z) = PT λe−λ(z−TTh)U(z − TTh) + (1− PT )fb(z) (z > 0) (3.22)

where U(.) is the unit step function. Also, fb(z) can be calculated by convolving the density
functions of t1 and τ as follows:

fb(z) = f(t1) ∗ f(τ | τ < TTh). (3.23)

Since packet arrivals is Poisson, f(t1) = λe−λt1 (t1 ≥ 0). Also, from (3.11) and (3.12) we
would have

f(τ) = e−µLThδ(τ) +
∞
∑

n=1

λ(λτ)n−1

(n− 1)!
e−λτPL[N = n]. (3.24)

Therefore, we can write,

f(τ | τ < TTh) =
f(τ)

P (τ < TTh)

=
e−µLThδ(τ) +

∑

∞

n=1
λ(λτ)n−1

(n−1)! e−λτPL[N = n]

e−µLTh +
∑

∞

n=1
γ(n,λTTh)

(n−1)! PL[N = n]
(τ < TTh). (3.25)
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Substituting (3.25) in (3.23) and solving the convolution yields

fb(z) = f(t1) ∗ f(τ | τ < TTh)

=

∫

∞

0
f1(z − x).f(x |x < TTh)dx

=

∫

∞

0
λe−λ(z−x)

e−µLThδ(x) +
∑

∞

n=1
λ(λx)n−1

(n−1)! e−λxPL[N = n]

e−µLTh +
∑

∞

n=1
γ(n,λTTh)

(n−1)! PL[N = n]
dx (3.26)

In case z ≤ TTh, then we can write

fb(z) =

∫ z
0 λe−λ(z−x)e−µLThδ(x)dx +

∑

∞

n=1(
λn+1e−λz

(n−1)!

∫ z
0 xn−1dx)PL[N = n]

e−µLTh +
∑

∞

n=1
γ(n,λTTh)

(n−1)! PL[N = n]

=
λe−µLThe−λz +

∑

∞

n=1
λ(λz)n

n! e−λzPL[N = n]

e−µLTh +
∑

∞

n=1
γ(n,λTTh)

(n−1)! PL[N = n]
(z ≤ TTh). (3.27)

On the other hand if z > TTh, we would have

fb(z) =

∫ TTh

0 λe−λ(z−x)e−µLThδ(x)dx +
∑

∞

n=1(
λn+1e−λz

(n−1)!

∫ TTh

0 xn−1dx)PL[N = n]

e−µLTh +
∑

∞

n=1
γ(n,λTTh)

(n−1)! PL[N = n]

=
λe−µLThe−λz +

∑

∞

n=1
λ(λTTh)n

n! e−λzPL[N = n]

e−µLTh +
∑

∞

n=1
γ(n,λTTh)

(n−1)! PL[N = n]
(z > TTh). (3.28)

Therefore,

fb(z) =



















λe−µLThe−λz+
∑

∞

n=1

λ(λz)n

n!
e−λzPL[N=n]

e−µLTh+
∑

∞

n=1

γ(n,λTTh)

(n−1)!
PL[N=n]

0 < z ≤ TTh

λe−µLThe−λz+
∑

∞

n=1

λ(λTTh)n

n!
e−λzPL[N=n]

e−µLTh+
∑

∞

n=1

γ(n,λTTh)

(n−1)!
PL[N=n]

z > TTh.

(3.29)

Accordingly, bursts interdeparture time can be expressed as

fH(z) =



















PT λe−λ(z−TTh) + (1− PT )
λe−µLTh e−λz+

∑

∞

n=1

λ(λTTh)n

n!
PL[N=n]e−λz

e−µLTh+
∑

∞

n=1

γ(n,λTTh)

(n−1)!
PL[N=n]

z > TTh

(1− PT )
λe−µLTh e−λz+

∑

∞

n=1

λ(λz)n

n!
PL[N=n]e−λz

e−µLTh+
∑

∞

n=1

γ(n,λTTh)

(n−1)!
PL[N=n]

0 < z ≤ TTh.

(3.30)
Eqns. (3.1), (3.8), (3.13), (3.17), (3.18), (3.20) and (3.30) collectively yield exact proba-

bility density functions for length and interdeparture time of bursts generated by the hybrid
assembly algorithm under study. Now we take some practical considerations into account and
approximate PT and fH(z) with simpler expressions. In practice, the length threshold LTh

is usually much larger than µ−1, so that e−µLTh ≃ 0. Therefore, PT can be approximated by

PT ≃ 1−
∞
∑

n=1

γ(n, λTTh)

(n− 1)!
PL[N = n]. (3.31)
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Simplyfying (3.30) and subsituting PT with the expression in (3.31), fH(z) can be approxi-
mated by

fH(z) ≃

{

(1−
∑

∞

n=1
γ(n,λTTh)

(n−1)! PL[N = n])λe−λ(z−TTh) +
∑

∞

n=1
λ(λTTh)n

n! e−λzPL[N = n] z > TTh
∑

∞

n=1
λ(λz)n

n! e−λzPL[N = n] 0 < z ≤ TTh.

(3.32)
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Chapter 4

Genaration of Burst Traffic in a

Discrete Event Simulator

In this chapter we analyze the density functions that were derived in the last chapter in
order to develop efficient algorithms that take care of the burst traffic generation process in
a discrete event simulation (DES) model. Let us start with the time-based burst assembly.
The density function in (3.5) is composed of two parts, where the second part includes the
product of two functions namely, the Erlang density function with (n + 1) phases and mean
(n + 1)µ−1 and the Poisson distribution with mean λTTh. Moreover, we notice that the
second part in (3.5) constitutes a convex combination of an infinite number of Erlang density
functions, each with different mean and number of phases. By definition, a density function
f(y) is said to be a convex combination of other density functions f1, f2... if it can be written
as

f(y) =
∞
∑

i=0

fi(y)pi (4.1)

where pi ≥ 0,
∑

∞

i=0 pi = 1, and each fi is a density function [8].
An interesting feature of a complex density function that can be expressed in the form of a

convex combination of other simple density functions, like that in (3.5), is that its samples can
be generated using the composition technique [8]. In this technique, each sample of a random
variable Y with the density function f(y) is generated by: i) generating a positive random
integer I such that P (I = i) = pi where i = 0, 1, ..., and ii) returning Y with the density
function fI(y). More specifically, a sample of random variable with the density function given
in (3.5) can be easily generated in two steps. First, a positive random integer n is generated
using the Poisson distribution with mean λTTh, then a random value is generated using the
Erlang distribution with (n + 1) phases and mean (n + 1)µ−1.

Algorithm. 1 presents the pseudo code of a simple algorithm that exploits concept of
the composition technique to generate burst traffic with the bursts length and interdeparture
time density functions that are given in (3.5) and (3.6), respectively. Refereing to the algo-
rithm exp(α), Poisson(β) and Erlang(n, nα) are exponential random generator with mean
α, Poisson random generator with mean β and Erlang random generator with n phases and
mean nα, respectively. The algorithm works as follows. First, the number of packets in the
current burst is determined. Then, length of the current burst is computed using Erlang
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random generator and taking into account that the length should not be smaller than Lmin.
Finally, interdeparture time is computed by generating an exponentially distributed random
variable and adding it to TTh. Following the same approach for the volume-based case, we will

Algorithm 1 Burst traffic generation according to the time-based algorithm with packet
arrival rate λ, average packet size µ−1 and assembly parameters TTh and Lmin.

λ, µ, TTh, Lmin ← initialize
k ← number of bursts to be generated
for i := 1, i ≤ k, i + + do

n← Poisson(λTTh)
x← Erlang(n + 1, (n + 1)µ−1)
if x < Lmin then

x← Lmin

end if

z ← TTh + exponential(λ−1)
wait (z)
generate and send a burst of length x

end for

get the algorithm depicted in Algorithm 2, that works in a similar way that the time-based
algorithm does.

To develop an algorithm for generating bursts with the hybrid policy, which is more
complicated than the time and volume based cases, we use a combination of the first two
algorithms as depicted in Algorithm 3. The algorithm works as follows. In the first step, the
value of PT has to be computed using (3.13)or (3.31). Note that the value of PT for a given
set of input traffic and assembly parameters is fixed, thus it is computed only once at the
beginning of the simulation. After having computed t1 (see Fig. 3), a sample is drawn from
a uniform random generator in the range (0, 1). The value of U will then be used to decide
which procedure, between time-based and volume-based, has to be followed to generate the
current burst. In the former case, care has to be taken so as not to generate a burst whose
length is larger than LTh. This is achieved through a conditional probability. Similarly, in
the latter case the burst interdeparture time minus t1 must be smaller than TTh. In either
case, the conditional probability is achieved through implementing a while loop.

Algorithm 2 Burst traffic generation according to the volume-based algorithm with packet
arrival rate λ, average packet size µ−1 and assembly parameter LTh.

λ, µ, LTh ← initialize
k ← number of bursts to be generated
for i := 1, i ≤ k, i + + do

n← Poisson(µLTh)
z ← Erlang(n + 1, (n + 1)λ−1)
x← LTh + exponential(µ−1)
wait (z)
generate and send a burst of length x

end for
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Algorithm 3 Burst traffic generation according to the hybrid algorithm with packet arrival
rate λ, average packet size µ−1 and assembly parameters TTh, LTh and Lmin.

λ, µ, TTh, LTh, Lmin ← initialize
k ← number of bursts to be generated
PT ← compute PT from the model (0 < PT < 1)
for i := 1, i ≤ k, i + + do

t1 ← exponential(λ−1)
U ← uniform(0, 1)
if U ≤ PT {use time-based procedure} then

x← LTh + 1
while x ≥ LTh do

n← Poisson(λTTh)
x← Erlang(n + 1, (n + 1)µ−1)

end while

if x < Lmin then

x← Lmin

end if

z ← TTh + t1
else {use volume-based procedure}

z ← TTh + 1
while z ≥ TTh do

n← Poisson(µLTh)
if n == 0 then

z ← 0
else

z ← Erlang(n, nλ−1)
end if

end while

z ← z + t1
x← LTh + exponential(µ−1)

end if

wait (z)
generate and send a burst of length x

end for

The main advantage of using the presented algorithms over direct implementation of the
burst assembly algorithms is simulation speed-up. Specifically, if the assembly algorithm is
directly implemented in a simulation model, the model first has to generate a large number
of packets, and then assemble them into bursts and this process has to be repeated for every
single burst. In other words, it would take O(MN) time to generate N bursts, where M is
the average number of packets per burst. This however implies that the more the average
number of packets per burst is, the slower the corresponding simulation model works. This
is fortunately not the case for our algorithms, in which time needed to generate N bursts is
O(N). In the next chapter, we will numerically evaluate the speed-up gain that is achieved
using these algorithms.
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Chapter 5

Evaluation and Discussion

In this chapter, we numerically study characteristics of traffic generated by the burst assem-
blers through simulation and analysis. Although the analytical models derived in this work
are exact, we have performed simulation experiments for two purposes. First, we use simu-
lation to validate the usage of our analytical models in the realistic case of trimodal packet
size distribution for the arrivals as measured in the real Internet. Table I. shows the trimodal
packet length distribution that has been used for this purpose [11]. Second, we evaluate
the speed-up gain that can be achieved in a simulation experiment, when the algorithms of
Chapter 4 are employed. All the simulation that follow results are obtained through explicitly
implementing the assembly algorithms in the discrete event simulator OMNeT++ [10]. Input
packets to the assemblers are generated according to the Poisson process and their length
follows the trimodal distribution as given in Table I. The results of the simulation are then
compared with those obtained from the analytical models with the average packet size set to
485.6 Bytes, which is equal to that in the simulation model. The capacity of the traffic flow
that feeds the assembly buffer under consideration is assumed to be equal to 100 Mbit/s.
We have further decided to present the cumulative distribution functions (CDFs), instead of
probability density function, since they are easier to deal with.

Let us start with the time-based burst assembler. The assembly parameter TTh is set
to 4 msec. First we evaluate the probability that generated bursts are smaller than a given
minimum burst length requirement Lmin, thus require padding. For a given assembly thresh-
old, the load offered to the assembler as well as Lmin are the factors that influence this
probability. Fig. 4 shows PT,Pd as a function of offered load for different values of Lmin.
As expected, the probability in all cases decreases with load. It is also seen that the results
of the simulation match those of analytical models very closely. To analyze the impact of
PT,Pd on the traffic characteristics we consider CDF of bursts length and interdeparture time
at both light and heavy loads, while keeping Lmin fixed at 15 KBytes, see Fig. 5. Plots
of Fig. 5 clearly illustrates the impact of the padding process on the distribution of bursts
size. In fact, depending on the offered load and Lmin, fixed-size bursts could even dominate
the bursts generated by the assembler, see the case with ρ = 0.3 in Fig. 5. From the figure
it is also evident that the error introduced by the exponential packet length assumption is
very narrow. CDFs of bursts interdeparture time for the same system are plotted in Fig.
6. As seen in the figure, the distributions provided by the analytical models exactly match
those obtained from simulations. This is not surprising, as from (3.6) it is clear that the
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distribution of bursts interdeparture time is independent of the packets length distribution.
Fig. 7 depicts CDF of interdeparture time of the bursts that are generated by the volume-

based assembler with the assembly threshold set to 25 KBytes. The results are shown at both
light and heavy loads. We observe that as the load increases, the slope of the CDF of bursts
interdeparture time decreases. Also, there is a good match between results of analysis and
those of simulation, which again justifies the exponential assumption for the packets size in
developing the models. Corresponding bursts length distributions are shown in Fig. 8. From
(3.9) it is obvious that burst length is independent from packet arrival rate, and hence from
the load in this case. CDF in the analytical case is a shifted exponential distribution, whereas
it is a shifted-trimodal distribution in case of trimodal packets arrival. The amount of shift
in either case is the same and is equal to the assembly threshold. Taking into account that
the assembly threshold is always far larger than a single packet size, the difference in the
distributions of Fig. 8 can be regarded as negligible.

Let us now consider the hybrid assembly algorithm. The hybird assembler applies a
combination of time and volume criteria to decide for generating bursts, thus it is important
to see the interplay between these two criteria under different settings. In Fig. 9 values of
PT are plotted as a function of TTh at different loads, with the length threshold LTh set to
25 KBytes. It is seen that as the offered load decreases, PT becomes a smoother function
of LTh. In other words, if the assembler is heavily loaded, then a small change in TTh can
greatly affect the fraction of bursts that are generated due to the timer expiration. This
can be explained by recalling that in the pure volume-based burst assembler, the range of
variations of burst interdeparture time decreases with arrival rate, as depicted in Fig. 7.

Another important metric that has to be considered is the fraction of bursts that undergo
padding before transmission, i.e., PH,Pd. The value of PH,Pd is quite important, because
it is pertinent to the amount of overhead that is introduced by setting of the assembler’s
parameters. Refereing to (3.18), for a given length and time threshold, PH,Pd depends on
the value of Lmin. Fig. 10 depicts the values of PH,Pd as a function of Lmin for two different
values of TTh at load=0.5 and LTh=25 KBytes. Note that at Lmin=25 KBytes, PH,Pd is
equal to the whole fraction of bursts that are generated due to the timer expiration, i.e., PT .

In order to study the impact of PT and PH,Pd on the distributions, two different scenarios
are considered, as depicted in Table II. In either case, the offered load and LTh are fixed
and are equal to 0.5 and 25 Kbytes, respectively. Table II also shows the values of PT that
are achieved when each of the scenarios are applied. In fact, we are more interested in
the settings that result in a moderate value of PT because in the extreme cases the hybrid
assembler collapses either to the time-based or to the volume-based assembler. Distributions
of length of the bursts at the output of the hybrid assembler are plotted in Fig. 11. The burst
length distributions in Fig. 11 can be divided into two regions, which is also in accordance
with the expression derived in (3.20). The first region, i.e., burst size between Lmin and LTh,
is associated with those bursts that are generated when timer is expired; however, the second
region, i.e., burst size greater than LTh, is associated with the bursts that are generated
because the length threshold is exceeded, thus their size has a very limited variation. The
burst size variation in the first region however depends on Lmin. In fact, the padding process
results in generation of bursts of length equal to Lmin. As seen in Fig. 11, the fraction of
such bursts is quite significant in the second scenario where Lmin is increased to 18 KBytes.

Distributions of bursts interdeparture time corresponding to the scenarios of Table II are
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Table 5.1: Trimodal Packet Length Distribution

Length (bytes) Probability

40 0.5
552 0.3
1500 0.2

shown in Fig. 12. Since the offered load and LTh are fixed in both scenarios, corresponding
interdepartures only differ for the times greater than 3.53 msec, which is the smallest time
threshold between the two scenarios. Similar to CDF of bursts length, that of interdeparture
time can also be divided into two regions, with the border of the regions being at TTh.
Moreover, it is seen that as this border is shifted to the left, i.e., the time threshold is
decreased, the range of variations of bursts interdeparture time reduces.

Observations of Figs. 9-12 again confirm that the analytical models provide a very ac-
curate estimation for the more realistic case of trimodal packets length distribution. As a
matter of fact, in all cases – including time-based and volume-based assemblers – we deal
with random variables that are resulting from aggregating a large number of independent
trimodal random variables. It can intuitively be explained that in that case the major player
is the first moment of the individual packets length and the role of higher moments decreases
with the number of aggregated packets.

After having discussed the characteristics of the burst traffic, we now study the speed-up
gain that is achieved when using the algorithms of Chapter 4 in a discrete event simulation
model. The proposed algorithms are based on exact analytical models that have been devel-
oped in Chapter 3 and therefore the traffic that is generated using such algorithms exactly
match those of analytical models. Therefore, for the sake of brevity here we only present
and discuss the speed-up gain of such algorithms over straightforward implementation of the
assembly algorithms in a simulation model.

For this purpose, we generate traces of burst traffic through the direct approach as well
as the proposed algorithms and compare the corresponding simulation times with each other.
Both algorithms are implemented in OMNeT++, in which all basic random generators re-
quired for implementing the algorithms are available as built-in functions. We have measured
and compared time needed for each of the approaches in order to generate 107 bursts on a
PentiumIV 3.2GHZ processor with 1024 MB RAM. Fig. 13 presents the speed-up gain that
has been measured versus average number of packets per burst. It is seen that the speed-up
gain for the pure time-based and volume-based algorithms could be well beyond an order of
magnitude even for short bursts, and it increases with the average number of packets per
burst. The reason is that in the direct implementation, as discussed before, simulation time
increases with the number of packets per burst. The speed-up gain for the hybrid algorithm
is also quite significant; however, it is smaller than that of the first two algorithms. In fact,
the difference between speed-up gains of Algorithm 1(2) and Algorithm 3 is that in the latter
case, generating the conditional probabilities requires going through a while loop that, in
turn, increases the simulation time.
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Table 5.2: Parameters used to evaluate the hybrid assembler

Scenario I Scenario II

Lmin (KBytes) 10 18
TTh (msec) 3.95 3.53

PT 0.5 0.7
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Figure 5.1: Probability that burst length is less than Lmin as a function of load in the
time-based assembler with TTh=4 msec.
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Figure 5.2: CDF of length of the bursts generated by the time-based assembler with TTh=4
msec and Lmin= 15 KBytes.
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Figure 5.3: CDF of interdeparture time of the bursts generated by the time-based assembler
with TTh=4 msec and Lmin= 15 KBytes.
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Figure 5.4: CDF of interdeparture time of the bursts generated by the volume-based assembler
with LTh= 25 KBytes.
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Figure 5.5: CDF of length of the bursts generated by the volume-based assembler with LTh=
25 KBytes.
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Figure 5.6: Fraction of the bursts that are generated due to the timer expiration in a hybrid
assembler with LTh= 25 KBytes.
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Figure 5.7: Probability that burst length is less than Lmin in a hybrid assembler with LTh =
25KBytes at load 0.5.
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Figure 5.8: CDF of length of the bursts generated by the hybrid assembler with LTh= 25
KBytes at load 0.5.
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Figure 5.9: CDF of interdeparture time of the bursts generated by the hybrid assembler with
LTh= 25 KBytes at load 0.5.
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Figure 5.10: Speed-up gain of using the burst generator algorithms over direct simulating of
the assembly algorithms for generating 107 bursts as a function of average number of packets
per burst.
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Chapter 6

Conclusions

We have developed an analytical model for the traffic process that leaves the burst assembly
buffer in an ingress OBS node. The model includes expressions for distribution of both length
and interdeparture time of bursts that are generated under different assembly algorithms.
The models are exact for the case that packets length is exponentially distributed; however,
through simulation we show that they also provide a very good approximation for the case
of trimodal packet length distribution following real measurements in the Internet. As an
important application of the models, we present novel traffic generators to be used in discrete
event simulation models. The main benefit of the proposed generators is the large speed-up
gain which by the way increases with the average number of packets per burst. In the specific
example considered in this report the speed-up gain as high as 40 has been observed.
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